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ABSTRACT 
 

 We consider an infinite horizon economy with incomplete markets with two 
agents and one good. We begin with an example in which an agent’s equilibrium 
consumption is zero eventually with probability one even if she has correct beliefs 
and is marginally more patient. We then prove the following general result: if 

markets are effectively incomplete forever then on any equilibrium path on which 
some agent’s consumption is bounded away from zero eventually, the other agent’s 
consumption is zero eventually. This implies that either some agent vanishes, in that 
she consumes zero eventually, or the consumption of both agents is arbitrarily close 
to zero infinitely often. Later we show that the first possibility is a robust outcome 
since for a wide class of economies with incomplete markets, there are equilibria in 
which an agent’s consumption is zero eventually with probability one even though 
she has correct beliefs as in the example. Our results mark a sharp contrast with the 
case studied by Sandroni (2000) and Blume and Easley (2004) where markets are 
complete. 
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1. INTRODUCTION

General equilibrium models are useful in explaining the behaviour of consumption and

that of the prices of goods and assets in a wide class of economies with heterogeneous

agents; when markets are dynamically complete, the asymptotic behaviour of these quan-

tities is completely understood. Indeed, for some time now it has been known that if

agents have homogeneous beliefs (even if they are not correct) and the same degree of

impatience, Pareto optimality of equilibrium allocations implies that the consumption of

every agent must be bounded away from zero, i.e. every agent “dominates” (this technical

term has become standard in the literature and corresponds to the word “survive” in less

formal parlance), regardless of attitudes towards risk; furthermore, if agents differ in their

degree of impatience, then in the long run only the most patient have positive wealth,

consume the entire output of the economy, and determine prices regardless of the agents’

preferences towards risk. The result was conjectured by Ramsey (1928 pp. 558-559) and

later proved by Becker (1980), Rader (1981) and Bewley (1982). The line of research

was completed by considering the case with heterogeneous beliefs, results due to Sandroni

(2000) and Blume and Easley (2004).1 Sandroni considered a Lucas tree economy with

dynamically complete markets and populated by expected utility maximizers. He showed

that among agents with the same discount factor, traders who eventually accurately pre-

dict infinite horizon events, and only those traders, have positive wealth eventually, i.e.

do not “vanish”; in the absence of such accurate predictors, the entropy of beliefs deter-

mines survival and investors whose forecasts are persistently wrong vanish in the presence

of a learner. Blume and Easley (2004) showed that Pareto optimality of the allocation

guarantees the results. One concludes that in dynamically complete market economies,

survival depends only on the degree of impatience and the accuracy of beliefs since the

equilibrium allocation is necessarily Pareto optimal; attitudes toward risk are irrelevant.

This is significant because it appears to validate the market selection hypothesis (hence-

forth, MSH) which, in the weak form due to Alchian (1950) and Friedman (1953), requires

that only agents whose behaviour is consistent with rational and informed maximization

of returns can survive and affect prices in the long run.2

The fact that survival depends only on discount factors and the accuracy of beliefs

could reflect an intrinsic property of competitive markets; it could also be driven by the

assumption that markets are dynamically complete. Very little is known about this and

1Sandroni (2000) and Blume and Easley (2004) respond to the earlier work of Blume and Easley
(1992), a pioneering paper that studied the general equilibrium dynamics of wealth accumulation when
agents use fixed savings rates and arbitrary portfolio rules. It showed that a trader with correct beliefs
who uses a portfolio rule that does not lead to the maximization of the one period ahead expected value
of the logarithm of wealth (the Kelly criterion) need not dominate. The principal criticism of that result
is that agents do not optimally choose consumption and saving in an intertemporal framework.

2There is more than one view of what constitutes the MSH. Authors like Cootner (1967) and Fama
(1965) offered a stronger version of the MSH which claims that markets select for investors with correct
beliefs. A common implication of both versions is that rational expectations models are appropriate to
describe long run outcomes. The stronger version of the MSH due to Cootner (1967) and Fama (1965)
implies also that in the long run correct beliefs can be inferred from equilibrium prices.
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that is the question we address by considering an infinite horizon economy with only one

good, two agents, a single short lived inside asset, and dynamically incomplete markets.

We begin with a leading example where agent 1 has arbitrary CRRA preferences and

a positive stochastic endowment forever, and agent 2 has logarithmic preferences and a

positive endowment only at date zero. We show that even if agents are equally patient

and have correct beliefs, one can find a time invariant asset structure such that the

consumption of the agent with logarithmic preferences converges to zero with probability

one in every equilibrium. A continuity argument shows that the same is true even if agent

2 is marginally more patient or if she holds correct beliefs and agent 1 does not.

The example shows that the factors determining survival with complete markets have

little relevance when markets are dynamically incomplete. As for the MSH in dynamically

incomplete markets economies, no entropy measure that depends only on the truth, beliefs,

and the market structure can be critical to understanding survival because any properly

defined entropy measure must attain its maximum when beliefs are correct and yet, as

per the example, survival is not guaranteed.3

Our example suggests two rather different conjectures about the implications of market

incompleteness in infinite horizon economies where the Euler equations always hold with

equality: (a) that the consumption of some agent is zero eventually, and the weaker

statement (b) that the consumption of some agent comes arbitrarily close to zero infinitely

often. Our theorems refine and strengthen these conjectures.

Before proceeding it is useful to recall the economics that drives the result when

markets are complete. In such a framework, at an interior allocation, the utility gradients

of the different agents point in the same direction. It follows that with preferences that

are additively separable across time, the ratio of (the one-period ahead intertemporal)

marginal rates of substitution–which, we recall, include beliefs that could be subjectively

held, i.e. heterogeneous and incorrect–of the two agents weighted by the discount factors

is one independent of the date and event; that is the key implication of Pareto optimality

and that drives all the results. In particular, if both the agents have correct beliefs and

the same discount factor then consumption of both is uniformly positive eventually.

Our approach is to write the ratio of (the one-period ahead ratio of the) marginal

utilities–the derivatives of the Bernoulli functions–of the two agents as the ratio of two

stochastic processes where each is the product of conditional mean one random variables.

At any Pareto optimal allocation with homogeneous beliefs, that ratio is degenerate. The

key implication of market incompleteness is that, typically, the utility gradients of different

agents are not aligned and the ratio is not degenerate; in fact, with uniformly positive

asset returns, the ratio of marginal utilities grows with positive conditional probability

since otherwise one of the two Euler equations would not hold with equality.

3This resolves an open question posed by Sandroni (2004 on page 10) in response to an example in
Blume and Easley (2004), discussed in footnote 10 below, as the following quotation indicates: “The
results in this paper can only suggest, but they do not prove, that belief accuracy measured by a properly
defined entropy measure is critical for survival in dynamic incomplete market economies.”
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Our main result is very intuitive since it is based on the observation that on almost

every path one can have arbitrarily long strings of states where the ratio of marginal

utilities keeps rising since, as we noted above, the ratio must grow with positive conditional

probability whenever the marginal rates of substitution differ and the Euler equations hold

with equality. This fact can be shown to imply that if a prespecified agent has consumption

that is uniformly positive infinitely often then, for the other agent, every prespecified

lower bound on consumption is violated infinitely often; the technical tool used is Levy’s

conditional form of the Second Borel-Cantelli Lemma further generalized by Freedman

(1973). More formally, in Theorem 1 (i) we show that if the ratio of marginal rates

of substitution does not display one period ahead conditional variability asymptotically,

then the marginal rates of substitution are equalized in the limit. Theorem 1 (ii) shows

that if, on the other hand, the ratio of marginal utilities does display one period ahead

conditional variability, then the only way that some agent can have uniformly positive

consumption eventually is if the other agent consumes zero eventually.4 Simply put, if

market incompleteness is effective forever then either (a) one of the two agents will cease

to consume eventually, as in the example, or (b) the equilibrium is complicated in that

the consumption of both agents will be arbitrarily close to zero infinitely often. The

result applies equally regardless of whether beliefs are homogeneous or heterogeneous.5

For Theorem 1 we assume that the asset pays a uniformly positive amount and that the

one period ahead conditional probability of the occurrence of a state is uniformly positive,

assumptions that are standard although they can be weakened.

Theorem 1 shows that examples of infinite horizon economies with incomplete markets

that have appeared in the literature are very special. In many of those examples, after

some finite date the continuation economy has complete markets.6 In others, though

markets are always incomplete, the asset structure is specified in a manner that ensures

that trading possibilities are so narrow that the idea behind our proof of Theorem 1 (ii)

has no bite. There is one further possibility that is not covered by our discussion so far,

namely, that the ratio of marginal utilities does not display one period ahead variability

even though the ratio of marginal rates of substitution does display such variability so

that both the agents have consumption uniformly bounded away from zero. Such a case is

4Krebs (2004a) considers a two agent incomplete markets economy with idiosyncratic risk and homo-
geneous beliefs, and shows that the range of the equilibrium consumption process cannot be a compact
set with a strictly positive lower bound (the possibility that the lower bound is zero is ruled out by his
assumption that the Bernoulli utility function is unbounded below); from his analysis one cannot conclude
whether zero is or is not approached. Like us, he considers equilibria in which the Euler equations hold
with equality; the only asset that he allows for is a Lucas-tree with uniformly positive dividends. Our
result shows that, very generally, not only is zero approached for some agent but infinitely often so.

5Our result also applies to economies with a retradable long lived asset provided that the asset has
strictly positive returns–we do not consider such economies for notational simplicity. Duffie et al (1994)
provide an existence theorem for Lucas-tree economies with incomplete markets in which consumption is
uniformly bounded away from zero. For their result it is crucial that there are no short sales and no one
period inside assets either.

6Although this feature is very useful in constructing examples, it clearly goes against the motivation
for studying models with incomplete markets.
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very special and can arise only with well chosen heterogeneous beliefs; Coury and Sciubba

(2005) provide such an example.7 All of these examples are discussed in Section 4.3.

The first of the two possibilities delineated in Theorem 1 (ii) is surprising and one

is tempted to believe that it is fragile. Such a conclusion is unwarranted since one can

show that, when beliefs are correct, for any feasible consumption processes that satisfy

the Euler equations, and that have the additional property that the one period ahead

marginal valuation of the asset is predetermined for an agent, as in the leading example,

that agent consumes zero eventually on almost every path. To see why, notice that,

by no arbitrage, the discounted marginal value of investing in the asset is a conditional

mean one random variable so the discounted marginal value of the “holding” strategy

that invests one unit of the numeraire in the asset at date 0 and then reinvests the

proceeds forever is the product of conditional mean one random variables; the latter

converges to zero when it is nondegenerate and we know that it is degenerate for one

agent (by the “predeterminedness” property) and nondegenerate for the other (by market

incompleteness). But because of the degeneracy of the process, the agent’s consumption

converges to zero whenever the discounted return to the holding strategy converges to zero;

the latter must happen because the discounted marginal value of the holding strategy does

converge to zero for the other agent and that agent’s marginal utility is bounded away

from zero. Theorem 4 shows that, for a robust family of endowment distributions, there

exist such consumption processes that have summable supporting prices and so such

economies have equilibria with correct beliefs in which the same agent consumes zero

eventually on almost every path; the result appears to require a fairly strong restriction

on the distribution of endowments across agents and little else.

The proof of Theorem 4 proposes a method that generates consumption processes with

the stated properties that are uniquely specified, continuous, and monotone for each value

of consumption at the initial date. We obtain a family of “no trade” equilibria that are

supported with trivial asset portfolios so that the portfolio process is uniformly bounded.8

We then show that for each such no trade equilibrium, there is an open set of endowment

distributions that leads to an equilibrium that is weaker in that there may be no uniform

bound across paths on debt. This equilibrium concept requires maximization subject to

a sequence of budget constraints and a single transversality condition at date zero, and

market clearing. We prove that it does not permit Ponzi schemes.9

7Their construction appears to be special since they start with a Pareto optimal allocation that can
be supported as an equilibrium with incomplete markets with homogeneous beliefs, and then they change
beliefs and/or discount factors in a manner that leaves demand behaviour unchanged so that the same
allocation continues to specify equilibrium consumption in the economy with heterogeneous beliefs.

8This boundedness property, that is often equivalent to requiring a transversality condition at every
date and event, has been proposed as a desirable property of equilibria in infinite horizon economies by
Magill and Quinzii (1994), Levine and Zame (1996), Hernandez and Santos (1996), and Florenzano and
Gourdel (1996). It is usually justified by appealing to an unmodelled institutional device that ensures
that the economy is immune to Ponzi schemes.

9So our equilibrium concept provides a less demanding institutional framework that achieves the
purpose noted in footnote 8. Santos and Woodford (1997) propose a notion of equilibrium without
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Now that we have discussed our results in some detail, we turn to an example in

Blume and Easley (2004) on the asymptotic behaviour of equilibrium consumption in an

infinite horizon incomplete market economy that, to the best of our knowledge, is the only

paper in the literature that addresses the question of survival in such economies. Their

example is of an economy with a single good, a single inside asset, and three agents where

agents one and two are identical except for the fact that agent one has correct beliefs and

agent two does not. Agent three also has correct beliefs and is the most patient of the

three. Their approach is to construct the endowment process of the third agent so as to

support prespecified prices for the asset and rules for consumption for all three agents.

They show that their example economy has an equilibrium in which agent one, who has

correct beliefs, is driven out and the other two agents, one with correct beliefs and the

other with incorrect beliefs, survive. In their example the economy is deterministic but

agent two mistakenly believes it to be stochastic and her beliefs about the return from

the asset induce her to save a larger fraction of her wealth than agent one every period.

They conclude that wrong beliefs can lead to a higher saving rate and thereby determine

survival. It is evident that in their economy if also agent two had correct beliefs then

the economy would be determinisic and believed to be so by all the agents; so markets

would be complete and the behaviour of consumption is determined only by the rates of

impatience. So their example does not yield any additional insight about the behaviour

of consumption under incomplete markets when beliefs are homogeneous and this is in

sharp contrast to our leading example; moreover, it is not obvious that their technique

permits unequivocal conclusions in more general settings where, for example, saving rates

across agents are not unambiguously ordered along a path as in their example.10

The technique used in analyzing our example constitutes an application of a method-

ological innovation that we now describe. It is well known that the study of the asymptotic

behaviour of equilibrium consumption is equivalent to the study of the evolution through

time of the ratio of marginal utilities. When markets are complete, Pareto optimality of

the allocation implies that the behaviour of the ratio of marginal utilities is completely

pinned down by the behaviour of the processes of subjective beliefs and these were studied

by Sandroni (2000) and Blume and Easley (2004) exhaustively. Nothing was known about

how a similar analysis could be carried out when markets are incomplete and the Blume

and Easley (2004) example did not shed any light on the problem. Our methodological

contribution is to show that the ratio of marginal utilities can be written as the ratio

of two stochastic processes where each is the product of conditional mean one random

variables. As the earlier detailed discussion of our results indicated, that methodological

uniform bounds for a much more general set-up. Blume and Easley (2004) provide an example in which
the equilibrium value of an agent’s debt diverges according to the agent’s subjectively held belief.
10Furthermore, completing the market in their example leads to nonexistence, a fact that they note

while in our leading example doing so leads to an equilibrium where the allocation is Pareto optimal and,
by the result in Blume and Easley (2004), both the agents dominate.
These authors present a second example that shows that there are situations in which relative entropy

is simply the wrong measure of belief accuracy because it does not match well with the asset structure.
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innovation is key in that it lets us use Levy’s result to prove Theorem 1 and carry out

our construction to prove Theorems 3 and 4.

Our work has implications for the MSH which we now highlight. As mentioned above,

based on their example, Blume and Easley (2004) conclude that the accuracy of beliefs is

not the key that explains survival and that the MSH may fail because wrong beliefs can

lead to greater savings, a point also made by Sandroni (2004). Our Theorem 4 indicates

that market incompleteness can lead to very rich consumption dynamics even when all

agents hold correct beliefs and so it suggests that, at the margin, market incompleteness

rather than beliefs determines the fate of the trader. Furthermore, our example, where

agents with correct beliefs are driven out by agents with wrong beliefs, makes very clear

that even the version of the MSH due to Alchian (1950) and Friedman (1953) does not hold

in general. Coury and Sciubba (2005) argue that, when markets are incomplete, agents

with wrong beliefs may survive and so one cannot infer the true probability distribution

by only observing asset prices; their claim is based upon assuming the existence of an

equilibrium where an agent with correct beliefs has consumption that is uniformly positive

infinitely often and then showing that there must exist an economy with heterogeneous

beliefs with the same consumption profiles. Since prices are “as if” agents had correct

beliefs, their result casts some doubt on the version of the MSH due to Cootner (1967)

and Fama (1965) but it is consistent with the version due to Alchian (1950) and Friedman

(1953).

To summarize, for infinite horizon economies with two agents and one short-lived asset

the paper provides a complete characterization of limiting consumption behaviour when

markets are incomplete, shows that to get simple limiting behaviour one agent must be

driven out of the market, and shows that such a possibility is a robust outcome. In doing

so, it contributes to the general equilibrium literature, and so to the modern literature in

macroeconomics, by pointing out hitherto unknown properties of such economies; it also

makes clear that the MSH is valid in a robust sense only if the equilibrium allocation is

Pareto optimal. Finally, the method for constructing equilibria that we propose sheds

light on the structure of the equilibrium set when markets are incomplete,11 and could be

of use to researchers in the area of computational general equilibrium.

In Section 2 we introduce the model and define the relevant notions of survival. Section

3 contains the leading example. Afterwards, in Section 4 we develop the general approach

to study the long run dynamics of equilibria and present Theorem 1 and our discussion

of earlier examples in the literature. Finally, in Section 5 we construct the equilibria in

which only one agent survives. Concluding remarks are presented in Section 6. All the

proofs are gathered in the Appendix.

11Very little is known about this beyond the analysis in Levine and Zame (2001) for the case of one
good economies with idiosyncratic shocks and increasing patience.
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2. MODEL

2.1 PROBABILITY NOTATION

We consider an infinite horizon with dates t = 0, 1, 2, · · ·. The temporal state space
is S := {1, 2, · · · , S}. St is the t-fold Cartesian product of S and Ω := S∞ with typical

element ω = (s1, s2, · · ·) where st is the realization at date t ≥ 1. In fact, we shall write
ω = (s1(ω), s2(ω), · · ·). Also st = (s1, · · · , st) and if we wish to make the dependence on ω
explicit, we shall use st(ω) := (s1(ω), · · · , st(ω)). Ω(st) := {ω ∈ Ω : ω = (st, st+1, · · ·), st ∈
St} is a t-cylinder and Ft is the σ-algebra obtained by considering finite unions of the

sets Ω(st) for fixed t. This induces a sequence of σ-algebras on Ω denoted {Ft}∞t=1 where
Ft−1 ⊂ Ft for all t ≥ 1; we set F0 := {∅,Ω}, and we set σ

³
∪t≥0 Ft

´
⊂ F . That is our

filtration with F a σ-algebra on Ω. All statements will be made using (Ω,F).
Any function X : Ω→ R that is F-measurable is a random variable. From here on a

process denotes X = {Xt}∞t=0 with Xt : Ω→ R and Ft-measurable.

For Q : F → [0, 1] a probability measure, let dQt be the Ft measurable function

defined by dQt(ω) := Q(Ω(st(ω))) for t ≥ 1 and dQ0 := 1, i.e. dQt(ω) is the probability

of the cylinder Ω(st(ω)). We also define the one period ahead conditional probability that

state s occurs by Qt(ω) :=
dQt(ω)

dQt−1(ω)
. EQ[X|G] denotes the expectation operator applied to

the random variable X : Ω→ R restricted to the σ-algebra G where G ⊂ F and where the
expectation is taken with respect to the measure Q. EQ[X|G] is a G-measurable random
variable. Recall that L∞(Ω,F , Q) denotes the (equivalence class of) measurable functions
that are bounded in the essential sup norm with respect to the measure Q. We define12

Ψt := {f : Ω→ R : f isFt −measurable} Ψt,Q
+ := {f ∈ Ψt : f(ω) ≥ 0 Q− a.s. ω}

ΨQ := {(f0, f1, · · ·) ∈ ×∞t=0Ψt : supt≥0 ess supω∈Ω;Q |ft(ω)| <∞}
ΨQ
+ := {(f0, f1, · · ·) ∈ ×∞t=0Ψt

+ : supt≥0 ess supω∈Ω;Q |ft(ω)| <∞}.

2.2 THE ECONOMY

There is only one perishable good at each date. An agent is denoted i ∈ I. There are
two agents, so I := {1, 2}, each of whom lives forever.

ω ∈ Ω is chosen according to the objective probability measure P while agent i’s

subjective belief is denoted Pi. (Ω,F , P ) is the objective probability triple. (Ω,F , Pi),

i = 1, 2, are the triples used by the agents’ for their decisions. We shall assume that

the one period ahead conditional probability that state s occurs is uniformly positive and

agents correctly believe it to be so.13 So, define p := inft≥0 ess. infω∈Ω;P Pt(ω).

ASSUMPTION A.1: 0 < p ≤ inft≥0 ess. infω∈Ω;Pi Pi,t(ω).

The aggregate endowment process is denoted Z := {Zt}∞t=0 and its range is [z, z̄] so
that for all t ≥ 0, Zt(ω) ∈ [z, z̄] P−a.s. ω. The endowment process of i is denoted

zi := {zi,t}∞t=0, a nonnegative process. Of course, z1+ z2 = Z; we also assume that the set

12For h an F-measurable function, the notation ess supω∈Ω;Qh is used to denote the essential supremum
of h taken over the set Ω with respect to the measure Q.
13This assumption is standard in the literature (see Sandroni (2000) and Blume and Easley (2004)).
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Ft, in the filtration {Ft}∞t=0, is generated by the union of σ(z1,t) and σ(z2,t) where, for a

random variable X, σ(X) is the σ-algebra generated by X.

ASSUMPTION A.2: [z, z̄] ⊂ R++. zi ∈ ×∞t=0Ψt,Pi
+ .

ui is i’s state independent Bernoulli utility function. βi is agent i’s discount factor.

ASSUMPTION A.3: For i ∈ I (i) ui : R+ → R is strictly increasing, strictly concave,

and C2 with limc→0+u0i(c) =∞ and (ii) βi ∈ (0, 1).

To prove Theorem 4 we need to impose a bound on the degree of relative risk aversion.

ASSUMPTION A.4: For i ∈ I, 1 ≥ − c·u00i (c)
u0i(c)

for all c > 0.

There is a single one period asset available in zero net supply. Its return is r, where r

is a process with range [r, r̄] so that for all t ≥ 0, rt(ω) ∈ [r, r̄] P−a.s. ω. r is assumed to
be uniformly positive so Arrow securities are ruled out; the role of this restriction will be

discussed in Section 4.2. The asset trades at the price process q.

ASSUMPTION A.5: [r, r̄] ⊂ R++.

The next assumption will be used to prove that the consumption processes that we

construct and use in Theorems 3 and 4 are supportable as equilibria. Notice that, under

A.2-3 and A.5, M <∞ where M is specified in A.6.

ASSUMPTION A.6: For i ∈ I, βi < 1/M where M := max
½
r̄·u02(z/2)
r·u02(z̄) ;

r̄·u01(z/2)
r·u01(z̄)

¾
.

We shall impose one further assumption; it will be stated and discussed in Section 5.1.

REMARK 1: Assumptions A.4 and A.6 will be used only in Section 5. Weaker versions

of these assumptions that take into account specific details of the endowment process and

asset return process suffice for Theorem 4 to go through. They are not stated formally

since the gain in generality is not justified by the notational complication.

An economy is a list (P,Z, P1, P2, β1, β2, u1, u2, r). A private ownership economy is a list

(P, z1, z2, P1, P2, β1, β2, u1, u2, r) and is related to an economy by the relation Z = z1+ z2.

The consumption process of i is denoted ci. We require ci ∈ ΨPi
+ and for such a ci, the

utility payoff is given by limT→+∞
PT

t=0 β
t
i EPi [ui(ci,t)|F0](ω). i’s holding of the asset is a

process denoted θi. θi,−1(ω) = 0 is introduced as a convenient notational convention.
The pair (c1, c2) is feasible if ci ∈ ΨPi

+ for i ∈ I and at every t ≥ 0, c1,t(ω) + c2,t(ω) =

Zt(ω) P−a.s. ω. A market clearing allocation consists of (c1, c2, θ1, θ2) such that (c1, c2)
is feasible and, at every t ≥ 0, θ1,t(ω) + θ2,t(ω) = 0 P−a.s. ω.
At each pair (ω, t), agents trade in the asset market and in the spot market for the

good. Since there is only one good, given q and zi, each ci determines one and only one
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θi. Given the consumption process ci, θi is a supporting portfolio process at the prices q if

(i) θi,t ∈ Ψt,Pi ∀ t ≥ 0 and
(ii) ∀ t ≥ 0, ci,t(ω) + qt(ω) · θi,t(ω) ≤ zi,t(ω) + rt(ω) · θi,t−1(ω) Pi − a.s. ω.

2.3 EQUILIBRIUM–NECESSARY CONDITIONS

A notion of equilibrium in our model economy requires the specification of a budget

set subject to which each agent maximizes. Evidently, the budget set will incorporate a

sequence of budget constraints, i.e. it will require the existence of a supporting portfolio

process; additional conditions will be imposed to guarantee that a maximizer exists.

The first condition is that asset prices satisfy the no arbitrage property. Define

P(q;Q) :=
n
p ∈ ×∞t=0Ψt,Q

+ : ∀ t ≥ 0, pt(ω)·qt(ω) = EQ[pt+1·rt+1|Ft](ω) Q−a.s. ω
o
,

where we have one degree of freedom (normalization), the set of Arrow price processes

for the asset price process q and the measure Q. The no arbitrage property requires that

P(q;Q) 6= ∅ where Q = P,Pi (Q = P when beliefs are correct).

In our framework, at any interior solution to the maximization problem with a sup-

porting portfolio process a set of first order conditions necessarily hold with equality. Say

that ci is an Euler process at the price process q if

∀ t ≥ 0, qt(ω) = βi · EPi [rt+1 · u0i(ci,t+1)|Ft](ω)

u0i(ci,t(ω))
Pi − a.s. ω.

Evidently, if ci is an Euler process at the price process q then P(q;Pi) 6= ∅.
Furthermore, in infinite horizon models one must also rule out Ponzi schemes, i.e. a

trading plan that generates income at a date-event and rolls over debt in a manner that

prevents an income loss at every other date-event, since, with monotonically increasing

preferences, the existence of a Ponzi scheme in the budget set would imply that there is

no maximizer and therefore no equilibrium. We define a Ponzi scheme at a no arbitrage

price process q as in Magill and Quinzii (1994).

DEFINITION 1: Given i, let q be such that P(q;Pi) 6= ∅. A Ponzi scheme is a θ and

a pair (ω0, t0) such that (i) θt ∈ Ψt,Pi ∀ t ≥ 0, (ii) θt(ω) = 0 for all ω ∈ Ω if t < t0 and
θt(ω) = 0 for all t if ω /∈ Ω(st(ω0)),
−1 = qt0(ω

0) · θt0(ω0),
0 = rt(ω) · θt−1(ω)− qt(ω) · θt(ω) for all t ≥ t0 + 1 and Pi − a.s. ω.

2.4 IDC EQUILIBRIUM

We introduce a notion of equilibrium with uniform bounds on the value of debt. i’s

IDC (implicit debt constraint) budget set is defined as

BCi(q) :=
n
ci ∈ ΨPi

+ : there exists θi, with θi,t ∈ Ψt,Pi ∀ t ≥ 0, such that
∀ t ≥ 0, ci,t(ω) + qt(ω) · θi,t(ω) ≤ zi,t(ω) + rt(ω) · θi,t−1(ω) Pi − a.s. ω,
supt≥0 ess supω∈Ω;Pi |qt(ω) · θi,t(ω)| <∞

o
.
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The first set of conditions require that the consumption process be in i’s consumption

set, the second that there exists a supporting portfolio process, and the last condition

is an implicit debt constraint that requires that the value of debt be uniformly bounded.

Implicit debt constraints have been treated extensively in earlier literature on incomplete

market economies with an infinite time horizon, e.g. Magill and Quinzii (1994) who

provide conditions such that in any equilibrium where a transversality condition holds at

every date-event, the value of debt is uniformly bounded.

For i, ci is an IDC maximizer given q if (i) ci ∈ BCi(q) and (ii) there is no c̃i ∈ BCi(q),

with supporting portfolio θ̃i, for which

limT→+∞
PT

t=0 β
t
i EPi [ui(c̃i,t)|F0](ω) > limT→+∞

PT
t=0 β

t
i EPi [ui(ci,t)|F0](ω).

DEFINITION 2: An IDC equilibrium is a tuple (c∗1, c
∗
2, θ

∗
1, θ

∗
2, q

∗) that is a market clearing
allocation and, for i ∈ I, c∗i , with supporting portfolio θ∗i , is an IDC maximizer given q∗.

In an IDC equilibrium, an agent maximizes discounted expected utility by choosing

a process for consumption, i.e. {ci,t}+∞t=0 with the restriction that, for all t, ci,t is Ft-

measurable, that the spot market budget constraints are met, and an additional condition

is met so as to ensure that the budget sets are appropriately bounded so that a maximizer

exists. The IDC budget set does not permit Ponzi schemes (see Magill and Quinzii (1994)).

2.5 SURVIVAL

We formalize the various notions of asymptotic behaviour that we shall use by following

the definitions that have been established in the literature.

DEFINITION 3: Fix a path ω.

Agent i dominates on ω if lim inft ci,t(ω) > 0.

Agent i survives on ω if lim inft ci,t(ω) = 0 and lim supt ci,t(ω) > 0.

Agent i vanishes on ω if lim supt ci,t(ω) = 0.

The definitions given are made operational by considering the behaviour of marginal

utility. Given consumption processes for i ∈ I, define the ratio of marginal utilities

yt(ω) :=
u02(c2,t(ω))
u01(c1,t(ω))

.

The proof of the following lemma is straightforward hence omitted.

LEMMA 1: Assume A.3. Then

agent 2 dominates on ω ⇐⇒ 0 ≤ lim inft yt(ω) ≤ lim supt yt(ω) <∞;
agent 2 survives on ω ⇐⇒ 0 ≤ lim inft yt(ω) < lim supt yt(ω) =∞;
agent 2 vanishes on ω ⇐⇒ limt yt(ω) =∞.

The corresponding results for agent 1 are obtained by studying the behaviour of 1/yt(ω).

Both the agents dominate on ω if and only if 0 < lim inft yt(ω) ≤ lim supt yt(ω) <∞.

12



3. A LEADING EXAMPLE

We turn to our example which has five salient features. (i) u1(x) = (1/(1 − a))x1−a

with a > 0 and a 6= 1, and u2(x) = log x. (ii) z2,0(ω) = Z0(ω) and z2,t(ω) = 0 otherwise.

(iii) The uncertainty in the model comes from 1’s endowment which follows an i.i.d.

process with two points in its support: Z ∈ {z, z̄} with probability p ∈ (0, 1) and (1− p)

respectively. (iv) The asset is on the aggregate endowment so rt(ω) = Zt(ω). (v) The

beliefs of each agent are (pi, (1−pi)) with pi ∈ (0, 1) and both could hold incorrect beliefs.
It is known that 2’s optimal decision rule is

c2,t(ω) = (1− β2) · w2,t(ω) and θ2,t(ω) = β2 · [w2,t(ω)/qt(ω)]
where w2,t(ω) = rt(ω)·θ2,t−1(ω) = Zt(ω)·θ2,t−1(ω) so that it is independent of p2. It follows
that at a feasible allocation where agent 2 optimizes given prices qt(ω), in particular

at equilibrium, θ2,t(ω) = β2 · [Zt(ω) · θ2,t−1(ω)/qt(ω)] so that such prices, in particular
equilibrium prices, must satisfy

qt(ω) = β2 · Zt(ω) · [θ2,t−1(ω)/θ2,t(ω)].
As for 1, when agent 2 optimizes and the allocation is feasible, we must have

c1,t(ω) = Zt(ω)− c2,t(ω) = Zt(ω)− (1− β2) · w2,t(ω) = Zt(ω)[1− (1− β2) · θ2,t−1(ω)].
Furthermore, the first order conditions for 1 are

β1EP1 [(c1,t)
−a · Zt|Ft−1](ω) = qt−1(ω) · (c1,t−1(ω))−a

where we use the fact that rt(ω) = Zt(ω).

By substituting for c1,t and qt−1 we obtain
β1EP1

h³
Zt[1− (1− β2) · θ2,t−1])−a

´
Zt|Ft−1

i
(ω)

= β2 · Zt−1(ω) · θ2,t−2(ω)θ2,t−1(ω)
·
³
Zt−1(ω)[1− (1− β2) · θ2,t−2(ω)]

´−a
.

We have obtained a stochastic difference equation in θ2,t such that if an allocation is

feasible, if it is maximizing for 2, and if it satisfies the first order conditions for 1 then θ2,t
must satisfy the difference equation; therefore, a θ2,t process that obtains in equilibrium

will satisfy the stochastic difference equation.14

By simplifying the condition we obtain

β1
β2
· (1− β2) · θ2,t−1(ω)
[1− (1− β2) · θ2,t−1(ω)]a =

[Zt−1(ω)]1−a

EP1 [Z
1−a]

· (1− β2) · θ2,t−2(ω)
[1− (1− β2) · θ2,t−2(ω)]a .

It follows that if (1− β2) · θ2,t−1(ω) ∈ (0, 1) then (1− β2) · θ2,t(ω) ∈ (0, 1) and the system
has a real valued solution. By iterating we see that

⇔ (1− β2) · θ2,T (ω)
[1− (1− β2) · θ2,T (ω)]a =

µ
β2
β1

¶T
· Π

T
t=1

³
Zt(ω)]

1−a
´

³
EP1[Z

1−a]
´T · (1− β2) · θ2,0(ω)

[1− (1− β2) · θ2,0(ω)]a

⇔ 1

T
·log

µ
(1− β2) · θ2,T (ω)

[1− (1− β2) · θ2,T (ω)]a
¶
= log

µ
β2
β1

¶
+
µ
1

T

TX
t=1

log [Zt(ω)]
1−a

¶
−log

³
EP1 [Z

1−a]
´

14Existence of an IDC equilibrium follows from our Theorem 3.
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+
1

T
· log

µ
(1− β2) · θ2,0(ω)

[1− (1− β2) · θ2,0(ω)]a
¶
.

Since Zt is a uniformly bounded i.i.d. process, by the Strong Law of Large Numbers

1

T

TX
t=1

log [Zt(ω)]
1−a → EP [logZ

1−a] P − a.s.

with the consequence that, by Jensen’s inequality,µ
limT→∞

1

T

TX
t=1

log [Zt(ω)]
1−a

¶
− log

³
EP [Z

1−a]
´
< 0 P − a.s.

It follows that if p1 = p, so that 1’s beliefs are correct, and β1 = β2 = β, so that both the

agents are equally impatient, then

log
µ

(1− β) · θ2,T (ω)
[1− (1− β) · θ2,T (ω)]a

¶
→−∞ P − a.s.

⇔
µ

(1− β) · θ2,T (ω)
[1− (1− β) · θ2,T (ω)]a

¶
→ 0 ⇔ θ2,T (ω)→ 0 ⇔ c2,T (ω)→ 0 P − a.s.

and so in every equilibrium of the example, agent 2 vanishes with probability one.

Since the application of Jensen’s inequality above is strict, agent 2 could have correct

beliefs and agent 1 could have incorrect ones in an open set around p and 1 could even be

marginally more impatient than 2, and yet 2 vanishes almost surely in every equilibrium.

The example shows very clearly that no entropy measure that depends only on the

truth, beliefs, and the market structure, can be critical to understanding survival because

any properly defined entropy measure must attain its maximum when beliefs are correct.

The phenomenon in the example hinges on two crucial elements that we verify in Re-

mark 2: market incompleteness ensures that the “holding” strategy of reinvesting induces

a discounted return that converges to zero, and agent 2’s discounted marginal utility

diverges since her marginal valuation of the asset at date t is Ft−1−measurable, i.e. de-
generate. As we remark after presenting Proposition 1 in Section 4.1, these two facts

together lead to the result that agent 2’s consumption converges to zero with probability

one.

REMARK 2: We note the following features of the example. Since c2,t(ω) = (1−β2)·rt(ω)·
θ2,t−1(ω), qt(ω) ·θ2,t(ω) = β2 ·w2,t(ω) = β2 · (c2,t(ω)/(1−β2)) so debt is uniformly bounded
in any equilibrium since consumption is nonnegative and bounded by the uniform upper

bound on the aggregate endowment. Also

ΠT
t=0

β2 · rt+1(ω)
qt(ω)

=
ZT+1(ω)

Z0(ω)
· θT (ω)→ 0 P − a.s.,

so the “holding” strategy induces a discounted return that converges to zero.

For later reference we note that rt(ω) · u02(c2,t(ω)) = rt(ω)/c2,t(ω) = 1/((1 − β2) ·
θ2,t−1(ω)); so rt(ω) ·u02(c2,t(ω)) is an Ft−1−measurable quantity. Also, with some algebra,
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var
∙

rt · u01(c1,t)
EP1 [rt · u01(c1,t)|Ft−1]

¯̄̄̄
Ft−1

¸
(ω) = var

∙
[Zt−1]1−a

EP1[Z
1−a]

¯̄̄̄
Ft−1

¸
(ω) > 0.

So the assumption that we introduce as A.7 in Section 5.1 holds in the example.

The analysis in this section depends heavily on the endowment structure where 2 has

no endowment except in period 0. Theorem 4 will show that, in fact, the property we

identify is robust to changes in the endowment process, preferences, and asset structure.

3.1 THE GENERAL LESSON

The example in Section 3 is indicative of a very interesting phenomenon that appears to

be driven by the fact that markets are incomplete. In fact the phenomenon in the example

leads to two rather different conjectures about the implications of market incompleteness:

(a) that the consumption of some agent stays close to zero eventually, and the weaker

statement (b) that the consumption of some agent is arbitrarily close to zero infinitely

often. We would like to pin down the extent to which these results are a general property of

economies with dynamically incomplete markets. With appropriate formalizations of the

fact that markets are effectively incomplete forever, Theorem 1 in Section 4.2 will show

that either (a) holds or (b) holds for both agents. More precisely, Theorem 1 (ii) will

show that on every path on which the ratio of the (one period ahead ratio of) marginal

utilities, yt/yt−1, displays variability and the consumption of some agent is uniformly
positive eventually, the consumption of the other agent is zero eventually. Theorem 4 in

Section 5.5 will show that, in a robust class of economies, there are equilibria in which the

consumption of an agent stays close to zero eventually on every path. We remark that

Theorem 1 holds regardless of whether beliefs are homogeneous or heterogeneous. Also,

one expects a version of Theorem 1 to hold in specifications of infinite horizon economies

with incomplete markets that are not covered by our analysis so long as the Euler equation

holds with equality always; in particular, the asset could be retradable and long lived.

4. RULING OUT DOMINANCE

In this section we prove our main result: on paths on which an agent’s consumption

is uniformly positive eventually, the other agent’s consumption is zero eventually. So, in

contrast to the case where markets are complete, both agents cannot consume uniformly

positive quantities eventually when market are incomplete. To be able to prove the result,

we use an implication of the fact that the Euler equations hold with equality, namely, that

if the ratio of marginal utilities, yt, displays conditional variability, then it increases with

positive conditional probability. First, in Section 4.1, we introduce a transformation

that makes the study of the process yt easier and identify some key properties that the

transformed process satisfies. This reformulation is valid even when the subjective beliefs

of the agents do not coincide with the truth and are not homogeneous. Then, in Section

4.2 we state and discuss Theorem 1. Section 4.3 relates our result to examples of infinite

horizon economies with incomplete markets that have appeared in the literature.
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4.1 FIRST ORDER CONDITIONS AND THEIR IMPLICATIONS

As Sandroni (2000) and Blume and Easley (2004) show, in the case where markets

are complete, the behaviour of the variable yt is rather simply determined by the ratio of

the discount factors, the ratio of the posterior beliefs of agents, and an initial condition.

In Proposition 1 we show that, when markets are incomplete, the behaviour of yt can be

captured succinctly using the ratio of two processes where each is the product of random

variables with conditional mean one (taken with respect to the subjectively held belief)

in addition to the ratio of the discount factors and an initial condition.

Given consumption processes for i ∈ I, define

r̂i,t(ω) :=
rt(ω) · u0i(ci,t(ω))

EPi [rt · u0i(ci,t)|Ft−1](ω)
, Ri,T (ω) := ΠT

t=1r̂i,t.

PROPOSITION 1: Assume A.2, A.3, and A.5. Then EPi [r̂i,t|Ft−1](ω) = 1. Furthermore,
if the consumption processes ci are Euler processes at the price process q, then

(i) Ri,1+T (ω) = βT+1i ·u
0
i(ci,1+T (ω))

u0i(ci,0(ω))
·ΠT

t=0

Ã
r1+t(ω)

qt(ω)

!
,

(ii)
r̂2,t(ω)

r̂1,t(ω)
=

β2
β1
· yt(ω)
yt−1(ω)

and yT (ω) =
µ
β1
β2

¶T
·R2,T (ω)
R1,T (ω)

·y0(ω),

(iii) yt−1(ω) =
β2
β1
·EP2 [r̂1,t·yt|Ft−1](ω),

1

yt−1(ω)
=

β1
β2
·EP1

"
r̂2,t· 1

yt

¯̄̄̄
¯Ft−1

#
(ω).

Proposition 1 (i) shows that the variable that we have identified, Ri,T , is exactly the

discounted marginal value of the “holding” strategy of reinvesting. Proposition 3 will show

that under a mild nondegeneracy condition on the tail behaviour of r̂i,t, Ri,T converges

to zero. It then follows from Proposition 1 (i) that the “holding” strategy of reinvesting

induces a discounted return that converges to zero, ΠT
t=0

β2·rt+1(ω)
qt(ω)

→ 0 P −a.s. If we have
the further property that r̂2,t is degenerate, then, by a further application of Proposition

1 (i), agent 2’s consumption will converge to zero with probability one. This possibility

will be explored further in Section 5.

REMARK 3: When we consider Pareto optimal allocations obtainable as competitive

equilibria, (β2/β1) · P2,T (ω)P1,T (ω)
· yT (ω) = yT−1(ω) and (β2/β1)T ·ΠT

t=1

µ
P2,t(ω)
P1,t(ω)

¶
· yT (ω) = y0(ω).

Notice that from Proposition 1 (ii) r̂2,t(ω)
r̂1,t(ω)

= P1,t(ω)
P2,t(ω)

. In the case where beliefs are homo-

geneous one obtains the result that both agents dominate if and only if β1 = β2 while i

dominates and −i vanishes if and only if βi > β−i. This turnpike result for complete mar-
ket economies is well known (Becker (1980), Rader (1981), and Bewley (1982)). When

beliefs are heterogeneous and β1 = β2 both agents dominate on a path if and only if

0 < lim inf ΠT
t=1

µ
P2,t(ω)
P1,t(ω)

¶
and lim supΠT

t=1

µ
P2,t(ω)
P1,t(ω)

¶
< ∞, sufficient conditions for which

can be found in Sandroni (2000) and Blume and Easley (2004).
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4.2 THE RESULT

In this section we restrict attention to the case where the agents are equally impatient

and we study the asymptotic behavior of their consumption processes on paths where (a)

the ratio of marginal rates of substitution does not display one period ahead conditional

variability in the limit, and (b) the ratio of marginal utilities does display such variability

infinitely often, i.e. markets are effectively incomplete forever. A third case is (c) where

the ratio of marginal rates of substitution does display variability infinitely often but

only because of the variability in beliefs, a case displaying perverse behaviour that we

shall discuss at some length. Theorem 1 provides a very strong result when markets are

effectively incomplete forever: if the consumption of some agent is uniformly positive

eventually then the consumption of the other agent is zero eventually.

To be more precise, we define the sets

V0 :=
½
ω : limt var

∙
log

µ
P2,t
P1,t

· yt
yt−1

¶ ¯̄̄̄
Ft−1

¸
(ω) = 0

¾
,

V :=
½
ω : lim supt var

∙
log

µ
P2,t
P1,t

· yt
yt−1

¶ ¯̄̄̄
Ft−1

¸
(ω) ≥

¾
,

V y :=
½
ω : lim supt var

∙
log

µ
yt
yt−1

¶ ¯̄̄̄
Ft−1

¸
(ω) ≥

¾
.15

Recall that in the case of Pareto optimal allocations, as noted in Remark 3, marginal

rates of substitution are equal at every date-event. In Theorem 1 (i) we show that when

one restricts attention to paths in V0, marginal rates of substitution are equalized in the

limit, limt

³
P2,t(ω)
P1,t(ω)

· yt(ω)
yt−1(ω)

´
= 1; the result has an interesting implication for the behaviour

of consumption in the case where beliefs are homogeneous and this is discussed later. On

the other hand, for paths in ∪ >0V
y that satisfy a very weak additional property, either

some agent vanishes or every positive lower bound on consumption is violated infinitely

often for both agents. Evidently, Theorem 1 (ii) can be read as showing that when

markets are effectively incomplete forever, the only equilibria with asymptotically simple

behaviour are the ones in which only one agent consumes in the limit as in the example

and in Theorem 4.

There are two cases to which Theorem 1 (ii) does not apply– (c) above where perverse

behaviour is generated by choosing beliefs appropriately, and paths in ∪ >0V
y that do not

satisfy an additional property–that we now discuss in detail.

Ω/(∪ >0V
y) is the set on which for any economy with homogeneous beliefs, markets

are effectively complete in the limit, i.e. yt/yt−1 does not display one period ahead vari-
ability. In an economy with heterogeneous beliefs it is possible that even though yt/yt−1
converges, the ratio of marginal rates of substitution displays variability, i.e. V sub 6= ∅
where V sub :=

³
∪ >0 V

´
∩
³
Ω/(∪ >0V

y)
´
and “sub” denotes the perverse behaviour in-

duced by well chosen subjective beliefs. This case, identified as (c) at the beginning of the

15Since ∪ >0 V = Ω/V0, V0 and ∪ >0 V partition the set of paths in accordance with the limiting
behaviour of the variance of the ratio of one period ahead marginal rates of substitution.
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subsection, appears to be very special since the consumption processes in the limit must be

supportable as a Pareto optimal allocation in an economy with homogeneous beliefs even

though marginal rates of substitution do not converge when beliefs are heterogeneous.

This is the first case in which Theorem 1 (ii) does not apply.

Also, Theorem 1 (ii) does not apply when we consider the set of paths, V y
∞ below, where

the ratio of marginal utilities displays one period ahead variability infinitely often and yet

for some subsequence of dates the maximal length of the time interval until it displays

variability again diverges on each path. To formalize the notion we need some definitions.

For > 0 and every ω ∈ V y, define ∆t(ω) := infk≥1
½
var

∙
log

µ
yt+k

yt+k−1

¶ ¯̄̄̄
Ft+k−1

¸
(ω) ≥

¾
as the minimum number of periods it takes for the ratio of marginal utilities to display

one period ahead variability after date t. Clearly, ∆t(ω) is finite for every , t and ω ∈ V y;

however, it may have a divergent subsequence. For T ∈ [0,+∞), define the set

V y
T, :=

½
ω : lim supt var

∙
log

µ
yt
yt−1

¶ ¯̄̄̄
Ft−1

¸
(ω) ≥ and supt∆t(ω) = T

¾
.

The set of paths where the ratio of marginal utilities displays one period ahead vari-

ability infinitely often, ∪ >0 V
y, can be partitioned into two sets, one containing those

paths where the ratio of one period ahead marginal utilities displays variability on some

bounded interval of time of length T <∞, ∪T, >0 V y
T, , and its complement, the set V

y
∞ on

which supt∆t(ω) = +∞. The interest of studying paths in the set V y
∞ is not evident.

16

We turn to the implication of Theorem 1 (i) for consumption behaviour in the case

where beliefs are homogeneous and correct. The fact that, in the case of Pareto optimal

allocations, marginal rates of substitution are equal at every date-event implies that, when

both the agents have positive wealth, both agents have consumption bounded away from

zero. One might conjecture that the same is true for paths in V0 since marginal rates of

substitution are equal in the limit; this is far from obvious and, although we do not have

an example, we believe that on V0 an agent might have consumption that is arbitrarily

close to zero infinitely often or even zero eventually.17

We can now state our main result.

THEOREM 1: Consider an IDC equilibrium. Assume that β1 = β2, that A.1, A.2, A.3,

and A.5 hold. Then,

(i) limt

³
P2,t(ω)
P1,t(ω)

· yt(ω)
yt−1(ω)

´
= 1 P -a.s. ω ∈ V0.

(ii) for every T <∞, > 0, and n,

lim supt ci,t(ω) ≤ 1/n P -a.s. ω ∈ V y
T, ∩ {ω : lim inft cj,t(ω) > 1/n}.

16Results on the lack of collinearity of marginal utility vectors in generic finite horizon incomplete
market economies suggest that the set V y∞ might even be null for generic economies.
17In the example and in Section 5, since r̂2,t(ω) = 1 always, r̂1,t(ω) must display variability to guarantee

that agent 2 vanishes and so, by Proposition 1, yt/yt−1 also displays variability. So, although both parts
of Theorem 1 are compatible with the consumption of an agent being arbitrarily close to zero eventually,
our construction confirms the phenomenon for paths in ∪ >0V

y, the case covered by Theorem 1 (ii).
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The idea behind the proof of Theorem 1 (i) is a relatively straightforward consequence

of the fact that the ratio of marginal rates of substitution is at least one with positive

conditional probability and on V0 its conditional variance converges to zero. We turn

to the proof of Theorem 1 (ii). First, Lemma 3 uses the fact that the Euler equations

hold with equality and that markets are incomplete to conclude that whenever yt displays

sufficient variability conditional on the realization of yt−1, captured by > 0, yt increases

by a factor γ with uniformly positive conditional probability. It follows that, because in

at most T periods yt must display sufficient variability, y must increase by the factor γ

with positive conditional probability in any span of T dates. We use this result to show

that, with positive conditional probability, starting from a consumption distribution where

agent 1’s consumption is bounded away from zero, c1,t > 1/n, so that yt is also bounded

away from zero (yt ≥ y
n
in formal terms where y

n
is defined in the proof), in a finite

number of periods yt becomes large enough (yt ≥ yn where the latter is also defined in

the proof) to let us conclude that agent 2’s consumption falls below a pre-fixed threshold

level, c2,t ≤ 1/n. To clinch the result we need to verify that such a possibility occurs

infinitely often. Lemma 2, which is a version of the Second Borel-Cantelli Lemma that

does not require independence and appears in Freedman (1973), lets us prove that in fact

this sort of behaviour of yt does occur infinitely often whenever such starting consumption

distributions occur infinitely often. It follows that if we insist on agent 1 having uniformly

positive consumption infinitely often we violate the hypothesis of Theorem 1 (ii) which

requires that agent 2’s consumption be uniformly positive on every subsequence. The

difficult part of the proof is in specifying an appropriate sequence of events; we consider

the events Ω2,t wherein, starting from a date t0 at which 1’s consumption is above the

threshold, the variable yt never decreases strictly, increases by the factor γ a fixed number

of times τ (where τ is arbitrarily large and so larger than Tn(γ), defined in the proof, which

identifies the number of periods required to make the transition from y
n
to yn when yt

grows by the factor γ in every period) and increases by that amount at the date that

indexes the event. The analysis of such events suffices for our purposes.

Theorem 1 (ii) holds even if the asset return is positive in only two states as that

ensures the required variability. With a single Arrow security that pays in state s the

only restrictions that the Euler equations impose is that yt(ω) = yt+1(ω) if st+1(ω) = s;

this implies that the support of the equilibrium consumption process is typically finite in

economies where individual endowments depend only on the current state.18

18Consider a pair (ω, t) such that st(ω) = s̃ ∈ S/{s} and st+τ (ω) = s for all τ ≥ 1, and let yt(ω) = ȳ.
Then, zt+τ (ω) = zs and so yt+τ (ω) = ȳ implies that ci,t+τ (ω) = ci(ȳ) and, therefore, qt+τ (ω) = q̄.
By the implicit debt constraint, the supporting portfolio θi,t+τ (ω) = θi(ȳ). Since s̃ 6= s, yt(ω) = ȳ
and s̃ determine ci,t(ω) = cs̃i (ȳ) and hence qt(ω) = qs̃(ȳ). The portfolio θi,t(ω) must satisfy the budget
equations (where, for s̃ ∈ S/{s} the agents’ wealth is their endowment) cs̃i (ȳ) + qs̃(ȳ) · θi,t(ω) = zs̃i and
ci(ȳ) + q̄ · θi(ȳ) = z1i + θi,t(ω). For each value of s̃ ∈ S/{s}, these equations have a unique solution ȳs̃

if qs̃(ȳ) is either strictly monotone in ȳ or is constant, which it must be if all risk is idiosyncratic; more
generally, one expects the set of solutions to be finite typically. Evidently, for any (ω, t0) either st(ω) = s
for all t ∈ {0, 1, · · · , t0} and ȳs can be obtained by an analogous argument since θi,−1(ω) = 0, or there
exists t ∈ {1, 2, · · · , t0 − 1} such that st 6= s and so yt0(ω) = ȳst .
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4.3 RELATING TO EARLIER EXAMPLES

Coury and Sciubba (2005) provide an example where both agents dominate. They

start with a Pareto optimal allocation supportable with incomplete markets and then

change beliefs in a manner that leaves demand unchanged. Market incompleteness makes

this possible; however, the construction is clearly degenerate. Their example corresponds

to the set labelled V sub that we defined and discussed in Section 4.2.

Levine and Zame (2001) provide an example in which both agents dominate. They use

a random selection from a static economy with multiple equilibria to construct a sunspot

equilibrium in the infinite horizon economy. The sunspot realization is fixed once and for

all at the first date so markets are effectively complete from then onwards.

Kubler and Schmedders (2002) provide various examples of economies in which both

agents dominate. This is possible because they restrict attention to Arrow securities and

individual endowments depend only on the current state.

Blume and Easley (2004) provide an example where an agent with correct beliefs

vanishes, a phenomenon that is along the lines of our leading example except that their

probabilistic structure is much simpler; also, as the authors note, their construction is not

robust to completing the market since in that case equilibrium fails to exist.

Constantinides and Duffie (1996) and Krebs (2004b) consider economies like ours but

with a dividend paying asset. Since they allow endowments to grow without any upper

bound, it is not clear that an analogue of Theorem 1 can be proved in their framework.

5. EQUILIBRIA WHERE SOMEONE VANISHES

In this section we turn to our second main result. We will show that the property that

the example displays, namely, that some agent vanishes with probability one, is a robust

implication of market incompleteness. We do so by combining the following two results:

(i) for equilibria where r̂2 is a degenerate process, agent 2 vanishes almost surely, and (ii)

there exist open sets of endowment distributions for which one can construct equilibrium

consumption processes with the property that r̂2 is degenerate as in the example.

Section 5.1 develops the first result which uses the Strong Law of Large Numbers

for uncorrelated random variables with uniformly bounded second moments. Section 5.2

shows that it is possible to construct aggregate feasible consumption processes that satisfy

the Euler equations, that have summable supporting prices, that induce a degenerate

process r̂2, and that display certain monotonicity properties. In Section 5.3, we define

TC0 equilibrium, a weaker notion of equilibrium and Theorem 2 in Section 5.4 provides

conditions that let us identify IDC and TC0 equilibria. Finally, in Section 5.5 we provide

our results. In Theorem 3 we show that for an appropriate distribution of endowments,

we have equilibria without trade in which agent 2 vanishes a.s.; we also specify conditions

such that our construction leads to an IDC equilibrium where agent 2 vanishes a.s. Finally,

in Theorem 4 we provide conditions such that for every no trade equilibrium identified in

Theorem 3, there is an open set of endowments for which there is a TC0 equilibrium in

which agent 2 vanishes a.s.
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For the main results in this section we shall assume that beliefs are correct so P1 =

P2 = P ; when some result holds more generally, we make the more general statement.

5.1 THE STRONG LAW ARGUMENT

If we consider consumption processes for 1 and 2 that satisfy the Euler equations at the

common price process q then, by Proposition 1, for the analysis of survival, it suffices to

study the behaviour of an alternative process. We start with a result that puts together

some properties of the alternative process, namely, that r̂i is uniformly bounded from

above and that limT→∞Ri,T (ω) is Pi−a.s. finite. Define b̄ri := supt≥0 ess. supω∈Ω;Pi r̂i,t(ω).
PROPOSITION 2: Assume A.1, A.3 and A.5. Then b̄ri < ∞. Also, there is a random
variable R∗i that is nonnegative and a.s. finite with EPi [R

∗
i ] ≤ 1 such that R∗i (ω) =

limT→∞Ri,T (ω) Pi−a.s.

By Lemma 1 requiring that agent 2 vanish on ω is equivalent to requiring limt yt(ω) =

∞. So from Proposition 1 (ii) we conclude that

log(β1/β2) + liminf
1

T

µ TX
t=1

log r̂2,t(ω)−
TX
t=1

log r̂1,t(ω)
¶
> 0 ⇒ c2,t(ω)→t→+∞ 0.

Evidently, if r̂2 is a degenerate process, and β1 = β2, then to show that 2 vanishes a.s. it

suffices to show that lim sup 1
T

³PT
t=1 log r̂1,t(ω)

´
< 0 a.s. A possible line of argument is

1

T

TX
t=1

log r̂1,t(ω)→ 1

T

TX
t=1

EP1 [log r̂1,t|Ft−1](ω) <
1

T

TX
t=1

logEP1 [r̂1,t|Ft−1](ω) = 0

where the first result, with a.s. convergence, would follow from a suitable Strong Law

of Large Numbers, the second uses Jensen’s inequality, and the third uses the defining

property EPi [r̂i,t|Ft−1](ω) = 1. For the inequality to be strict we need to guarantee that
there is variability in the tail of the process {EP1 [log r̂1,t|Ft−1](ω)}.

ASSUMPTION A.7: {ω : limsup 1
T

PT
t=1EP1 [log r̂1,t|Ft−1](ω) < 0} = Ω.

When r̂2 is a degenerate process, A.7 amounts to the requirement that on almost all

paths, markets never become effectively complete so that complete risk sharing remains

impossible. Jensen’s inequality and EP1[r̂1,t|Ft−1](ω) = 1 lead to the weaker property

where the set that appears in A.7 is defined with a weak inequality.

A.7 holds if the time average is uniformly below zero, a strong sufficient condition.

Also, when r̂2,t(ω) = 1, A.7 holds if rt(ω) = 1 and var (Zt|Ft−1) > > 0 at every date t,

i.e. the asset is a real bond and the endowment process has uniformly positive conditional

variance forever. This is because r̂2,t(ω) = 1 implies that c2,t and rt move in the same

direction, and so conditional variability in the endowment guarantees that rt ·u01(Zt−c2,t)
is nondegenerate. In fact, as we noted in Remark 2, in our leading example A.7 holds and

r̂2 is degenerate since rt(ω) · u02(c2,t(ω)) is an Ft−1−measurable quantity.
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With A.7 we are able to obtain the result by applying the Strong Law of Large Numbers

for uncorrelated random variables with uniformly bounded second moments. Define the

set Ai := {ω ∈ Ω : liminf r̂i,t(ω) = 0}. We have

PROPOSITION 3: Assume A.1, A.3, A.5 and A.7. Then R1,t(ω)→ 0 P1−a.s. ω ∈ Ω/A1.
Furthermore, given β1 and > 0, there exists δ ∈ (0, 1) such that
β2 ∈ (δ · β1, β1) ⇒ P1

Ã(
ω : log(β2/β1) +

1

T

TX
t=1

log r̂1,t(ω) < 0

)!
= P1(Ω/A1)− .

REMARK 4: In the case where A.7 is strengthened to require(
ω : limsup

1

T

TX
t=1

EP1 [log r̂1,t|Ft−1](ω) ≤ < 0
¾
= Ω,

the statement in the second part of Proposition 3 can be strengthened to:

given β1, there exists δ ∈ (0, 1) such that
β2 ∈ (δ · β1, β1) ⇒ P1

Ã(
ω : log(β1/β2) +

1

T

TX
t=1

log r̂1,t(ω) < 0

)!
= P1(Ω/A1).

The second part of Proposition 3 will be used to show that, at the margin, the turnpike

property fails when markets are incomplete since the less patient agent can survive.

5.2 A CONSTRUCTIVE APPROACH TO EQUILIBRIUM

In this section we propose a methodology for constructing feasible consumption processes

that satisfy r̂2,t(ω) = 1 for every t ≥ 0 P − a.s. ω in addition to satisfying the Euler equa-
tions and having summable supporting prices.

First, in Proposition 4, we gather together the basic properties of our construction,

namely that the process r̂2 is degenerate, a related implication for r̂1, that the process

constructed is uniquely defined for each initial condition, that it is monotone increasing

and continuous in the initial condition, and that it has nice boundary behaviour with

respect to the initial condition.

PROPOSITION 4: Assume A.2, A.3, and A.5, and that P1 = P2 = P . For Z an

aggregate endowment process, consider a triple (c, t0, ω) ∈ R++×{0, 1, 2, · · ·}×Ω such that
c ∈ (0, Zt0(ω)). Then there exists a unique pair of feasible consumption processes, denoted

{Ci,t(c, t0, ω)}t≥t0 , defined only for P−a.s. ω̃ ∈ Ω(st0(ω)) and with C1,t0(c, t0, ω) = c such

that the following statements are true for t ≥ t0 + 1 P−a.s. ω̃ ∈ Ω(st0(ω)):

(i) r̂2,t(ω) = 1;

(ii) yt−1(ω) = (β2/β1) · r̂1,t(ω) · yt(ω);
(iii) if (c, t0, ω) and (c

0, t0, ω) are such that c > c0 then C1,t(ω̃; c, t0, ω) > C1,t(ω̃; c
0, t0, ω);

(iv) the processes {Ci,t(c, t0, ω)}t≥t0 are continuous in c;

(v) given t0, > 0, and T > t0, there exists c > 0 such that Zt(ω̃) − C1,t(ω̃; c, t0, ω) <

for all t such that T ≥ t ≥ t0 + 1.

(vi) If we also assume A.1 then, given t0, > 0, and T > t0, there exists A ∈ FT with

P (A) > 0 and c > 0 such that C1,t(ω̃; c, t0, ω) < for all t such that T ≥ t ≥ t0 + 1 and

P−a.s. ω̃ ∈ A.
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We now prove that the personalized Arrow-Debreu prices that support the proposed

allocation are summable. To do so we show that the one period undiscounted intertem-

poral rate of substitution for agent 2 is uniformly bounded by M , the number specified in

A.6, we restrict the discount factors as in A.6, and we use a property of our construction.

PROPOSITION 5: Assume A.2, A.3, A.5, and A.6, and that P1 = P2 = P . Then

0 ≤ EP

"
TX

t=t0

βti ·
u0i(Ci,t(·; c, t0, ω))
u0i(Ci,t(·; c, t0, ω))

¯̄̄̄
¯Ft0

#
(ω̃) ≤ 1/(1− βi ·M) P − a.s. ω̃ ∈ Ω(st0(ω)).

To apply Proposition 3 to conclude that in our solution agent 2 vanishes a.s. we need

to show that P (A1) = 0 where Ai := {ω ∈ Ω : liminf r̂i,t(ω) = 0}. This is done by
showing that since the induced process y does not have zero as a limit point, neither does

c1 have zero as a limit point which implies that zero cannot be a limit point of r̂1.

PROPOSITION 6: Assume A.2, A.3, and A.5, and P1 = P2 = P . Then, in the proposed

solution P (A1) = 0.
By combining Propositions 3 and 6 we can conclude that

PT
t=0 logr̂1,t(ω)→ −∞.

5.3 TC0 EQUILIBRIUM

We introduce a second notion of equilibrium that does not impose a uniform bound on

the value of debt; instead it imposes a transversality condition at date 0 where a system

of personalized prices is used to evaluate the limiting value of debt.

Recall that P(q;Q) is the set of Arrow price processes compatible with a no arbitrage
asset price process q and the measure Q. We shall assume that beliefs are homogeneous

and correct, P = Pi. Define

P1(q;P ) :=
n
p ∈ P(q;P ) : limT→+∞

PT
t=0 EP

h
pt|F0

i
(ω) <∞

o
the set of Arrow price processes that are summable with respect to the measure P .

For p ∈ P(q;P ), i’s TC0 (date zero transversality condition) budget set given (q, p) is
BCTC

i (q, p) :=
n
ci ∈ ΨP

+ : there exists θi, with θi,t ∈ Ψt,P ∀ t ≥ 0, such that
∀ t ≥ 0, ci,t(ω)+ qt(ω) · θi,t(ω) ≤ zi,t(ω)+ rt(ω) · θi,t−1(ω) P − a.s. ω,
lim infT→+∞EP

h
pT · qT · θi,T |F0

i
(ω) ≥ 0

o
.

For i, ci is a TC0 maximizer given (q, p) if (i) ci ∈ BCTC
i (q, p) and (ii) there is no

other c̃i ∈ BCTC
i (q, p), with supporting portfolio θ̃i, for which

limT→+∞
PT

t=0 β
t
i EP [ui(c̃i,t)|F0](ω) > limT→+∞

PT
t=0 β

t
i EP [ui(ci,t)|F0](ω).

Also, given c, define the personalized supporting price process for agent i, denoted pci ,

by pci,t(ω) := βti ·
³
u0i(ct(ω))

´
/
³
u0i(c0(ω))

´
.

DEFINITION 5: An TC0 equilibrium is a tuple (c∗1, c
∗
2, θ

∗
1, θ

∗
2, q

∗) that is a market clearing
allocation such that (i) p

c∗i
i ∈ P1(q∗;P ) for i ∈ I, and (ii) c∗i , with supporting portfolio

θ∗i , is a TC0 maximizer given (q
∗, pc

∗
i
i ) for i ∈ I.
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A TC0 equilibrium differs from an IDC equilibrium only in the form of the additional

condition that ensures that the budget sets are appropriately bounded so that a maximizer

exists. In a TC0 equilibrium this additional condition takes the form of requiring that

the personalized supporting price process for each agent be a summable Arrow price

process, and that the limiting expected value of debt evaluated according to the agent’s

personalized supporting price process be zero. Lemma 17 in the Appendix shows that the

TC0 budget set does not permit Ponzi schemes.

5.4 IDENTIFYING EQUILIBRIA

We turn to a result that lets us identify allocations as IDC and TC0 equilibria. We

rely on a tool also used by Magill and Quinzii (1994), namely, Arrow-Debreu budget sets

induced by personalized Arrow price processes at the no arbitrage price process q. The

result will be used only in the case where beliefs are correct and hence stated as such.

Define i’s Arrow-Debreu budget set with prices pi ∈ P1(q;P ) as

BCAD
i (pi) :=

n
ci ∈ ΨP

+ : limT→+∞
PT

t=0 EP

h
pi,t · ci,t|F0

i
(ω)

≤ limT→+∞
PT

t=0 EP

h
pi,t · zi,t|F0

i
(ω)

o
.

Summability of the personalized prices, pi ∈ P1(q;P ), together with nonnegativity of
i’s endowment process, A.2, ensures that the value on the right is well defined and finite.

THEOREM 2: Assume A.3 and that beliefs are correct, P1 = P2 = P . Consider con-

sumption processes bci, i ∈ I, that are feasible and an asset price process bq such that, for
each i ∈ I, there exists bpi ∈ P1(bq;P ) such that bci is a maximizer on the set BCAD

i (bpi),
and let bθi be a portfolio process that supports bci at the price process bq. Then
(i) (bc1, bc2, bθ1, bθ2, bq) constitute a TC0 equilibrium;
(ii) if for i = 1, 2 limT→+∞EP

hbpi,T · bqT · bθi,T |Ft

i
(ω) = 0 for all t ≥ 1 and P−a.s. ω, then

(bc1, bc2, bθ1, bθ2, bq) constitute an IDC equilibrium.
The theorem is proved by showing that since bci is a maximizer on the set BCAD

i (bpi) and
it satisfies the sequence constraints in the set BCi(bq) with supporting asset portfolio bθi, the
transversality condition limT→+∞EP

hbpi,T · bqT · bθi,T |F0i(ω) = 0 holds. So bci ∈ BCTC
i (bq, bpi).

Also, for pi ∈ P(q;P ), BCTC
i (q, pi) is contained BCAD

i (pi). So bci is a maximizer on the
set BCTC

i (bq, bpi) Theorem 2 (i) follows as a direct consequence. As for Theorem 2 (ii), one
shows easily that the transversality condition holds at every t ≥ 0, and the result follows
from Theorem 5.2 in Magill and Quinzii (1994); their result applies since, as they note,

preferences with discounted additively separable expected utility representations satisfy

the assumption of uniform impatience.19

Lemma 20 in the Appendix provides sufficient conditions for verifying that a ci is a

maximizer on BCAD
i (bpi).

19Conversely, as Magill and Quinzii (1994) note, if we consider an IDC equilibrium and summable
supporting Arrow price processes then, necessarily, the transversality condition holds at every node.

24



5.5 THE RESULT

We turn to our second main result which restricts attention to the case where both

the agents have correct beliefs and shows that the phenomenon exhibited in the leading

example and identified in Theorem 1 (ii), wherein an agent vanishes almost surely, is a

robust possibility.

Theorem 3 invokes Theorem 2 (ii) to conclude that quite generally an economy has a

continuum of endowment distributions at each of which there is a no trade IDC equilibrium

in which agent 2 vanishes a.s. It also provides conditions, that include the special case

where agent 2 has a logarithmic Bernoulli function and an endowment at only date 0

where the same result holds. The only element that is new here is a proof of the fact that

under the conditions specified in Theorem 3 (i), a transversality condition can be shown

to hold at every date and event; that result is proved as Lemma 21 in the Appendix.

THEOREM 3: Assume A.1-3, A.5-7, β1 ≥ β2, and P1 = P2 = P . Also assume that either

one of the following two conditions holds:

(i) For some c > 0, ∀ t ≥ 1, and P − a.s. ω̃
u02(C2,t(ω̃; c, 0, ω)) ·

³
z2,t(ω̃)− C2,t(ω̃; c, 0, ω)

´
= c̄2,t and

u02(C2,0(ω̃; c, 0, ω)) ·
³
z2,0(ω̃)− C2,0(ω̃; c, 0, ω))

´
= −LimT→+∞

PT
τ=1 β

τ
2 · c̄2,τ ,

(ii) zc1 = {C1,t(c, 0, ω)}t≥0 for some c ∈ (0, Z0(ω)) so that the proposed solution is sup-
ported as a no trade equilibrium.

Then the economy has an IDC equilibrium in which agent 2 vanishes almost surely.

Case (ii) guarantees that our construction is not vacuous. The condition in case (i)

holds if u2(x) = log x and z2,t(ω) = 0 for t ≥ 1. So the example in Section 3 generalizes
to arbitrary nonnegative asset payoffs and arbitrary characteristics for agent 1.

Theorem 4 shows that for every endowment distribution in some neighbourhood of an

endowment distribution that is supported as a no trade IDC equilibrium, there exists a

TC0 equilibrium. The proof uses A.4, which imposes a bound on the coefficient of relative

risk aversion, to show that for the allocation identified in Theorem 3, the value of excess

demand evaluated using the personalized Arrow-Debreu price process of each agent is

monotone in a single parameter; furthermore, the value is continuous and has the right

boundary behaviour.20 The rest of the proof consists in manipulating the allocation by

starting at date 1 and using the fact that markets are incomplete to conclude that one can

choose consumption at date 0 in a manner that is consistent with feasibility and the Euler

equations. This reduces the problem to that of a fixed point problem in two dimensions

which, by continuity, has a solution for endowments in a neighbourhood of the no trade

endowments since no trade is a solution by Theorem 3.

Define the space of endowment distributions compatible with the aggregate endowment

process Z as Z1(Z) := {(z1,0, z1,1, · · ·) ∈ Ψ+ : (Z0 − z1,0, Z1 − z1,1, · · ·) ∈ Ψ+}.
20Under A.4 the proof of Theorem 4 goes through even when an agent has a zero endowment at every

date and event; this shows quite clearly that in general A.4 can be weakened as we noted in Remark 1.
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THEOREM 4: Assume A.1-7, β1 ≥ β2, and P1 = P2 = P . Let (z∗1, z
∗
2) = ({C1,t(c∗, 0, ω)}t≥0,

{C2,t(c∗, 0, ω)}t≥0) for some c∗ ∈ (0, Z0(ω)). There exists N (z∗1) an open subset of Z1(Z)
such that for every (z1, z2), where z1 ∈ N (z∗1) and z2 := Z − z1, there exists a TC0

equilibrium in which agent 2 vanishes with probability one.

REMARK 5: It follows from Remark 4 that a continuity argument can be used to provide

analogues of Theorems 3 and 4 in the case where β1 < β2 but sufficiently close; this

generalizes a property that the example in Section 3 displayed.

6. CONCLUDING REMARKS

We considered an infinite horizon economy with incomplete markets with two agents

and one good and we characterized the asymptotic behaviour of equilibrium consumption.

Our main result shows that on any equilibrium path on which some agent’s consumption

is bounded away from zero eventually, the other agent’s consumption must be zero even-

tually. This result highlights the relevance of market incompleteness, when it is effective

forever, since from it one concludes that either one of the two agents will eventually cease

to consume, or the equilibrium is complicated in the sense that the consumption of both

the agents is arbitrarily close to zero infinitely often. We also show that for a robust

class of economies with incomplete markets there are equilibria in which an agent’s con-

sumption is zero eventually with probability one even though she has correct beliefs and

is marginally more patient. Our results help to disentangle the role played by the het-

erogeneity of beliefs from that played by the market structure in determining the fate of

an agent. They suggest that savings behaviour is determined by market incompleteness

rather than by marginal differences of opinions. Evidently, the MSH and the Ramsey

conjecture can hold in a robust sense only if the equilibrium allocation is Pareto optimal.

When utility is unbounded below, Theorem 1 (ii) implies that the continuation utility

is arbitrarily low infinitely often. This can be interpreted as showing that the implicit

punishment required to ensure that an agent continues to participate in the market is the

confiscation of her entire endowment, i.e. the maximal possible punishment.21

We believe that Theorem 1 holds in a wide class of models where markets are effectively

incomplete and the Euler equation holds with equality always. Since the result is based

on pairwise comparisons of the agents’ marginal rates of substitution, we conjecture that

with any finite number of agents, goods and numeraire assets, provided some asset has

strictly positive returns in at least two states, at most one agent’s consumption can be

uniformly bounded away from zero eventually. However, it is not clear that Theorems 3

and 4 generalize since the proofs use the fact that there are only two agents.

Our approach does not cover models where the Euler condition holds as an inequality.

Given the prevalence of such models in the literature on computational general equilibrium

and macroeconomics, it would be useful to characterize the asymptotic properties of

consumption in such models; perhaps our techniques can be adapted to such situations.

21We are indebted to Emilio Espino for this observation.
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APPENDIX

PROOF OF PROPOSITION 1

That EPi [r̂i,t|Ft−1](ω) = 1 follows from the definition of the process r̂i.

(i) Since, by hypothesis, ci satisfies the Euler equations for i at q, we have

qt−1(ω) = βi · EPi [rt · u0i(ci,t)|Ft−1](ω)
u0i(ci,t−1(ω))

⇔ r̂i,t(ω) =
βi · rt(ω) · u0i(ci,t(ω))
qt−1(ω) · u0i(ci,t−1(ω))

⇒ Ri,1+T (ω) = ΠT
t=0r̂i,1+t(ω) = βT+1i · u

0
i(ci,1+T (ω))

u0i(ci,0(ω))
·ΠT

t=0

Ã
r1+t(ω)

qt(ω)

!
.

(ii) Under A.2 and A.3 u0i(ci,t(ω)) is uniformly positive. So, invoking A.5, we have

r̂i,t(ω) > 0. Since

r̂1,t(ω)

r̂2,t(ω)
=

β1·rt(ω)·u01(c1,t(ω))
qt−1(ω)·u01(c1,t−1(ω))
β2·rt(ω)·u02(c2,t(ω))
qt−1(ω)·u02(c2,t−1(ω))

=
β1
β2
·

u01(c1,t(ω))
u02(c2,t(ω))

u01(c1,t−1(ω))
u02(c2,t−1(ω))

=
β1
β2
· yt−1(ω)
yt(ω)

,

so that the ratio yt−1/yt, adjusted by the discount factors, equals the ratio between the
intertemporal marginal rate of substitution for agent 1 and agent 2, and

⇒ yT (ω) =

³
β1
β2

´T
ΠT
t=1

³
r̂1,t(ω)
r̂2,t(ω)

´ · y0(ω) = µ
β1
β2

¶T
· R2,T (ω)
R1,T (ω)

· y0(ω).

(iii) Finally, by rewriting the first property in (ii) we have

r̂2,t(ω)·yt−1(ω) = β2
β1
·r̂1,t(ω)·yt(ω) ⇔ EP2 [r̂2,t·yt−1|Ft−1](ω) =

β2
β1
·EP2 [r̂1,t·yt|Ft−1](ω)

and the first result in (iii) follows by using the fact that EPi [r̂i,t|Ft−1](ω) = 1. The second
result in (iii) is proved in a similar manner.

PROOF OF THEOREM 1

(i) By definition, on the set V0

limt

∙
log

µ
P2,t(ω)

P1,t(ω)
· yt(ω)

yt−1(ω)

¶
−E

∙
log

µ
P2,t
P1,t

· yt
yt−1

¶¯̄̄̄
Ft−1

¸
(ω)

¸
= 0.

Equivalently, using Proposition 1 (ii),

limt

∙
log

µ
P2,t(ω)

P1,t(ω)
· r̂2,t(ω)
r̂1,t(ω)

¶
−E

∙
log

µ
P2,t
P1,t

· r̂2,t
r̂1,t

¶ ¯̄̄̄
Ft−1

¸
(ω)

¸
= 0.

So there exists a process {λt}t≥0 such that λt is Ft−measurable and for every > 0 there

exists t( , ω) such that t > t( , ω) implies
¯̄̄
P2,t(ω)
P1,t(ω)

· r̂2,t(ω)
r̂1,t(ω)

− λt−1(ω)
¯̄̄
< . It follows that

t > t( , ω)⇒ (λt−1(ω)− )·P1,t(ω)·r̂1,t(ω) < P2,t(ω)·r̂2,t(ω) < (λt−1(ω)+ )·P1,t(ω)·r̂1,t(ω).
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Since λt−1 is Ft−1−measurable, we have t > t( , ω) implies

(λt−1(ω)− ) · EP1 [r̂1,t|Ft−1](ω) < EP2 [r̂2,t|Ft−1](ω) < (λt−1(ω) + ) · EP1 [r̂1,t|Ft−1](ω).
Since EPi [r̂i,t|Ft−1](ω) = 1 and > 0 is arbitrary, we have λt−1 = 1 P−a.s. ω ∈ V0. It

follows from an application of Proposition 1 (ii) that limt

³
P2,t(ω)
P1,t(ω)

· yt(ω)
yt−1(ω)

´
= 1.

(ii) We start with three results that we will need. The first is Levy’s conditional form of

the Second Borel-Cantelli Lemma which follows from a more general result due to Freed-

man (1973 Proposition 39). The second result puts bounds on the conditional probability

with which there is variability in yt/yt−1. The third, shows that on any path on which
some event occurs infinitely often, the event consisting of the first event followed by any

finite string of realizations of yt such that yt/yt−1 ≥ 1 also occurs infinitely often.
For E ∈ F an event, let 1E denote the indicator function. Recall that

n
Ωt i.o.

o
=
n
ω :P∞

t=1 1Ωt(ω) = +∞
o
. Also, define ΩN

1,t =
n
ω : yt0(ω)

yt0−1(ω)
≥ 1, ∀ t0 = t+ 1−N, · · · , t

o
.

LEMMA 2: Let {Ωt}∞t=0 be a sequence of events adapted to the filtration {Ft}∞t=0. Then
∞X
t=1

1Ωt(eω) = +∞ P − a.s. eω ∈ ½ω : ∞X
t=1

E [1Ωt |Ft−1 ] (ω) = +∞
¾
.

LEMMA 3: Assume A.1. Then ∀ t ≥ 1 P
∙

yt
yt−1
≥ 1

¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0 P − a.s. ω ∈ Ω.

Furthermore, var
∙
log

µ
yt

yt−1

¶ ¯̄̄̄
Ft−1

¸
(ω) ≥ > 0 implies that there exists γ > 0 such that

P
∙
1− γ ≥ yt

yt−1

¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0 and P

∙
yt
yt−1

≥ 1 + γ
¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0.

PROOF: By Proposition 1 (ii),
³
yt(ω)/yt−1(ω)

´
=
³
r̂2,t(ω)/r̂1,t(ω)

´
.

Since for all t ≥ 1 and P−a.s. ω ∈ Ω, EPi [r̂i,t|Ft−1](ω) = 1, i = 1, 2, under A.1 the
first result follows.

Also, the second result follows because if for some pair (t, ω)

∀ γ > 0 P
h
1− γ < r̂2,t

r̂1,t
< 1 + γ

¯̄̄
Ft−1

i
(ω) = 1 ⇒ var

h
r̂2,t
r̂1,t

¯̄̄
Ft−1

i
(ω) = 0.

LEMMA 4: Let {Ωt}∞t=0 be a sequence of events adapted to the filtration {Ft}∞t=0. Then

∀N ≥ 1
∞X
t=1

1Ωt−N∩ΩN1,t(eω) = +∞ P − a.s. eω ∈ {Ωt i.o.} .

PROOF: As an implication of Lemma 3 we have

ω ∈ Ωt−N ∩ ΩN−1
1,t−1 ⇒ E

h
1Ωt−N∩ΩN1,t

¯̄̄
Ft−1

i
(ω) = P

∙
yt
yt−1

≥ 1
¯̄̄̄
Ft−1

¸
(ω) ≥ p > 0,

where we use the convention that Ω01,t = Ω to handle the case where N = 1, and

E
h
1Ωt−N∩ΩN1,t

¯̄̄
Ft−1

i
(ω) is non-negative otherwise.
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For eω ∈ {Ωt i.o.} arbitrarily chosen, there exists a sequence {tk}∞k=1 such that eω ∈ Ωtk

for every k = 1, 2, · · ·. Since Ω01,t = Ω, eω ∈ Ω(tk+1)−1 ∩ Ω1−11,(tk+1)−1 and therefore, by the
implication of Lemma 3,

∞X
t=1

E
h
1Ωt−1∩Ω11,t

¯̄̄
Ft−1

i
(eω) ≥ ∞X

k=1

E
h
1Ω(tk+1)−1∩Ω11,tk+1

¯̄̄
Ftk

i
(eω) ≥ ∞X

k=1

P
∙
ytk+1
ytk
≥ 1

¯̄̄̄
Ftk

¸
(eω) = +∞

and it follows by Lemma 2 that
P∞

t=1 1Ωt−1∩Ω11,t(eω) = +∞ P − a.s. eω ∈ {Ωt i.o.}.
Suppose that the result holds for N − 1. So, for P -a.s eω ∈ {Ωt i.o.} arbitrarily chosen

there exists {tk}∞k=1 such that eω ∈ Ωtk−(N−1) ∩ΩN−1
1,tk

= Ω(tk+1)−N ∩ΩN−1
1,(tk+1)−1 so that, by

the implication of Lemma 3,

∞X
t=1

E
h
1Ωt−N∩ΩN1,t

¯̄̄
Ft−1

i
(eω) ≥ ∞X

k=1

E
h
1Ω(tk+1)−N∩ΩN1,tk+1

¯̄̄
Ftk

i
(eω) ≥ ∞X

k=1

P
∙
ytk+1
ytk
≥ 1

¯̄̄̄
Ftk

¸
(eω) = +∞

and it follows by Lemma 2 that
P∞

t=1 1Ωt−N∩ΩN1,t(eω) = +∞ P − a.s. eω ∈ {Ωt i.o.}. That
completes the induction argument and the proof.

Since the gist of the argument underlying the proof of Theorem 1 (ii) was given in

Section 4.2, we continue with the formal details.

Set y
n
:=

³
u02(z−1/n)/u01(1/n)

´
and yn :=

³
u02(1/n)/u

0
1(z−1/n)

´
. For γ > 0 identified

in Lemma 3, let Tn(γ) satisfy y
n
· (1 + γ)Tn(γ) > yn. For the rest of the proof, the values

of , T , n, and the value of γ induced by , will be considered to be fixed. Recall that T

is a uniform upper bound on the number of periods with variability less than . Define

C1,n
t := {ω : c1,t(ω) > 1/n}; so {ω : lim supt c1,t(ω) > 1/n} =

n
C1,n
t i.o.

o
. Without loss of

generality we identify agent 2 as j.

For (ω, t, τ) such that yt(ω)
yt−1(ω)

≥ 1 + γ, and t > τ · T and τ ≥ 1, define the event

Ωτ
2,t =

⎧⎪⎨⎪⎩ω :
c1,t0(ω) ≥ 1/n, yt0(ω)

yt0−1(ω)
≥ 1 ∀ t0 = t0, · · · , t− 1, yt(ω)

yt−1(ω)
≥ 1 + γ,

#
½

yt0(ω)
yt0−1(ω)

≥ 1 + γ, t0 = t0, · · · , t
¾
= τ where t ≥ t0 ≥ t− τ · T

⎫⎪⎬⎪⎭ .

It follows thatn
Ω
Tn(γ)
2,t i.o.

o
⊂
nn

ω : yt (ω) ≥ y
n
· (1 + γ)Tn(γ) > yn

o
i.o.

o
⊂
n
{ω : c2,t(ω) ≤ 1/n} i.o.

o
.

We will show that the event
n
Ω
Tn(γ)
2,t i.o.

o
occurs P -a.s. eω ∈ V y

T, ∩
n
C1,n
t i.o.

o
. It follows

that the event
n
{ω : c2,t(ω) ≤ 1/n} i.o.

o
occurs P -a.s. eω ∈ V y

T, ∩
n
C1,n
t i.o.

o
letting us

conclude that the set V y
T, ∩

n
C1,n
t i.o.

o
∩ {ω : lim inft c2,t(ω) > 1/n} has measure zero.

The proof will be by induction on τ and the following two facts will be used.

FACT 1: If eω ∈ ΩT
1,t0

k+T
∩V y

T, then, necessarily, eω ∈ Ω
tk−1−t0k
1,tk−1 ∩

n
ω : var

h
log

³
ytk

ytk−1

´¯̄̄
Ftk−1

i
(ω) ≥o

where tk ∈ {t0k + 1, t0k + 2, · · · , t0k + T}. This can be proved by noting that (i) by the
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definition of T , for every k there necessarily exists tk ∈ {t0k + 1, t0k + 2, · · · , t0k + T} such
that eω ∈ nω : varh log ³ ytk

ytk−1

´¯̄̄
Ftk−1

i
≥

o
, and (ii) eω ∈ ΩT

1,t0k+T
implies that eω ∈ Ω

tk−1−t0k
1,tk−1

also for t0k + 1 ≤ tk ≤ t0k + T .

FACT 2: For t > t0, by Lemma 3, if eω ∈ Ωτ
2,t0 ∩ Ωt−1−t0

1,t−1 ∩
n
ω : var

h
log

³
yt

yt−1

´¯̄̄
Ft−1

i
≥

o
,

where we use the conventions that Ω02,t = C1,n
t to handle the case where τ = 0 and that

Ω01,t = Ω to handle the case in which t = t0 + 1, then

E
h
1Ωτ+12,t

¯̄̄
Ft−1

i
(eω) = P

∙
yt
yt−1

≥ 1 + γ
¯̄̄̄
Ft−1

¸
(eω) ≥ p > 0.

We turn to the first step in the proof by induction. By Lemma 4,

∞X
t=1

1C1,nt−T∩ΩT1,t(
eω) = +∞ P − a.s. eω ∈ nC1,n

t i.o.
o
.

Therefore, for P -a.s. eω ∈ n
C1,n
t i.o.

o
, there exists a sequence {t0k}∞k=1 such that eω ∈

C1,n
t0k
∩ΩT

1,t0k+T
and, by Fact 1, for P -a.s. eω ∈ V y

T, ∩
n
C1,n
t i.o.

o
, eω ∈ C1,n

t0k
∩Ωtk−1−t0k

1,tk−1 ∩
n
ω :

var
h
log

³
ytk

ytk−1

´¯̄̄
Ftk−1

i
≥

o
for some sequence {tk}∞k=1. Hence, by Fact 2, on V y

T, ∩n
C1,n
t i.o.

o
,
P∞

t=1 E
h
1Ω12,t

¯̄̄
Ft−1

i
(ω) = +∞ and, therefore, by Lemma 2,

P∞
t=1 1Ω12,t(

eω) =
+∞ P -a.s. eω ∈ V y

T, ∩
n
C1,n
t i.o.

o
.

We turn to the second step. So suppose it is true that
P∞

t=1 1Ωτ2,t(eω) = +∞ P -

a.s. eω ∈ V y
T, ∩

n
C1,n
t i.o.

o
for some τ . By Lemma 4,

P∞
t=1 1Ωτ2,t−T∩ΩT1,t(eω) = +∞ P -a.s.

eω ∈ V y
T, ∩

n
C1,n
t i.o.

o
and so for P -a.s. eω ∈ V y

T, ∩
n
C1,n
t i.o.

o
there exists a sequence {t0k}∞k=1

such that eω ∈ Ωτ
2,t0

k
∩ΩT

1,t0
k+T
. By Fact 1, eω ∈ Ωτ

2,t0
k
∩Ωtk−1−t0k

1,tk−1 ∩
n
ω : var

h
log

³
ytk

ytk−1

´¯̄̄
Ftk−1

i
≥o

for some sequence {tk}∞k=1, and hence, using Fact 2,
∞X
t=1

E
h
1Ωτ+12,t

¯̄̄
Ft−1

i
(eω) ≥ ∞X

k=1

E
h
1Ωτ+12,tk

¯̄̄
Ftk−1

i
(eω) = ∞X

k=1

P
∙
ytk
ytk−1

≥ 1 + γ
¯̄̄̄
Ftk−1

¸
(eω) = +∞

and it follows from Lemma 2 that
P∞

t=1 1Ωτ+12,t
(eω) = +∞ P -a.s. eω ∈ V y

T, ∩
n
C1,n
t i.o.

o
.

This completes the induction on τ .

Hence, for every τ ≥ 0,
P∞

t=1 1Ωτ+12,t
(eω) = +∞ P -a.s. eω ∈ V y

T, ∩
n
C1,n
t i.o.

o
; in

particular,
P∞

t=1 1ΩTn(γ)2,t
(eω) = +∞ P -a.s. eω ∈ V y

T, ∩
n
C1,n
t i.o.

o
. We have shown thatn

Ω
Tn(γ)
2,t i.o.

o
P -a.s. eω ∈ V y

T, ∩ {ω : lim supt c1,t(ω) > 1/n} as required.

PROOF OF PROPOSITION 2

The proof follows from Lemma 5 and 6. Lemma 5 shows that if asset returns are non-

negative and the one period ahead conditional probability that state s occurs is uniformly

positive, A.1, then r̂i,t(ω) is nonnegative and uniformly bounded above. Lemma 6 uses

the martingale convergence theorem to show that limT→∞Ri;0,T (ω) is Pi−a.s. finite.
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LEMMA 5: Assume A.3 and r ≥ 0. Then 0 ≤ r̂i,t(ω) ≤ 1/Pi,t(ω). Hence, under A.1, A.3,

and A.5, b̄ri <∞.
PROOF: Since ui is strictly increasing and r ≥ 0,
Pi,t(ω) ≤ Pi,t(ω) +

EPi [rt·u0i(ci,t)|Ft−1,Ω/Ω(st(ω))](ω)
rt(ω)·u0i(ci,t(ω)) =

EPi [rt·u0i(ci,t)|Ft−1](ω)
rt(ω)·u0i(ci,t(ω)) = 1

r̂i,t(ω)
.

LEMMA 6: Assume A.3 and r ≥ 0. Then there is a random variable R∗i that is nonneg-
ative and a.s. finite with EPi [R

∗
i ] ≤ 1 such that R∗i (ω) = limT→∞Ri,T (ω) Pi−a.s.

PROOF: Under the stated condition, {Ri,t} is a nonnegative martingale sinceEPi [r̂i,t|Ft−1] =
1. Since supt≥1EPi [Ri,t] = 1 < +∞, the Martingale Convergence Theorem applies.

PROOF OF PROPOSITION 3

Let us define a sequence of truncated processes parameterized by > 0 by setting

g1,t(ω) := log (max {r̂1,t(ω), }) and B1, := {ω : limsup 1
T

PT
t=1EP1[g1,t|Ft−1](ω) < 0}.

Ω can be partitioned into three sets: ∪n≥1B1,1/n, A1, and Ω/(A1∪(∪n≥1B1,1/n)), where
A1 := {ω ∈ Ω : liminf r̂1,t(ω) = 0}. We first show that under A.7 the third set is null.

LEMMA 7: Assume A.7. Then Ω/A1 ⊂ ∪n≥1B1,1/n, where A1 := {ω : liminf r̂1,t(ω) = 0},
so that for all ω ∈ Ω/A1 there exists (ω) such that ω ∈ B1, (ω).
PROOF: Consider ω̃ ∈ Ω/A1. So liminf r̂1,t(ω̃) = 2 · (ω̃) > 0 and there exists t(ω̃) such
that t ≥ t(ω̃) ⇒ r̂1,t(ω̃) ≥ (ω̃). Furthermore, by A.7,

limsup
µ
1

T

TX
t=1

EP1[log r̂1,t|Ft−1](ω̃)
¶
= s(ω̃) < 0.

Since

0 = limsup
µ
1

T

TX
t=1

EP1[log r̂1,t|Ft−1](ω̃)− 1

T

TX
t=t(ω̃)+1

EP1 [log r̂1,t|Ft−1](ω̃)
¶

≤ limsup
µ
1

T

TX
t=1

EP1[log r̂1,t|Ft−1](ω̃)
¶
− limsup

µ
1

T

TX
t=t(ω̃)+1

EP1 [log r̂1,t|Ft−1](ω̃)
¶

we must have

limsup
µ
1

T

TX
t=t(ω̃)+1

EP1 [log r̂1,t|Ft−1](ω̃)
¶
≤ limsup

µ
1

T

TX
t=1

EP1[log r̂1,t|Ft−1](ω̃)
¶
= s(ω̃) < 0

⇒ limsup
1

T

TX
t=t(ω̃)+1

EP1 [log r̂1,t|Ft−1](ω̃) < 0

⇒ limsup
1

T

TX
t=t(ω̃)+1

EP1 [log (max {r̂1,t, (ω̃)})|Ft−1](ω̃) < 0.

Since limsup 1
T

Pt(ω̃)
t=1 EP1 [log (max {r̂1,t, (ω̃)})|Ft−1](ω̃) = 0,

limsup
1

T

TX
t=1

EP1 [g
(ω̃)
1,t |Ft−1](ω̃) < 0

so that ω̃ ∈ B1, (ω̃) as required.
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We continue with the proof of Proposition 3.

Since < 0 ⇒ g1,t(ω) ≤ g
0
1,t(ω) ∀ t, ∀ω, it follows that < 0 ⇒ B1, 0 ⊂

B1, . So B1,1/n ⊂ B1,1/(n+1) ⊂ · · ·, and we set B1,0 := ∪n≥1B1,1/n. It follows that

P1(B1,1/n/A1) increases monotonically to P1(B1,0/A1). So for all p > 0, there exists

(p) such that P1(B1, (p)/A1) ≥ P1(B1,0/A1)− p.

For fixed p and corresponding (p), consider the truncated process {g (p)
1,t }+∞t=0 defined

earlier. It is uniformly bounded below and, under A.1, A.3, and A.5, by Lemma 5, it

is also uniformly bounded above. Hence the process {EP1 [g
(p)
1,t |Ft−1]}+∞t=0 is uniformly

bounded below and above.

Define

ḡ
(p)
1,t (ω) := g

(p)
1,t (ω)−EP1 [g

(p)
1,t |Ft−1](ω).

It follows that the process {ḡ (p)
1,t }+∞t=0 is uniformly bounded above and below. Furthermore,

EP1 [ ḡ
(p)
1,t ḡ

(p)
1,t+k|Ft−1] = 0 for all k ≥ 1, for all t ≥ 0. Therefore, by the Strong Law of Large

Numbers for uncorrelated random variables with uniformly bounded second moments

(Chung 1974, page 103),

limT→+∞
1

T

TX
t=1

ḡ
(p)
1,t (ω) = 0 P1 − a.s.

⇒ limsup
1

T

TX
t=1

g
(p)
1,t (ω) ≤ limsup

1

T

TX
t=1

EP1 [g
(p)
1,t |Ft−1](ω).

Since ω ∈ B1, (p)/A1 implies limsup 1
T

PT
t=1EP1 [g

(p)
1,t |Ft−1](ω) < 0, it follows that ∀ω ∈

B1, (p)/A1, PT
t=1 g

(p)
1,t (ω) → −∞ so that ∀ω ∈ B1, (p)/A1, PT

t=1 log r̂1,t(ω) =→ −∞ sincePT
t=1 log r̂1,t(ω) =

PT
t=1 g

0
1,t(ω) ≤

PT
t=1 g

(p)
1,t (ω) → −∞. The proof of the first part is

completed by noting that as p goes to zero, we approximate the set Bi,0/Ai and, by

Lemma 7, that set coincides with Ω/A1.
For the second part we set C1,δ := {ω ∈ Ω : limsup 1

T

PT
t=1 log r̂1,t(ω) < log δ}∩(Ω/A1).

Clearly, δ0 < δ00 implies that C1,δ0 ⊂ C1,δ00 . It follows that ∪n≥1C1,1−1/n = Ω/A1 and hence
that P1(C1,1−1/n) increases monotonically to P1(Ω/A1) so that for all > 0, there exists

δ = 1− 1/n such that P1(C1,δ) ≥ P1(Ω/A1)− .

PROOF OF PROPOSITION 4

We give an outline of the proof. In Lemma 8 we show that one can work with the

process c1 and the process y interchangeably. Lemma 9 is the crucial step in which we

study the parameterized fixed point of a special one dimensional map. Lemma 10 takes

the fixed point found in Lemma 9 and deduces properties induced by it on consumption,

marginal utility, Euler equations, etc. A recursive application of Lemma 10 going forward

leads us to most of the properties in Proposition 4 including monotonicity and continuity

in the initial value. Lemma 11 provides the boundary behaviour properties.

Throughout we write E[X] instead of EP [X].

32



For Z > 0, let the function YZ : (0, Z)→ (0,∞) be defined by YZ(c1) = u02(Z−c1)
u01(c1)

.

LEMMA 8: Assume A.3. YZ is increasing in c1, it is onto, and continuous with a contin-

uous inverse.

PROOF: The result is a consequence of A.3; in particular, we use the fact that ui are

strictly concave, continuously differentiable, and satisfy the Inada condition at c = 0.

Given Z and feasible consumption processes, by Lemma 8, for any (t, ω) we have

yt(ω) = YZt(ω)(c1,t(ω)). The inverse of YZ is denoted (YZ)−1(y); by Lemma 8, it is well
defined and continuous.

Proposition 4 is proved by using a recursive construction in the variable yt(ω) which,

by Lemma 8, is equivalent to using the variable c1,t(ω). However, to establish the basic

properties of the construction, it is easier to work with the variable λ := r · u02(c2)/y.
Lemma 9 studies the existence and monotonicity properties of the fixed point in λ of a

special function.

LEMMA 9: Assume A.2, A.3, and A.5. For t = 1, 2, · · · and ω ∈ Ω, and y > 0, define

λ(t, ω, y) :=
rt(ω)·u02(Zt(ω))

y
and consider the function ft,ω,y : [λ(t, ω, y),+∞)→ [(β1/β2) · r ·

u01(z̄),+∞) in the variable λ defined by

ft,ω,y(λ) := (β1/β2) · E
"
rt · u01

Ã
Zt − (u02)−1

Ã
y · λ
rt

!!¯̄̄̄
¯Ft−1

#
(ω).

Then (i) ft,ω,y has a unique fixed point denoted λ∗(t, ω, y),
(ii) λ∗(t, ω, y) > maxω0∈Ω(st−1(ω))

rt(ω0)·u02(Zt(ω0))
y

and λ∗(t, ω, y) > (β1/β2) · r · u01(z̄),
(iii) y · λ∗(t, ω, y) > y0 · λ∗(t, ω, y0) if and only if λ∗(t, ω, y) < λ∗(t, ω, y0), in particular
y > y0 if and only if λ∗(t, ω, y) < λ∗(t, ω, y0),
(iv) λ∗(t, ω, y) is continuous in y,

(v) λ∗(t, ω, y)→y→0 ∞, and
(vi) λ∗(t, ω, y) · y →y→∞ ∞.
PROOF: Notice that even though the domain of the function ft,ω,y is Ft−measurable, the
function is defined in a manner that makes it Ft−1−measurable. This is important.
(i) Under A.5 r > 0 so λ(t, ω, y) ≥ 0. It can be verified that ft,ω,y(λ(t, ω, y)) =

(β1/β2) · E
h
rt · u01(0)

¯̄̄
Ft−1

i
(ω) = ∞, where we use the Inada condition; furthermore,

ft,ω,y is continuous and strictly decreasing. Under A.2 and A.3 (β1/β2) · r̄ · u01(z̄) < ∞;
therefore, Limλ→∞ ft,ω,y(λ) <∞. It follows that ft,ω,y has a unique fixed point.
(ii) As noted at the beginning of the proof, ft,ω,y is Ft−1−measurable and, therefore, the
fixed point λ∗(t, ω, y) is also Ft−1−measurable. Since ft,ω,y(λ(t, ω, y)) =∞, we must have
λ∗(t, ω, y) > maxω0∈Ω(st−1(ω))

rt(ω0)·u02(Zt(ω0))
y

, the highest possible value for λ(t, ω, y). The

second part follows from the fact that ft,ω,y is strictly decreasing.

(iii) Suppose that y · λ∗(t, ω, y) > y0 · λ∗(t, ω, y0). Since ft,ω,y is strictly decreasing, and
from the particular way in which y and λ enter the expression,

ft,ω,y(λ
∗(t, ω, y)) < ft,ω,y0(λ

∗(t, ω, y0))
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so that by the fixed point property we have λ∗(t, ω, y) < λ∗(t, ω, y0). We have shown that

y · λ∗(t, ω, y) > y0 · λ∗(t, ω, y0) ⇔ λ∗(t, ω, y) < λ∗(t, ω, y0).

(iv) Notice that by (i), λ∗(t, ω, y) exists for all y > 0, and by the monotonicity result

in (iii), the only sorts of discontinuities that are possible are of the first kind. So if

λ∗(t, ω, ·) is discontinuous at ỹ then, introducing notation for right-hand and left-hand
limits, λ∗(t, ω, ỹ−) > λ∗(t, ω, ỹ+). So, by (iii), ỹ− · λ∗(t, ω, ỹ−) < ỹ+ · λ∗(t, ω, ỹ+) and
therefore λ∗(t, ω, ỹ−) < λ∗(t, ω, ỹ+) since ỹ− = ỹ+. The contradiction that results shows

that such discontinuities are not present.

(v) Since λ(t, ω, y)→y→0 ∞, we can use (ii) to conclude that λ∗(t, ω, y)→y→0 ∞.
(vi) Notice that λ∗(t, ω, y) →y→∞ 0 requires that ft,ω,y(λ

∗(t, ω, y)) → 0 which cannot

hold under A.2, since r > 0, A.3, since u1 is strictly increasing and strictly concave, and

A.5, since z̄ <∞. Hence, λ∗(t, ω, y)→y→∞ > 0 and so λ∗(t, ω, y) · y →y→∞ ∞.

The next result induces values for consumption at the fixed point identified in Lemma 9

and specifies the implications on intertemporal marginal utilities induced by those values.

LEMMA 10: Assume A.2, A.3, and A.5. Let yt−1 : Ω → R+ be an Ft−1−measurable
function. Set

c2,t(ω) := (u
0
2)
−1
Ã
yt−1 · λ∗(t, ω, yt−1(ω))

rt

!
, c1,t(ω) := Zt(ω)−c2,t(ω), yt(ω) = YZt(ω)(c1,t(ω)).

Then (i) ci,t(ω) ≥ 0 and isFt−measurable, (ii) if yt−1(ω) > y0t−1(ω) then the induced values
satisfy yt(ω) > y0t(ω), (iii) yt(ω) is a continuous function of yt−1(ω), (iv)

rt(ω)·u02(c2,t(ω))
yt−1(ω)

=

(β1/β2) · E[rt · u01(c1,t)|Ft−1](ω) so rt(ω) · u02(c2,t(ω)) is Ft−1−measurable and r̂2,t(ω) =

1 P − a.s. ω, and (v) yt(ω) = β1
β2
· 1
r̂1,t(ω)

· yt−1(ω).
PROOF: (i) As per the definition in the hypothesis λ∗(t, ω, yt−1(ω)) =

rt(ω)·u02(c2,t(ω))
yt−1(ω)

. So

using Lemma 9 (ii) we have λ∗(t, ω, yt−1(ω)) ≥ λ(t, ω, yt−1(ω))

⇔ rt(ω) · u02(c2,t(ω))
yt−1(ω)

≥ rt(ω) · u02(Zt(ω))

yt−1(ω)
⇔ u02(c2,t(ω)) ≥ u02(Zt(ω))

so that using the fact that u2 is concave we can conclude that c2,t(ω) ≤ Zt(ω) so that

c1,t(ω) ≥ 0. The Inada condition guarantees that c2,t(ω) ≥ 0. Since the measurability
property is evident, the proof of (i) is complete.

(ii) We can invoke Lemma 9 (iii) and the fixed point property to conclude that

yt−1(ω) > y0t−1(ω) ⇔ ft,ω,yt−1(ω)(λ
∗(t, ω, yt−1(ω))) < ft,ω,y0t−1(ω)(λ

∗(t, ω, y0t−1(ω))).

From the specification of ft,ω,y and the fact that u1 is strictly concave, it is easy to see

that, necessarily, c1,t(ω) > c01,t(ω). An application of Lemma 8 completes the proof.
(iii) Follows form Lemma 9 (iv), the fact that ui are twice continuously differentiable,

and Lemma 8.
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(iv) Follows from the fixed point property since

rt(ω) · u02(c2,t(ω))
yt−1(ω)

= λ∗(t, ω, yt−1(ω)) = ft,ω,yt−1(ω)(λ
∗(t, ω, yt−1(ω)))

= (β1/β2) ·E[rt · u01(c1,t)|Ft−1](ω).

This shows that rt(ω) · u02(c2,t(ω)) is Ft−1−measurable and so r̂2,t(ω) = 1 P − a.s. ω.
(v) By manipulating the fixed point condition, we obtain

u02(c2,t(ω))
u01(c1,t(ω))

= yt−1(ω) · β1
β2
· E[rt · u

0
1(c1,t)|Ft−1](ω)

rt(ω) · u01(c1,t(ω))
⇔ yt(ω) =

β1
β2
· 1

r̂1,t(ω)
· yt−1(ω)

proving (v).

Proposition 4 is proved by recursively applying Lemma 10. For existence we assume

that we are given a triple (y, t0, ω) ∈ R++ × {0, 1, 2, · · ·} × Ω, we set yt0(ω) := y and

treat it as a parameter and apply Lemma 10 (i) to induce a unique process for {yt(ω̃)}t≥t0
and P−a.s. ω̃ ∈ Ω(st0(ω)). By Lemma 8 this is equivalent to starting with a triple

(c, t0, ω) ∈ R++ × {0, 1, 2, · · ·} × Ω with the additional condition that c ∈ (0, Zt0(ω)),

setting c1,t0(ω) := c and treating it as a parameter and generating a unique pair of

processes ci that are feasible and solve the fixed point problem at each date t ≥ t0 + 1

and P−a.s. ω̃ ∈ Ω(st0(ω)).

The notation {Ci,t(c, t0, ω)}t≥t0 , where the process is defined P−a.s. only for ω̃ ∈
Ω(st0(ω)), was introduced in the statement of Proposition 4. For monotonicity, we consider

two triples (c, t0, ω) and (c
0, t0, ω) such that c > c0. By Lemma 8 the induced values satisfy

yt0(ω) > y0t0(ω) so that by an iterative application of Lemma 10 (ii) yt(ω̃) > y0t(ω̃) for all
t ≥ t0 + 1 and P−a.s. ω̃ ∈ Ω(st0(ω)). Another application of Lemma 8 establishes that

C1,t(ω̃; c, t0, ω) > C1,t(ω̃; c
0, t0, ω) for all t ≥ t0 + 1 and P−a.s. ω̃ ∈ Ω(st0(ω)).

By a direct argument, for all t ≥ t0 + 1 and P−a.s. ω̃ ∈ Ω(st0(ω)), C1,t(ω̃; c, t0, ω) is

continuous in c.

Lemma 11 establishes some boundary properties of the consumption processes that

we construct and completes the proof of Proposition 4.

LEMMA 11: Assume A.1, A.2, A.3, and A.5. (i) Given t0, , and T , where > 0 and small,

and T > t0, there exists A ∈ FT with P (A) > 0 and c > 0 such that C1,t(ω̃; c, t0, ω) <

for all t such that T ≥ t ≥ t0 + 1 and P−a.s. ω̃ ∈ A. (ii) Given t0, , and T , where > 0

and small, and T > t0, there exists c > 0 such that Zt(ω̃) − C1,t(ω̃; c, t0, ω) < for all t

such that T ≥ t ≥ t0 + 1 and P−a.s. ω̃ ∈ Ω(st0(ω)).

PROOF: (i) By Lemma 9 (v), λ∗(t, ω, y) →y→0 ∞ so that, by the fixed point prop-

erty, ft,ω,y(λ
∗(t, ω, y)) →y→0 ∞. But then, under A.2, A.3, and A.5, we must have

E[c1,t|Ft̃−1](ω) →yt−1(ω)→0 0. So for some ω̃ ∈ Ω(st−1(ω)), c1,t(ω̃) →yt−1(ω)→0 0, and,
by Lemma 8, yt(ω̃) →yt−1(ω)→0 0. By recursively using the monotonicity and continu-
ity properties, Lemma 10 (ii) and (iii), we can conclude that for any t > t0, there is
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a ω̃(t) such that for all t0 where t ≥ t0 > t0, yt0(ω̃(t)) →yt0 (ω)→0 0, and, by Lemma 8,
c1,t0(ω̃(t)) →yt0(ω)→0 0. It follows that given t0, , and T , where > 0 and small, and

T > t0, there exists ω̃ ∈ Ω(st−1(ω)) and c > 0 such that C1,t(ω̃; c, t0, ω) < for all t such

that T ≥ t ≥ t0 + 1. Since T < ∞ and A.1 holds, the same is true for all ω̃ ∈ A where

P (A) > 0 and A ∈ FT .

(ii) By Lemma 9 (vi), the rule defining c2,t(ω) in Lemma 10, and the concavity of u2,

we conclude that c2,t(ω)→yt−1(ω)→∞ 0; by Lemma 8, yt(ω)→yt−1(ω)→∞ ∞. By recursively
using the monotonicity and continuity properties, Lemma 10 (ii) and (iii), we can conclude

that for any t > t0, yt(ω)→yt0(ω)→∞ ∞, and, by Lemma 8, yt0(ω)→c→Zt0(ω)
∞. It follows

that given t0, , and T , where > 0 and small, and T > t0, there exists c > 0 such that

Zt(ω̃)− C1,t(ω̃; c, t0, ω) < for all t such that T ≥ t ≥ t0 + 1 and P -a.s. ω̃ ∈ Ω(st0(ω)).

PROOF OF PROPOSITION 5

The proof follows from Lemma 12 and Lemma 13. To simply the notation we use

ci,t(ω) for consumption and state and prove the results for the case where t0 = 0 and the

processes are defined on Ω. Throughout we write E[X] instead of EP [X].

LEMMA 12: Assume A.2, A.3, A.5. Then for the solution proposed

ess. supω∈Ω;P supt≥0
u02(c2,t+1(ω))
u02(c2,t(ω))

≤M := max
½
r̄ · u02(z/2)
r · u02(z̄)

;
r̄ · u01(z/2)
r · u01(z̄)

¾
.

PROOF: If not then there is an A with P (A) > 0, such that for every ω ∈ A there exists

a t(ω) such that

u02(c2,t(ω)+1(ω))
u02(c2,t(ω)(ω))

> M ⇒ u02(c2,t(ω)+1(ω))
u02(c2,t(ω)(ω))

>
r̄ · u02(z/2)
r · u02(z̄)

⇒ rt(ω)+1(ω) · u02(c2,t(ω)+1(ω))
u02(c2,t(ω)(ω))

>
r̄ · u02(z/2)

u02(z̄)
.

As shown in the proof of Lemma 10 (v),

rt+1(ω) · u
0
2(c2,t+1(ω))

u02(c2,t(ω))
=

E[rt+1 · u01(c1,t+1)|Ft](ω)

u01(c1,t(ω))
,

so we must also have

E[rt(ω)+1 · u01(c1,t(ω)+1)|Ft(ω)](ω)

rt(ω)+1(ω) · u01(c1,t(ω)(ω))
> M ⇒ E[rt(ω)+1 · u01(c1,t(ω)+1)|Ft(ω)](ω)

rt(ω)+1(ω) · u01(c1,t(ω)(ω))
>

r̄ · u01(z/2)
r · u01(z̄)

so that, since c1,t(ω) ≤ z̄ and u001 < 0,

⇒ E[rt(ω)+1 · u01(c1,t(ω)+1)|Ft(ω)](ω)

rt(ω)+1(ω) · u01(z̄)
>

r̄ · u01(z/2)
r · u01(z̄)

⇒ E[rt(ω)+1 · u01(c1,t(ω)+1)|Ft(ω)](ω) > r̄ · u01(z/2)

36



since r ≤ rt(ω)+1. It follows that for some ω̃ ∈ Ω(st(ω)(ω)),

u01(c1,t(ω)+1(ω̃)) > u01(z/2) ⇔ c1,t(ω)+1(ω̃) < z/2 ≤ Zt/2

⇔ c2,t(ω)+1(ω̃) > Zt/2 ≥ z/2 ⇒ rt(ω)+1(ω̃) · u02(c2,t(ω)+1(ω̃)) < r̄ · u02(z/2)

⇔ rt(ω)+1(ω̃) · u02(c2,t(ω)+1(ω̃))
u02(z̄)

<
r̄ · u02(z/2)

u02(z̄)
.

But that contradicts the fact that rt(ω) · u02(c2,t(ω)) is always Ft−1-measurable since we
started by saying that

rt(ω)+1(ω)·u02(c2,t(ω)+1(ω))
u02(c2,t(ω)(ω))

>
r̄·u02(z/2)
u02(z̄)

.

LEMMA 13: Assume A.2, A.3, A.5, and A.6. Then

0 ≤ E
∙ TX
t=0

βti ·
u0i(ci,t)
u0i(ci,0)

¯̄̄̄
F0
¸
(ω) ≤ 1/(1− βi ·M).

PROOF: We prove the result for i = 1 since it is trivial for i = 2.

Since, by Proposition 4, in the proposed solution

yt(ω) =
1

Πt
τ=1[r̂1,τ(ω)]

· y0(ω) ⇔ u02(c2,t(ω))
u01(c1,t(ω))

=
1

Πt
τ=1[r̂1,τ (ω)]

· u
0
2(c2,0(ω))

u01(c1,0(ω))

⇔ βt1 ·
u01(c1,t(ω))
u01(c1,0(ω))

= βt1 ·Πt
τ=1[r̂1,τ(ω)] ·

u02(c2,t(ω))
u02(c2,0(ω))

⇒ 0 ≤ E
∙ TX
t=0

βt1 ·
u01(c1,t)
u01(c1,0)

¯̄̄̄
F0
¸
(ω) = E

∙ TX
t=0

βt1 ·Πt
τ=1[r̂1,τ ] ·

u02(c2,t)
u02(c2,0)

¯̄̄̄
F0
¸
(ω)

≤
TX
t=0

βt1 · (M)t ·E
h
Πt
τ=1[r̂1,τ ]

¯̄̄
F0
i
(ω) =

TX
t=0

βt1 · (M)t

where we use the fact that E [r̂i,t|Ft−1](ω) = 1 together with the law of iterated expecta-
tions. The result follows by taking the limit.

PROOF OF PROPOSITION 6

The proof follows from Lemma 14-16. Throughout we write E[X] instead of EP [X].

LEMMA 14: Assume A.3 and r ≥ 0. In our construction, P{ω : liminf yt(ω)→t→∞ 0} =
0.

PROOF: Since yT (ω) =
1

ΠT
t=1[r̂1,t(ω)]

· y0(ω) and since, by Lemma 6, we know that R1,t(ω̃)
is a.s. bounded, we conclude that liminf yT (ω) > 0 a.s.

LEMMA 15: Assume z > 0, r ≥ 0, and A.3. In the proposed solution, P (C1) = 0 where
Ci := {ω ∈ Ω : liminf ci,t(ω) = 0}.
PROOF: Given y0, choose K > 0. For any such K let cK > 0 solve the equation

u02(z − cK) = u01(cK) · y0(ω̃)/K.
For any ω̃ ∈ C1 and such a K there exists a sequence {tKτ } of periods such that

c1,tKτ ≤ cK so ytKτ (ω̃) ≤ y0(ω̃)/K. Then Lemma 14 implies that P (C1) = 0.
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LEMMA 16: Assume A.2, A.3, and r ≥ 0. In the proposed solution P (A1) = 0.
PROOF: Since z̄ <∞, if, for some ω̃, liminf r̂1,t(ω̃) = 0 then limsupE[rt·u01(c1,t)|Ft−1](ω̃) =
∞. We shall argue that in such an event c1 → 0, a zero probability event by Lemma 15.

So suppose ω̃ is such that limsupE[rt · u01(c1,t)|Ft−1](ω̃) = ∞ and liminfc1,t(ω̃) = 2

for some > 0. It follows that there exists t̃ such that for t ≥ t̃, c1,t̃(ω̃) ≥ . Choose δ( )

to satisfy u01(z − δ( )) <
³
u01( )/u

0
2(z̄)

´
· u02(δ( )). Necessarily, for some t0 ≥ t̃,

E[rt0 · u01(c1,t0)|Ft0−1](ω̃) > r̄ · u
0
1( )

u02(z̄)
· u02(δ( )),

and in the solution proposed

rt(ω) · u02(c2,t(ω)) =
u02(c2,t−1(ω))
u01(c1,t−1(ω))

· E[rt · u01(c1,t)|Ft−1](ω)

so that for (ω̃, t0)

rt0(ω̃) · u02(c2,t0(ω̃)) ≥
u02(Zt0−1(ω̃)− )

u01( )
· E[rt0 · u01(c1,t0)|Ft0−1](ω̃)

>
u02(z̄)
u01( )

· r̄ · u
0
1( )

u02(z̄)
· u02(δ( )) = r̄ · u02(δ( )).

Since rt(ω) · u02(c2,t(ω)) is Ft−1-measurable,

rt0(ω
0) · u02(c2,t0(ω0)) > r̄ · u02(δ( )) ω0 ∈ Ω

³
(st

0−1(ω̃)
´
.

So c2,t0(ω
0) < δ( ) for all ω0 ∈ Ω

³
(st

0−1(ω̃)
´
and therefore, by feasibility, c1,t0(ω

0) >

Zt0(ω
0)− δ( ) for all ω0 ∈ Ω

³
(st

0−1(ω̃)
´
. It follows that

E[rt0 · u01(c1,t0)|Ft0−1](ω̃) ≤ r̄ · u01(z − δ( ))

which, using the definition of δ( ), is a contradiction. We have shown that liminfr̂1,t(ω̃) =

0 implies that ω̃ ∈ Ci, a set that has measure zero according to Lemma 15.

STATEMENT AND PROOF OF LEMMA 17

LEMMA 17: Assume A.1 and A.5. The TC0 budget set does not allow Ponzi schemes.

PROOF: It is easy to show that if θ is a Ponzi scheme at q and p ∈ P(q;P ), then
−pt0(ω0) = limT→+∞EP

h
pT · qT · θi,T

¯̄̄
Ft0
i
(ω0) while limT→+∞EP

h
pT · qT · θi,T

¯̄̄
Ft0
i
(ω) = 0

for ω /∈ Ω(st(ω0)). By ruling out trivial Arrow price processes and assuming A.1, so that
dPt(ω

0) > 0, we have limT→+∞EP

h
pT ·qT ·θi,T

¯̄̄
F0
i
(ω) < 0 and the proposed Ponzi scheme

entails a plan that is not an element of the budget set BCTC
i (q, p) with p ∈ P(q;P ). It

follows that there can be no Ponzi scheme that is TC0 budget feasible.

The same proof, with Pi instead of P , can be used to see that the IDC budget set

does not allow Ponzi schemes. This follows from the fact that with the IDC budget set,
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the uniform bound on debt values implies that a transversality condition holds at date 0

and therefore the argument given for TC0 budget sets applies.

PROOF OF THEOREM 2

First we state and prove Lemma 18 and Lemma 19.

LEMMA 18: Given q and any pi ∈ P1(q;P ), if ci is a maximizer on the set BCAD
i (pi),

then limT→+∞EP

h
pi,T · qT · θi,T

¯̄̄
F0
i
(ω) = 0, where θi supports ci at the prices q.

PROOF: Since ci is a maximizer on the set BC
AD
i (pi), we have ci ∈ BCAD

i (pi); further-

more, the value of the endowment is finite, limT→+∞
PT

t=0 EP

h
pi,t · zi,t

¯̄̄
F0
i
(ω) < ∞,

and the value of the endowment is exhausted so that limT→+∞
PT

t=0 EP

h
pi,t · (ci,t −

zi,t)
¯̄̄
F0
i
(ω) = 0. In addition, since θi supports ci at the prices q, we can write

limT→+∞
TX
t=0

EP

h
pi,t · (ci,t−zi,t)

¯̄̄
F0
i
(ω) = limT→+∞

TX
t=0

EP

h
pi,t · (rt ·θi,t−1−qt ·θi,t)

¯̄̄
F0
i
(ω)

= limT→+∞EP

n
[−pi,0 · q0 · θi,0 + pi,1 · r1 · θi,0] +

TX
t=2

[−pi,t−1 · qt−1 · θi,t−1 + pi,t · rt · θi,t−1]

−pi,T · qT · θi,T
¯̄̄
F0
o
(ω)

where we use the convention that θi,−1(ω) = 0. By using the fact that pi ∈ P1(q;P ), the
set of summable Arrow prices with respect to P , we see that in fact we have

0 = limT→+∞
PT

t=0 EP

h
pi,t · (ci,t − zi,t)

¯̄̄
F0
i
(ω) = limT→+∞EP

h
− pi,T · qT · θi,T

¯̄̄
F0
i
(ω).

LEMMA 19: Given q and any pi ∈ P1(q;P ), BCTC
i (q, pi) ⊂ BCAD

i (pi).

PROOF: Consider ci ∈ BCTC
i (q, pi) and let θi denote the corresponding asset holding

process. We would like to show that

limT→+∞
TX
t=0

EP

h
pi,t · ci,t

¯̄̄
F0
i
(ω) ≤ limT→+∞

TX
t=0

EP

h
pi,t · zi,t

¯̄̄
F0
i
(ω).

Using the sequence of budget constraints in the definition of the set BCTC
i (q, pi), we have

TX
t=0

EP

h
pi,t · (ci,t − zi,t)

¯̄̄
F0
i
(ω) ≤

TX
t=0

EP

h
pi,t · (rt · θi,t−1 − qt · θi,t)

¯̄̄
F0
i
(ω).

By an argument similar to that in Lemma 18 we conclude that for all T ≥ 0 we have
TX
t=0

EP

h
pt · (ci,t − zi,t)

¯̄̄
F0
i
(ω) ≤ EP

h
− pi,T · bqT · θi,T ¯̄̄F0i(ω).

Since ci ∈ BCTC
i (q, pi) implies that lim infT→+∞EP

h
pi,T · bqT · θi,T ¯̄̄F0i(ω) ≥ 0 P −a.s. ω,

and pi ∈ P1(q;P ) implies that pi is summable while (ci − zi) is uniformly bounded, we

can conclude that ci ∈ BCAD
i (pi).

PROOF OF THEOREM 2: Recall that bθi is the portfolio that supports bci at the price
process bq. By Lemma 18 bci ∈ BCTC

i (q, pi) and, by Lemma 19, BC
TC
i (q, pi) ⊂ BCAD

i (bpi)
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so that bci is a maximizer on BCTC
i (q, pi). Since the consumption processes are aggregate

feasible and, at every t ≥ 0, θ1,t(ω) + θ2,t(ω) = 0 P -a.s. ω, which follows from the

fact that the spot market budget constraints are satisfied with equality, it follows that

(bc1, bc2, bθ1, bθ2, bq) constitute a TC0 equilibrium proving Theorem 1 (i).

To complete the proof of Theorem 1 (ii), notice that we can use Theorem 5.2 in Magill

and Quinzii (1994) to conclude that since a transversality condition holds at every t for

P -a.s. ω, and preferences are uniformly impatient, there is a uniform bound on the value

of debt where we use the supporting asset portfolio. It follows that bci is a maximizer on
BCi(bq) and we have an IDC equilibrium.
LEMMA 20: Assume A.2 and A.3 and that P1 = P2 = P . Consider a consump-

tion process bci and assume that pbci satisfies limT→+∞
PT

t=0 EP

h
pbci,t ¯̄̄F0i(ω) < ∞. If

limT→+∞EP

hPT
t=0 p

bc
i,t ·
³bci,t−zi,t´¯̄̄F0i(ω) = 0, then bci is a maximizer on the set BCAD

i (pbci).
PROOF: Since limT→+∞

PT
t=0 EP

h
pbci,t ¯̄̄F0i(ω) <∞ and z̄ <∞ and zi ∈ ×∞t=0Ψt,P

+ ,

limT→+∞
TX
t=0

EP

h
pbci,t · zi,t ¯̄̄F0i(ω) <∞.

Furthermore, since limT→+∞EP

hPT
t=0 p

bc
i,t·
³bci,t−zi,t´¯̄̄F0i(ω) = 0 we have bci ∈ BCAD

i (pbci).
Define µi := u0i(bci,0(ω)). µi > 0. Clearly, bci is the unique solution to the system of first

order conditions βti · u0i(bci,t(ω)) = µi · pbci,t(ω). Also, the Lagrangean function
limT→+∞

½ TX
t=0

EP

h
βti · ui(ci,t)

¯̄̄
F0
i
(ω) + µi ·

TX
t=0

EP

h
pbci,t · (ci,t − zi,t)

¯̄̄
F0
i
(ω)

¾

is strictly concave in ci. It follows (e.g. Luenberger (1969) Theorem 1 in Section 8.5 and

Lemma 1 in Section 8.7) that the first order conditions are sufficient to identify a global

maximizer and bci maximizes the Lagrangean function. Therefore bci solves the constrained
optimization problem.

PROOF OF THEOREM 3

Throughout we write E[X] instead of EP [X].

In the proposed solution, for all t ≥ 1

β1 · E[rt · u
0
1(c1,t)|Ft−1](ω)

u01(c1,t−1(ω))
= β2 · E[rt · u

0
2(c2,t)|Ft−1](ω)

u02(c2,t−1(ω))
P − a.s. ω.

Define an asset price process q and personalized price processes pi by

qt−1(ω) := βi · E[rt · u
0
i(ci,t)|Ft−1](ω)

u0i(ci,t−1(ω))
pi,t(ω) := βti ·

u0i(ci,t(ω))
u0i(ci,0(ω))

.

It follows that the consumption processes satisfy the Euler equations with the price process

q and that also pi are such that the no arbitrage condition holds and hence, since by
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Proposition 5 they are summable, pi ∈ P1(q;P ) for i ∈ I. Also, using the spot market
budget constraints with asset prices q and consumption process ci, we can construct the

supporting portfolio θi.

As in the proof of Lemma 18, if limT→+∞E
h
pi,T · qT · θi,T |F0

i
(ω) = 0 P − a.s. holds,

then ci ∈ BCAD
i (pi).

An application of Lemma 20 shows that the consumption processes proposed are

maximal for each i in BCAD
i (pi). To complete the proof of Theorem 3 we shall apply

Theorem 2 and for that we need to verify that the transversality conditions also hold.

We continue the proof with Lemma 21 and 22.

LEMMA 21: If ci is an Euler process at q and θi is a supporting portfolio then

βTi · u0i(ci,T (ω)) · qT (ω) · θi,T (ω) = βTi · u0i(ci,T (ω)) ·
³
zi,T (ω)− ci,T (ω)

´

+
T−1X
τ=0

βτi · u0i(ci,τ (ω)) ·
Ã
ΠT−1
s=τ r̂i,s+1(ω)

!
·
³
zi,τ (ω)− ci,τ (ω)

´
where r̂i is the process induced by ci.

PROOF: Given any process ci that is an Euler process at the price process q and the

induced process r̂i, we have

qt−1(ω) = βi · E[rt · u
0
i(ci,t)|Ft−1](ω)

u0i(ci,t−1(ω))
r̂i,t(ω) :=

rt(ω) · u0i(ci,t(ω))
E [rt · u0i(ci,t)|Ft−1](ω)

.

It follows that

r̂i,t(ω) =
βi · rt(ω) · u0i(ci,t(ω))
qt−1(ω) · u0i(ci,t−1(ω))

⇔ rt(ω)

qt−1(ω)
=

r̂i,t(ω)

βi
· u

0
i(ci,t−1(ω))
u0i(ci,t(ω))

⇒ ΠT−1
s=τ

rs+1(ω)

qs(ω)
= ΠT−1

s=τ

Ã
r̂i,s+1(ω)

βi
· u

0
i(ci,s(ω))

u0i(ci,s+1(ω))

!
=

1

βT−τi

·
³
ΠT−1
s=τ r̂i,s+1(ω)

´
·u
0
i(ci,τ (ω))

u0i(ci,T (ω))
.

Using the spot market budget constraints

ci,t(ω) + qt(ω) · θi,t(ω) ≤ zi,t(ω) + rt(ω) · θi,t−1(ω)

which, by monotonicity, hold as equalities, and iterating we obtain

qT (ω) · θi,T (ω) = zi,T (ω)− ci,T (ω) +
T−1X
τ=0

Ã
ΠT−1
s=τ

rs+1(ω)

qs(ω)

!
·
³
zi,τ (ω)− ci,τ (ω)

´
.

After carrying out the substitution we can evaluate

βTi · u0i(ci,T (ω)) · qT (ω) · θi,T (ω) = βTi · u0i(ci,T (ω)) ·
³
zi,T (ω)− ci,T (ω)

´

+
T−1X
τ=0

βτi · u0i(ci,τ (ω)) ·
Ã
ΠT−1
s=τ r̂i,s+1(ω)

!
·
³
zi,τ (ω)− ci,τ (ω)

´
.
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LEMMA 22: Assume that the economy is such that in the proposed solution, ∀ t ≥ 1,
u02(c2,t(ω)) ·

³
z2,t(ω)− c2,t(ω)

´
= c̄2,t P − a.s. ω. If there exists bc2,0(ω) that solves

u02(bc2,0(ω)) · ³z2,0(ω)− bc2,0(ω)´ = −LimT→+∞
TX

τ=1

βτ2 · c̄2,τ ,

then for every t ≥ 1 LimT→+∞E[βTi · u0i(bci,T ) · bqT · bθi,T |Ft](ω) = 0 P − a.s. ω and the
transversality conditions for both the agents is satisfied when we consider the proposed

solution induced by the initial value given by bc2,0(ω).
PROOF: Consider i = 2. Since r̂2,t(ω) = 1 ∀ t ≥ 0 P − a.s. ω, the expression obtained
in Lemma 21 takes the form

βT2 · u02(c2,T (ω)) · qT (ω) · θ2,T (ω) =
TX

τ=0

βτ2 · u02(c2,τ (ω)) ·
³
z2,τ (ω)− c2,τ (ω)

´

=
TX

τ=1

βτ2 · c̄2,τ + u02(c2,0(ω)) ·
³
z2,0(ω)− c2,0(ω)

´
.

Notice that βT2 · u02(c2,T ) · qT · θ2,T is a deterministic quantity. So

LimT→+∞E[βT2 ·u02(c2,T )·qT ·θ2,T |Ft](ω) = LimT→+∞
TX

τ=1

βτ2 ·c̄2,τ+u02(c2,0(ω))·
³
z2,0(ω)−c2,0(ω)

´

and the limit is independent of t and will be equal to zero if
³
z2,0(ω)−c2,0(ω)

´
, equivalently

c2,0(ω) or θ2,0(ω), the initial asset holding for agent 2, satisfies the condition

u02(c2,0(ω)) ·
³
z2,0(ω)− c2,0(ω)

´
= −LimT→+∞

TX
τ=1

βτ2 · c̄2,τ .

Denote such a value bc2,0(ω) and note that βT2 · u02(bc2,T ) · bqT · bθ2,T = −P∞
τ=T+1 β

τ
2 · c̄2,τ a

deterministic quantity.

We turn to agent 1. Since the regardless of the value of c2,0, the proposed solution

does not waste resources, the asset holdings are the ones that support the consumption

allocation, and the asset is in zero net supply, it follows that θ1,t(ω) = −θ2,t(ω) for all
t ≥ 0 and P -a.s ω. So we have

LimT→+∞E[βT1 · u01(c1,T ) · qT · θ1,T |Ft](ω) = −LimT→+∞E[βT1 · u01(c1,T ) · qT · θ2,T |Ft](ω).

Since r̂2,t(ω) = 1,

r̂1,t(ω)

r̂2,t(ω)
=

yt−1(ω)
yt(ω)

⇒ r̂1,t(ω) =

u01(c1,t(ω))
u02(c2,t(ω))

u01(c1,t−1(ω))
u02(c2,t−1(ω))

⇒ u01(c1,τ(ω))
u02(c2,τ(ω))

= Πτ
s=1[r̂1,s(ω)] ·

u01(c1,0(ω))
u02(c2,0(ω))

.

It follows that

LimT→+∞E[βT1 · u01(c1,T ) · qT · θ1,T |Ft](ω)
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= −LimT→+∞E[βT1 ·ΠT
s=1[r̂1,s] ·

u01(c1,0)
u02(c2,0)

· u02(c2,T ) · qT · θ2,T |Ft](ω)

= −LimT→+∞
u01(c1,0)
u02(c2,0)

E[ΠT
s=1[r̂1,s] · βT1 · u02(c2,T ) · qT · θ2,T |Ft](ω).

But with the value bc2,0 and the induced consumption processes we have
βT2 · u02(bc2,T ) · bqT · bθ2,T = − ∞X

τ=T+1

βτ2 · c̄2,τ

so that

LimT→+∞E[βT1 · u01(bc1,T ) · bqT · bθ1,T |Ft](ω)

= −LimT→+∞
u01(bc1,0)
u02(bc2,0)

µ
−

∞X
τ=T+1

βτ2 · c̄2,τ
¶
·E[ΠT

s=1[r̂1,s]|Ft](ω) = 0

where we use the fact that E [r̂i,t|Ft−1](ω) = 1 together with the law of iterated expecta-
tions and the fact that LimT→∞

P∞
τ=T+1 β

τ
2 · c̄2,τ = 0.

PROOF OF THEOREM 4

The proof uses A.4, which imposes a bound on the coefficient of relative risk aversion.

It is based on showing first, Lemma 23, that for the allocation identified in Theorem 3,

the value of excess demand evaluated using the personalized Arrow-Debreu price process

of each agent is monotone in a single parameter; furthermore, the value is continuous and

has the right boundary behaviour. We then show how one can start our construction

from date 1, choose consumption at date 0 so as to be compatible with feasibility and the

date 0 Euler equation for each agent, and yet preserve the monotonicity and continuity

properties, Lemma 24. Lemma 25 provides a very simple sufficient condition for a fixed

point property to hold. Finally, in Lemma 26 we show that if we start with a no trade

equilibrium then there is a robust method for perturbing the endowment distribution that

leads to the satisfaction of the sufficient condition specified in Lemma 25.

Throughout we write E[X] instead of EP [X].

Consider a value for c0, where 0 < c0 < Z0 so that c0,2 := Z0−c0 satisfies nonnegativity,
and consider c1, where 0 < c1(ω) < Z1(ω), a nonnegative F1−measurable function. By
Proposition 4 we can induce a consumption process {Ci,t(c

1(ω), 1, ω)}t≥1 for agent i where
the process is defined P−a.s. only for ω̃ ∈ Ω(s1(ω)). By varying ω, one obtains an

aggregate feasible consumption process on the full state space.

For ω ∈ Ω(s1) define

V1,s1(c
1; z1) := limT→+∞E

∙ TX
τ=1

βτ1 ·u01(C1,τ(c1(ω), 1, ω))·
³
C1,τ(c

1(ω), 1, ω)−z1,τ
´¯̄̄̄
Ω(s1)

¸
(ω),

V2,s1(c
1; z1) := limT→+∞E

∙ TX
τ=1

βτ2 ·u02(Zτ−C1,τ(c1(ω), 1, ω))·
³
C1,τ(c

1(ω), 1, ω)−z1,τ
´¯̄̄̄
Ω(s1)

¸
(ω).
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LEMMA 23: Assume A.1-6. Then, for i = 1, 2 and all s1 = 1, · · · , S, Vi,s1(c1; z1) is (i)
well defined, (ii) it is continuous in c1 for every value of z1, (iii) it is continuous in z1 for

every value of c1, (iv) it is increasing in c1(ω) where ω ∈ Ω(s1), and (v) for ω ∈ Ω(s1),

(a) V1,s1(c
1; z1)→c1(ω)→0 −∞,

(b) V1,s1(c
1; z1)→c1(ω)→Z1(ω) V1,s1(Z1; z1) where V1,s1(Z1; z1) ∈ (0,∞),

(c) V2,s1(c
1; z1)→c1(ω)→0 V2,s1(0; z1) where V2,s1(0; z1) ∈ (−∞,+∞), and

(d) V2,s1(c
1; z1)→c1(ω)→Z1(ω) ∞ .

PROOF: Define

fT1,s1(c
1; z1) := E

∙ TX
τ=1

βτ1 · u01(C1,τ(c1(ω), 1, ω))
β1 · u01(c1(ω))

·
³
C1,τ(c

1(ω), 1, ω)− z1,τ
´¯̄̄̄
Ω(s1)

¸
(ω).

β1 · u01(c1(ω)) is finite, since c1(ω) > 0, and so V1,s1(c1; z1) can be written as
V1,s1(c

1; z1) = β1 · u01(c1(ω)) · limT→+∞ fT1,s1(c
1; z1);

since c1(ω) < Z1(ω), a similar result holds for V2,s1(c
1; z1) .

(i) By Proposition 5, the support price process is summable. By A.2, the individual

endowment process is uniformly bounded. It follows that

0 ≤ limT→+∞E
∙ TX
τ=1

βτ1 · u01(C1,τ(c1(ω), 1, ω))
β1 · u01(c1(ω))

· z1,τ
¯̄̄̄
Ω(s1)

¸
(ω) <∞.

Since the consumption process induced is aggregate feasible, we also have

0 < limT→+∞E
∙ TX
τ=1

βτ1 · u01(C1,τ (c1(ω), 1, ω))
β1 · u01(c1(ω))

· C1,τ(c1(ω), 1, ω)
¯̄̄̄
Ω(s1)

¸
(ω) <∞.

It follows that the difference between the two quantities is finite. Since V1,s1(c
1; z1) =

β1 ·u01(c1(ω))·limT→+∞ fT1,s1(c
1; z1), and β1 ·u01(c1(ω)) is finite, since c1(ω) > 0, we conclude

that V1,s1(c
1; z1) is finite. An analogous proof shows that V2,s1(c

1; z1) is finite.

(ii) We shall show that fT1,s1(c
1; z1) is a continuous function of c

1 for every T , and that

fT1,s1(c
1; z1) → V1,s1(c

1; z1) uniformly. It follows that V1,s1(c
1; z1) is continuous in c1. An

analogous argument works for V2,s1(c
1; z1).

By the continuity result in Proposition 4 (iv), for every T , fT1,s1(c
1; z1) is continuous

in c1. Furthermore

supc1(ω)∈(0,Z1(ω))
¯̄̄
fT1,s1(c

1; z1)− limT→+∞ fT1,s1(c
1; z1)

¯̄̄
= supc1(ω)∈(0,Z1(ω))

¯̄̄̄
¯− limt→+∞E

∙ tX
τ=1

βT+τ1 · u01(C1,T+τ (·)
β1 · u01(c1(ω))

·
³
C1,T+τ(·)− z1,T+τ

´¯̄̄̄
Ω(s1)

¸
(ω)

¯̄̄̄
¯

= supc1(ω)∈(0,Z1(ω)) β
T ·
¯̄̄̄
¯− limt→+∞E

∙ tX
τ=1

βτ1 · u01(C1,T+τ (·)
β1 · u01(c1(ω))

·
³
C1,T+τ(·)−z1,T+τ

´¯̄̄̄
Ω(s1)

¸
(ω)

¯̄̄̄
¯

≤ βT1 · 2z̄
1− β1M
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where we use the fact that the supporting price process is summable, Proposition 5, and

the fact that the net trade process is uniformly bounded by 0 and 2z̄. It follows that

limT→+∞ supc1(ω)∈(0,Z1(ω))
¯̄̄
fT1,s1(c

1; z1)− limT→+∞ fT1,s1(c
1; z1)

¯̄̄
≤ limT→+∞

βT1 · 2z̄
1− β1M

= 0.

Now we use the fact that V1,s1(c
1; z1) = β1 ·u01(c1(ω)) · limT→+∞ fT1,s1(c

1; z1), where β1 ·
u01(c

1(ω)) is continuous since ui is continuously differentiable. It follows that f
T
1,s1(c

1; z1)→
V1,s1(c

1; z1) uniformly.

(iii) Given c1, Vi,s1(c
1; ·) is linear in z1; by Proposition 5, A.2, and the fact noted at the

beginning of the proof, it is bounded. It follows that it is continuous in z1.

(iv) We note two facts. First, each term in each sum is increasing in C1,τ(c
1(ω), 1, ω)(ω̃).

To see this, notice that by A.4, c · u00i (c) + u0i(c) > 0 for all c > 0 so that, using concavity,
we have c · u00i (c) + u0i(c) − Z · u00i (c) > 0 for Z > 0. It follows that (c − Z) · u01(c) is
increasing in c. Similarly, (Z − c) · u00i (Z − c) + u0i(Z − c) > 0 for all 0 < c < Z so that,

using concavity, we have −(c−Z) · u00i (Z − c) + u0i(Z − c) + (−Z + z1) · u00i (Z − c) > 0 for

all 0 < c < Z and 0 < z1 ≤ Z. Therefore, −(c− z1) · u00i (Z − c) + u0i(Z − c) > 0 and, for

0 < c < Z, (c− z1) · u01(Z − c) is increasing. Evidently, Zt ≥ z1,t > 0 since the individual

endowment is always nonnegative.

Since the construction in Proposition 4 has the property that C1,τ (c
1(ω), 1, ω)(ω̃) is

increasing in c1(ω), invoking the monotonicity property of each term that we just estab-

lished, we can conclude that V1,s1 is increasing. By the same argument, V2,s1 is increasing.

(v) Since we have already established monotonicity, the limits are well defined though

they could be +∞ or −∞. Using the fact at the beginning of the proof, Proposition 5, and
A.2, we conclude that a truncation argument can be used to establish the limiting values.

Such a truncation argument allows us to use the boundary properties of the construction

established in Proposition 4 (v) and (vi).

For (a) notice that for a fixed T we can find > 0 such that z1,t(ω̃) > for all 1 ≤ t ≤ T

and P−a.s. ω̃ ∈ Ω(s1(ω)). The result follows by applying Proposition 4 (vi) using the

Inada condition for i = 1, and A.1. For (b) we use the fact at the beginning of the proof

and the fact that u01(Z1(ω)) < ∞ to conclude that the limit is positive and finite. For

(c) we use the fact at the beginning of the proof and the fact that u02(Z1(ω)) < ∞ to

conclude that the limit is finite without being able to assign a sign to it. For (d) we use

Proposition 4 (v) and the Inada condition for i = 2.

If the processes constructed with c0, where 0 < c0 < Z0, and {Ci,t(c
1(ω), 1, ω)}t≥1,

where 0 < c1(ω) < Z1(ω) an F1−measurable function, also satisfy (i) the Euler equation
at date 0 for both the agents, and (ii) the Arrow-Debreu budget constraint for both the

agents, then we have a TC0 equilibrium. This follows from the fact that the processes

constructed in Proposition 4 are feasible and satisfy the Euler equations at every date

t ≥ 1. So the allocation chosen is an equilibrium if the following equations hold

β1 · E[r1 · u
0
1(c

1)|F0](ω)
u01(c0(ω))

= β2 · E[r1 · u
0
2(Z1 − c1)|F0](ω)

u02(Z0(ω)− c0(ω))
P − a.s. ω,
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u01(c
0(ω)) ·

³
c0(ω)− z1,0(ω)

´
+
X
s1∈S

P (Ω(s1)) · V1,s1(c1; z1) = 0,

u02(Z0(ω)− c0(ω)) ·
³
c0(ω)− z1,0(ω)

´
+
X
s1∈S

P (Ω(s1)) · V2,s1(c1; z1) = 0.

Evidently, all three equations hold at the no trade equilibrium when the endowment

distribution is given by (z∗1 , z
∗
2).

Let us first consider the Euler equations at date 0.

LEMMA 24: Assume A.3 and A.5. Let Z0(ω) > 0 and Z1 : Ω→ R++ be anF1−measurable
function. Then for any c1 : Ω → R++, an F1−measurable function such that c1(ω) <
Z1(ω) for all ω ∈ Ω, there is a real number f(c1), with 0 < f(c1) < Z0(ω) such that

β1 · u
0
2(Z0(ω)− f(c1))

u01(f(c1))
= β2 · E[r1 · u

0
2(Z1 − c1)|F0](ω)

E[r1 · u01(c1)|F0](ω)
P − a.s. ω.

Furthermore, the function f is strictly increasing in all of its components.

PROOF: The result follows easily from the intermediate value theorem. The right hand

side of the equation is always well defined and positive, while Lemma 8 guarantees that

the left hand side is continuous and has (0,∞) as its image; a solution necessarily exists.
The monotonicity property of the function f follows from the fact that asset returns

are strictly positive, and the uis are strictly increasing and strictly concave.

It follows that it suffices to consider a reduced system where the Euler equation is

considered in implicit form. So define

F1(c
1; z1) := u01(f(c

1)) ·
³
f(c1)− z1,0(ω)

´
+
X
s1∈S

P (Ω(s1)) · V1,s1(c1; z1),

F2(c
1; z1) := u02(Z0(ω)− f(c1)) ·

³
f(c1)− z1,0(ω)

´
+
X
s1∈S

P (Ω(s1)) · V2,s1(c1; z1).

We have shown that a TC0 equilibrium is induced at the endowment distribution (z1, z2)

if c1
∗
is such that Fi(c

1∗; z1) = 0 for i = 1, 2.

LEMMA 25: Assume A.1-6. Let the endowment distribution (z1, z2) and bc1 be such that
F1(bc1; z1) ≥ 0 and F2(bc1; z1) ≤ 0. Then there exists c1∗, an F1−measurable function such
that 0 < c1

∗
(ω) < Z1(ω), that satisfies Fi(c

1∗; z1) = 0 for i = 1, 2.
PROOF: The range of the function bc1 has at most S values that correspond to the sets
Ω(s1). Fix all but those that correspond to s1 = 1, 2, and denote those two bc1a and bc1b .
By Lemma 24 and Lemma 23 (iv), the first term in the expression for F1 is increasing in

each component of the function c1; it follows that it is also bounded above. By Lemma 23

(iv), the second term in the expression for F1 is increasing in the corresponding component

of c1. So F1 is increasing in each component of the function c1 and F1 → −∞ as c1a → 0.

By an analogous argument, F2 is increasing in each component of the function c1 and
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satisfies the following boundary properties: F2 → ∞ as c1a → Z1,a and in the vicinity of

(Z1,a, 0), F2(c
1; z1) > 0.

In what follows, c1 will always be a vector of the form (c1a, c
1
b , · · · , bc1S).

If F1(c
1; z1) ≥ 0, then, by the monotonicity and boundary properties noted earlier,

there exists a unique c̃1, where c̃1a = c1a and c̃
1
b < c1b , such that F1(c̃

1; z1) = 0. We introduce

the notation h1(c
1
a) to denote the value c̃

1
b ; the monotonicity property of F1 guarantees

that the function h1 with domain [bc1a, Z1,a], where Z1,a denotes the aggregate endowment
at date 1 in the event that corresponds to the label a, is well defined and strictly decreasing

and, by the continuity property, h1 is continuous. Furthermore, by the boundary property

of F1 we have h1(c
1
a)→c1a→Z1,a h1 > 0.

The symmetric result holds for any c1 at which F2(c
1; z1) ≤ 0. Since F2(bc1; z1) ≤ 0 and

F2 is monotone, there exists bbc1a > bc1a such that F2((bbc1a, bc1b , · · · , bc1S); z1) = 0. It follows that
we can define a continuous function h2 with domain [bbc1a, c̄1a], where c̄1a < Z1,a, that is strictly

decreasing and satisfies the boundary property h2(c
1
a)→c1a→c̄1a

0. Also, h2(bbc1a) > h1(bbc1a).
Evidently there is a c1a

∗
at which h1(c

1
a
∗
) = h2(c

1
a
∗
); so, Fi(c

1∗; z1) = 0 for i = 1, 2.

Lemma 25 together with A.7 provide a sufficient condition under which a TC0 equi-

librium exists in which agent 2 vanishes with probability one. We now show that the

sufficient condition holds for an open set of endowment distributions near a no trade

equilibrium at the endowment distribution (z∗1 , z
∗
2).

LEMMA 26: Assume A.1-7. There exists N (z∗1) an open subset of Z1(Z) such that for
every (z1, z2), where z1 ∈ N (z∗1) and z2 := Z − z1, there exists a TC0 equilibrium.

PROOF: Fix s̃ ∈ S and define s̃1 := (s0, s̃). Given (η1, η2) ∈ R2, define

(η1, η2;ω) :=
η1 · u02(z∗2,0(ω))− η2 · u01(z∗1,0(ω))

P (Ω(s̃1))[β1 · u01(z∗1,1(ω)) · u02(z∗2,0(ω))− β2 · u02(z∗2,1(ω)) · u01(z∗1,0(ω))]

0(η1, η2;ω) :=
η1

u01(z∗1,0(ω))
− P (Ω(s̃1)) · β1 · u01(z∗1,1(ω))

u01(z∗1,0(ω))
· (η1, η2;ω).

It is easy to check that

ηi = u0i(z
∗
i,0(ω)) · 0(η1, η2;ω) + P (Ω(s̃1)) · βi · u0i(z∗i,1(ω)) · (η1, η2;ω) for i = 1, 2.

Now define a new endowment process (z̃∗1 , z̃
∗
2) by the rule

z̃∗1,0(ω) = z∗1,0(ω)− 0(η1, η2;ω) for ω ∈ Ω(s̃1)

z̃∗1,1(ω) = z∗1,1(ω)− (η1, η2;ω) for ω ∈ Ω(s̃1)

z̃∗1,t(ω) = z∗1,t(ω) otherwise.

z̃∗2 is obtained through the condition z̃
∗
1+z̃

∗
2 = Z so that z̃∗1+z̃

∗
2 = z∗1+z

∗
2 = Z. By choosing

η1 > 0 and η2 < 0 appropriately we can induce values of (η1, η2;ω) and
0(η1, η2;ω) that

are sufficiently small so that z̃∗i,t (ω ) ≥ 0 f or b o th the agent s at e ve ry t and ω .
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It follows that F1(z
∗
1 ; z̃

∗
1) = η1 > 0 and F2(z

∗
1; z̃

∗
1) = η2 < 0. So the condition in

Lemma 25 is satisfied and the economy has a TC0 equilibrium where agent 2 vanishes

with probability one since A.7 also holds. By Lemma 23 (iii) Fi(c
1; ·) is continuous in z1.

It follows that there exists N , where z̃∗1 ∈ N , an open subset of Z1(Z), such that for every
(z1, z2), where z1 ∈ N and z2 := Z − z1, there exists a TC0 equilibrium in which agent 2

dies with probability one. The proof is completed by setting N (z∗1) := N .
That completes the proof of Theorem 4.
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