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DISCOUNTING LONG RUN AVERAGE GROWTH
IN STOCHASTIC DYNAMIC PROGRAMS

Jorge Durán

ABSTRACT

Finding solutions to the Bellman equation often relies on restrictive bound-

edness assumptions. In this paper we develop a method of proof that allows to

dispense with the assumption that returns are bounded from above. In appli-

cations our assumptions only imply that long run average (expected) growth is

sufficiently discounted, in sharp contrast with classical assumptions either abso-

lutely bounding growth or bounding each period (instead of long run) maximum

(instead of average) growth. We discuss our work in relation to the literature and

provide several example

Keywords: Dynamic programming, Weighted norms, Contraction mappings,
Dominated convergence, Non additive recursive functions.

JEL classification numbers: C61.
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1 INTRODUCTION

The purpose of this paper is to provide easy-to-check conditions under which

stochastic recursive models are represented by a well defined recursive optimiza-

tion problem in turn characterized by its associated Bellman equation. Returns

are assumed to be bounded from below but might be unbounded from above.

Thus, our method of proof accounts for many economic models in which returns

are not necessarily bounded from above: either because sustained growth is feasi-

ble or because some shock can affect unboundedly one period returns or both.

In the classical approach to recursive dynamic programming the value func-

tion is shown to solve the Bellman equation by proving first that the equation

has indeed a solution. In order to do so, a maximization operator is defined

(see Blackwell (1965) and Denardo (1967)) whose fixed points are solutions to

the Bellman equation. This operator is then proven to be a contraction on the

space of bounded continuous functions, a complete metric space in its supremum

norm (in which case existence follows from the Banach fixed point theorem). The

domain of the maximization operator can be seen as the class of admissible func-

tions: candidates to solve the Bellman equation and, ultimately, to be the value

function. However, the value function will only be bounded when returns to fea-

sible choices are bounded and future returns are strictly discounted. Endogenous

growth theory or business cycle theory provide numerous examples in which re-

turns are not bounded. To overcome this problem several alternatives have been

proposed. Stokey and Lucas’s (1989, section 4.4) propose to work in spaces of

homogeneous functions (with the norm over the unit circle) when dealing with

deterministic homogeneous programs. This line of research has been followed by

Álvarez and Stokey (1998) and Nakajima (1999) who also propose an approach to

homogenous programs with returns unbounded from below. Streufert (1990, 1991)

introduced the notion of biconvergence requiring only asymptotic discounting. His

algorithm substitutes therefore uniform convergence (in some norm, underlying

the contraction argument) by pointwise converge. His work is extended to the

uncertain case in Streufert (1996), an analysis of a stochastic Ramsey model, and

in a more general approach in Ozaki and Streufert (1996).

In the present paper we present a general stochastic recursive program in which
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returns are not necessarily bounded from above. Rather, average (expected) long

run growth is required to be discounted. Returns are not assumed to be bounded

but with respect to some weight function: it is this function’s feasible growth that

we require to be strictly discounted. Following Wessels (1977) we shall exploit

the fact that spaces of weighted bounded functions are also complete. Hence, our

maximization operator will still be a contraction on a complete metric space but in

a larger class of functions (not necessarily bounded). As a result, a broad family

of economic models can be reduced to a Bellman equation whose analysis can

be carried out without awkward boundedness assumptions. Since the early work

of Wessels (1977) the deterministic literature has shown an interest in functions

that are only bounded with respect to some weight function. See Boyd (1990)

who applies this technique to prove existence of a recursive utility function when

the aggregator is not bounded or Dana and Le Van (1991) or Durán (2000) for

applications to the analysis of deterministic recursive dynamic programs.

Our main accomplishment is the observation that, under a hypothesis easy to

check in applications, weighted bounded functions are integrable and their integral

continuous. Hence, admissible functions will be weighted bounded functions: with

well defined expectation and continuous as functions of the endogenous state of

the system, e.g., capital stock. If feasible growth of the weight function is strictly

discounted the maximization operator will be shown to be a contraction on the

class of weighted bounded functions. Further, once a solution to the Bellman

equation has been found, a dominated convergence argument will allow us to re-

produce familiar results in deterministic dynamic programming in order to ensure

the connection between the original program and the Bellman equation. With

these results at hand, our task in applications is to find a weight function and

check whether its expectation is well behaved and its expected growth along fea-

sible paths is sufficiently discounted. Our work partially generalizes Álvarez and

Stokey (1998) on homogeneous dynamic programming and is related to Streufert

(1996) and Ozaki and Streufert (1996) who analyze the case of asymptotic dis-

counting of expected utility.

The main results are stated and proved in the next section. Section 3 describes

the original program and shows how optimal paths can be generated by the policy
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correspondence. Our assumptions are discussed and our work examined in the

context of the literature in section 4 where some limitations of this strategy are

also discussed and future research suggested.

2 DISCOUNTING AVERAGE GROWTH

Some Borel subset Z ⊂ Rs acts as the exogenous state space: each period a
random shock (e.g., a technological shock) is drawn from Z according to some

Borel probability measure µ. Another Borel subsetX ⊂ Rn acts as the endogenous
state space (e.g., predetermined state variables as capital stock). Given some

state (z, x), feasible endogenous state choices are described by Γ(z, x) where Γ :

Z×X → X is a compact valued continuous correspondence.1 A current state (z, x)

and a feasible choice y ∈ Γ(z, x) determine feasible actions (e.g., consumption)

described as c ∈ Ω(z, x, y). Let H denote the graph of Γ, then Ω : H → Rm is
compact valued and continuous while Ω(H) denotes its range. Following Lucas

and Stokey (1984) the objective function (e.g., utility) will be constructed from

an aggregator W treated as a primitive concept. Given an action c and a future

return λ, current discounted return is given by W (c,λ). Becker and Boyd (1997,

chapters 1 and 3) constitutes an excellent motivation for the study of non additive

objective functions.2

Example 1 Time additive objective functions are generated by the class of addi-
tive aggregatorsW (c,λ) = u(c)+δλ where u is the one period reward function and

δ ∈ (0, 1) the discount factor. An example of non additive aggregator is Uzawa’s
1Hereafter the default topology in a product space is the product topology. Mea-

surability will always refer to measurability with respect to the corresponding Borel σ

algebra. Product spaces will be endowed with the product σ algebra unless otherwise

stated. Many spaces involved in the results below are separable: on Cartesian products

of separable Borel spaces the Borel and product σ algebras coincide (Lindelöf theorem).
2The present paper was motivated by the reading of Boyd (1990): an analysis of the

conditions under which an unbounded aggregator function uniquely determines a total

recursive utility function that is only bounded with respect to some weight.
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W (c,λ) = (−1 + λ)e−u(c) where u is some increasing function with u(0) > 0. An

unbounded non additive aggregator is W (c,λ) = log(η + c+ λ) where η > 1.

The range of expected discounted returns is Λ ⊂ R ∪ {−∞} assumed to be
closed and to contain zero. Assuming Λ 0 only precludes the uninteresting case

in which −∞ is always the return to any action. W : Ω(H)× Λ→ Λ is assumed

to be continuous. Describing a stochastic recursive program in this paper means

making explicit the nature of Γ, Ω, W , and µ. Alternative versions of the linear

Ramsey or AK model shall be used throughout the paper to illustrate a number

of points: see McGrattan (1998) for an overview of modern interpretations of the

model.

Example 2 Consider the AK model of growth with random marginal product

of capital. For stock of capital x ≥ 0 and technological state z ≥ 0, available

choices for gross investment are Γ(z, x) = [0, zx] while Ω(z, x, y) = [0, zx− y] are
feasible consumption choices. Constant elasticity of intertemporal substitution

preferences are generated by W (c,λ) = cθ + δλ where δ ∈ (0, 1) and 0 < θ ≤ 1.

From W we construct the total return function: the recursive program maxi-

mizes this function over feasible contingent plans, described in terms of Γ and Ω.

We want the value function v to solve the Bellman equation

v(z, x) = sup
y∈Γ(z,x)

sup
c∈Ω(z,x,y)

W (c, v(s, y)µ(ds)). (1)

Observe that we do not obtain the expectation of the aggregation but aggregate

current actions with future expected returns. Kreps and Porteus (1978) show that

temporal consistency of the underlying preferences imply that the aggregator is

defined on expected future returns. Conversely, it is not difficult to see that having

W defined on expected returns (the integral inside W ) generates an objective

function for which optimal plans are time-consistent. In order to prove that v

verifies (1) we shall show first that the equation has at least a solution (proven

afterwards to be the value function). Define the maximization operator M as

(Mf)(z, x) = sup
y∈Γ(z,x)

sup
c∈Ω(z,x,y)

W (c, f(s, y)µ(ds)). (2)
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where f is any candidate to be the value function. Solutions to the Bellman

equation are the fixed points of the maximization operator. Our first task is

to look for a class of admissible functions: candidates to be a solution to the

Bellman equation and, ultimately, to be the value function. The class of admissible

functions will be the domain of M . There are two reasonable requirements a

function must meet in order to be admissible:

(a) An admissible function f must be integrable in the sense that the integral

inside W in (2) is well defined. We should be able to compute the expectation of

the value of any feasible choice.

(b) Even if the integral is well defined, in general it will only be upper semicontinu-

ous as a function of y (Fatou theorem). Berge theorem applied to the optimization

problem in (2), however, requires continuity. Álvarez and Stokey (1998) stand out

the lack of a version of this theorem for upper semicontinuous functions: without

continuity, existence of an optimal choice is not ensured.

Measurability will always be ensured by our continuity assumptions so that

the (potential) third problem is avoided in this paper.3 In short, we have to

look for a class of functions for which expressions like f(s, y)µ(ds) make sense.

This paper is on finding (displaying) a function, rather than a constant, that will

bound candidates to solve the Bellman equation. Let g and ϕ be two continuous

functions Ω(H) → R with ϕ ≥ 0. We say that g is bounded with respect to ϕ

when g ϕ = g/ϕ <∞ where . denotes the supremum norm.

Assumption 1 There exists ϕ : Ω(H)→ R+ continuous with W ( . , 0) ϕ <∞.

Hence, there is a continuous function that absolutely bounds one period re-

turns. In general, however, actions are free variables that can display very irregular

behavior along feasible paths. We need to link this function to the state of the

system; we do so assuming existence of some function of the state ψ bounding ϕ

from above at feasible choices.

3See Stokey and Lucas (1989, page 388) for Blackwell’s (1965) well known example

illustrating the measurability problem. Bertsekas and Shreve (1978) is a discussion on

the problem of measurability in dynamic programming. Most economic applications,

however, meet our continuity assumptions.
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Assumption 2 There exists ψ : Z × X → Λ continuous with ψ ≥ 0 such that
ϕ(c) ≤ ψ(z, x) for all (z, x) ∈ Z ×X and c ∈ Ω(z, x, y), some y ∈ Γ(z, x).

This function will link potential feasible growth rates of returns with discount-

ing and will bound admissible functions. The next assumption requires ψ to meet

the two requirements (a) and (b) above; recall that in applications ψ is a displayed

object whose properties are open to direct verification.

Assumption 3 ψ(s, y)µ(ds) is well defined and continuous in y.

Admissible functions will be chosen to be ψ-bounded functions because they

share this continuous expectation property with their weight (and hence meet

requirements (a) and (b) above). Observe that the supremum norm is a particular

case of weighted norm when the weight function is chosen to be a constant. The

bounded case automatically verifies assumptions 1 to 3 choosing ϕ = ψ = 1. The

Uzawa aggregator is an example of this case. When W ( . , 0) is not bounded ϕ

and ψ cannot be chosen to be constant.

Example 3 In example 2, for all c ≥ 0 we can simply choose ϕ(c) = cθ. Then

let ψ(z, x) = (zx)θ. Assumptions 1 and 2 are verified by construction. Jensen’s

inequality implies 0 < (zx)θ µ(dz) ≤ (z̄x)θ where z̄ = z µ(dz). Continuity

follows from the Lebesgue dominated convergence theorem: assumption 3 holds.

The ϕ and ψ functions are not unique: other functions satisfying assumptions

1 to 3 exist but none can be constant because otherwise W (c, 0) = cθ > ϕ(c) at

some c thus violating assumption 1.

The class of admissible functions will be that of ψ-bounded functions; if M

is to be well defined on this set we should ensure that their expectation is well

defined and continuous. An adaption of the proof of the Lebesgue dominated

convergence theorem (Doob (1994, page 83)) allows us to prove an important

result.

Lemma 1 Under assumption 3 every ψ-bounded continuous function f : Z×X →
R has the property that f(z, x)µ(dz) is well defined and continuous as a function

of x.
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Proof : Suppose that |f | ≤ ψ, otherwise follow the argument below for ψ + f ψ

instead of ψ. Continuity ensures measurability of f( . , x) while | f(z, x)µ(dz)| ≤
|f(z, x)|µ(dz) ≤ ψ(z, x)µ(dz) so that f( . , x) is integrable. To see continuity

let (xn) ⊂ X with xn → x0 ∈ X. Since 0 ≤ ψ − f , Fatou theorem implies

lim inf
n→∞

ψ(z, xn)− f(z, xn)µ(dz) ≥ ψ(z, x0)− f(z, x0)µ(dz)

so that

lim inf
n→∞

− f(z, xn)µ(dz) ≥ − f(z, x0)µ(dz)

because limn→∞ ψ(z, xn)µ(dz) = ψ(z, x0)µ(dz) by hypothesis. Hence,

lim sup
n→∞

f(z, xn)µ(dz) ≤ f(z, x0)µ(dz).

To end the proof note that |f | ≤ ψ implies −f ≤ ψ as well. The above argument

applies to 0 ≤ ψ + f to obtain

f(z, x0)µ(dz) ≤ lim inf
n→∞

f(z, xn)µ(dz)

as was to be shown.

The class of ψ-bounded continuous real valued functions Cψ(Z×X) is complete
in its ψ norm.4 In order to ensure that M is a contraction on the class of ψ-

bounded functions we need to ensure that ψ cannot be growing too fast (in regard

to discounting) along feasible paths.

4Let Cψ(Z × X) be the class of all continuous functions Z × X → Λ that are ψ-

bounded. When ψ > 0 let B(Z ×X) be the class of bounded continuous functions and
define u on B(Z ×X) as u(f) = fψ. Then u is a distance preserving isomorphism be-

tween B(Z×X) and Cψ(Z×X), the latter endowed with the ψ norm. As a consequence
Cψ(Z×X) inherits the completeness of B(Z×X). The assumption that ψ > 0 is often
made but is not necessary: observe that ψ bounded functions vanish, by definition, at

ker(ψ); then apply the argument above with the (closed) subset B (Z×X) of functions
that vanish where ψ does so, instead of B(Z ×X).
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Assumption 4 W is Lipschitz continuous of constant δ < 1 and increasing in its

second argument. Further,

δ sup
y∈Γ(z,x)

ψ(s, y)µ(ds)

ψ(z, x)
≤ α (3)

for some 0 < α < 1 and uniformly over Z ×X.

Under this assumption expected growth of ψ along a feasible path cannot

exceed the factor α. More importantly, weighted bounded functions will be shown

(next section) not to grow on average at a factor bigger than α in the long run:

they can grow faster for short periods but not sustainably. In some cases expected

growth can always be discounted as in the following (homogeneous) program.

Example 4 Let ψ be as in example 3. Given (z, x) feasible choices y verify

(sy)θ µ(ds) ≤ yθ sθ µ(ds) ≤ (zx)θz̄θ where we use Jensen’s inequality. Then

δ sup
0≤y≤zx

(sy)θ µ(ds)

(zx)θ
≤ δz̄θ

so that assumption 4 holds as soon as δz̄θ < 1: only expected feasible growth

must be discounted.

Nevertheless, there are many cases in which feasible paths might display tran-

sitory high rates of growth of returns (and therefore value) while these are not

sustainable in the long run. Streufert (1996) emphasizes that the literature on

Lipschitz discounting has often required to always (every period) discount maxi-

mum (instead of expected) growth. Yet, weight functions allow, first, to discount

only average growth (as example 4 illustrates); second, to care only for long run

growth. Indeed, the weight function ψ acts as an intermediary between discount-

ing and the admissible function: the weight can verify (3) every period while it

weights functions for which this is only true in the long run (figure 1 is an illustra-

tion for functions of one variable). As a consequence, with a careful choice of the

weight, we can account for non homogeneous programs in which average growth

of returns is only discounted in the long run.

Jones and Manuelli (1990) describe a deterministic model with these charac-

teristics. In their model the value function can be proven to exist, to solve Bellman
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Figure 1: A function f that is ψ bounded

equation, and to be continuous finding a simple weight function: see Durán (2000,

section 2.4). The following example constitutes further one possible extension of

this model to the stochastic case.

Example 5 Modify example 2 to consider Γ(z, x) = [0, zx+xρ] where ρ ∈ (0, 1).
The graph of Γ is not a cone: close to the origin the term xρ allows for expected

growth factors that are not sustainable. Nevertheless, let ψ(z, x) = (η+ zx+xρ)θ

for some η > 0 and assumption 4 again requires δz̄θ < 1. Indeed, use the change

of variable w = zx+ xρ to show that

δ sup
0≤y≤zx+xρ

(η + sy + yρ)θ µ(ds)

(η + zx+ xρ)θ
≤ δ sup

0≤w

η + z̄w + wρ

η + w

θ

.

The quotient in brackets is a continuous function of w valued 1 at zero and z̄ when

w is taken to infinity. Somewhere in between there is a maximum value. When

δz̄θ < 1 we can always choose η big enough so as to make this maximum value less

than one in which case assumption 4 holds (when δz̄θ ≥ 1 we can always exceed
one choosing w big enough no matter how big η was chosen).

Observe that the non-linear part of the production function could have been

affected by some other shock as well. Underlying this example is the fact that
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many specifications induce feasible sets behaving asymptotically and in expecta-

tion as a cone. Weighted bounded functions help us abstracting from temporary

effects like those induced by xρ in the example.

Assumptions 1 to 3 together with lemma 1 ensure that M is well defined on

the class of ψ-bounded functions, our admissible functions. Assumption 4 will

further ensure that M is a contraction on this class of functions.

Remark 1 To prove that M is a contraction Blackwell’s (1965) sufficient condi-

tions are not necessary if one notes that in general

|max
x
p(x)−max

x
q(x)| ≤ max

x
|p(x)− q(x)|.

This observation together with Lispschitz continuity of W directly yield the Lip-

schitz property of M in the proof below.

There are versions of Blackwell’s sufficient conditions for weighted norms (as

in Boyd (1990)) but they are somewhat difficult to check. Further, the proof does

not require W to be non decreasing in its second argument (although we do not

use this fact in this paper because W will be increasing).

Proposition 1 Under assumptions 1 to 4 the maximization operator M has a

fixed point f∗, unique up to elements in Cψ(Z ×X).

Proof : Under assumption 4 the maximizer operator has the Lipschitz property.
Let f, h ∈ Cψ(Z ×X) and fix any (z, x) ∈ Z ×X. Then

|(Mf)(z, x)− (Mh)(z, x)| ≤ δ sup
y∈Γ(z,x)

| f(s, y)− h(s, y)µ(ds)|

≤ δ sup
y∈Γ(z,x)

|f(s, y)− h(s, y)|
ψ(s, y)

ψ(s, y)

ψ(z, x)
µ(ds)ψ(z, x)

≤ δ sup
y∈Γ(z,x)

ψ(s, y)

ψ(z, x)
µ(ds) f − h ψ ψ(z, x)

≤ α f − h ψ ψ(z, x),

where the first inequality follows from Lipschitz continuity of W in its second

argument and the remark above, and the second to assumption 4. Dividing both
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sides by ψ(z, x) and taking the supremum over Z × X yields Mf −Mh ψ ≤
α f − h ψ. Now note that for all f ∈ Cψ(Z ×X) it is true that

Mf ψ ≤ α f ψ + M0 ψ ≤ α f ψ + W ( . , 0) ϕ <∞,

by the triangular inequality and because assumptions 1 and 2 imply M0 ψ ≤
W ( . , 0) ϕ legitimating the second inequality. Hence, Mf is bounded in the

ψ norm. Continuity follows from continuity of W , f , Γ and Ω, from the fact

that both Γ and Ω take on compact values, from assumption 3, lemma 1, and

Berge theorem. Then M maps Cψ(Z ×X) into itself and is a contraction. The
proposition follows from the Banach fixed point theorem.

This proposition establishes existence of a (ψ-bounded) solution to the Bellman

equation. The task left is to prove that v exists and that v = f∗. This is so under

assumptions 1 to 4, assumed to hold throughout the next section.

In short, given some recursive program described by Γ, Ω, W , and µ we have

to look for functions ϕ and ψ verifying assumptions 1 to 4. In such case (the

next section proves that) the value function exists, solves Bellman equation, and

is a continuous ψ-bounded function. Further, the policy correspondence generates

optimal plans and every optimal plan is almost everywhere equal to a generated

plan. The reader uninterested in the technical details can go directly to section

4 in which some additional examples serve as illustration of the advantages and

shortcomings of this strategy of proof.

3 THE PRINCIPLE OF OPTIMALITY

In this section we will see that the total return function (defined below) is well

defined. In general recursive preferences δ acts as an upper bound to the implicit

discount factor. This is no surprise if one considers that (under our assumptions)

feasible growth of ϕ ≤ ψ is strictly discounted by δ while actual returns are

bounded by these functions and discounted at a factor at most equal to δ.

We first describe the original program. We denote Zt = Z × · · · × Z (t

times). A contingent state plan is a sequence x = (xt+1)∞t=0 of measurable functions

xt+1 : Z
t → X and is feasible from (z0, x0) when xt+1(zt) ∈ Γ(zt, xt(z

t−1)) for all
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zt and t ≥ 0. For any initial condition Π(z0, x0) stands for the class of feasible

plans. A contingent actions’ plan is a sequence c = (ct)∞t=0 of measurable functions

ct : Z
t → X and is feasible from (z0, x0) when ct(zt) ∈ Ω(zt, xt(z

t−1), xt+1(zt)) for

all zt, all t ≥ 0 and some x ∈ Π(z0, x0). We write Σ(z0, x0) for the class of feasible

actions’ plans. Recall that Z ×X is a Borel set and Γ compact valued and upper

semicontinuous: theorem 7.6 in Stokey and Lucas (1989) ensure existence of a

measurable selection from Γ so that Π is non empty. Since Γ has closed (and

therefore Borel) graph an analogous argument ensures that Σ is non empty. For

all t ≥ 1 consider the family of functions Zt → Ω(H), each endowed with the

distance of the maximum of one and the supremum of the difference. The class

C = (z,x)Σ(z, x) is contained in the Cartesian product of these spaces: endow it

with the relative product topology. For any pair (z, c) ∈ Z ×C the continuation

of c from z is a new contingent plan σ(z, c) the tth coordinate σt(z, c) defined to

be the restriction of the t + 1st coordinate of c to {z} × Zt−1. Since restrictions
of measurable functions to measurable sets are measurable we have σ(z, c) ∈ C.
The total return function is defined (in terms of W ) as the pointwise limit of

partial sums of returns. The recursion operator R maps every continuous function

V : C→ Λ to a new function RV defined as

(RV )(c) =W (πc, V (σ(z, c))µ(dz)) (4)

for all c ∈ C where π denotes the first coordinate projection function. A function
V is recursive when V = RV . The equation V = RV is sometimes referred to as

Koopmans equation. As in the case of the maximization operator, we will have

to describe a class of admissible functions: candidates to be a fixed point V ∗ of

R. The total return function U is defined at every c ∈ C as

U(c) = lim
N→∞

(RN0)(c) (5)

where RN denotes the N times composition of R and 0 the constant function

equal to zero. The value function is therefore defined as v(z, x) = supc∈Σ(z,x) U(c)

for all (z, x). A plan c is optimal for (z, x) when c ∈ Σ(z, x) and v(z, x) = U(c).

Recall that Σ(z, x) is not empty so that v will be well defined as soon as U is so.

Observe that δ is an upper bound to the implicit discount factor and that ϕ

bounds feasible returns. It is therefore reasonable to expect an additive function
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with less discounting ς > δ and immediate returns ϕ to weight the total return

function. Indeed, choose δ < ς < 1 small enough so that β = ςα/δ < 1 (this is

always possible under assumption 4). In such case (3) still holds with δ and α

substituted by ς and β respectively. Define Φ on C as

Φ(c) =
∞

t=0

ς t ϕ(ct(z
t))µt(dzt) (6)

where µt denotes the product µ measure on Zt. Under our assumptions this

function is well defined, continuous, and the expression Φ(σ(z, c))µ(dz) is well

defined and continuous as a function of c (see lemmas 4 and 6 in appendix A).

Lemma 2 Every Φ bounded continuous function V : C → R has the property

that V (σ(z, c))µ(dz) is well defined and continuous as a function of c.

The proof follows an argument analogous to that of the proof of lemma 1 and

is to be found in appendix A. This result is important because it implies that

R is well defined on the class of Φ bounded continuous functions, our class of

admissible functions. The total return function U happens to belong to this class:

the following is a stochastic version of Boyd’s (1990) continuous existence theorem

where Φ has been displayed and its discounting checked.

Proposition 2 The total return function is well defined and the unique fixed point
of the recursion operator R in the space CΦ(C).

Proof : By construction, for any c ∈ C it is true that

δ
Φ(σ(z, c))µ(dz)

Φ(c)
= δ

Φ(σ(z, c))µ(dz)

ϕ(c0) + ς Φ(σ(z, c))µ(dz)
≤ δ

ς
< 1 (7)

because ϕ ≥ 0 and of the choice of ς. Then let V,L ∈ CΦ(C) and fix c ∈ C. We
have

|(RV )(c)− (RL)(c)| ≤ δ
|V (σ(s, c))− L(σ(s, c))|

Φ(σ(s, c))

Φ(σ(s, c))

Φ(c)
µ(ds)Φ(c)

≤ δ

ς
V − L ΦΦ(c)
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where we have used Lipschitz continuity of W and (7). Divide by Φ(c) and take

the supremum over C to obtain RV −RL Φ ≤ δς−1 V − L Φ. Further, RV

is continuous whenever V ∈ CΦ(C) because it is a composition of continuous

functions, by hypothesis and by lemma 2. Hence, R is a contraction of modulus

δς−1 < 1 so that exists a unique V ∗ with V ∗ = RV ∗ and RN0− V ∗
Φ
→ 0

(Banach fixed point theorem). Convergence in the Φ norm still implies pointwise

convergence: it must be the case that V ∗ = U .

In short, under our assumptions U is well defined and recursive with respect

to W . To prove that the value function does solve the Bellman equation we shall

also use an interesting property, pointed out informally in section 2, of weighted

bounded functions under assumption 4.

Lemma 3 Let f be ψ-bounded and continuous, x feasible, and assumption 4 hold.
Then, we have

(a) the function f(zt, xt(zt−1)) is µt-integrable, and

(b) the series δt f(zt, xt(z
t−1))µt(dzt) is absolutely summable.

Proof : Let f be ψ-bounded and continuous and x be feasible from some initial

condition (z0, x0). For any t ≥ 1 we have

0 ≤ δt| f(zt, xt(z
t−1))µt(dzt)| ≤ f ψ δ

t ψ(zt, xt(z
t−1))µt(dzt)

while the last term is finite. Indeed, under assumption 4 it is true that

δ ψ(zt, xt(z
t−1))µ(dzt) ≤ αψ(zt−1, xt−1(zt−2))

for all zt−1. Use this inequality and Fubini theorem to show that

δt ψ(zt, xt(z
t−1))µt(dzt) ≤ αδt−1 ψ(zt−1, xt−1(zt−2))µt−1(dzt−1) ≤ αtψ(z0, x0).

Hence, the expression f( . , xt( . )) is µt integrable because αtψ(z0, x0) <∞. More-
over, since α < 1 the series, both in terms of f and ψ, converges to zero as t→∞
and is absolutely summable because αt is so.
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This result, together with recursivity of U stated above, will prove that the

solution found to the Bellman equation is indeed the value function. Once the

value function is shown to be ψ-bounded this lemma will again be used to prove

that plans generated by the policy correspondence are optimal and viceversa.

Summarizing:

Theorem 1 Let assumptions 1 to 4 hold. The value function is well defined,
continuous, and ψ-bounded. There is an optimal plan. If a plan (c,x) is feasible

from (z0, x0) and verifies

v(zt, xt(z
t−1)) =W (ct(zt), v(zt+1, xt+1(z

t))µ(dzt+1)) (8)

for all zt and t ≥ 0, then it is optimal. Conversely, if a plan is optimal, this

equality holds for µt almost every zt and all t ≥ 0.

The proof of this theorem makes use of the policy correspondence associated

to the Bellman equation (1). The policy correspondence G : Z ×X → X ×Ω(H)

is defined as

G(z, x) = {(y, c) : y ∈ Γ(z, x), c ∈ Ω(z, x, y) (9)

and v(z, x) =W (c, v(s, y)µ(ds))}

for all (z, x). A plan (c,x) is said to be generated by the policy correspondence

from some initial condition (z0, x0) when (xt+1(zt), ct(zt)) ∈ G(zt, xt(zt−1)) for all
zt and t ≥ 0. A generated plan is therefore a plan verifying (8). In appendix B
corollary 2 proves that generated plans are optimal while corollary 3 shows that

there is a generated (and therefore optimal) contingent plan. Finally proposition

4 shows that an optimal plan is equal to a generated plan µt almost everywhere.

Under the appropriate assumptions, v can be shown to possess other important

properties such as monotonicity, concavity, or differentiability. The related results

presented in Stokey and Lucas (1989, chapters 4 and 9) go with no change once U

and v have been shown to be well defined, the first solving the Koopmans equation

and the second the Bellman equation.
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4 SOME COMMENTS

Describing the elements of our program we have done assumptions that deserve

some comment. The aggregator W is a function of actions and not of the state

of the system. This assumption was done for the sake of clarity of exposition and

does no harm. If we need the state variables to directly affect current returns we

can always define Ω so as to allow only one possible action, namely the required

function of the state. Note that the notion of recursive function is precisely based

on weak separability between current and future actions: modelling actions as we

did does not imply any further structure on the underlying preference order.

Example 6 An agent inherits some savings x ≥ 0 rewarded by a constant gross
interest R > 0 and receives a random income z ≥ 0, the remaining income being
automatically consumed. Feasible next period’s savings are described by Γ(z, x) =

[0, Rx+ z] while Ω(z, x, y) = {Rx+ z− y} instead of [0, Rx+ z− y]. (If the agent
has additive preferences as in the AK model of section 2, then δRθ < 1 is sufficient

for (3) to hold for ψ(z, x) = (η+Rx+z)θ, some η > 0 big enough. Such condition

does not depend on the particular mean of income z.)

Not so inoquous is the assumption that the random shock is independently and

identically distributed (according to µ). It makes the analysis simpler, although

at some cost of generality. Note, however, that many correlated cases can still

be accounted for by the analysis above. Indeed, many correlated programs are

described by an explicit stochastic law of motion in which some iid element is the

ultimate source of uncertainty.

Example 7 Consider a correlated version of example 2: given a marginal product
of capital a ≥ 0 and a state of nature z ≥ 0 current marginal product of capital is
given by zaγ where γ ∈ (0, 1) and z ∼ µ. The marginal product of capital is now
an endogenous state variable. Then Γ(z, a, x) = {zaγ}× [0, zaγx] while Ω and W
are as before.

When facing a particular recursive program, the application of our results

require displaying the weight functions; each case requires a specific weight. There

is, however, no systematic procedure to construct these functions.
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The lack of a systematic procedure to obtain suitable weights may induce two

problems. First, a wrong choice of the weight functions can be misleading:

Example 8 Suppose W (c,λ) = log(γ + c + λ), when γ > 1 the aggregator is

Lipschitz continuous of constant γ−1 in its second argument. Let Γ be as in the

AK model. Assumption 1 holds for ϕ(c) = γ + c but ψ(z, x) = γ + zx yields

γ−1z̄θ < 1 as a condition for (3) to hold. Choose instead ϕ (c) = η + log(γ + c)

and ψ (z, x) = η + log(γ + zx) for some η > 0. We have

1

γ
sup

0≤y≤zx

η + log(γ + sy)µ(ds)

η + log(γ + zx)
≤ 1

γ

η + log(γ + z̄zx)

η + log(γ + zx)
.

This quotient is a continuous function of zx valued one both at zero and at the

limit when zx → ∞. An argument similar to that of example 5 shows that

assumptions 1 to 4 hold as soon as γ > 1 (just choose η big enough).

In this example, the first ϕ did weight returns but too much; the weighted norm

induced a topology much coarser than we needed. Indeed, first, the logarithm

linearizes any exponential growing path and, second, such aggregator implies a

very strong discounting pattern because as c grows, the implicit discount factor

becomes smaller (zero in the limit). In other cases, the problem may be the

reverse: some weight function might not work, while there is indeed a weight for

which all our assumptions hold. In particular, the fact that some functions ϕ and

ψ verify assumptions 1 to 3 does not imply that either assumption 4 holds for this

functions or for no function at all.

Second, and more importantly, we can find cases in which finding the weight

is far from obvious.

Example 9 In example 7 above we have cθ ≤ (zaγx)θ so one may conclude too
quickly that ψ(z, a, x) = (zaγx)θ is a good weight because assumptions 1 to 3

hold. Nevertheless, we have

δ sup
(b,y)∈Γ(z,a,x)

(sbγy)θ µ(ds)

(zaγx)θ
≤ δ

z̄(zaγ)γzaγx

zaγx

θ

= δz̄θ(zaγ)γθ,

a number that can be arbitrarily large for large values of z.
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In example 7, a certain factor productivity the previous period has two effects:

first, an immediate effect on output in that period and therefore in potential

capital stock today; second, a lagged effect on today’s factor productivity. In both

cases, a higher factor productivity the previous period increases current output.

Nevertheless, while (zaγx)θ in the definition of ψ in example 9 is able to account

for the first effect, it does not account for the second, and hence the unbounded

expression (zaγ)γθ in maximum feasible growth.

This does not mean that the problem is not well defined; it just means that

we have not chosen the correct weight. However, example 9 is a case in which a

suitable weight could not be found (unless some restrictive assumption is made

on the support of µ).

The most important shortcoming of the strategy developed above refers to

returns unbounded from below. When describing our recursive program, the range

of possible values for returns was defined as Λ = R ∪ {−∞}. This definition,
however, can be misleading as it can suggest that we can deal with programs with

returns unbounded from below while this is not true in general. When feasible

actions allow for an immediate return of −∞ at any stage, it will not be possible

to find a function like ψ in assumption 2.

Example 10 Consider the AK model of example 2 but with W (c,λ) = log(c) +
δλ. In this case assumption 1 could hold with ϕ(c) = 1 + | log(c)|. Nevertheless,
0 ∈ Γ(z, x) for all z, x ≥ 0 so that ϕ(0) =∞ is always feasible. Hence, there is no

real valued function ψ with the property that ϕ ≤ ψ for feasible choices.

Durán (2000) further discusses this example in the deterministic setting: in-

troducing uncertainty leaves the problem unchanged. Álvarez and Stokey (1998)

propose in the deterministic case an alternative interesting approach for homoge-

neous programs based on monotonicity.

Let us end this section recalling the flexibility of this approach to the anal-

ysis of the Bellman equation. Many economic theories are supported by models

amenable to be formally expressed in terms of identical or analogous objects as

the Bellman equation analyzed in this paper. A seminal paper by Loury (1981)

analyzes the dynamics of inequality in an overlapping generations model economy
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with altruistic educational investment. Dutta and Michel (1998) consider a simi-

lar model where it is bequests rather than educational investment the mechanism

of transmission of inequality across generations. In both cases, if the offspring’s

indirect utility function enters an agent’s utility function, two consecutive gener-

ations’s preferences are link by some Bellman-type functional equation.

Example 11 Consider a stochastic version of Loury’s (1981) economy. Any agent
is initially endowed with some stock of human capital h (also equal to income:

effective labor productivity is equal to one). The agent decides consumption c ≥ 0
and investment e ≥ 0 in her children’s education subject to c+ e ≤ h. Offspring
human capital is g(z, e) where z ≥ 0 is some productivity shock with distribution
µ. Given consumption c and offspring utility λ an agent derives utility W (c,λ).

Assume g : R2+ → R+ and W : R+ × R → R are continuous. An indirect utility
function v is said to be consistent (across generations) when

v(h) = sup
0≤e≤h

W (h− e, v(g(s, e))µ(ds))

for all h ≥ 0. Suppose that W is Lipschitz continuous of constant δ < 1

in its second argument and that there is some continuous ψ : R+ → R with

W ( . , 0) ψ <∞ and

δ sup
0≤e≤h

ψ(g(s, e))µ(ds)

ψ(h)
≤ α < 1

for some α > 0. The argument in proposition 1 is readily adapted to prove

(using lemma 1) that a unique consistent indirect utility function v exists, that is

continuous and ψ-bounded.

This literature requires fairly strong assumptions preventing the economy from

growing in the long run (human capital is just a device to generate inequality).

Those assumptions, however, in regard of our results, are unnecessary. Thus, such

these interesting models can be integrated in the model economies used to assess

the relationship between inequality and growth (see, for example, Aghion and

Bolton (1997)) or the short run dynamics of inequality in growing economies (see

the motivating paper by Díaz-Giménez et al (1997)).
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A THE WEIGHT OF TOTAL RETURNS

Throughout the two appendixes, assumptions 1 to 4 are assumed to hold.

Lemma 4 Function Φ described in (6) is well defined on C, takes on finite values,
and is continuous.

Proof : Let (c,x) be a feasible plan. For any t ≥ 0 the function ϕ(ct( . )) is

measurable: it is a composition of a measurable and a continuous function. Under

assumption 2 we have ϕ(ct(zt)) ≤ ψ(zt, xt(z
t−1)) for all zt and hence lemma 3(a)

ensures is µt integrable while

Φ(c) ≤
∞

t=0

ς t ψ(zt, xt(z
t−1))µt(dzt).

Since (3) holds with δ and α replaced by ς and β, follow the same steps as in the

proof of lemma 3(b) to prove that Φ(c) is finite.

To see continuity let (cn) ⊂ C with cn → c0 ∈ C coordinatewise. The proof

follows in three steps, each reproducing the strategy of lemma 1.

Step 1. Since ψ is continuous ψ(zt, xnt (z
t−1)) → ψ(zt, x

0
t (z

t−1)) for all zt and

all t. Under assumption 3 we have that

lim
n→∞

ψ(z1, x
n
1)µ(dz1) = ψ(z1, x

0
1)µ(dz1). (10)

and

lim
n→∞

ψ(z2, x
n
2(z1))µ(dz2) = ψ(z2, x

0
2(z1))µ(dz2) (11)

for all z1. Under assumption 4 and given the way ς and β were chosen, we have

that

ς ψ(z2, x
n
2(z1))µ(dz2) ≤ βψ(z1, x

n
1)

for all n ∈ N and all z1, and hence

βψ(z1, x
n
1)− ς ψ(z2, x

n
2(z1))µ(dz2) ≥ 0.
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Use continuity of ψ and while (11) to write

lim
n→∞

βψ(z1, x
n
1)− ς ψ(z2, x

n
2(z1))µ(dz2)

= βψ(z1, x
0
1)− ς ψ(z2, x

0
2(z1))µ(dz2)

for all z1. In regard of these two expressions Fatou theorem implies

lim inf
n→∞

βψ(z1, x
n
1)− ς ψ(z2, x

n
2(z1))µ(dz2) µ(dz1)

≥ β ψ(z1, x
0
1)µ(dz1)− ς ψ(z2, x

0
2(z1))µ(dz2)µ(dz1).

Then use (10) to write

lim inf
n→∞

−ς ψ(z2, x
n
2(z1))µ

2(dz2) ≥ −ς ψ(z2, x
0
2(z1))µ

2(dz2),

where we have already applied Fubini theorem, and conclude that

lim sup
n→∞

ψ(z2, x
n
2(z1))µ

2(dz2) ≤ ψ(z2, x
0
2(z1))µ

2(dz2).

Since ψ > 0 we can apply an analogous argument to ψ directly and write

lim inf
n→∞

ψ(z2, x
n
2(z1))µ

2(dz2) ≥ ψ(z2, x
0
2(z1))µ

2(dz2)

but these last two inequalities together imply

lim
n→∞

ψ(z2, x
n
2(z1))µ

2(dz2) = ψ(z2, x
0
2(z1))µ

2(dz2). (12)

For the next step use (12) instead of (10) and

lim
n→∞

ψ(z3, x
n
3(z

2))µ(dz3) = ψ(z3, x
0
3(z

2))µ(dz3)

instead of (11) to prove the same result for t = 3. Proceed recursively to show

that

lim
n→∞

ψ(zt, x
n
t (z

t−1))µt(dzt) = ψ(zt, x
0
t (z

t−1))µt(dzt) (13)

for all t ≥ 0.
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Step 2. Under assumption 2 we have ϕ(cnt (zt)) ≤ ψ(zt, x
n
t (z

t−1)) for all zt and

all t. Then ψ(zt, x
n
t (z

t−1)) − ϕ(cnt (z
t)) ≥ 0 and an argument identical to that of

step 1 yields

lim
n→∞

ϕ(cnt (z
t))µt(dzt) = ϕ(c0t (z

t))µt(dzt) (14)

for all t ≥ 0.
Step 3. Now let us prove that the entire sum is also continuous. From the

proof of lemma 3 and given the way ς and β where chosen we know that

ς t ϕ(cnt (z
t))µt(dzt) ≤ βtψ(z0, x

n
0)

for all n ∈ N and all t. Then

βtψ(z0, x
n
0)− ς t ϕ(cnt (z

t))µt(dzt) ≥ 0

can be seen as a function of t integrable with respect to the counting measure.

We will use again an argument similar to that of lemma 1: Fatou theorem implies

lim inf
n→∞

∞

t=0

βtψ(z0, x
n
0)− ςt ϕ(cnt (z

t))µt(dzt)

≥
∞

t=0

βtψ(z0, x
0
0)− ς t ϕ(c0t (z

t))µt(dzt)

where we have used continuity of ψ and (14) to solve the limits at the right

hand-side of the inequality. Again because ψ is continuous

lim inf
n→∞

∞

t=0

βtψ(z0, x
n
0) = lim inf

n→∞
ψ(z0, x

n
0)

1− β
=

ψ(z0, x
0
0)

1− β

so that the inequality above implies

lim inf
n→∞

−
∞

t=0

ς t ϕ(cnt (z
t))µt(dzt) ≥ −

∞

t=0

ς t ϕ(c0t (z
t))µt(dzt)

and finally

lim sup
n→∞

∞

t=0

ςt ϕ(cnt (z
t))µt(dzt) ≤

∞

t=0

ςt ϕ(c0t (z
t))µt(dzt).
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Apply Fatou theorem directly to ςt ϕ(cnt (z
t))µt(dzt) ≥ 0 and use again (14) to

conclude that

lim inf
n→∞

∞

t=0

ςt ϕ(cnt (z
t))µt(dzt) ≥

∞

t=0

ςt ϕ(c0t (z
t))µt(dzt).

These last two inequalities imply that

lim
n→∞

Φ(cn) = lim
n→∞

∞

t=0

ς t ϕ(cnt (z
t))µt(dzt) =

∞

t=0

ς t ϕ(c0t (z
t))µt(dzt) = Φ(c0)

as was to be shown.

The expected value of the continuation of a contigent plan is continuous in the

value of the shock considered, as stated in the following result.

Lemma 5 Let V : C→ R be a continuous function, then V (σ(z, c)) is measurable
as a function of z and continuous as a function of c.

Proof : Fix z ∈ Z and let (cn) ⊂ C with cn → c0 ∈ C. Coordinatewise conver-
gence implies

sup
zt−1∈Zt−1

|σt(z, cn)(zt−1)− σt(z, c
0)(zt−1)|

= sup
zt−1∈Zt−1

|ct+1(z, zt−1)− ct+1(z, zt−1)| ≤ sup
zt∈Zt

|ct+1(zt)− ct+1(zt)|→ 0

so that σ(z, . ) is continuous and therefore V (σ(z, . )) is the composition of con-

tinuous functions. Now fix c ∈ C and consider a sequence of truncated plans:

for all integer k ≥ 1 write σ(z, c)k for a sequence with σt(z, c)k = σt(z, c) for all

0 ≤ t ≤ k and σt(z, c)k = c ∈ Ω(H) for all t > k. Clearly σ(z, c)k → σ(z, c) in

the product topology as k →∞. Since V is continuous V (σ(z, c)k)→ V (σ(z, c)).

Every V (σ(z, c)k) is a measurable function; V (σ(z, c)) has been therefore shown

to be the pointwise limit of a sequence of measurable functions.

Let CΦ(C) be the class of functions C → Λ continuous with respect to the

relative product topology and bounded in norm Φ.

25



Lemma 6 For all c ∈ C the function Φ(σ( . , c)) is integrable. Further, the ex-

pression Φ(σ(z, c))µ(dz) is continuous as a function of c.

Proof : First note that lemma 4 establishes continuity of Φ while lemma 5 ensures
measurability of Φ(σ( . , c)) as a function of z. Next observe that for any c ∈ C
with x associated and z ∈ Z we have

Φ(σ(z, c))µ(dz) = lim
N→∞

N

t=0

ς t ϕ(ct+1(z, z
t))µt(dzt) µ(dz)

where each partial sum inside the big brackets is a relative product measurable

function. Note also that

ς t ϕ(ct+1(z, z
t))µt(dzt) ≤ ςt ψ(zt, xt+1(z, z

t))µt(dzt) ≤ βtψ(z, x1)

and therefore

0 ≤ lim
N→∞

N

t=0

ς t ϕ(ct+1(z, z
t))µt(dzt) ≤ lim

N→∞

N

t=0

βtψ(z, x1) =
ψ(z, x1)

1− β
.

As a consequence for every c ∈ C and z ∈ Z partial sums always converge (to a
finite real number). The limit function is measurable as it is the pointwise limit

of a sequence of measurable functions. It is µ-integrable because it is dominated

by (1− β)−1ψ(z, x1), an integrable function under assumption 3.

We now prove continuity: let (cn) ⊂ C with cn → c0 ∈ C and note that

according to the expression above

lim
n→∞

Φ(σ(z, cn))µ(dz) = lim
n→∞

lim
N→∞

N

t=0

ς t ϕ(cnt+1(z, z
t))µt(dzt) µ(dz)

= lim
n→∞

lim
N→∞

N

t=0

ς t ϕ(cnt+1(z
t+1))µt+1(dzt+1)

= lim
N→∞

N

t=0

ς t lim
n→∞

ϕ(cnt+1(z
t+1))µt+1(dzt+1)

where the first equality follows from Beppo-Levi theorem, the second from Fubini

theorem, and the third from lemma 4. In regard of (14) we have

lim
n→∞

Φ(σ(z, cn))µ(dz) = lim
N→∞

N

t=0

ςt ϕ(c0t+1(z
t+1))µt+1(dzt+1)
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but again by Fubini and Beppo-Levi theorems respectively

lim
n→∞

Φ(σ(z, cn))µ(dz) = lim
N→∞

N

t=0

ςt ϕ(c0t+1(z, z
t))µt(dzt) µ(dz)

= lim
N→∞

N

t=0

ςt ϕ(c0t+1(z, z
t))µt(dzt) µ(dz)

= Φ(σ(z, c0))µ(dz)

as was to be shown.

With these results at hand we can prove lemma 2 ensuring that Φ bounded

functions are reasonable admissible functions.

Proof of lemma 2: By lemma 5 we know that V (σ(z, c)) is measurable as a

function of z and continuous as a function of c. Also V is bounded in norm Φ by

hypothesis so that

V (σ(z, c))µ(dz) ≤ V Φ Φ(σ(z, c))µ(dz),

integrable by lemma 6. It is therefore well defined.

Let (cn) ⊂ C be such that cn → c0 ∈ C. Since V (σ(z, c)) is continuous
in c we know that V (σ(z, cn)) → V (σ(z, c0)) pointwise. Since V is dominated

by Φ and this last function has the property that Φ(σ(z, c))µ(dz) is continu-

ous in c it follows, from an argument analogous to the proof of lemma 1, that

V (σ(z, c))µ(dz) is also continuous as a function of c.

B THE PRINCIPLE OF OPTIMALITY

The proofs of this appendix are adapted from those in chapters 4 and 9 in Stokey

and Lucas (1989) in order account for non additive aggregators and ψ-bounded

value functions. Once we have ensured that U and v are well defined we will

exploit the fact that RN0 → U pointwise to prove that v actually solves the

Bellman equation.
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Proposition 3 The value function v is well defined and the unique solution to
the Bellman equation in the space Cψ(Z ×X).

Proof : That is well defined follows from Σ(z, x) = ∅ for all (z, x) and from
proposition 2 ensuring that U is well defined. Let (z0, x0) be any initial condition

and c ∈ Σ(z0, x0) with x associated. Proposition 1 ensures existence of a solution

f∗ to the Bellman equation. Then

f∗(z0, x0) ≥ W (c0, f∗(z1, x1)µ(dz1))

≥ W (c0, W (c1, f∗(z2, x2)µ(dz2))µ(dz1)).

Proceed recursively and use Lipschitz continuity of W to prove that

f∗(z0, x0) ≥ (RN0)(c)− δN |f∗(zN , xN(zN−1))|µN(dzN).

Taking the limit as N →∞ follows f∗(z0, x0) ≥ U(c) because the second term at
the right vanishes by lemma 3(b).

To see that f∗(z0, x0) ≤ U(c) + ε for all ε > 0 for some feasible c recall

that all the steps above can be repeated with equality when we consider a plan

generated by the policy correspondence. Indeed, Berge theorem ensures that the

policy correspondence defined in (9) (with f∗ instead or v) is well defined, compact

valued, and upper semicontinuous. Then, theorem 7.6 in Stokey and Lucas (1989)

ensures existence of a measurable selection from G. Using this selection it is easy

to construct a plan generated by G with f∗(z0, x0) = U(c).

Observe that f∗ has been proven to be the value function f∗ = v. Proving such

statement we have found a plan generated by G with v(z0, x0) = U(c). Obviously

an optimal plan so that we have:

Corollary 1 Let (z0, x0) be any initial condition and c ∈ Σ(z0, x0) with x asso-

ciated. If (8) holds for all zt and t ≥ 0 then it is an optimal plan.

While proposition 3 ensures that v is continuous, Berge theorem ensures that

the policy correspondence defined in (9) is well defined, compact valued, and upper

semicontinuous. Then two next corollaries follow from corollary 1, the definition

of the policy correspondence, and the proof of proposition 3.

28



Corollary 2 Every plan generated from G is optimal.

Corollary 3 There is an optimal plan.

One may wonder whether G characterizes every optimal plan. The answer in

a stochastic setting is that any optimal plan, if it is not generated by G, it is equal

to some generated plan but for zero probability states of nature. The following is

theorem 9.4 in Stokey and Lucas (1989) adapted to our case.

Proposition 4 Let (c,x) be feasible from (z0, x0) ∈ Z ×X. If it is optimal then
(8) holds for µt almost every zt and all t.

Proof : First note that v(z0, x0) = U(c). By proposition 2

v(z0, x0) =W (c0, U(σ(z1, c))µ(dz1)).

Since c is optimal, U(c) ≥ U(c ) for all c ∈ Σ(z0, x0) and therefore

W (c0, U(σ(z1, c))µ(dz1)) ≥W (c0, U(σ(z1, c ))µ(dz1)).

Let g be a measurable selection from G and construct a plan (cg,xg) from this

selection with cg0 = c0 and x
g
1 = x1. Two observations: first, since c

g
0 = c0 the

previous inequality implies that

U(σ(z1, c))µ(dz1)) ≥ U(σ(z1, c
g))µ(dz1);

second, for all z1 ∈ Z it is true that σ(z1, cg) ∈ Σ(z1, x1) but since from the first

stage on it is a G generated plan corollary 2 ensures that v(z1, x1) = U(σ(z1, cg))

so that

U(σ(z1, c)) ≤ v(z1, x1) = U(σ(z1, cg))

for all z1 ∈ Z and by definition of the value function. These two inequalities

together imply that v(z1, x1) = U(σ(z1, c)) for µ almost every z1 ∈ Z which in
turn imply that both integrals with respect to µ are equal. Since v(z0, x0) =
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W (c0, U(σ(z1, c))µ(dz1)) substitute the integral above by its value to conclude

that

v(z0, x0) =W (c0, v(z1, x1)µ(dz1)).

Hence (8) holds for t = 0.

To continue note that we have proved that v(z1, x1) = U(σ(z1, c)) for µ almost

every z1 ∈ Z so that the recursive property of U again implies that v(z1, x1) =

W (c1, U(σ2(z2, c))µ(dz2) for µ almost every z1 ∈ Z where σ2 the composition
two times of the shift operator. Following an analogous reasoning to that the

paragraph above yields

v(z1, x1) =W (c1, v(z2, x2)µ(dz2))

for µ almost every z1 ∈ Z. Hence, (8) holds for t = 1, and also v(z2, x2) =

U(σ(z2, c)) for µ2 almost every z2 ∈ Z2 which would be used in the following
step. The result follows from proceeding this way recursively.

Theorem 1 is proved in propositions 3 and 4 as well as in corollaries 1 and 3.

Corollary 2 provides us with a tool to display optimal plans while proposition 4

ensures that this tool fully characterizes optimal plans as non generated ones only

differ in null probability states of nature.
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