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A B S T R A C T

The Ellsberg paradox demonstrates that people's belief over uncertain events might not

be representable by subjective probability. We relate this paradox to other commonly observed

anomalies, such as a rejection of the backward induction prediction in the one-shot Ultimatum

Game. We argue that the pattern common to these observations is that the behavior is governed

by “rational rules” . These rules have evolved and are optimal within the repeated and concurrent

environments that people usually encounter. When an individual relies on these rules to analyze

one-shot or single circumstances, paradoxes emerge. We show that when a risk averse individual

has a Bayesian prior and uses a rule which is optimal for simultaneous and positively correlated

ambiguous risks to evaluate a single vague circumstance, his behavior will exhibit uncertainty

aversion. Thus, the behavior predicted by Ellsberg may be explained within the Bayesian expected

utility paradigm. 
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1 Introduction

In real economic situations, almost all uncertainty is subjective. There is
no objective mechanism with which economic decision makers evaluate the
future return on a stock, tomorrow's interest rate or the weather in Brazil
(which will determine future co�ee prices). Therefore, if our goal in economic
modelling is to describe and predict within these environments, we have to
analyze accurately (or at least understand) how decision makers behave when
confronted with subjective uncertainty.

Since the works of Frank Knight [11] and John Maynard Keynes [10]
in 1921 there has been a tension between and within disciplines working
to quantify subjective uncertainty (i.e., unknown or non-existent objective
probability). On one side are researchers seeking a normative description of
individual belief, i.e., a behavioral rule consistent with a reasonable set of
assumptions. The most prominent representative of this group is Leonard J.
Savage. In 1954 Savage [14] suggested a set of axioms which, if an individ-
ual's preferences over acts abide by them, would result in a representation
of her preferences which separated preferences over consequences from the
evaluation of events, and for which the evaluation of events would be con-
sistent with an additive probability measure (\probabilistic sophistication").
Thus, the individual behaves as if he faced a known objective probability,
and maximized his expected utility. Mark Machina & David Schmeidler [12],
developed a set of axioms which did not force an expected utility structure by
relaxing Savage's Sure Thing Principle, while maintaining the \probabilistic
sophistication" part of Savage's result.

On the other side there are researchers who aspire to describe individual
behavior in the face of uncertainty. Although Frank Knight [11] was the
�rst to suggest that risk (known probabilities) and uncertainty (unknown
probabilities) are two di�erent notions, he did not make clear the di�erences
between the two in terms of individual behavior. Keynes [10] suggested that
ambiguity in probability may be the result of missing information, relative
to some conceivable amount of information. Savage, too, was aware that
such \vagueness" of probability may play a role in describing one's prefer-
ences (chapter 4 in [14]), but relied on de Finetti [4] to claim that this is the
reason why a normative theory of subjective probability is needed. In 1961,
Daniel Ellsberg [5] suggested two hypothetical experiments which made clear
that, for many individuals, risk and uncertainty are two di�erent concepts.
Thus, any attempt to describe their preferences by a (subjective) probabil-
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ity measure is doomed to fail. Although Ellsberg described only a thought
experiment (with a very speci�c sample), his results were later con�rmed in
many experimental studies (see Camerer & Weber [3] for a comprehensive
survey).

Ellsberg o�ered two alternative representations of the observed prefer-
ences. In Ellsberg's �rst explanation the decision maker behaves pessimisti-
cally, choosing an action to maximize his utility if the worst scenario occurs
(i.e. the \maximin" over a set of priors). A set of axioms which supports
such behavior was suggested by Gilboa & Schmeidler [8]. Schmeidler [15]
and Gilboa [7] derived the Choquet expected utility representation, which
is - if the capacity is convex - a special case of the maximin. Schmeidler
[15] de�ned formally the concept of Uncertainty Aversion (to be discussed
in section 3), that generalizes the behavior Ellsberg predicted. Intuitively,
an individual exhibits uncertainty aversion if he prefers the objective mixing
of objective lotteries over a subjective mixing. The second formulation sug-
gested by Ellsberg is a weighted average of the maximin rule and expected
probability (according to some prior). This results in behavior which is con-
servative1 with respect to ambiguity, but not as extreme as the maximin
rule. A di�erent explanation was suggested by Uzi Segal [16]. He derived the
Ellsberg behavior by considering an \Anticipated Utility" model (in which
the utility from an objective lottery is not linear in probabilities) and by
relaxing the \reduction of compound lotteries" assumption.

We o�er the following observation: Uncertainty aversion is not the only
example of behavior where individuals' decisions do not conform to the nor-
mative predictions we (i.e. modelers) construct. Two prominent examples
are the one-shot \Prisoners' Dilemma" and the \Ultimatum Game". In
the �rst example, almost all normative notions of equilibrium (except when
agents have unobserved utility from cooperation) predict that individuals
will not cooperate. Yet, in practice, many subjects do indeed cooperate. In
the Ultimatum Game, the normative backward induction argument predicts
that the individual who makes the o�er will leave a minimal share to his
opponent, and the latter will accept any positive o�er. In practice, most of-
fers are \fair", and most respondents reject \unfair" (albeit positive) splits.
Explanations for these phenomena vary, but the one explanation we �nd

1Conservatism is used here and elsewhere in the paper in the ordinary sense of the
word: the individual will favor traditional or current strategies over innovations whose
consequences are ambiguous. In the case of risk and uncertainty, he will prefer known
risky strategies over uncertain (unknown probabilities) ones.
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most compelling (and may be viewed as a strategic basis for other expla-
nations), claims that people do not \understand" that these are one-shot
games. Individuals play a strategy which is perfectly reasonable (according
to some equilibrium notion) for a repeated game. Thus, people are, in some
sense, not \programmed" for, and therefore �nd it hard to evaluate, singular
situations.

The following justi�cation is suggested for this bounded rational behavior:
during their lives individuals frequently encounter repetitive or simultaneous
circumstances, i.e. only rarely does a situation turn out to be singular (one-
shot and single). Peoples' way of thinking has adapted to this pattern. Fur-
thermore, people develop \rules of thumb" to cope in those circumstances.
These rules are determined by an evolutionary process or a learning process.
These processes reward a behavior that utilizes a rule which works well in
most circumstances. This type of rationalization was referred to by Aumann
[2] as \Rule Rationality" (vs. \Act Rationality"). The outcome is that peo-
ple's heuristic decision making is consistent with repeated or simultaneous
situations. When the individual confronts a singular circumstance, on a sub-
conscious level she perceives a positive probability that it will be repeated or
that other simultaneous circumstances are positively correlated with it, and
behaves according to the rule which is optimal for this case. To an outside
observer, this behavior seems \irrational". However, if the situation were to
be repeated or positively correlated with concurrent situations that were to
occur, this behavior would seem rationalized. Ho�man, MacCabe and Smith
[9] have suggested that in the Ultimatum Game, the rule to \reject anything
less than thirty percent" may be rationalized as building up a reputation in
an environment where the interaction is repeated. This rule does not apply
to the one-shot Ultimatum Game because in that situation the player does
not build up a reputation. But since the rule has been unconsciously chosen,
it will not be consciously abandoned2.

In this work, we show that this line of reasoning applies to uncertainty
aversion as well. The environments in which people make decisions under
uncertainty are frequently composed from multiple risks that are positively
correlated. Examples of such cases are a purchase of a car or of a health
insurance, and even marriage. In the case of a car, the state of each system
is uncertain, and given its state there is risk the system will malfunction af-

2It may be argued that \manners" have evolved in a similar way, and explain the
Proposer behavior as a result of expected \reciprocity".
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ter certain mileage. The states of di�erent systems are positively correlated
(e.g., may depend on previous owners). The decision is whether to buy the
\car" (including all its ingredients) or not. In the health insurance example,
the individual can not insure di�erent risks separately, but has to choose a
\package" which covers multiple risks that are positively correlated. The
happiness derived from a marriage is composed of many (risky) dimensions
that are positively correlated. The individual takes a decision while having
some belief over the extent of these risks. The individual's heuristic decision
making (\rule") under uncertainty has adapted to this \bundling" of risks,
and when confronted with a single uncertain situation, employs the rule of
thumb which has evolved. In this work we prove that if a risk averse indi-
vidual has some Bayesian prior belief over states of the world, but instead of
analyzing the single Ellsberg experiment derives an optimal decision rule for
multiple positively correlated experiments, then she will exhibit uncertainty
aversion. In this case, uncertainty aversion reduces to risk aversion, and jus-
ti�es the usual response that a lottery where probabilities are unknown is
\riskier" than a lottery with known probabilities. The explanation is conser-
vative, and we can bound the premium the subject is willing to pay in order
to discard uncertainty in favor of risk.

In the following we present the Ellsberg paradoxes, and our resolution
of them. Next, we generalize the example and establish formally the rela-
tion between behavioral rules and uncertainty aversion, viz., almost every
uncertainty averse behavior may be rationalized as a Bayesian optimal rule
in an environment consisting of simultaneous risks. The paper ends with a
discussion and suggestions for further research.

2 A Bayesian Resolution of The Ellsberg Para-

doxes

Consider Ellsberg's �rst paradox: There are two urns, each containing 100
balls, which can be either red or black. It is known that the �rst urn holds
50 red and 50 black balls. The number of red (black) balls in the second
urn is unknown. Two balls are drawn at random, one from each urn. The
subject - Alice - is asked to bet on the color of one of the balls. A correct
bet wins her $100, an incorrect guess loses nothing (and pays nothing). If
Alice exhibits uncertainty aversion she will prefer a bet on red (black) drawn
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from the �rst urn to a bet on red (black) drawn from the second urn, but
she will be indi�erent between betting on red or black from the �rst (second)
urn (the formal de�nition is deferred until section 3). This pattern of be-
havior not only violates Savage's Sure Thing Principle (P2), but there does
not exist any subjective probability (i.e., frequency of reds or blacks in the
second urn) which supports these preferences. In the Machina-Schmeidler
[12] terminology, Alice is not \probabilistically sophisticated". As suggested
by Ellsberg [5], and axiomatized by Gilboa & Schmeidler [8], this behavior
can be supported by a pessimistic evaluation (i.e. maximin): Alice has a
set of priors and for each bet she calculates her expected utility according
to the worst prior belief supported in this set. In this example, if p is the
proportion of red balls in the second urn, then p 2 [0; 1] : Therefore, Alice's
maximin expected utility from betting on red (black) from the second urn
is zero. According to this pessimistic explanation, Alice would prefer to bet
on red (black) from the �rst urn, even if she knew that there is (are) one
(99) red ball(s) in it, rather than bet on red (black) from the second urn.
The unsatisfying predictions of this extreme pessimism, led Ellsberg [5] to
suggest a more conservative view, and in this respect (and only in this), do
we follow him.

Alice has learned from experience that most circumstances are not iso-
lated, but frequently risks are positively correlated. When asked which bet
she prefers, she analyzes which bet would be the optimal, if similar and pos-
itively correlated draw were to be performed, and her payo� was the average
of the draws. For simplicity of the initial exposition we assume two exper-
iments and perfect correlation. The distribution of the average monetary
prize if Alice bets on red (or black) from the urns with a known probability
of 1

2
(urn I) is:

IR(2) = IB(2) =

8<
:

$0 1=4
$50 1=2
$100 1=4

(1)

When considering the ambiguous urns, Alice applies the statistical princi-
ple of insuÆcient reason3. Therefore, she has a prior belief about the number

3The principle of insuÆcient reason states that if one does not have a reason to suspect
that one state is more likely than the other, then by symmetry the states are equally likely,
and equal probabilities should be assigned to them. The reader is referred to Savage [14]
Chapter 4 section 5 for a discussion of the principle in relation to subjective probability.
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of red balls contained in them, which assigns a probability of 1
101

to every
frequency between 0 and 100 (thus p is between 0 and 1): The assumption
of perfect correlation is that the two urns have the same color composition
(this is an exchangeability condition). Conditional on p; the probability that
two red balls would be drawn from the ambiguous urns (i.e. winning $100
on average if betting on red) is p2; the probability of two black balls (i.e.
winning $0 if betting on red) is (1� p)2; and the probability of one red ball
and one black ball (i.e. an average prize of $50 if betting on red) is 2p(1�p):
According to the Bayesian paradigm, Alice should average these values over
the di�erent p in the support of her prior belief. Thus the probability of
winning on average $100 and $0 is:

100X
i=0

1

101

�
i

100

�2

=
100X
i=0

1

101

�
1�

i

100

�2

�=

Z 1

0

p2dp =
1

3
(2)

Thus, the expected (according to the symmetric prior) distribution of the
average monetary payo� from betting on the ambiguous urns is:

IIR(2) = IIB(2) =

8<
:

$0 1=3
$50 1=3
$100 1=3

(3)

IR(2) and IB(2) second order stochastically dominate IIR(2) and IIB(2)

(i.e. the latter two are mean preserving spreads of the former)4. If Alice
is averse to mean preserving spreads, she will prefer to bet on the �rst
urns. Furthermore, if her preferences are represented by an expected utility
functional (with respect to an additive probability measure), then aversion to
mean preserving spreads is a consequence of risk aversion. Therefore, if Alice
is risk averse she will prefer the objective urns to the ambiguous ones, and
will exhibit uncertainty aversion, as observed in the Ellsberg experiment.
If she is a risk lover, she will prefer the latter to the former, and exhibit
uncertainty love (also predicted behavior by Ellsberg); while if she is risk
neutral, she will be indi�erent between the four bets.

The above explanation is of course conservative. In the case of two draws,
and without dependence on her risk aversion, Alice will prefer to bet on the

4For formal de�nitions of �rst and second order stochastic dominance see [13] and
Appendix A.
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ambiguous urns, rather than bet on red from urns that contain anything
less than 43 red balls. The distribution of a bet on red from an urn which
contains only 42 red balls is:

IR

�
p =

42

100

�
= ($0; 0:3364; $50; 0:4872; $100; 0:1764)

Hence, a bet on the uncertain urns would �rst order stochastically dominate a
bet on red from these risky urns. Thus the uncertainty premium (in terms of
probabilities) is bounded from above by 8%. In monetary terms, this upper
bound is equivalent to $8:

E

�
IB(2)

�
p =

1

2

��
� E

�
IB(2)

�
p =

42

100

��
= $50� $42 = $8:

The only assumption relied upon in this explanation is monotonicity of
the preference relation with respect to second order stochastic dominance.
Therefore, this explanation is consistent with any theory of choice under
risk which exhibits aversion to mean preserving spreads, including expected
utility with diminishing marginal utility of wealth, Yaari's dual theory [19]
(which separates risk aversion and utility of wealth) when the transformation
function is convex, as well as many others.

The only relation between the two risks needed to justify uncertainty
aversion is a positive correlation. Let p1 and p2 be the relative frequencies of
red balls in the �rst and second ambiguous urns, respectively. It is immediate
to verify that if Corr (p1; p2) > 0 then E (p1p2) = E ((1� p1) (1� p2)) >

1
4
;

and therefore a bet on the ambiguous urns is a mean preserving spread of a
bet on the risky (known probabilities of 0.5) urns.

Note that Alice need not assign probability one to the simultaneous ex-
periment in order to prefer a bet from the �rst urn. She might have learned
from her experience that some risks are simultaneous, but some are isolated.
Even if the probability of a correlated risk is very small, she would prefer
a bet on the risky urns. This is a consequence of a \Sure Thing Principle"
argument: if there is only a single risk, she is indi�erent between betting on
urn I or urn II; and in the case of correlation, she strictly prefers the former.
Hence the conclusion that she prefers a bet on urn I; even when she faces
the slightest possibility of simultaneity.
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2.1 Generalization to any number of concurrent am-

biguous risks

The logic developed above applies to any number of simultaneous risks. As-
sume Alice compares the distribution of betting on r simultaneous IR (IB)
to r simultaneous IIR (IIB) as in the Ellsberg experiment. The average
money gained is distributed 100X

r
where X has a binomial distribution with

parameters (0:5; r) and (p; r) ; respectively. p - The proportion of red balls in
the second urn, is distributed uniformly on [0; 1] : Therefore for 0 � k � r : 5

Pr fX = kg =

�
r

k

�
1

101

100X
s=0

� s

100

�k �
1�

s

100

�r�k
�=

�=

�
r

k

�Z 1

0

pk (1� p)r�k dp =

�
r

k

�
Beta (k + 1; r � k + 1) =

=
r!

k!(r � k)!

k!(r � k)!

(r + 1)!
=

1

r + 1

That is, the expected distribution of IIR(r) and IIB(r) is uniform, and is
second order stochastically dominated by the binomial IR(r) and IB(r):

2.2 The Second Ellsberg Paradox

Ellsberg's [5] second paradox (the \one urn" example) is the following: An
urn contains 90 balls: 30 red and 60 black or yellow (with unknown propor-
tions). A ball is drawn at random and Bob is asked to bet on the color of
the ball. A correct guess wins $100, an incorrect guess wins $0. Bob prefers
a bet that the ball is red over a bet that the ball is black, and prefers a
bet that the ball is either black or yellow over a bet that the ball is either
red or yellow. Bob's preferences seem to be inconsistent with any frequency
of black (yellow) balls. We claim, however, that Bob is Bayesian and as-
signs a uniform probability to the frequency of black balls. He is bounded
rational in the sense that he is using a \rule" which is optimal for concur-
rent experiments. The average payo� to Bob if he bets on red balls from

5The Beta Integral is de�ned by:

Beta (m+ 1; n+ 1) =
R 1

0 pm(1� p)ndp = �(m+1)�(n+1)
�(m+n+2)

Where �(�) =
R
1

0
p��1e�pdp for � > 0; and it is a well known result that when k is a

natural number: �(k) = (k � 1)!
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two urns is: R(2) =
�
$0; 4

9
; $50; 4

9
; $100; 1

9

�
: The probability distribution of

a bet on black is: B(2) (p) =
�
$0; (1� p)2 ; $50; 2p(1� p); $100; p2

�
where

p is the relative frequency of black balls in the urns. Bob's prior belief
over p is derived from symmetry and is (approximately) uniform (neglecting
the �nite support), i.e.: p � U

�
0; 2

3

�
. Averaging the distribution of B(2)

over p results in: B(2) =
�
$0; 13

27
; $50; 10

27
; $100; 4

27

�
: It is easily veri�ed that

E
�
R(2)

�
= E

�
B(2)

�
= 331

3
; and that B(2) is a mean preserving spread of

R(2): A symmetric analysis applies to the second pattern of preferences Bob
exhibits.

3 Rules and \Uncertainty Aversion"

The natural framework to generalize Ellsberg's examples is the Anscombe-
Aumann [1] horse bets over roulette lotteries, in which objective and sub-
jective probabilities coexist. In this section we show that almost all cases of
observed \uncertainty aversion" (Schmeidler [15] and Gilboa & Schmeidler
[8]) may be explained if the agents' preferences are de�ned over rules. The
Anscombe-Aumann framework has some complications due to the two-stage
setup. However, as long as we remain within the expected utility framework,
we bypass those diÆculties. A one-stage axiomatization of expected utility
was suggested by Rakesh Sarin and Peter Wakker [18], but the de�nition of
uncertainty aversion in their framework is not transparent and will be di�er-
ent [17] of Schmeidler's. A de�nition of uncertainty aversion within a Savage
domain of acts was suggested recently by Larry Epstein [6]. Formulation
of the results presented in the previous section within this framework, may
shed light on the degree of generalization included in Epstein's de�nition,
and remains for future work.

Let X be a set of outcomes. R is the set of �nitely supported (roulette)
lotteries over X ; i.e. r in R de�nes an objective mechanism of mixing among
the elements of X : Assume a preference ordering over R which satis�es the
usual expected utility assumptions. Therefore, there exists a Bernoulli utility
function u(�), such that lottery r1 is preferred to lottery r2 if and only ifP

x2X r1(x)u(x) >
P

x2X r2(x)u(x): Let S be the (non-empty) set of states
of nature. An act (horse lottery) is a function from S to R: That is, it
is a compound lottery, in which the prizes are roulette lotteries. Let H
denote the set of acts. Consider the set of roulette lotteries over H; denoted
by R�: Note that every act is a degenerate element of R�: An example of
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an element of R� is the lottery: (f; �; g; 1� �) for f and g in H and 0 �
� � 1: The holder of this lottery will receive in every state s 2 S the
compound lottery (�f(s) + (1� �)g(s)) : Anscombe and Aumann assumed
that preferences over R� satisfy the independence axiom. As a result, if f
and g are two acts between which the individual is indi�erent, then he is
indi�erent between the two and the lottery (f; �; g; 1� �). This assumption,
plus an assumption on the reversal of order in compound lotteries, yield a
representation of preferences over acts as an expected utility with respect to
a derived subjective probability.

The independence assumption over elements of R� is challenged by the
Ellsberg paradox. In this setting the set of outcomes is X = f$0; $100g :
States of the world are denoted by the number of red balls in the second urn:
S = f0; :::; 100g : The act IIR de�nes for every state the objective lottery:

IIR(s) =
�
$100;

s

100
; $0; 1�

s

100

�

The act IIB de�nes for every state the lottery:

IIB(s) =
�
$100; 1�

s

100
; $0;

s

100

�

The typical individual is indi�erent between IIR and IIB; but prefers the
lotteries IR and IB to either of the former. A simple calculation reveals that
IR =

�
IIR; 1

2
; IIB; 1

2

�
; and thus the independence axiom overR� is violated:

This observation led Schmeidler [15] to relax independence in favor of comono-
tonic independence. Two acts f and g are comonotonic if for every two states
s; s0 2 S: f(s) % f(s0) if and only if g(s) % g(s0): Schmeidler [15] constrained
independence to hold true only for comonotonic acts.

Following David Schmeidler [15], it seems natural to generalize and de-
�ne a decision maker to be strictly uncertainty averse if for every two non-
comonotonic acts f and g; between which she is indi�erent; the decision
maker prefers any convex combination of them to each one separately. In-
deed, Gilboa and Schmeidler [8] assumed weak uncertainty aversion as one
of their axioms in deriving the maximin representation. This behavior is ex-
plained intuitively as the agent \hedging" between the two acts. Note that
this is a generalization of Ellsberg's observation; in his two urns example
the utility of an act at state s is proportional to the probability of receiv-
ing $100 in this state, according to that act (normalizing u(0) to 0). It is
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easy to verify that our explanation of the Ellsberg example is consistent with
this de�nition of strict uncertainty aversion: the bet on red or black from
two ambiguous urns is a mean preserving spread of the compound bet on
(IIR; �; IIB; 1� �)(2) from these urns, which for every 0 < � < 1 has the
distribution:

(IIR; �; IIB; 1� �)(2) =

8<
:

$0 (�2 � � + 1) =3
$50 (�2�2 + 2�+ 1) =3
$100 (�2 � � + 1) =3

However, this generalization ignores the unique symmetry in the Ells-
berg example because, in Ellsberg, the acts are non-comonotonic in every
two states. Furthermore, in the Ellsberg example, the lotteries assigned by
IIR and IIB are ordered according to First Order Stochasic Dominance cri-
terion in every state in which they di�er. That is, every agent with monotone
preferences would prefer IIR(s) over IIB(s) if 51 � s � 100 and IIB(s) over
IIR(s) if 0 � s � 49. Therefore, the hedging behavior could be interpreted
as more fundamental, and independent of the agent's utility function. This
observation is generalized and proved in our framework of \rules": we adopt
all Anscombe-Aumann assumptions, but by considering multiple simultane-
ous lotteries, a seemingly uncertainty averse behavior emerges.

Formally, let X be a �nite set of monetary outcomes. For every s 2 S
let q(s) be the subjective probability of state s: A rule is de�ned as an act
with r concurrent lotteries at every state, r > 1. We assume the lotteries
at every state are exchangeable. This is a generalization of the \same color
composition" in the Ellsberg example. Thus, the environment in which the
rule is evaluated is represented by r: An agent's preferences are de�ned over
rules (although an outside observer might view only acts). She is indi�erent
between the rules f and g if:

U
�
f(r)

�
= U

�
g(r)
�

(4)

Or, explicitly:

X
s2S

q(s)E
�
u
�
f(r) (s)

��
=
X
s2S

q(s)E
�
u
�
g(r)(s)

��
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Where E
�
u
�
f(r) (s)

��
is the agent's expected utility from the sum of r si-

multaneous (objective) lotteries f at state s: In what follows we take r = 2
(it will be suÆcient to produce uncertainty averse behavior): Then:

E
�
u
�
f(2) (s)

��
=
X
x2X

X
y2X

f (s) (x) f (s) (y)u(x+ y) (5)

Let p1 and p2 be probability measures over X with distribution func-
tions F1 and F2; respectively. The probability measure p1 would First Order
Stochastic Dominate (FOSD) p2 if F1(x) � F2(x) for every x 2 X and there
exists at least one outcome in which the inequality is strict.

De�nition 1 Acts f and g are Non-Comonotonic in the Strong Sense if in
every state s in which they di�er f(s) FOSD g(s) or vice versa, and there
exist at least two states in which the order of FOSD is reversed.

Note that this de�nition is stronger than Schmeidler's non-comonotonicity
since f and g will be non-comonotonic for every agent with a strictly mono-
tone utility function.

Following is a generalization of our main result which derives uncertainty
averse behavior as \rule rationality":

Theorem 2 If f and g are Non-Comonotonic in the Strong Sense and the
agent is indi�erent between the rule f and the rule g, then if she is averse to
mean preserving spreads and her preferences are representable by an expected
utility functional, she will prefer the rule of (f; �; g; 1� �) over the rule f
for every 0 < � < 1.

Proof. See Appendix.

The implication of Theorem 2 is that almost all seemingly uncertainty
averse behavior may be rationalized if the agent's perception is that she is
facing concurrent correlated risks. Confronted with this environment, if she
is risk averse her observed behavior would exhibit uncertainty aversion.

Uncertainty averse behavior may be rationalized even if the individual
thinks there is only a small probability of simultaneity. The source of this
belief is the agent's experience that some circumstances consist of multiple
risks and some from a singular risk. Confronted with a new situation, if
the individual's heuristic belief assigns some (possibly small) probability to
the possibility he faces a \complex" circumstance, then her optimal behavior
would exhibit uncertainty aversion.
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Corollary 3 Assume f and g as in Theorem 2, and suppose the individual is
indi�erent between the act f and the act g: Then, for every � > 0 probability
of concurrent risks, she will prefer (f; �; g; 1� �) over f , for every 0 < � < 1:

Proof. Since (f; �; g; 1� �)(2) � f(2) and (f; �; g; 1� �) � f; it follows
from the independence axiom that:

h
(f; �; g; 1� �)(2) ; �; (f; �; g; 1� �) ; 1� �

i
�
�
f(2); �; f; 1� �

�

4 Discussion and Conclusion

A pattern of behavior which exhibits uncertainty aversion is related to other
puzzling cases of \irrationality", such as evidence from experiments with
the one-shot Prisoners' Dilemma or the Ultimatum Game. In each case the
explanation for the observed anomaly in a single experiment is that people (as
opposed to abstract decision makers) �nd it hard to analyze circumstances
that are not recurrent or concurrent. The cause for this behavior may be
found in individual experience which teaches that most circumstances are not
singular. Human decision making have adapted to this reality by adopting
\rule rationality" procedures. The result is that when confronted with a new
circumstance the individual typically assigns a positive probability it will be
repeated or that his decision may a�ect other simultaneous risks.

Our assumption is that, in this environment, every time the agent encoun-
ters a new circumstance he behaves according to the rule of thumb that has
evolved in environments which consist of simultaneous risks. This results in
a conservative behavioral rule, as opposed to the current pessimistic explana-
tion of the maximin. Our explanation of uncertainty aversion builds directly
on people being risk averse, and analyzing the concurrent ambiguous risks
with a Bayesian prior. Therefore, this explanation does not depend on the
Expected Utility structure, and is applicable to other theories of choice under
risk in which agents' preferences exhibit aversion to mean preserving spreads.
This work sheds new light on the structure of the Ellsberg \paradoxes", that
triggered the axiomatic literature of the maximin and nonadditive expected
utility. In particular, Schmeidler's de�nition of uncertainty aversion, seem
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to be stronger than the observed behavior. This work calls for new experi-
mental work which will bridge the gap or di�erentiate between the Ellsberg
experiment and the formal de�nition of uncertainty aversion. Future work
could analyze similarly the generalization embodied in Epstein's de�nition.

This work opens new research opportunities in the area of uncertainty
aversion, by using standard tools, as expectation with respect to an additive
probability. Formal de�nition and study of the \uncertainty premium" will
be useful in information economics, �nance, and other economic �elds. One
interesting experiment would be to compare preferences between an ambigu-
ous Ellsberg bet and the reduced risky bet on r simultaneous urns (as in
(3)), for uncertainty averse individuals. Indi�erence between the two would
support the hypothesis presented in this work. Finally, a formal evolutionary
model in which \rule rationality", as described above, emerges may illumi-
nate the set of procedures for which this notion of bounded rationality is
viable.
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A Preliminaries

Let  and � be �nite measures on X : De�ne6:

F (x) =

Z x

�1

 (t)dt and F� (x) =

Z x

�1

�(t)dt (6)

Assume  and � are such that:

F (+1) = F� (+1) (7)

Assumption (7) would hold true if, for example,  and � are probability
measures (then (7) is equal to one), or when each is a di�erence of two
probability measures (then (7) is equal to zero).

De�nition 4 Let  and � be two �nite measures de�ned over X ; and let
F and F� be de�ned as in (6) and satisfy (7). The measure  First Order
Stochastic Dominates (FOSD) the measure � if for every x 2 X : F (x) �
F� (x) with strict inequality for at least one x.

De�nition 4 is a generalization of the standard de�nition of �rst order
stochastic dominance, and of course it includes the probability measure as
a special case. It is well known that every decision maker with monotone
preferences, choosing between two distributions ordered by FOSD, will prefer
the dominant one.
Assume:

Z
X

F (x)dx =

Z
X

F� (x)dx (8)

6Since all the measures we shall deal with have �nite variation, all the integrals converge.
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That is, the mean measure of  is equal to the mean measure of � : For
example, if  is the di�erence of two probability measures and � � 0 then
it implies that the two probability distributions from which  was derived
have the same expected value.

De�nition 5  Second Order Stocastically Dominates (SOSD) � if (8) holds
and:

Z x

�1

F (t)dt �

Z x

�1

F� (t)dt 8 x 2 X

with strict inequality for at least one x:

Claim 6 If  SOSD � then:

U( ) =

Z
X

u(x) (x)dx >

Z
X

u(x)� (x)dx = U (� )

for all strictly monotone and strictly concave u:

Proof. The proof is similar to Rothschild and Stiglitz's [13]: using (7)
instead of assuming probability measures, and (8) instead of assuming equal
expectations.

B Proof of Theorem 2

Let f and g be non-comonotonic in the strong sense, and:

U
�
f(2)

�
= U

�
g(2)

�
(4')

De�ne for every s 2 S :

h(s) (x) = �f(s) (x) + (1� �) g(s) (x) (9)

Then we need to show that:
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U(h(2)) > U
�
f(2)

�

Consider the function � de�ned as:

�(s) (x) = f (s) (x)� g (s) (x) (10)

for every x and s.
Let h(2) be the convolution (denoted by `�') of h with h in every state. U

�
h(2)

�
is the expected utility from this convolution, averaged over all states.

U
�
h(2)

�
=

X
s

q(s)U [h (s) � h (s)] =

=
X
s

q(s)
X
x

X
y

�
�f(s) (x)+

(1� �) g (s) (x)

� �
�f(s) (y)+

(1� �) g (s) (y)

�
u(x+ y) =

=
X
s

q(s)
X
x

X
y

2
4 �2 (f(s)(x)) (f(s)(y))+

+ (1� �)2 (g (s) (x))(g (s) (y))+
+2�(1� �)(f(s)(x))(g(s)(y))

3
5 u(x+ y) (11)

Let �(2) be the convolution of � with � in every state: We can view U
�
�(2)

�
as the \expected utility" from this convolution (note that it is additive in
the states):

U
�
�(2)

�
=

X
s

q(s)U [�(s) � �(s)] = (12)

=
X
s

q(s)
X
x

X
y

� (s) (x) � (s) (y)u(x + y) =

=
X
s

q(s)
X
x

X
y

[f(s)(x)� g (s) (x)] [f(s)(y)� g (s) (y)]u(x+ y) =

=
X
s

q(s)
X
x

X
y

2
4 (f(s)(x))(f(s)(y))+

+(g(s)(x))(g(s)(y))�
�2(f (s) (x))(g (s) (y))

3
5 u(x+ y) (13)
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By substitution of (11) and (13) and utilizing (4') it follows that:

U(h(2))� U
�
f(2)

�
= �� (1� �)U

�
�(2)

�
Thus, the theorem will be true if and only if U

�
�(2)

�
< 0:

Claim 7 In every state in which f and g di�er: �(s) FOSD 0 (the zero
function) or vice versa.

Proof. Since f and g are non-comonotonic in the strong sense, then if
they di�er they are ordered according to FOSD. Assume f (s) FOSD g(s):
Therefore:

F�(s) (x) = Ff(s)(x)� Fg(s)(x) � 0

The symmetric argument holds when g(s) FOSD f(s):

Lemma 8 Any function � which is the di�erence of two probability mass
measures can be written as a �nite sum of measures:

� =
LX
l=1

�l (14)

where:

�l(x) = �al;bl;pl(x) =

8<
:

pl if x = al
�pl if x = bl
0 OTHERWISE

(15)

with al < bl and jplj � 1: pl is negative (positive) if and only if �l FOSD 0 (0
FOSD �l ). Furthermore, if 0 FOSD � (� FOSD 0) then all pl can be chosen
positive (negative) in the decomposition (15).

Proof. Recall that since � is a di�erence of probability mass measures,
it is a �nite measure with F� (+1) = 0: Assume 0 FOSD �; i.e.: F�(x) � 0
8 x 2 X with strict inequality for at least one x: Then:

a1 � min fxj�(x) > 0g
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exists. Since F� (x) � 0; it follows that for all x < a1: F�(x) = 0: Therefore
F�(a1) = � (a1) : Similarly, there exists

b1 � min fx > a1j�(x) < 0g

De�ne:

p1 � min f� (a1) ; j� (b1)jg > 0

De�ne �1 = � � �a1b1p1: It is still true that F�
1

(x) � 0, since F�
1

(�) di�ers
from F�(�) only in the interval [a1; b1] ; and there F� � � (a1) � p1: Note that
�1 is a measure with at least one less mass point than �:

Hence if �1 6� 0 then 0 FOSD �1 and we can repeat the process, obtaining
iteratively (�2; �3; : : : ; �L). Because each �l has at least one less mass point
than �l�1, and � is �nitely supported (i.e. there exist only �nitely many
points x such that � (x) 6= 0); the sequence is �nite. The sequence has to
stop, at some stage L with �L � 0: Hence � �

PL

l=1 �l; with pl > 0 for all l:
A similar proof holds for the case where � FOSD 0.

Lemma 9 If plpk > 0 then 0 (the zero function) SOSD �l � �k (the convo-
lution of �l and �k); when �l and �k have the (15) structure.

Proof. The measure �l � �k is given by:

(�l � �k) (x) =

8>><
>>:

plpk if x = al + ak
�plpk if x = al + bk
�plpk if x = bl + ak
plpk if x = bl + bk

F�l��k(x) =
R x
�1

(�l � �k) (t)dt is equal to:

F�l��k(x) =

8<
:

pkpl if x 2 [al + ak;min fak + bl; bk + alg]
�pkpl if x 2 [max fak + bl; bk + alg ; bk + bl]
0 OTHERWISE

Therefore: Z x

�1

F�l��k(t)dt � 0

That is, the zero function SOSD �l � �k:
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Corollary 10 In every state in which f and g di�er, the zero function SOSD
�(s) � �(s).

Proof. Since f and g are non-comonotonic in the strong sense, by Claim
7 the zero function FOSD �(s) or vice versa. By Lemma 8, we can decompose
every di�erence measure �(s) into L(s) measures with all pl (l = 1; : : : ; L(s))
positive (if 0 FOSD �(s)) or negative (if �(s) FOSD 0). Therefore:

�(s) � �(s) =

0
@L(s)X

l=1

�l(s)

1
A �

0
@L(s)X

k=1

�k(s)

1
A =

L(s)X
l=1

L(s)X
k=1

�l(s) � �k(s) (16)

By Lemma 9 each convolution element of the above sum is second order
stochastically dominated by the zero function. Therefore, the zero function
SOSD the sum of those convolutions.

Proof of Theorem 2. Recall from (12) that U
�
�(2)

�
is additive across

states. By Corollary 10 and Claim 6: U [�(s) � �(s)] < 0 in every state in
which f and g di�er. In states in which f and g are equal, �(s) � 0; and
therefore: U [�(s) � �(s)] = 0. It follows that U

�
�(2)

�
< 0:
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