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THE SCORE OF CONDITIONALLY HETEROSKEDASTIC

DYNAMIC REGRESSION MODELS

WITH STUDENT t INNOVATIONS,

AN LM TEST FOR MULTIVARIATE NORMALITY

Gabriele Fiorentini, Enrique Sentana and Giorgio Calzolari

ABSTRACT

We provide numerically reliable analytical expressions for the score of con-

ditionally heteroskedastic dynamic regression models when the conditional dis-

tribution is multivariate t. We also derive one-sided and 2-sided LM tests for

multivariate normality versus multivariate t based on the …rst two moments of

the (squared) norm of the standardised innovations evaluated at the Gaussian

quasi-ML estimators of the conditional mean and variance parameters. We rein-

terpret them as speci…cation tests for multivariate excess kurtosis, and show that

they have power against leptokurtic alternatives. Finally, we analyse UK stock

returns, and con…rm that their conditional distribution has fat tails.

Keywords: Kurtosis, Inequality Constraints, ARCH, Financial Returns.
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1 Introduction

Many empirical studies with …nancial time series data indicate that the dis-

tribution of asset returns is usually rather leptokurtic, even after controlling for

volatility clustering e¤ects (see e.g. Bollerslev, Chou and Kroner (1992) for a sur-

vey). This has been long realised, and two main alternative inference approaches

have been proposed. The …rst one uses a “robust” estimation method, such as the

Gaussian quasi-maximum likelihood (ML) procedure advocated by Bollerslev and

Wooldridge (1992), which remains consistent even if the assumption of conditional

normality is violated. The second one, in contrast, speci…es a parametric leptokur-

tic distribution for the standardised innovations, such as the Student t distribution

employed by Bollerslev (1987). While the second procedure will often yield more

e¢cient estimators than the …rst if the assumed conditional distribution is correct,

it has the disadvantage that it may end up sacri…cing consistency when it is not

(see Newey and Steigerwald (1997)).

Notwithstanding such considerations, a signi…cant advantage of the quasi-ML

approach in Bollerslev and Wooldridge (1992) is that they derived convenient

closed-form expressions for the Gaussian log-likelihood score, which can be used

to obtain numerically accurate extrema of the objective function. In contrast,

estimation under an alternative distribution typically relies on numerical approxi-

mations to the derivatives, which are often poor. One of the objectives of our paper

is to partly close the gap between the two approaches, by providing numerically

reliable analytical expression for the score of the multivariate conditionally het-

eroskedastic dynamic regression model considered by Bollerslev and Wooldridge

(1992), when the distribution of the innovations is assumed to be proportional to

a multivariate t. As is well known, the t distribution nests the normal as a limiting

case, but has generally fatter tails. As documented by McCullough and Vinod

(1999), the use of analytical derivatives in the estimation routine should consid-
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erably improve the numerical accuracy of the resulting estimates. This should be

particularly true in our case, because even with fairly large sample sizes, it be-

comes very di¢cult to numerically distinguish a standardised t with 100 degrees

of freedom from another one with 5,000 degrees of freedom, or indeed from their

Gaussian limit.1

In addition, we derive a Lagrange Multiplier (LM) test for the null hypothesis

of multivariate normality versus the alternative of multivariate t, whose one-sided

version is asymptotically equivalent to the corresponding Likelihood Ratio (LR)

and Wald tests. As usual, the main advantage of the LM test is that it is ex-

tremely simple to implement, because it only requires estimates of the standard-

ised innovations evaluated at precisely the Gaussian quasi-ML estimators of the

conditional mean and variance parameters. We also re-interpret our proposed test

as a moment speci…cation test of multivariate excess kurtosis, and show that it

has non-trivial power against leptokurtic multivariate distributions. Therefore, it

is not surprising that for some popular models, our proposed test coincides with

the kurtosis component of Mardia’s (1970) test for multivariate normality, which

in turn reduces to the well-known Jarque and Bera (1980) test in the univariate

case. However, it is important to stress that those tests cannot be directly applied

to standardised innovations in more general models, e.g. when the innovations are

conditionally heteroskedastic. Finally, we include an illustrative empirical appli-

cation to UK stock returns, which con…rms that their conditional distribution has

rather fat tails.

The rest of the paper is organised as follows. First, we obtain closed-form

1For instance, Micro…t 4.0, which uses numerical derivatives to compute the score of uni-

variate conditionally heteroskedastic regression models with standardised Student t innovations,

explicitly warns the user that numerical accuracy cannot be achieved when the estimated de-

grees of freedom parameter is larger than 25, and recommends the use of the normal distribution

instead (see Pesaran and Pesaran (1997), p. 457).
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expressions for the log-likelihood score vector in section 2. Then, in section 3, we

introduce our proposed LM test, discuss its properties, relate it to the existing

literature, and present the empirical results. Finally, our conclusions can be found

in section 4. Proofs are gathered in the appendix.

2 Analytical derivatives

2.1 A multivariate conditionally heteroskedastic dynamic

regression model with Student t innovations

In a multivariate dynamic regression model with time-varying variances and

covariances, the vector of N dependent variables, yt, is typically assumed to be

generated by the following equations:

yt = ¹0t + §
1=2
0t "¤

t

¹0t = ¹(xt; µ0)

§0t = §(xt; µ0)

where ¹() and vech [§()] are N £ 1 and N(N + 1)=2 £ 1 vector of functions

known up to the p£ 1 vector of true parameter values µ0, xt are k predetermined

explanatory variables, which may contain contemporaneous conditioning variables

zt, as well as past values of yt and zt, It¡1 denotes the information set available

at t ¡ 1, §
1=2
0t is an N £ N “square root” matrix such that §

1=2
0t §

1=20
0t = §0t, and

"¤
t is a vector martingale di¤erence sequence satisfying E("¤

t jzt; It¡1) = 0 and

V ("¤
t jzt; It¡1) = IN . As a consequence,

E(ytjzt; It¡1; µ0) = ¹0t

V (ytjzt; It¡1; µ0) = §0t
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As in Bollerslev (1987), Baillie and Bollerslev (1989) and Harvey, Ruiz and

Sentana (1992) among many others, our approach is based on the t-distribution.

In particular, we assume that conditional on zt and It¡1, "¤
t is independent and

identically distributed as a standardised multivariate t with º degrees of freedom.

That is,

"¤
t =

s
º0 ¡ 2

»t

"y
t ;

where "y
t is a multivariate standard normal variate, and »t an independent Â2

random variable with º0 > 2 degrees of freedom.2As is well know, the multivariate

Student t approaches the multivariate normal as º0 !1, but has generally fatter

tails (see e.g. Zellner (1971)). For that reason, it is often more convenient to use

the reciprocal of the degrees of freedom parameter, ´0 = 1=º0, as a measure of

tail thickness, which will always remain in the …nite range 0 · ´0 < 1=2 under

our assumptions.3

2.2 The log-likelihood function

Let Á = (µ0;´)0 denote the p + 1 parameters of interest. The log-likelihood

function of a sample of size T (ignoring initial conditions)4takes the form LT (Á) =PT
t=1 lt(Á), with lt(Á) =c(´) + gt(Á):

2For the degrees of freedom to take any real value above 2, »t must in fact be an independent

Gamma variate with mean º0 and variance 2º0.
3Note that for ´0 ¸ 0:5 the standardised t-distribution cannot be de…ned because the variance

of the non-standardised t-distribution becomes in…nite when º0 · 2.
4Nevertheless, it is important to stress that since both ¹(xt; µ) and §(xt; µ) are often recur-

sively de…ned (as in e.g. Arma or Garch models), it may be necessary to choose some initial

values to start up the recursions. As pointed out by Fiorentini, Calzolari and Panatoni (1996),

this fact should be taken into account in computing the score analytically, in order to make the

results exactly comparable with those obtained by using numerical derivatives.
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c(´) = ln

·
¡

µ
N

2
+

1

2´

¶¸
¡ ln

·
¡

µ
1

2´

¶¸
¡ N

2
ln

µ
1

´
¡ 2

¶
¡ N

2
ln ¼ (1)

and

gt(Á) = ¡1

2
ln j§t(µ)j ¡

µ
N

2
+

1

2´

¶
log

·
1 +

´

(1¡ 2´)
&t(µ)

¸
(2)

where ¡() is Euler’s gamma (or factorial) function, §t(µ) = §(xt; µ), &t(µ) = "¤0
t (µ)

£"¤
t (µ), "¤

t (µ) = §¡1=2
t (µ)"t(µ), "t(µ) = yt ¡ ¹t(µ), and ¹t(µ) = ¹(xt; µ). Not

surprisingly, it can be readily veri…ed that

lim
´!0+

c(´) = ¡N

2
ln 2¼

lim
´!0+

gt(Á) = ¡1

2
ln j§t(µ)j ¡ 1

2
&t(µ)

which con…rms that LT (µ; 0) collapses to a conditionally Gaussian log-likelihood.

Given the nonlinear nature of the model, a numerical optimisation procedure

is usually required to obtain ML estimates of Á. Assuming that all the elements

of ¹(xt; µ) and §(xt; µ) are di¤erentiable functions of µ, we can use a standard

gradient method, where the required derivatives can be numerically approximated

by re-evaluating LT (Á) with each parameter in turn shifted by a small amount.

But as we shall show in the next subsection, in this case it is also possible to

obtain simple analytical expressions for the score.

The use of analytical derivatives in the estimation routine, as opposed to their

numerical counterparts, should considerably improve the accuracy of the resulting

estimates (see McCullough and Vinod (1999)). This is particularly true in our

case, because even if the sample size T is large, the Student’s t-based log-likelihood

function is often rather ‡at for very small values of ´, and it becomes very di¢cult

to numerically distinguish a standardised t with 100 degrees of freedom from

another one with 5,000 degrees of freedom, or indeed from their Gaussian limit.
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The analytical derivatives that we shall obtain could also be used even if the

coe¢cients of the model were reparametrised as Á = f(½), with ½ unconstrained,

in order to maximise the unrestricted log-likelihood function LT [f(½)] = LT (½).

In particular, we would have that

@LT (½)

@½
=

@LT (Á)

@Á

@f 0(½)

@½
(3)

Nevertheless, one has to be careful with such transformations, because they

may e.g. introduce false extrema (see section 7.4 of Gill, Murray and Wright

(1981)).

2.3 The score function

Let st(Á) = @lt(Á)=@Á denote the score function, and partition it in two blocks:

sµt(Á) =
@lt(Á)

@µ
=

@gt(Á)

@Á

s´t(Á) =
@lt(Á)=@´

@´
=

@c(´)

@´
+

@gt(Á)

@´

After tedious but otherwise straightforward algebraic manipulations, we can

show that:

sµt(Á) =
@¹0

t(µ)

@µ
§

¡1=2
t (µ)

N´ + 1

1¡ 2´ + ´&t(µ)
"¤

t (µ) (4)

+
1

2

@vec0 [§t(µ)]

@µ

h
§

¡1=2
t (µ)­ §¡1=2

t (µ)
i

vec

·
N´ + 1

1¡ 2´ + ´&t(µ)
"¤

t (µ)"¤0
t (µ)¡ IN

¸
where the Jacobian matrices @¹t(µ)=@µ0 and @vec [§t(µ)] =@µ0 depend on the par-

ticular speci…cation adopted.5

Notice that sµt(µ;0) reduces to the multivariate normal expression in Bollerslev

and Wooldridge (1992). But even if ´0 > 0, we can prove directly that the score

vector sµt(Á) evaluated at the true parameter values has the martingale di¤erence

property (cf. Crowder (1976)). Speci…cally,

5See e.g. Sentana (2000) for the case of a conditionally heteroskedastic in mean factor model.
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Proposition 1

E [sµt(Á0)jzt; It¡1; Á0] = 0

Unlike in the Gaussian case, though, this result is no longer generally valid

when the conditional distribution is misspeci…ed (see also Newey and Steigerwald

(1997)).

Similarly, we can show that for ´ > 0

@c(´)

@´
=

1

2´2

·
Ã

µ
1

2´

¶
¡ Ã

µ
N

2
+

1

2´

¶
+

N´

(1¡ 2´)

¸
(5)

and

@gt(Á)

@´
=

1

2´2
ln

·
1 +

´

1¡ 2´
&t(µ)

¸
¡

µ
1

2´
+

N

2

¶
&t(µ)

(1¡ 2´) [1¡ 2´ + ´&t(µ)]
(6)

where Ã(x) = @ ln ¡(x)=@x is the so-called di-gamma function (or Gauss’ psi func-

tion; see Abramowitz and Stegun (1964)), which can be computed using standard

routines. If we then take limits as ´ ! 0 from above, we can show that

lim
´!0+

@c(´)

@´
=

N(N + 2)

4

and

lim
´!0+

@gt(Á)

@´
= ¡N + 2

2
&t(µ) +

1

4
&2

t (µ)

so that

s´t(µ; 0) =
N(N + 2)

4
¡ N + 2

2
&t(µ) +

1

4
&2

t (µ) (7)

where s´t(µ; 0) should be understood as a directional derivative.

Unfortunately, both @gt(Á)=@´ and especially @c(´)=@´ are numerically un-

stable for ´ small. When N = 1, for instance, Figure 1 shows that the numerical

accuracy in the computation of (5) is very poor for ´ small enough, and eventually
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breaks down. The implicit threshold value, ¹́ say, is clearly hardware and software

dependent, but in our experience, a value of ¹́ equal to 10¡4 can be regarded as

safe.

When 0 · ´ < ¹́, we suggest to evaluate (5) and (6) by means of (directional)

…rst order Taylor expansions around ´ = 0. Let us start with the …rst term.

Straightforward manipulations show that for ´ > 0

@2c(´)

@´2
=

N

2

4´ ¡ 1

´2 (1¡ 2´)2 ¡
1

´3

·
Ã

µ
1

2´

¶
¡ Ã

µ
N

2
+

1

2´

¶¸
+

1

4´4

·
Ã0

µ
1

2
N +

1

2´

¶
¡ Ã0

µ
1

2´

¶¸
where Ã0 (x) = @2 ln ¡(x)=@x is the so-called tri-gamma function (see Abramowitz

and Stegun (1964)). Although @2c(´)=@´2 is also rather unstable near the origin,

if we again take limits as ´ ! 0 from above, we can show that

lim
´!0+

@2c(´)

@´2
= ¡N(N + 2)(N ¡ 5)

6

so that

@c(´)

@´
=

N(N + 2)

4
¡ N(N + 2)(N ¡ 5)

6
´ + O(´2) (8)

Similarly, we obtain that

@gt(Á)

@´
= ¡N + 2

2
&t(Á) +

1

4
&2

t (Á) (9)

+

·
¡(4 + 2N)&t(Á) +

N + 4

2
&2

t (Á)¡ 1

3
&3

t (Á)

¸
´ + O

¡
´2

¢
While Figure 1 con…rms that (8) provides an excellent approximation for ´

small, it is important to mention that (9) is only guaranteed to provide a good

approximation if in addition & t(Á) is not excessively large.
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3 An LM Test for Multivariate normality

3.1 The information matrix under the null

We can easily compute an LM (or e¢cient score) test for multivariate normality

versus multivariate t distributed innovations on the basis of the value of the score

of the log-likelihood function evaluated at the restricted parameter estimates ~ÁT =

arg maxÁ LT (Á) subject to ´ = 0. Importantly, note that ~ÁT = (~µ
0
T ; 0)0 is such

that ~µT are precisely the Gaussian quasi-ML estimators proposed by Bollerslev and

Wooldridge (1992). Rather conveniently, it turns out that the information matrix

is block-diagonal between µ and ´ when ´0 = 0, as the following Proposition

shows:

Proposition 2 If ´0 = 0, then

V [sÁ(µ0; 0)jÁ0] =

24 V [sµt(µ0; 0)jÁ0] 0

0 N(N + 2)=2

35
where

V [sµt(µ0; 0)jÁ0] = ¡E [hµµt(µ0; 0)jÁ0] = E

½
@¹0

t(µ0)

@µ
§¡1

t (µ0)
@¹t(µ0)

@µ0

+
1

2

@vec0 [§t(µ0)]

@µ

£
§¡1

t (µ0)­ §¡1
t (µ0)

¤ @vec0 [§t(µ0)]

@µ

¯̄̄̄
Á0

¾
As a result, the element of the inverse information matrix corresponding to

the tail thickness parameter ´ will be given by the reciprocal of the last diagonal

element of the information matrix.

Note also that the block-diagonality of the information matrix implies that a

joint LM test of multivariate normality and any other restrictions on the condi-

tional mean and conditional variance parameters µ, can be decomposed in two

additive components, the …rst of which would be precisely our proposed test (see

Bera and McKenzie (1987)).
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3.2 Two-sided tests

In view of Proposition 2, we can compute the information matrix version of

the LM test simply as follows:

¸I
2T (~µT ) =

n
T ¡1=2

P
t

h
N(N + 2)=4¡ (1 + N=2) & t(~µT ) + (1=4) &2

t (~µT )
io2

N(N + 2)=2
(10)

which, importantly, only depends on the …rst two sample moments of &t(~µT ).

If H0 : ´ = 0 is true, then ¸I
2t(~µT ) will have an asymptotic chi-square distri-

bution with one degree of freedom. The limiting distribution could be obtained

directly as in Proposition 3 below by combining the block-diagonality of the in-

formation matrix with the following result:

Lemma 1 The squared Euclidean norm of the true standardised innovations,

& t(µ0), is independently and identically distributed as a Â2
N random variable with

N degrees of freedom under the null, and as N(º0¡2)=º0 times an F variate with

N and º0 degrees of freedom under the alternative.

An asymptotically equivalent test, both under the null and under local alter-

natives, is given by the usual outer product version of the LM test:

¸O
2T (~µT ) =

n
T ¡1=2

P
t

h
N(N + 2)=4¡ (1 + N=2) & t(~µT ) + (1=4) &2

t (~µT )
io2

T ¡1
P

t

h
N(N + 2)=4¡ (1 + N=2) &t(~µT ) + (1=4) &2

t (~µT )
i2 (11)

which can be computed as T times the uncentred R2 from the regression of 1 on

s´t(~µT ; 0). Alternatively, we could use the Hessian version of the LM test, i.e.:

¸H
2T (~µT ) =

n
T ¡1=2

P
t

h
N(N + 2)=4¡ (1 + N=2) & t(~µT ) + (1=4) &2

t (~µT )
io2

¡T ¡1
P

t h´´t(~µT ; 0)
(12)

with

h´´t(µ; 0) = ¡N(N + 2)(N ¡ 5)

6
¡ (4 + 2N)& t(µ) +

N + 4

2
&2

t (µ)¡ 1

3
&3

t (µ)
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where we have used the fact that

lim
´!0+

@2lt(Á)

@´2
= lim

´!0+

@2c(´)

@´2
+ lim

´!0+

@2gt(Á)

@´2

and have obtained the required expressions from (8) and (9).

Given that the numerators of ¸I
2T (~µT ); ¸O

2T (~µT ) and ¸H
2T (~µT ) coincide, while the

denominators of ¸H
2T (~µT ) and ¸O

2T (~µT ) converge in probability to the denominator

of ¸I
2T (~µT ), which contains no stochastic terms, we would expect a priori that

¸I
2T (~µT ) would be the version of the test with the smallest size distortions, followed

by ¸H
2T (~µT ), whose denominator involves the …rst three sample moments of &t(µ),

and …nally ¸O
2T (~µT ), whose calculation also requires its fourth sample moment (see

also Davidson and MacKinnon (1983)).

3.3 One-sided tests

It is important to mention that the fact that ´ = 0 lies at the boundary of the

admissible parameter space invalidates the usual Â2 distribution of the LR and

Wald tests, which under the null will be more concentrated towards the origin

(see Andrews (2000) and the references therein, as well as the simulation evidence

in Bollerslev (1987)). The intuition can be perhaps more easily obtained in terms

of the Wald test. If ´ could take both positive and negative values, then, under

standard regularity conditions, its unrestricted ML estimator ^́T would have an

approximately normal distribution with mean 0 and variance 2= [TN(N + 2)] in

large samples by virtue of Proposition 2. However, since ^́T cannot really be

negative, then
p

T ^́T will in fact have an asymptotic normal distribution with

mean 0 and variance 2= [N(N + 2)] censored from below at 0. As a result, the Wald

test will be an equally weighted mixture of a chi-square distribution with 0 degrees

of freedom,6and a chi-square distribution with 1 degree of freedom. In practice,

6By convention, Â2
0 is a degenerate random variable that equals zero with probability 1.
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obviously, we need simply compare the t-statistic
p

TN(N + 2)=2^́T with the

appropriate one-sided critical value from the normal tables. For analogous reasons,

the asymptotic distribution of the LR test will also be degenerate half the time,

and a chi-square with one degree of freedom the other half.

Although the above argument does not invalidate the distribution of the LM

statistics (10), (11) and (12), intuition suggests that the one-sided nature of the

alternative hypothesis should be taken into account to obtain a more powerful

test (cf. Demos and Sentana (1998)). For that reason, we also propose a simple

one-sided version of the LM test for multivariate normality. In particular, since

E [s´t(µ0; 0)jÁ0] > 0

when ´0 > 0 in view of Proposition 3 below, we propose to use

¸I
1T (~µT ) = ¸I

2t(~µT ) ¤ sign

"
T ¡1=2

X
t

s´t(~µT ; 0)

#
as our one-sided LM test, and to compare it to the same 50:50 mixture of chi-

squares 0 and 1. In this context, we would reject H0 at the 100®% signi…cance

level if the average score with respect to ´ evaluated at the Gaussian quasi-ML

estimators ~ÁT = (~µ
0
T ; 0)0 is positive and ¸I

1T (~µT ) exceeds the 100(1¡2®) percentile

of a Â2
1 distribution. Since the Kuhn-Tucker (KT) multiplier associated with

the inequality restriction ´ ¸ 0 is equal to max
h
¡T ¡1

P
t s´t(~µT ; 0); 0

i
, the one-

sided LM test is asymptotically equivalent to the KT multiplier test introduced

by Gourieroux, Holly and Monfort (1980), which in turn is equivalent in large

samples to the LR and Wald tests. As we argued before, the reason is that those

tests are implicitly one-sided in our context. In this respect, it is important to

mention that in the case of a single restriction, those one-sided tests should be

asymptotically locally more powerful (see e.g. Andrews (2000)).

Nevertheless, it is still interesting to compare the power properties of the one-

sided and two-sided LM statistics. But given that the block-diagonality of the
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information matrix is generally lost under the alternative of ´0 > 0, and its exact

form is unknown, we can only get closed form expressions for the case in which

the standardised innovations "¤
t are directly observed.7To do so, we shall use the

following result:

Proposition 3 If "¤
t is independent and identically distributed as a standardised

multivariate t random vector with º0 > 8 degrees of freedom, then

T ¡1=2
X

t

"
s´t(µ0; 0)¡E [s´t(µ0; 0)jµ0; º0]

V 1=2
£
s2

´t(µ0; 0)jµ0; º0

¤ #
d! N (0; 1)

where

E [s´t(µ0; 0)jµ0; º0] =
N(N + 2)

4

µ
º0 ¡ 2

º0 ¡ 4
¡ 1

¶
E

£
s2

´t(µ0; 0)jµ0; º0

¤
= ¡3N2(N + 2)2

16
+

N(N + 2)2(3N + 4)

8

º0 ¡ 2

º0 ¡ 4

¡N(N + 2)2(N + 4)

4

(º0 ¡ 2)2

(º0 ¡ 4)(º0 ¡ 6)

+
N(N + 2)(N + 4)(N + 6)

16

(º0 ¡ 2)3

(º0 ¡ 4)(º0 ¡ 6)(º0 ¡ 8)

On this basis, we can obtain the asymptotic power of the one-sided and two-

sided variants of the information matrix version of the LM test for any possible

signi…cance level ®. The results for ® = :05 are plotted in Figures 2, 3 and 4 for

´0 in the range 0 · ´0 · :04, that is º0 ¸ 25. Not surprisingly, the power of

both tests uniformly increases with the sample size T for a …xed alternative, and

as we depart from the null for a given sample size. Importantly, their power also

increases with the number of series N . As expected, the one-sided test is more

7In more realistic cases, though, the results are likely to be qualitatively similar.
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powerful than the usual two-sided one.8The di¤erence is particularly noticeable

for small departures from the null, which is precisely when power is generally low.

For instance, when º0 = 100, T = 500 and N = 10, the power of the one-sided

test is almost 60% while the power of its two-sided counterpart is less than 50%

(see Figure 4). Similarly, the one-sided tests for N = 1 and N = 5 are initially

more powerful than the two-sided tests for N = 2 and N = 10 respectively.

3.4 Relationship with existing kurtosis tests

Following Mardia (1970), we can de…ne the population coe¢cient of multivari-

ate excess kurtosis as:

· =
E [&2

t (µ0)]

N(N + 2)
¡ 1; (13)

which equals 2=(º0 ¡ 4) for the multivariate t distribution, as well as its sample

counterpart:

¹·T (µ) =
T ¡1

PT
t=1 &2

t (µ)

N(N + 2)
¡ 1 (14)

On this basis, we can write the numerator of (10) as

T ¡1=2

TX
t=1

s´t(~µT ; 0) =
N(N + 2)

4

(
T 1=2¹·T (~µT )¡ 2T ¡1=2

TX
t=1

"
&t(~µT )

N
¡ 1

#)

Since · is trivially 0 under the null from Lemma 1, our LM test of multivariate

normality versus multivariate t is essentially a test of multivariate excess kurtosis.

In fact, if we ignore the term

T ¡1=2
TX

t=1

"
&t(~µT )

N
¡ 1

#
(15)

8However, as ´0 approaches 1=8 from below, the one-sided test looses power for …xed N and

T , and eventually the two-sided test becomes more powerful. This is due to the fact that the

variance of the score goes to in…nity as º0 ! 8 from Proposition 3.
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(10) coincides with the kurtosis component of Mardia’s (1970) test for multivariate

normality, which in turn reduces to the popular Jarque and Bera (1980) test in

the univariate case.

Since T ¡1
PT

t=1 "¤
t (~µT )"¤0

t (~µT ) = IN implies that (15) is identically 0, it follows

from (4) that their tests are valid in nonlinear regression models with conditionally

homoskedastic disturbances estimated by Gaussian quasi-ML, if the covariance

matrix of the innovations, §, is unrestricted and does not a¤ect ¹(xt; µ), and the

conditional mean parameters and the elements of vech(§) are variation free. How-

ever, ignoring (15) in more general contexts may lead to size distortions, because

it is precisely the inclusion of such a term what makes s´t(µ0; 0) orthogonal to the

other elements of the score. The same point was forcefully made by Davidson and

MacKinnon (1993) in a univariate context (see section 16.7 of their textbook),

and not surprisingly, their suggested test for excess kurtosis turns out to be equal

to (11), the outer product version of our LM test. Similarly, the term (15) also

appears explicitly in the Kiefer and Salmon (1983) LM test for univariate excess

kurtosis based on a Hermite polynomial expansion of the density, which coincides

in their context with the information matrix version of our test (10).

Several authors have recently suggested alternative multivariate generalisa-

tions of the Jarque-Bera test, which as far as kurtosis is concerned, consist in

adding up the univariate kurtosis tests for each element of "¤
t (~µT ) (see e.g. Doornik

and Hansen (1994), Lütkepohl (1993) or Kilian and Derimoglou (2000)). But

apart from the issue discussed in the previous paragraph, a potential shortcom-

ing of those tests is that they are not invariant to the way in which the resid-

uals "t(~µT ) are orthogonalised to obtain "¤
t (~µT ). For instance, while Doornik

and Hansen (1994) obtain §
1=2
t (~µT ) from the spectral decomposition of §t(~µT ),

the other authors use a Cholesky decomposition. In this respect, note that by

implicitly assuming that the excess kurtosis is the same for all possible linear
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combinations of the true standardised innovations "¤
t , we obtain a test statistic

which is numerically invariant to orthogonal rotations of §1=2
t (~µT ) (see also Mardia

(1970)). If "¤
t were directly observed, the relative power of the two testing pro-

cedures would depend on the exact nature of the alternative hypothesis. Given

that the "¤
it’s are independent across i = 1; : : : ; N under the null, the situation is

completely analogous to the comparison between the one-sided tests for Arch(q)

of Lee and King (1993) and Demos and Sentana (1998). In particular, if we de…ne

·i = E("¤4
it =3) ¡ 1 for i = 1; : : : ; N , our test would be more powerful against al-

ternatives close to ·i = · for all i, while the additive test would have more power

when the ·0
is were rather dispersed.

3.5 A re-interpretation of the LM test as a moment spec-

i…cation test

As usual, it is possible to re-interpret (10) as a moment speci…cation test of

the restriction

E [s´t(µ0; 0)jÁ0] = E

·
N(N + 2)

4
¡ N + 2

2
&t(µ) +

1

4
&2

t (µ)

¯̄̄̄
Á0

¸
= 0 (16)

In order to analyse in which directions such a moment test has power, it is

convenient to state the following auxiliary results, which correspond to Theorem

2.5 (iii), and Examples 2.4 and 2.5, respectively, in Fang, Kotz and Ng (1990):

Theorem 1 "±
t is distributed as a spherically symmetric multivariate random vec-

tor of dimension N if and only if "±
t = %tut, where ut is uniformly distributed on

the unit sphere surface in RN , and %t is an non-negative random variable which

is independent of ut.

Example 1 "y
t is distributed as a standardised multivariate normal random vector

of dimension N if and only if "y
t =

p
³tut, where ut is uniformly distributed on the
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unit sphere surface in RN , and ³t is an independent chi-square random variable

with N degrees of freedom.

Example 2 "¤
t is distributed as a standardised multivariate Student t random

vector of dimension N if and only if "¤
t =

p
(º0 ¡ 2) ³t=»tut, where ut is uni-

formly distributed on the surface unit sphere in surface RN , and ³t and »t are

two mutually independent chi-square random variables with N and º0 degrees of

freedom respectively, independent of ut.

The variables %t and ut are usually referred to as the generating variate and

the uniform base of the spherical distribution. In this light, our proposed LM test

is simply a test of whether the (squared) generating variate &t(µ0) is Â2
N against

the alternative that it is proportional to an FN;º0
. But since our test is based on

comparing the …rst two moments of & t(µ0), the two-sided version has non-trivial

power against any other spherically symmetric distribution for which s´t(µ0; 0) has

expected value di¤erent from zero. For instance, if we consider the extreme case

in which the true standardised disturbances were in fact uniformly distributed on

the unit sphere surface in RN , so that &t(µ0) = N 8t and · = ¡(N + 1)=(N + 2),

then

s´t(µ0; 0) =
¡N(N + 1)

4
;

which means that we would reject the null hypothesis with probability approach-

ing one as T goes to in…nite. On the other hand, the one-sided LM test only has

power for the leptokurtic subclass of spherically symmetric distributions. Never-

theless, as we shall see in the next subsection, standardised residuals are frequently

leptokurtic and rarely platykurtic in practice.
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3.6 An empirical application to UK stock returns

In order to investigate the practical performance of the LM test for normality

discussed in the previous subsections, we use the results in Sentana (1995) for

monthly excess returns on UK stocks for the period 1971:2 to 1990:10 (237 ob-

servations). In particular, he estimated by Gaussian quasi-ML both a univariate

gqarch (1,1)-M model for the FT500 excess return series, and a conditionally

heteroskedastic in mean latent factor model for the excess returns on 26 sectorial

indices, with a gqarch (1,1) parametrisation for the common factor, and a con-

stant diagonal covariance matrix for the idiosyncratic terms. On the basis of the

parameter estimates that he obtained, we generate the time series of (squared) Eu-

clidean norms of the standardised innovations, & t(~µT ). Then, we compute normal

versions of the LM tests using the statistic:

¿ I
T (~µT ) =

p
T

1

T

X
t

h
N(N + 2)=4¡ (1 + N=2) &t(~µT ) + (1=4) &2

t (~µT )
i

p
N(N + 2)=2

so that

¸I
2T (~µT ) =

h
¿ I

T (~µT )
i2

¸I
1T (~µT ) =

h
¿ I

T (~µT )
i2

¢ sign
h
¿ I

T (~µT )
i

We …nd that ¿ I
T (~µT ) takes the value 13.71 for the aggregate stock market

returns (N = 1), which is extremely signi…cant regardless of whether we use a

one-sided or a two-sided critical value. As expected, we also …nd that the corre-

sponding test statistic is even higher (54.29) for sectorial returns (N = 26). As

indicated in the introduction, such results are not very surprising in view of the

existing empirical evidence, and simply re‡ect the fact that the standardised inno-

vations are rather leptokurtic. In particular, the coe¢cient of multivariate excess

kurtosis (14) for the sectorial data is 0.3698, which as the test statistic clearly
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indicates, is very di¤erent from the theoretical value of · = 0 under multivariate

normality (see (13)).

In fact, we can easily obtain from ¹·T (~µT ) a (two-stage) method of moments

(MM) estimator of the degrees of freedom parameter º that exploits the theoretical

relationship · = 2=(º ¡ 4), or º = 4 + 2=·. The resulting MM estimate of º is

9.41, which is rather close to the ML estimate of 9.73 obtained by Sentana (1991)

when he considered a multivariate t distribution for the standardised innovations

of the UK sectorial returns.
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4 Conclusions

In the context of the general multivariate dynamic regression model with time-

varying variances and covariances considered by Bollerslev and Wooldridge (1992),

our two main contributions are:

1. We provide numerically reliable analytical expressions for the score vector

when the distribution of the innovations is assumed to be proportional to a

multivariate t.

2. We derive an LM test for multivariate normal versus multivariate t inno-

vations, which is extremely simple to implement, because it is based on

the …rst two sample moments of the (squared) Euclidean norm of the stan-

dardised innovations evaluated at the Gaussian quasi-ML estimators of the

conditional mean and variance parameters.

Since the existing simulation evidence indicates that the …nite sample size

properties of many normality tests could be signi…cantly di¤erent from the nominal

levels (see e.g. Doornik and Hansen (1994), Jarque and Bera (1987), or White

and MacDonald (1980)), the results in Kilian and Demiroglu (2000) suggest that

a fruitful avenue for future research would be to consider bootstrap procedures in

order to reduce size distortions.

Similarly, given that neither version of our proposed LM test has power against

asymmetric alternatives by construction, it would also be worth exploring ways

in which they can be complemented with tests for multivariate symmetry. One

possibility would be to use the asymmetry component of Mardia’s (1970) test for

multivariate normality, which is also numerically invariant to the way in which the

residuals are orthogonalised. As argued in the previous section, though, if the con-

ditional mean and variance parameters have to be estimated, it would be necessary
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to modify his test statistic to make it orthogonal to all the elements of sµt(µ0; 0)

(see Davidson and MacKinnon (1993) for the correction involved in the univari-

ate case). Theorem 1 also suggests an alternative way of testing for multivariate

symmetry, which would be based on the fact that the normalised innovations

"¤
t (µ0)=

p
& t(µ0) would be uniformly distributed on the unit sphere surface in RN

independently of &t(µ0) under the null of multivariate normality. For instance,

in the case of N = 1, the normalised innovations are simply "¤
t (µ0)= j"¤

t (µ0)j =

2sign ["¤
t (µ0)] ¡ 1. But since sign ["¤

t (µ0)] is distributed as a Bernoulli random

variable with parameter 1=2 independently of "¤
t (µ0), a simple test for univariate

symmetry would be the LM test of H0 : E fsign ["¤
t (µ0)]jÁ0g = 1=2 (see Engle

(1984)). Unfortunately, while sign ["¤
t (µ0)] ¡ 1=2 is orthogonal to "¤2

t (µ0) ¡ 1, it

is not orthogonal to "¤
t (µ0), which means that we cannot ignore the fact that µ0

will often have to be replaced by ~µT . Similarly, when N = 2, we could decompose

"¤
t (µ0) in the polar coordinates

p
&t(µ0) and Ã1t(µ0) = arctan ["2t(µ0)="1t(µ0)],

where the angle Ã1t(µ0) should be distributed as a uniform continuous random

variable in the interval 0 to 2¼. A generalisation of such an approach to higher

dimensions could be obtained on the basis of Theorem 2.11 in Fang, Kotz and Ng

(1990), who show that the transformation of a spherically symmetric multivariate

random vector of dimension N ¸ 2 to spherical coordinates produces N mutually

independent random variables with known distribution.
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Appendix

Proofs of results

Proposition 1

We can use Example 2 to write

N´0 + 1

1¡ 2´0 + ´0&t(µ0)
"¤

t (µ0) =
(N´0 + 1)

p
(º0 ¡ 2) ³t

(1¡ 2´0)
p

»t + ´0(º0 ¡ 2)³t=
p

»t

ut (17)

and

N´0 + 1

1¡ 2´0 + ´0&t(µ0)
"¤

t (µ0)"¤0
t (µ0)¡ IN =

N´0 + 1

´0

³t

»t + ³t

utu
0
t ¡ IN (18)

The expectation of (17) is clearly zero because all the variables involved are mu-

tually independent, and E(ut) = 0 from Theorem 2.7 in Fang, Kotz and Ng

(1990).

The same theorem also implies that E(utu
0
t) = N¡1IN . In addition, since

³t=(»t + ³ t) is an independent beta variate with parameters N and º0, whose

expected value is N=(º0 + N), then (18) will also be 0.

Finally, the vector martingale di¤erence property trivially follows from the fact

that ut, ³t and »t are independent of zt and It¡1 by assumption.

Proposition 2

First of all, it is easy to see that:

E [s´t(µ0; 0)jzt; It¡1; Á0] =
N(N + 2)

4
¡ (N + 2)

2
E [&t(µ0)jzt; It¡1; Á0]

+
1

4
E

£
&2

t (µ0)jzt; It¡1; Á0

¤
=

N(N + 2)

4
¡ N(N + 2)

2
+

2N + N2

4
= 0

where we have used the fact that under the null & t(µ0) is an i:i:d: chi-square variate

with N degrees of freedom (see Lemma 1), whose uncentred moment of integer
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order r is

E(³t) = 2r

µ
r ¡ 1 +

N

2

¶ µ
r ¡ 2 +

N

2

¶
¢ ¢ ¢

µ
1 +

N

2

¶
N

2

(see e.g. Mood, Graybill and Boes (1973)).

Similarly, we can show that

V [s´t(µ0; 0)jzt; It¡1; Á0] = E
£
s2

´t(µ0; 0)jzt; It¡1; Á0

¤
=

N2(N + 2)2

16

¡N(N + 2)2

4
E [&t(µ0)jzt; It¡1; Á0] +

·
(N + 2)2

5
+

N(N + 2)

8

¸
E

£
&2

t (µ0)jzt; It¡1; Á0

¤
¡N + 2

4
E

£
&3

t (µ0)jzt; It¡1; Á0

¤
+

1

16
E

£
&4

t (µ0)jzt; It¡1; Á0

¤
=

N(N + 2)

2

As for the cross-product terms of the information matrix, note that

E [sµt(µ0; 0)s´t(µ0; 0)jzt; It¡1; Á0] =
@¹0

t(µ0)

@µ
§

¡1=2
t (µ0)E ("¤

t (µ0)s´t(µ0; 0)jzt; It¡1; Á0)

+
1

2

@vec0 [§t(µ)]

@µ

h
§

¡1=2
t (µ0)­ §¡1=2

t (µ0)
i

E
©

vec
£
"¤

t (µ0)"
¤0
t (µ0)¡ IN

¤
s´t(µ0; 0)jzt; It¡1; Á0

ª
If we then use the expressions for the moments up to order six of the spherical

multivariate normal distribution (see e.g. Balestra and Holly (1990)), we can show

that:

E ("¤
t (µ0)s´t(µ0; 0)jzt; It¡1; Á0) =

N(N + 2)

4
E ("¤

t (µ0)jzt; It¡1; Á0)

¡(N + 2)

2
E ("¤

t (µ0)&t(µ0)jzt; It¡1; Á0) +
1

4
E

¡
"¤

t (µ0)&2
t (µ0)jzt; It¡1; Á0

¢
= 0

and

E
¡
"¤

t (µ0)"¤0
t (µ0)s´t(µ0; 0)jzt; It¡1; Á0

¢
=

N(N + 2)

4
E

£
"¤

t (µ0)"
¤0
t (µ0)jzt; It¡1; Á0

¤
¡N + 2

2
E

£
"¤

t (µ0)"
¤0
t (µ0)&t(µ0)jzt; It¡1; Á0

¤
+

1

4
E

£
"¤

t (µ0)"
¤0
t (µ0)&2

t (µ0)jzt; It¡1; Á0

¤
=

·
N(N + 2)

4
¡ (N + 2)2

2
+

N2 + 6N + 8

4

¸
IN = 0

as required. Finally, the formula for V [sµt(µ0; 0)jÁ0] simply reproduces expression

(2.7) in Bollerslev and Wooldridge (1992).
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Lemma 1

Under the alternative, the result follows from the fact that

&t(µ0) = "¤0
t (µ0)"

¤
t (µ0) =

(º0 ¡ 2)"y0
t "y

t

»t

=
N(º0 ¡ 2)

º0

³t=N

»t=º0

where ³t = "y0
t "y

t » Â2
N . On this basis, the result for the null follows from the well

known fact that »t=º0 converges in probability to 1 as º0 !1

Proposition 3

The expressions for E [s´t(µ0; 0)jzt; It¡1; Á0] and E
£
s2

´t(µ0; 0)jzt; It¡1; Á0

¤
are

obtained as in the proof of Proposition 2, except for the fact that under the

alternative &t(µ0) is proportional to an i:i:d: F variate with N and º0 degrees of

freedom (see Lemma 1), whose uncentred moment of integer order r < º0=2 is

E

·
³ t=N

»t=º0

¸
=

³º0

N

´r (r ¡ 1 + N=2) (r ¡ 2 + N=2) ¢ ¢ ¢ (1 + N=2)(N=2)

(¡1 + º0=2)(¡2 + º0=2) ¢ ¢ ¢ (¡r + 1 + º0=2)(¡r + º0=2)

(see e.g. Mood, Graybill and Boes (1973)). Therefore, the restriction º0 > 8

guarantees that the fourth moments of &t(µ0) are bounded. Finally, the asymptotic

distribution is obtained from a straightforward application of the Lindeberg-Levy

central limit theorem for independent and identically distributed observations.
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FIGURE 1: Derivative of c(η) with respect to η and first order Taylor expansion
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FIGURE 2: Power of the LM test (T=100, α=5%).
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FIGURE 3: Power of the LM test (T=250, α=5%).
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