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ABSTRACT 

 The main goal when fitting GARCH models to conditionally heteroscedastic time series 

is to estimate the underlying volatilities. It is well known that outliers affect the estimation of 

the GARCH parameters. However, little is known about their effects when estimating 

volatilities. In this paper, we show that when estimating the volatility by using Maximum 

Likelihood estimates of the parameters, the biases incurred can be very large even if estimated 

parameters have small biases. Consequently, we propose to use robust procedures. In 

particular, a simple robust estimator of the parameters is proposed and shown that its 

properties are comparable with other more complicated ones available in the literature. The 

properties of the estimated and predicted volatilities obtained by using robust filters based on 

robust parameter estimates are analyzed.  All the results are illustrated using daily S&P500 and 

IBEX35 returns. 
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1 Introduction

It is usual to observe that long time series of financial returns have observations that

can be considered as outliers. On the other hand, it is widely accepted that financial

returns are conditionally heteroscedastic. Distinguishing outliers from conditional het-

eroscedasticity is not an easy task since both phenomena may generate excess kurtosis

and autocorrelations of squares; see, for example, Carnero et al. (2007). However, their

implications are different since conditional heteroscedasticity implies the possibility of

forecasting future volatilities while outliers are unpredictable.

Previous research on the topic has focused on the effects of outliers on the Maximum

Likelihood (ML) estimator of the GARCH parameters assuming a normal distribution

for the innovations; see, for example, Sakata and White (1998), van Dijk et al. (1999),

Muler and Yohai (2007) and Carnero et al. (2007). Nevertheless, the main interest

of practitioners in this area is not to estimate the parameters but to estimate the

underlying conditional variance which is considered as a useful measure of uncertainty.

Such a measure is of central importance in many financial models like, for example,

option valuation or risk management models. It is also important to have accurate

estimations of the volatility when computing risk using, for example, the Value at Risk

(VaR) or the Expected Shortfall based on predictive densities of returns. Furthermore,

the estimation of the volatility is crucial for the efficient estimation of the conditional

mean dependency and the construction of prediction intervals.

In this paper we investigate the effects of outliers on the estimation of the underlying

volatility. We show that the volatilities estimated by using the GARCH specification

with ML estimates of the parameters can be positively biased, not only in the period of

time when the outlier occurs, but also through all the sample period. We also show that

their biases are not a linear function of the biases of the estimators. They can be very

important even when the biases in the estimated parameters are very small. Due to this

non linearity, it is possible to observe series where parameter estimates close to the true

values lead to volatility estimates with larger biases than others computed with worse

estimates of the parameters. We will see that the marginal variance plays an important

role in the estimation of the volatility. Outliers affect in a serious way the marginal

variance, consequently, it is important to take into account the potential presence of

these atypical observations. There are two alternative strategies to deal with outliers.

The first one is to identify and correct outliers before estimating the parameters of the

equation governing the evolution of the conditional variance. The second one is to use

robust methods to estimate both the parameters and the underlying volatilities.

Detecting and filtering outliers would generate volatility estimates with smallest

Mean Square Error (MSE) when the true outliers are detected as such but the avail-

able methods to detect outliers are very costly computationally. For example, the

procedure proposed by Hotta and Tsay (1998) is based on adding an additional pa-
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rameter at a time to represent the outlier effect and testing for its significance using a

Lagrange Multiplier (LM) test. If the parameter is found significant, the corresponding

observation is identified as an outlier. However, the distribution of the LM statistic has

to be simulated each time an outlier is found. Alternatively, Doornik and Ooms (2004)

propose a test that uses the largest standardized residual as the outlier candidate and

performs a Likelihood Ratio test with respect to a model with dummy variables in

both the level and the volatility equations. As a result, this test provides an estimate

of the location and size of the outlier. This procedure is computationally simpler than

the one proposed by Hotta and Tsay (1998) given that its asymptotic distribution

can be approximated from an extreme value distribution that does not require simu-

lation. However, it is an iterative procedure that works on single deletion diagnostics

and it is not designed to deal with patches of outliers. More recently, Grossi (2004)

has proposed a forward search to look for outliers in GARCH models. The forward

search overcomes the drawbacks of single deletion methods because it monitors outlier

diagnostics starting from an initial subset free from outliers.

In this paper we propose to estimate the underlying volatilities using robust proce-

dures. The estimation is done in two steps. First, a robust estimator is implemented

to estimate the parameters of the GARCH model. Second, a robust filter can be used

to estimate the underlying volatilities. We consider three alternative estimators for

the robust estimation of the GARCH parameters. The first one is a Quasi Maximum

Likelihood (QML) estimator based on maximizing the Student-t log-likelihood where

the degrees of freedom, ν, are considered as an unknown parameter. This estimator,

denoted by QML-t, was proposed by Bollerslev (1987) and it is robust when estimating

the ARCH parameter but it looses part of its robustness when estimating the persis-

tence parameter of the GARCH(1,1) model; see Carnero et al. (2007). Consequently,

we propose a second estimator based on modifying the QML-t estimator by changing

the specification of the conditional variance to bound the propagation of the outlier

effect. We call this modified estimator Bounded QML-t (BQML-t). The third robust

estimator is the Bounded-M (BM) estimator proposed by Muler and Yohai (2007). We

show that the BQML-t estimator is simpler than the BM estimator while having com-

parable efficiency and robustness properties when the number and size of the outliers

are not very large. We compare the performance of the alternative estimators in the

presence of additive level outliers, as it is usual in this literature, but also when the

outliers are volatility outliers.

Once the GARCH parameters have been estimated by one of the robust estimators

previously mentioned, the underlying volatilities can be estimated by a robust filter.

Muler and Yohai (2007) propose a filter based on trimming all the standardized ob-

servations larger than a given threshold by equalling them to the threshold. In this

paper, we also consider an alternative filter in which the observations larger than the

threshold are set equal to their conditional standard deviations. We analyze the finite
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sample properties of the robust filters and show that the volatility estimates based on

them reduce the positive biases and the MSE observed in the ML estimates. Obviously,

the estimation of the underlying volatilities affects the construction of prediction in-

tervals for future values of the series of interest. Therefore, we also analyze the effects

of outliers on the construction of prediction intervals for future values of GARCH(1,1)

series. As expected, in the presence of outliers, the prediction intervals based on ML

estimates have coverage larger than the nominal.

The rest of the paper is organized as follows. Section 2 analyzes the effects of

outliers on the ML estimation of the underlying volatility. Section 3 proposes a robust

estimator of the parameters and compares its finite sample properties with those of the

ML and BM estimators. Section 4 studies the properties of the robust estimates of the

underlying conditional variances and compare them with those of the estimates based

on ML. Section 5 contains an empirical application where the underlying volatilities

of daily S&P500 and IBEX35 returns are estimated and predicted. Finally, section 6

concludes the paper.

2 Effects of outliers on the estimation of the under-

lying volatility

In this section, we analyze the effects of outliers on the underlying volatilities when

they are estimated by substituting the parameters in the GARCH equation by their

ML estimates.

To simplify the problem, consider that the series y∗t has been generated by an

uncorrelated GARCH(1,1) model. In this case, there is no distinction between additive

and innovative outliers. Therefore, a series contaminated by k consecutive outliers of

size ω at times τ,...,τ + k − 1, is given by

yt = y∗t + sign(y∗t )ωIt (1)

with

y∗t = εtσt

where εt is a Gaussian white noise process and It is a dummy variable being one when

t = τ, ..., τ+k−1 and zero otherwise. The specification of the volatility, σ2
t , depends on

the type of the outlier. Following Hotta and Tsay (1998), outliers in GARCH models

can be classified as level (LO) or volatility (VO) outliers. A LO does not affect the

conditional variance which is given by

σ2
t = α0 + α1y

∗2
t−1 + βσ2

t−1 (2)

whereas if a VO is present, the conditional variance is given by

σ2
t = α0 + α1y

2
t−1 + βσ2

t−1. (3)
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In both cases, we assume that the parameters satisfy the positivity and stationarity

restrictions, i.e. α0 > 0, α1 ≥ 0, β ≥ 0 and α1+β < 1.

Denote by
{
α̂ML

0 , α̂ML
1 , β̂ML

}
the ML estimator of the GARCH (1,1) parameters.

If the parameters are estimated as usual by ML, the estimated volatilities (denoted

from now on by
(
σ̂ML

t

)2
) are given by

(
σ̂ML

t

)2
= α̂ML

0 + α̂ML
1 y2

t−1 + β̂ML
(
σ̂ML

t−1

)2
. (4)

Consider now that there is an isolated VO at time t = τ . The error in the estimation

of the underlying volatility at time t, denoted by ξV O
t , is the difference between the

estimated and true volatilities in (4) and (3) respectively, and it is given by

ξV O
t =

(
σ̂ML

t

)2−σ2
t = (α̂ML

0 −α0)+(α̂ML
1 −α1)y

2
t−1+(β̂ML−β)σ2

t−1+β̂
ML
((
σ̂ML

t−1

)2 − σ2
t−1

)

(5)

In expression (5) it is possible to observe that the expected error in the estimation

of the underlying volatility depends on the biases of the estimator of the parameters.

However, the expectation of the last term in (5) depends also on the covariances be-

tween the estimators and on expections of non-linear functions of the estimators. To

see this point more clearly, consider the following alternative expression of the error in

the estimation of the underlying volatilities,

ξV O
t =

(α̂ML
0 − α0)

(
1 −

(
β̂ML

)t−1
)

1 − β̂ML
+ (α̂ML

1 − α1)
t−2∑

i=0

(
β̂ML

)i

y2
t−1−i +

(β̂ML − β)
t−2∑

i=0

(
β̂ML

)i

σ2
t−1−i +

(
β̂ML

)t−1 ((
σ̂ML

1

)2 − σ2
1

)
. (6)

Consequently, to understand the errors in estimating the underlying volatilities,

it is of interest to consider first, the biases incurred when estimating the GARCH

parameters by ML. Previous research has focused on the analysis of the biases of the

ML estimator in the presence of LO. However, little is known about its properties when

the series are contaminated by VO. Consequently, we have carried out a small Monte

Carlo experiment generating 1000 series by a GARCH(1,1) model with parameters

α0 = 0.1, α1 = 0.1 and β = 0.8. The sample sizes considered are T = 500, 1000 and

5000. The sample sizes and the parameters have been chosen to resemble the values

usually encountered when analyzing real data. The series have been contaminated at

time τ = T/2 by first an isolated and second by two consecutive VO. Table 1, that

reports the Monte Carlo means and standard deviations, shows that the effects of

VO are similar regardless of whether they are consecutive or isolated. The biases are

slightly larger when the outliers are consecutive and the standard deviations are very
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similar in both cases. In any case, α0 and α1 are in average, overestimated and β is

underestimated.

However, as we have seen before, the biases when estimating the underlying volatili-

ties not only depend on the biases of each of the estimators but also on the expectations

of some non-linear functions of the estimators. Therefore, to illustrate this point, we

have plotted in Figure 1 kernel densities of the Monte Carlo ML estimates of α0, α1

and β together with the marginal variance given by α0/(1 − α1 − β), obtained when

T = 1000 and the series are contaminated by an isolated VO. This figure shows that

the bias when estimating the marginal variance can be very large even in cases when

the biases of each of the individual parameters are moderate. Observe that when the

size of the outlier is large, i.e. ω = 15, the density is concentrate so far from the true

value that it does not appear in the figure where only the left tail can be seen. As a con-

sequence, the volatilities corresponding to periods of time previous to the appearance

of the outlier will be positively biased.

At time t = τ + 1, the error in (6) is positive and larger than before because y2
τ

is large while σ2
τ is not affected by the outlier. Therefore, we expect that, in general,

the volatility is overestimated by a very large amount just after the outlier appears.

Then, at time t > τ + 1, both y2
t and σ2

t are large and the errors tend exponentially

towards their previous mean with parameter β̂ML. This pattern is similar regardless of

whether the VO are isolated or consecutive. The only difference is that, in the presence

of consecutive VO, the biases in the estimated volatilities are larger due to larger biases

in the estimated parameters as reported in Table 1.

Figure 2 illustrates the biases and MSE found when estimating the underlying

volatility in the presence of an isolated VO at time τ = T/2. The thicker line corre-

sponds to the mean at time t across 1000 replicates of the errors, ξV O
t , for a sample size

of T = 1000 and outlier sizes considered before. Note that, if no outliers are present in

the data, the marginal variance of yt is one and the true conditional variances should

oscillate around this value. Therefore, the relative mean errors in the estimation of the

volatilities could be rather large when the sample sizes are moderate even if there is

just a single outlier. As Figure 2 shows, if a VO of size 15 standard deviations is present

in a GARCH(1,1) series of size T = 1000 and volatility is estimated by ML without

taking into account the presence of that extreme observation, the true volatility would

be overestimated more than 25% at any point of time t and more than 100% in periods

right after the outlier appearance. Notice that, even for smaller outliers, the distortion

of the estimated volatilities corresponding to periods of time after the outlier could

be very severe and it could take a large number of observations to converge back to

the mean. The second column of Figure 2, that plots the Monte Carlo MSE of the

estimated volatilities, shows that they can be rather large specially after the period of

time when the outlier appears.

The errors, ξV O
t , when two consecutive VO are present in the series, are slightly
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Figure 1: Kernel density estimates of estimated parameters of simulated GARCH(1,1)

series of size T = 1000 contaminated with a single VO
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Table 1: Mean and Standard deviations of ML estimator of GARCH(1,1) model in the presence of outliers
Outlier Parameter Volatility outliers (VO) Level outliers (LO)

Size Values One isolated Two consecutive One isolated Two consecutive

Sample size Sample size Sample size Sample size

T = 500 T = 1000 T = 5000 T = 500 T = 1000 T = 5000 T = 500 T = 1000 T = 5000 T = 500 T = 1000 T = 5000

ω = 0

α0 = 0.1

α1 = 0.1

β = 0.8

0.1492
(0.1304)

0.1041
(0.0417)

0.7434
(0.1556)

0.1199
(0.0691)

0.1023
(0.0297)

0.7766
(0.0885)

0.1028
(0.0196)

0.1001
(0.0124)

0.7972
(0.0276)

0.1448
(0.1116)

0.1066
(0.0439)

0.7467
(0.1400)

0.1160
(0.0607)

0.1004
(0.0293)

0.7821
(0.0802)

0.1029
(0.0201)

0.0996
(0.0128)

0.7972
(0.0285)

0.1446
(0.1175)

0.1033
(0.0434)

0.7495
(0.1441)

0.1179
(0.0614)

0.1013
(0.0288)

0.7804
(0.0801)

0.1030
(0.0199)

0.1003
(0.0121)

0.7965
(0.0274)

0.1397
(0.1036)

0.1028
(0.0496)

0.7547
(0.1328)

0.1188
(0.0662)

0.1025
(0.0297)

0.7779
(0.0845)

0.1028
(0.0196)

0.1001
(0.0126)

0.7970
(0.0275)

ω = 5

α0 = 0.1

α1 = 0.1

β = 0.8

0.1651
(0.1470)

0.1071
(0.0511)

0.7396
(0.1683)

0.1249
(0.0700)

0.1046
(0.0320)

0.7751
(0.0862)

0.1037
(0.0204)

0.1003
(0.0129)

0.7967
(0.0285)

0.1919
(0.1426)

0.1465
(0.0511)

0.6833
(0.1592)

0.1423
(0.0762)

0.1225
(0.0331)

0.7447
(0.0896)

0.1064
(0.0202)

0.1041
(0.0127)

0.7910
(0.0284)

0.1924
(0.1661)

0.1039
(0.0558)

0.7107
(0.1925)

0.1370
(0.0945)

0.0993
(0.0335)

0.7670
(0.1116)

0.1055
(0.0210)

0.0998
(0.0126)

0.7951
(0.0288)

0.3172
(0.2447)

0.1491
(0.0535)

0.5527
(0.2564)

0.1805
(0.1199)

0.1240
(0.0328)

0.7012
(0.1365)

0.1105
(0.0223)

0.1038
(0.0130)

0.7867
(0.0301)

ω = 10

α0 = 0.1

α1 = 0.1

β = 0.8

0.1872
(0.1585)

0.1449
(0.1064)

0.7262
(0.1732)

0.1483
(0.1083)

0.1191
(0.0607)

0.7583
(0.1280)

0.1086
(0.0289)

0.1008
(0.0169)

0.7948
(0.0387)

0.2252
(0.1639)

0.1890
(0.1012)

0.6692
(0.1621)

0.1587
(0.0949)

0.1410
(0.0548)

0.7342
(0.1078)

0.1114
(0.0263)

0.1073
(0.0163)

0.7865
(0.0356)

0.4193
(0.3509)

0.1480
(0.1396)

0.5196
(0.3157)

0.2528
(0.2412)

0.1163
(0.0695)

0.6600
(0.2378)

0.1164
(0.0308)

0.1019
(0.0173)

0.7851
(0.0405)

0.5930
(0.3823)

0.2159
(0.1157)

0.3309
(0.3060)

0.3499
(0.2670)

0.1610
(0.0611)

0.5331
(0.2590)

0.1276
(0.0346)

0.1095
(0.0169)

0.7673
(0.0433)

ω = 15

α0 = 0.1

α1 = 0.1

β = 0.8

0.2501
(0.2013)

0.2392
(0.2280)

0.6710
(0.2349)

0.1795
(0.1391)

0.1559
(0.1229)

0.7306
(0.1772)

0.1159
(0.0431)

0.1044
(0.0264)

0.7894
(0.0566)

0.2935
(0.2035)

0.2843
(0.2212)

0.6221
(0.2091)

0.1982
(0.1374)

0.1859
(0.1154)

0.6977
(0.1591)

0.1189
(0.0407)

0.1114
(0.0259)

0.7808
(0.0536)

0.6366
(0.4696)

0.2280
(0.2737)

0.3970
(0.3206)

0.4414
(0.3898)

0.1562
(0.1410)

0.5092
(0.3237)

0.1363
(0.0570)

0.1079
(0.0290)

0.7653
(0.0705)

0.7956
(0.5131)

0.3314
(0.2515)

0.2388
(0.3044)

0.5270
(0.3959)

0.2138
(0.1228)

0.3972
(0.3212)

0.1517
(0.0648)

0.1168
(0.0281)

0.7427
(0.0763)
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Figure 2: Monte Carlo means and MSE of ξV O
t in the presence of one isolated VO

computed with different estimators and filters in GARCH(1,1) series of size T = 1000
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Table 2: Estimation results for daily returns series
S&P 500 IBEX 35

α0 α1 β η α0 α1 β η

ML 0.0141
(0.001)

0.0856
(0.002)

0.9047
(0.004)

- 0.0278
(0.004)

0.1073
(0.010)

0.8792
(0.009)

-

QML-t 0.0058
(0.002)

0.0540
(0.008)

0.9416
(0.008)

0.1588
(0.003)

0.0157
(0.005)

0.0919
(0.014)

0.9023
(0.015)

0.1051
(0.002)

BQML-t 0.0058
(0.002)

0.0540
(0.008)

0.9416
(0.008)

0.1588
(0.003)

0.0157
(0.005)

0.0919
(0.014)

0.9023
(0.015)

0.1051
(0.002)

BM 0.0051 0.0559 0.9345 - 0.0088 0.0853 0.9060 -
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larger compared to those when there is just one single VO, due to the small differences

in the estimated parameters, as shown in Table 1. Therefore, the plots of the mean

errors and their corresponding MSE, obtained in this case, are very similar to the ones

represented in Figure 2.

Consider now that the outlier at time τ is a LO. In this case, the errors in the

estimation of the underlying volatilities are given by

ξLO
t =

(α̂ML
0 − α0)

(
1 −

(
β̂ML

)t−1
)

1 − β̂ML
+ (α̂ML

1 − α1)
t−2∑

i=0

(
β̂ML

)i

y∗2t−1−i +

(β̂ML − β)

t−2∑

i=0

(
β̂ML

)i

σ2
t−1−i + α̂ML

1

t−2∑

i=0

(
β̂ML

)i

(y2
t−1−i − y∗2t−1−i) +

(
β̂ML

)t−1 ((
σ̂ML

1

)2 − σ2
1

)
(7)

Comparing the expressions of the errors in (6) and (7), it is possible to observe

that they are equal for the periods of time previous to the appearance of the outlier.

Therefore, as in the case of VO, the estimation errors of the underlying conditional

variances previous to the presence of LO, also depend on the biases, covariances and

expectations of non-linear functions of the ML estimator. Although the effects of LO on

the ML estimator parameters of GARCH(1,1) models have been reported somewhere

else in the literature, for the shake of comparison, Table 1 also reports the Monte Carlo

means and standard deviations of the ML estimates of α0, α1 and β, for series simulated

by the same model considered above. Observe that, in average, the biases of α̂ML
0 and

β̂ML are positive and negative respectively but much larger in the presence of isolated

(consecutive) LO than when the outliers are isolated (consecutive) VO of the same

size. The standard deviations are also much larger when the outliers are LO regardless

of whether they are isolated or consecutive. With respect to α̂ML
1 , the positive biases

and standard deviations in the presence of isolated (consecutive) LO are very similar

to those observed when the outliers are isolated (consecutive) VO.

These conclusions may seem to contradict those obtained by Carnero et al. (2007)

who conclude that in the presence of isolated LO, the ARCH parameter, α1, tends

to be underestimated while β tends to be overestimated. However, these conclusions

are based on the analysis of the densities of α̂ML
1 and β̂ML that have modes around

values larger or smaller respectively than the corresponding true values. Note that

Table 1 reports the mean through the Monte Carlo estimates which given the shape of

the densities could be rather uninformative. Observe that, in the presence of isolated

LO, the standard deviations reported in Table 1 are so large that, in practice, the

estimates can take any value within the admissible parameter space. In order to make

this point clear, Figure 3 plots kernel density estimates, based on 1000 replicates of

GARCH(1,1) series of size T = 1000, of the ML estimator of α0, α1 and β together
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Figure 3: Kernel density estimates of estimated parameters of simulated GARCH(1,1)

series of size T = 1000 contaminated with a single LO

0 1 2
0

5

10
ω=0

α 0=
0.

1

0 1 2
0

5

10
ω=5

0 1 2
0

5

10
ω=10

0 1 2
0

5

10
ω=15

0 0.5 1
0

5

10

15

α 1=
0.

1

0 0.5 1
0

5

10

15

0 0.5 1
0

5

10

15

0 0.5 1
0

5

10

15

0 0.5 1
0

2

4

6

β=
0.

8

0 0.5 1
0

2

4

6

0 0.5 1
0

2

4

6

0 0.5 1
0

2

4

6

0 1 2
0

2

4

α 0/(
1−

α 1−
β)

=
1

0 1 2
0

2

4

0 1 2
0

2

4

0 1 2
0

2

4

ML
QML−t
BQML−t
BM
True     
parameter

26



with the marginal variance given by α0/(1−α1 −β). As we can see in the graph, when

the series is contaminated by a single LO of size 10, the estimated density of α̂ML
1

has a mode smaller than the true value 0.10 although its Monte Carlo mean is 0.1163

which is higher than the true value. Figure 3 also illustrates that the estimates of the

unconditional variance obtained by pluging the ML estimates within the expression of

the marginal variance, have a degenerate density spread all over the real line when the

outliers have a large size as ω = 15.

At time τ +1, the error in the estimated volatility is increased further with respect

to the error corresponding to a VO outlier. This is due to the presence of the fourth

term α̂ML
1

∞∑
i=0

(
β̂ML

)i

(y2
τ−i − y∗2τ−i) in equation (7) that takes into account the differ-

ence between the contaminated observations used to estimate the variances and the

uncontaminated observations that enters the equation of the true underlying variances.

Given that y2
t−1 − y∗2t−1 > 0, there is transmission of the effects of LO at time τ to the

estimation of volatilities after τ +1. Then, the errors tend exponentially towards their

previous mean.

These results are illustrated in Figure 4 that plots the means and MSE across

replicates of the volatility errors of series simulated by the same GARCH(1,1) model

considered above and contaminated by one isolated LO at time τ = T/2. The results

for consecutive LO are similar and, consequently, are not reported to save space. Com-

paring Figures 2 and 4, we can observe that the errors corresponding to periods of time

when there are not outliers have similar means in the presence of LO and VO. However,

at periods of time just after the appearance of the outlier, the errors are much larger

when the outliers are LO than when they are VO. Observe that the time taken by

the errors to reach the level previous to the appareance of the outlier is similar in the

presence of VO and LO. Furthermore, the MSE are also similar in both cases.

3 Robust estimators of the parameters

We have seen that the estimates of the underlying volatility in a GARCH(1,1) model

can be seriously affected by outliers through their effect on the estimates of the pa-

rameters. These effects can be mitigated by estimating the parameters using robust

estimators. Sakata and White (1998) show that maximizing the likelihood based on a

heavy tailed distribution is a procedure of protection against outliers when estimating

the parameters of GARCH(1,1) models; see also Karanasos and Kim (2006) who sug-

gest estimating the A-PARCH model using heavy tailed distributions to accommodate

the presence of outliers. On the other hand, Newey and Steigerwald (1997) show that,

if no outliers are present, the QML-t estimator based on maximizing the Student-t

log-likelihood where the degrees of freedom are considered as an unknown parameter,
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Figure 4: Monte Carlo means and MSE of ξLO
t in the presence of one isolated VO

computed with different estimators and filters in GARCH(1,1) series of size T = 1000
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is consistent and efficient when the assumed and true densities are symmetric1. Fur-

thermore, Carnero et al. (2007) show that the QML-t estimator is resistant against

outliers without loosing efficiency when implemented to estimate the parameters of

ARCH models. However, it fails to be robust when estimating the β parameter of the

GARCH(1,1) model. This lack of robustness can be explained, as Muler and Yohai

(2007) pointed out, by the transmission of the effects of outliers through past condi-

tional variances. Consequently, in this section we propose the BQML-t estimator which

modifies the QML-t estimator by changing the specification of the conditional variance

in such a way that the propagation of the outlier effect is restricted; see Muler and

Yohai (2007). We derive the asymptotic distribution of the BQML-t estimator, show

that the BQML-t estimator is efficient when no outliers are present in the data and

has nice robustness properties when they are present. Alternatively, Muler and Yohai

(2007) have recently proposed the BM robust estimator to estimate the parameters of

GARCH(1,1) which is designed to deal with large number and/or large sizes of outliers.

Finally, we compare the finite sample properties of the BQML-t and BM estimators

for different outlier sizes2.

3.1 BQML-t estimator

The QML-t estimator is based on maximizing the following Student-t log-likelihood

L =

T∑

t=2

Lt =

T∑

t=2

[
log

(
Γ

(
η + 1

2η

))
− log

(
Γ

(
1

2η

))
− 1

2

[
log

(
1 − 2η

η

)
+ log π

+ log σ2
t +

η + 1

η
log

(
1 +

η

1 − 2η

y2
t

σ2
t

)]]
(8)

where Γ(·) is the Gamma function and η = 1/ν where ν are the degrees of freedom

of the Student-t distribution. The parameter η can be considered as a measure of

tail thickness which always remains in the finite range 0 ≤ η < 0.5 if the conditional

distribution is restricted to have finite variance, i.e. ν > 2; see Fiorentini et al. (2003).

If we denote by θ the vector of unknown parameters, i.e. θ = (α0, α1, β, η)
′., the

BQML-t estimator is obtained as follows:

1When this symmetry condition is not satisfied, Newey and Steigerwald (1997) show that, unless

the conditional mean is identical to zero, the QML-t estimator is consistent if an additional location

parameter is added to the model. Given that outliers can generate asymmetries, we also consider the

introduction of this additional parameter. The modified ARCH(p) model is given by yt = (δ + εt)σt

where σ2

t = α0 +
∑p

i=1
αiy

2

t−i. The results are the same as the ones obtained when δ = 0 and,

consequently, they are not reported.
2There are also proposals of estimators based on Least Absolute Deviations (LAD); see, for example,

Park (2002) and Peng and Yao (2003). However, Muler and Yohai (2007) show that their proposed

BM estimator outperforms them.
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θ̂BQML−t =

{
θ̂1 if L ≥ L∗

k

θ̂2 if L < L∗
k

(9)

where θ̂1 is the parameter vector that maximizes the Student log-likelihood in (8), i.e.

θ̂QML−t, and θ̂2 is the parameter vector that maximizes the modified expression of the

Student log-likelihood, L∗
k, given by (8) with σ2

t substituted by

σ∗2
kt = α0 + α1rk

(
y2

t−1

σ∗2
kt−1

)
σ∗2

kt−1 + βσ∗2
kt−1 (10)

where rk(x) =

{
x, |x| < k

k, |x| ≥ k
. Muler and Yohai (2007) suggest choosing k = 5.02.

However, our simulation results suggest that, for the GARCH models usually encoun-

tered in practice, k = 9 provides a better compromise between efficiency and robustness.

The asymptotic distribution of the BQML-t estimator can be derived by following

the arguments of Muler and Yohai (2007) who show that under certain regularity

conditions, the asymptotic distribution of a M-estimator and the bounded M-estimator

coincide. Note that the QML-t estimator, θ̂1, can be expressed as a M-estimator if the

density assumed to construct the likelihood is symmetric. In particular, θ̂1 can be

obtained by minimizing the following objective function

M =
1

T − 1

T∑

t=2

ρ(log y2
t − log σ2

t )

and ρ(u) = log
(

Γ(ν/2)
Γ((ν+1)/2)

)
+ 1

2

[
log(ν − 2) − u+ (ν + 1) log

(
1 + eu

ν−2

)]
. Therefore, it

is possible to show that the asymptotic distribution of θ̂BQML−t is the same as this of

θ̂1 which is given by

√
T (θ̂BQML−t − θ)

d→ N(0, A−1BA−1)

where A = P lim
T→∞

[
− 1

T

∑ ∂2 log Lt

∂θ∂θ′

]
, B = P lim

T→∞

[
1
T

∑ ∂ log Lt

∂θ
∂ log Lt

∂θ′

]
and the probability

limits are taken under the true density. When the true density is maximized A = B

and, consequently, the asymptotic covariance matrix is given by A−1 which obviously

is the asymptotic covariance matrix of the ML estimator. The asymptotic covariance

matrix of θ̂BQML−t can be approximated in finite samples by

[∑ ∂2 logLt

∂θ∂θ′

]−1 [∑ ∂ logLt

∂θ

∂ logLt

∂θ′

] [∑ ∂2 logLt

∂θ∂θ′

]−1

.

The derivatives needed to compute the covariance matrix above have been derived

in the appendix.
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To analyze the finite sample properties of the BQML-t estimator, we have carried

out Monte Carlo experiments with the same design described above. Figures 1 and

3 plots kernel estimates of the densities of the BQML-t estimator when k = 9 and

the sample size is T = 1000, in the presence of an isolated VO and an isolated LO

respecively. For the sake of comparison, we also plot the densities of the QML-t estima-

tor. Note that in the case of VO, the densities of the QML-t and BQML-t estimators

coincide. This is due to the fact that the BQML-t estimator nearly always chooses θ̂1.

First, note that when ω = 0, the densities of the ML, QML-t and BQML-t estima-

tors are rather similar. Therefore, if no outliers are present in the data, the QML-t

and BQML-t estimators reach a efficiency bound similar to this of the ML estimator.

Second, in the presence of an isolated VO, the QML-t and BQML-t estimators have

nice robustness properties. Furthermore, as we discussed before, in the presence of an

isolated LO, the QML-t estimator of β has a very dispersed density. However, the large

dispersion of this estimator of β is clearly reduced by the bounding mechanism intro-

duced by the BQML-t estimator. However, note that when estimating the marginal

variance, the properties of the QML-t estimator are better than those of the BQML-t

estimator. In this sense, the BQML-t seems to be better than QML-t in estimating each

of the parameters individually but worse in estimating the unconditional variance. As

we will see in Section 4, this will be important when estimating the conditional variance

or volatility.

3.2 Comparison with BM estimator

Muler and Yohai (2007) propose to use M-estimators of the parameters of GARCH

models. In particular, they propose the estimator, denoted as BM, which is based

on the maximization of a conveniently modified likelihood and includes an additional

mechanism for restricting the propagation of the effect of one outlier on the next esti-

mated conditional variances as in equation (10). They show that the BM estimator is

simultaneously robust against outliers and consistent when there is not contamination.

Moreover, it has high efficiency.

The BM estimator of the parameters of the GARCH(1,1) model is given by

θ̂BM =

{
θ̂1, M ≤M∗

k

θ̂2, M > M∗
k

where θ̂1 is the argument which minimizes the following function:

M =
1

T − 1

T∑

t=2

ρ
(
log y2

t − log σ2
t

)

where ρ(x) = m1

[
− log

(
1√
2π

exp(ex − x)
)]

and k = 5.02. The function m1(x) is
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defined by

m1(x) =






x, x ≤ 4.02

c0 + c1x+ c2x
2 + c3x

3 + c4x
4 4.02 < x ≤ 4.3

4.16 x > 4.3

where c0 = 6777, c1 = −8536.2, c3 = −379.0087 and c4 = 22.777 and the conditional

variance, σ2
t , is defined in equation (3). However, to take into account the effect of the

potential outliers on the conditional variance, it can be replaced by (10). In this case,

the modified objective function, denoted by M∗
k , is obtained and the corresponding

estimator is θ̂2.

To compare the finite sample properties of the BM estimator with those of the

BQML-t estimator, we have carried out the same Monte Carlo experiments as before.

Once more, the kernel estimates of the resulting BM estimates have been plotted in

Figures 1 and 3 for isolated VO and LO, respectively. The same conclusion arises

from both figures: although the densities of the BQML-t and BM estimators are very

similar for the three parameters of the model, the BM densities are better behaved

when estimating the marginal variances.

It is important to note that the BM estimators can be affected by the inlier problem

that appears when one observation of yt is close to zero or exactly zero. In the latter

case, it is not possible to obtain the transformation log y2
t but even in cases where yt

is close to zero, this transformation is going to take extremely large negative values.

Note that this problem is of practical importance when analyzing financial returns as

they can be zero when looking at returns of low traded assets; see Fuller (1996) who

proposes a transformation to solve this problem.

The BQML-t estimator is simpler and has comparable finite sample properties for

small samples and outlier sizes with the robust estimators proposed by Muler and Yohai

(2007). Although, as expected, the BM estimator performs better when the sample

size and the sizes or number of the outliers are very large, the differences between both

estimators are not large for the situations usually encountered when analyzing real

data. Consequently, the good robustness properties and the simplicity of the BQML-t

estimator makes it an interesting candidate to be considered when trying to estimate

the GARCH(1,1) parameter in series that can be potentially contaminated by outliers.

4 Estimation of the underlying volatility

As we mentioned in the Introduction, the final objective when fitting a conditional

heteroscedastic model to financial returns is to obtain estimates of the underlying

volatilities. We have also seen before that outliers may distort these estimates when the

ML estimator is implemented. Therefore, in this section, we analyze the performance

of using robust procedures to estimate both the parameters and underlying volatilities.

12



Once the parameters have been estimated, we have alternative options to estimate

the underlying volatilities. First, as illustrated in Section 2, we can estimate them

by equation (3) where the observations, yt, are the original observations of the series

of interest and the parameters are substituted by the ML estimates based on these

observations. We have then (σ̂ML
t )2. Alternatively, the underlying volatilities can be

estimated by the following robust filter proposed by Muler and Yohai (2002, 2007):

(
σ̂BM

t

)2
= α̂BM

0 + α̂BM
1 rk

(
y2

t−1(
σ̂BM

t−1

)2

)
(
σ̂BM

t−1

)2
+ β̂BM

(
σ̂BM

t−1

)2
(11)

where rk(x) is defined as in equation (10) and the parameters are estimated by the BM

estimator.

Finally, we analyze the properties of another robust filter to estimate the volatility

given by (10) with rk(x) defined now as follows:

rk(x) =

{
x, |x| < k

1, |x| ≥ k.
(12)

Therefore, using this filter, the observations corresponding to squared standardized

observations larger than k are set equal to their conditional standard deviation. Fur-

thermore, we use the QML-t and BQML-t estimates of the parameters instead of the

BM estimates. The resulting estimates of the underlying volatilities are denoted by(
σ̂BQML−t

t

)2

and
(
σ̂QML−t

t

)2

, respectively.

Figure 2 plots the Monte Carlo means and MSE of the estimation errors of the

conditional variances when the GARCH series are contaminated by an isolated VO. In

this case, we can observe that the mean errors obtained when estimating the volatility

using the filter proposed by Muler and Yohai (2007) are smaller than when using the

using the
(
σ̂QML−t

t

)2

and
(
σ̂BQML−t

t

)2

filters. On the other hand, the three robust

methods have mean errors smaller in absolute value than the mean errors of the ML

filter. When looking at the MSE, it is possible to observe that they are similar among

the three robust filters and smaller than the MSE of the ML filter.

Also, it is interesting to note that the mean errors incurred by the robust filters are

negative and large in the moment when the outlier appears. This is due to the fact

that when computing the robust filters, the large observations are cut down, generating

in the next period an estimate of the underlying volatility smaller than it should be.

Therefore, although the robust filters considered in this paper have in any case better

properties than the ML filters, they are not properly designed to deal with VO.

Figure 4 plots the same quantities plotted in Figure 2 when the series are contami-

nated by LO. As before, the filter with smaller mean errors in the periods of time when

there are no outliers is the BM filter followed by the QML-t and BQML-t filters. The

mean errors of the ML filter are clearly larger. On the other hand, the MSE errors of
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the three robust filters are clearly smaller than for the ML filter. Furthermore, in this

case, the mean errors of the robust filters corresponding to the periods of time around

the appearance of the outliers are positive and clearly smaller when using the function

rk(x) as defined in (12) instead of the definition in (10).

Therefore, these results suggest that, although the properties of the BQML-t esti-

mator are better than those of the QML-t estimator, the estimates of the underlying

volatilities have better properties when using the robust filters using the QML-t es-

timates of the parameters. As mentioned before, this could be explained by the way

the marginal variance is estimated. Intuition does not work here, since one tends to

think that good parameter estimates lead to good volatility estimates; see, for ex-

ample, Charles and Darné (2006) for this kind of conclusion. However we should

be careful when considering ”good” estimators. As a simple example, consider the

GARCH(1,1) model of the Monte Carlo experiments, i.e. with true parameter values

θ = (α0, α1, β) = (0.1, 0.1, 0.8). The true marginal variance of this process is 1. Sup-

pose we have two estimators θ̃1 and θ̃2 which, for a particular series, give estimates

of the parameters equal to (0.02, 0.08, 0.9) and (0.11, 0.099, 0.85) respectively. Clearly,

θ̃2 gives estimates which are closer to the true θ. However, estimates given by θ̃1 are

closer to the true marginal variance. Therefore, it is expected that θ̃1 lead to better

estimates of the volatility in spite of not being as close to θ as θ̃2.

We have also seen that when using the robust filters, it is better to use the definition

of the rk(x) function when the large observations are set equal to their conditional

standard deviations. Also, between the robust filters, the one with smallest mean

errors is obtained when using the BM estimates of the parameters. However, the

alternative filter based on using the QML-t estimates is a good compromise between

simplicity and mean errors. Furthermore, all the robust methods have similar MSE

which are clearly smaller then those of the ML filter. Finally, the fourth conclusion is

that the robust filters are not well designed to deal with VO. Therefore, it seems of

interest to design procedures to detect outliers that differentiate whether an outlier is

VO or LO. The filters needed to estimate the variances in each of these cases should

be different.

5 Empirical application

This section illustrates the advantages of using robust estimates of the conditional

variance when a GARCH(1,1) model is fitted to daily returns of the S&P500 and the

IBEX35 indexes3 observed from January 2, 1987 to February 19, 2008 and from January

2, 1995 to February 20, 2008 respectively. Figure 5 plots both series of prices and the

corresponding returns. The volatility clustering observed in the returns series suggests

the presence of conditional heteroscedasticity which we model by fitting a GARCH(1,1)

3Series have been obtained in the webpage http://finance.yahoo.com.
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Figure 5: Daily prices and returns for S&P500 and IBEX35
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model to each of the series. The corresponding ML estimates appear in Table 2. In

both series, the persistence is estimated very close to one with α̂1 + β̂ = 0.99. On

the other hand, the plug-in variances obtained when the estimated parameters are

substituted in the expression of the marginal variance of a GARCH(1,1) model, i.e.

α0/(1 − α1 − β), are given by 1.45 and 2.06 respectively.

Visual inspection of the plots of returns in Figure 5 shows that outliers could be

present in both series. Consequently, in order to avoid potential biases caused by these

observations, we estimate GARCH parameters and volatility using robust methods.

Table 2 also contains estimates of the parameters obtained by using the estimators:

QML-t, BQML-t with k = 9 and BM with k = 5. As we can see in the Table, for both

series, the constant α0 and also the ARCH parameter α1 are overestimated while β is

underestimated when using ML compared to robust methods. Notice that, for these

particular two series, the BQML-t estimator gives exactly the same estimated values

for the parameters as QML-t. This is because the likelihood function is not higher

when the effect of big observations is truncated in the variance equation and therefore

the estimator coincides with QML-t as equation (9) shows. On the other hand, the

estimates obtained when using the BM estimator are similar to those obtained by

the QML-t estimator with the BM estimate of the ARCH parameter being slightly

larger when fitting the GARCH model to the S&P500 returns and slightly smaller in

the IBEX35 returns. The persistence estimated is also very close to one and similar to

those estimated by ML. Notice that the plug-in marginal variances of S&P500 estimated

by the QML-t and BM estimators are 1.32 and 0.53 respectively while those of the

IBEX35 returns are 2.71 and 1.01. Finally, note that the QML-t estimated degrees of

freedom are 6.30 and 9.51 for the S&P500 and IBEX35 returns respectively. The fact

that the estimated degrees of freedom are far from suggesting a conditionally Normal

distribution can be attributed to the presence of outliers.

Estimated GARCH volatilities for both S&P500 and IBEX35 return series are plot-

ted in Figures 6 and 7 respectively. The diagonal of the picture contains estimated

GARCH volatility, σ2
t , using the four alternative estimators: ML, QML-t, BQML-t

and BM each with its corresponding filter for the variance as explained above. As we

have discussed before, for these particular series, BQML-t and QML-t produce exactly

the same estimations and therefore just one of them, BQML-t, is considered. The

plots above the diagonal are scatter plots of the estimated volatilities using each of the

methods. For example, the graph in the first row and third column of Figures 6 and

7 is the scatter plot of (σ̂BM
t )2 (which is σ̂2

t calculated using the BM estimator of the

parameters and the robust filter as given in equation (11)) against (σ̂ML
t )2 (which is σ̂2

t

obtained by using the ML estimator of the parameters and the usual variance equation

as given in equation (4)). The plots below the diagonal contain the difference between

estimated conditional variances using each of the methods. As an example, the graph

in the second row and first column of Figures 6 and 7 plots the time series computed
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Figure 6: Estimated volatility σ̂2
t , scatter-plot of different estimated volatilities and

difference between estimated volatilities for the S&P500
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Figure 7: Estimated volatility σ̂2
t , scatter-plot of different estimated volatilities and

difference between estimated volatilities for the IBEX35
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as (σ̂BQML−t
t )2 -(σ̂ML

t )2 .

It is clear that ML tends to overestimate volatility compared to robust methods.

This is shown in the pictures for both series. By looking at the scatter plots in the first

raw, we can see that most of the points are above the 45 degrees line, meaning that

values in the X-axis are smaller than values in the Y-axis ((σ̂ML
t )2). The same conclu-

sion can be obtained by looking at the plots in the first column. Most of these values

are negative meaning that (σ̂ML
t )2 is larger than any of the other robust estimations.

This is expected when outliers are present in the data, as we have shown in the paper.

Notice also that robust estimations are very similar.

We have carried out a forecasting exercise in order to show the practical advantages

of using robust methods when computing 95% prediction intervals for the returns.

First, we took all data available for both indexes, T = 5328 for the S&P500 and

T = 3293 for the IBEX35. With the estimated values of the parameters and the

estimated conditional variance we computed up to 15-steps-ahead forecasts for the

conditional variance, σ̂2
T+1, σ̂

2
T+2, ..., σ̂2

T+15 and also the corresponding 95% prediction

intervals given by ±1.96σ̂T+1, ±1.96σ̂T+2, ...,±1.96σ̂T+15. The results are shown in the

first row of Figure 8. The solid-thicker line corresponds to those intervals computed

using (σ̂ML
t )2, the solid-thinner line corresponds to those intervals computed using

(σ̂BQML−t
t )2, which is identical to the ones corresponding to (σ̂QML−t

t )2 and finally, the

dotted line corresponds to intervals computed using (σ̂BM
t )2. The second row of this

figure contains the results of a similar exercise with different samples for both indexes.

For the S&P500 we took data from January 2, 1987 to December 14, 1990 and from

January 13, 2003 to February 20, 2008 for the IBEX 35. The choice of those particular

samples was done in order to take moderate sample sizes, around 1000 observations,

and having possible outliers in the data.

Three main conclusions can be obtained by looking at Figure 8. First, prediction

intervals based on ML are, in general, wider than the ones based on robust methods.

This was expected given that, as illustrated before, ML tends to overestimate the

conditional variance. Second, differences among ML and robust methods are very

small in large sample sizes as we can see in the plot for the S&P500 when T = 5328. In

this case, the three prediction intervals are practically the same. However, differences

are not negligible in smaller sample sizes. And last, robust methods give very similar

results for both series and all sample sizes considered.

6 Conclusions

Detecting outliers in conditional heteroscedastic time series is a difficult task, and es-

timating the underlying volatilities without taking into account their presence may

be very misleading. We have shown in this paper that biased estimators of the

GARCH(1,1) model lead to biases in the estimated underlying volatilities but in a

16



Figure 8: Prediction intervals for the returns of S&P500 and IBEX 35 together with

actual values with two different samples
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non linear way, so that having small biases in the estimated parameters is not a guar-

antee of small biases in estimated volatilities. Therefore, it seems a good strategy

to estimate the parameters of the model and the underlying volatilities using robust

methods. We show the performance of three robust estimators and two robust filters

in modeling time series which contain both outliers and conditional heteroscedasticity.

The three estimators, QML-t, BQML-t and BM with their corresponding filters have

good properties with no outliers and they are better than ML when outliers are present

in the data.
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Appendix. Derivatives needed to compute the asymp-

totic covariance matrix of the QML-t estimator of

the GARCH(1,1) model

The asymptotic distribution of the QML-t estimator is given by

√
T (θ̂ − θ)

d→ N(0, A−1BA−1)

where A = P lim
T→∞

[
− 1

T

∑ ∂2 log Lt

∂θ∂θ′

]
and B = P lim

T→∞

[
1
T

∑ ∂ log Lt

∂θ
∂ log Lt

∂θ′

]
where the prob-

ability limits are taken under the true density. When the true density is maximized

A = B and, consequently, the asymptotic covariance matrix is given by A−1 which

obviously is the asymptotic covariance matrix of the ML estimator. The asymptotic

covariance matrix of θ̂ can be approximated in finite samples by

[∑ ∂2 logLt

∂θ∂θ′

]−1 [∑ ∂ logLt

∂θ

∂ logLt

∂θ′

] [∑ ∂2 logLt

∂θ∂θ′

]−1

The Student-t log-likelihood of the GARCH(1,1) model is given by

logLt = log

[
Γ

(
η + 1

2η

)]
− log

[
Γ

(
1

2η

)]
− 0.5 log

[
1 − 2η

η

]
− 0.5 log [π]−

−0.5 log σ2
t −

η + 1

2η
log

[
1 +

η

1 − 2η
ε2

t

]

where σ2
t = α0 + α1y

2
t−1 + βσ2

t−1 and ε2
t = y2

t /σ
2
t .

First order derivatives:

∂ logLt

∂α0

= − 1

2σ2
t

∂σ2
t

∂α0

[
1 − 2η − ε2

t

1 − 2η + ηε2
t

]

∂ logLt

∂α1
= − 1

2σ2
t

∂σ2
t

∂α1

[
1 − 2η − ε2

t

1 − 2η + ηε2
t

]

∂ logLt

∂β
= − 1

2σ2
t

∂σ2
t

∂β

[
1 − 2η − ε2

t

1 − 2η + ηε2
t

]

∂ logLt

∂η
=

1

2η

[
1

1 − 2η
− 1

η

(
ψ

(
η + 1

2η

)
− ψ

(
1

2η

)
− log

(
1 +

η

1 − 2η
ε2

t

))
−
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(η + 1)ε2
t

(1 − 2η)(1 − 2η + ηε2
t )

]

where ψ(·) is the digamma function and

∂σ2
t

∂α0
=

1 − βt−1

1 − β
+

βt−1

1 − α1 − β

∂σ2
t

∂α1
=

t−2∑

i=0

βiy2
t−1−i + βt−1

σ2
y

1 − α1 − β

∂σ2
t

∂β
=

t−2∑

i=0

βiσ2
t−1−i + βt−1

σ2
y

1 − α1 − β

where σ2
1 = σ2

y = α0

1−α1−β
.

Second order derivatives:

∂2 logLt

∂α2
0

=
1

2σ4
t

(
∂σ2

t

∂α0

)2 [
1 − 2η − ε2

t

1 − 2η + ηε2
t

− 1 − η − 2η2

(1 − 2η + ηε2
t )

2
ε2

t

]

∂2 logLt

∂α0∂α1
=

1

2σ2
t

1

1 − 2η + ηε2
t

[
1

σ2
t

∂σ2
t

∂α0

∂σ2
t

∂α1

(
1 − 2η − ε2

t −
1 − η − 2η2

1 − 2η + ηε2
t

ε2
t

)
− ∂2σ2

t

∂α0∂α1
(1 − 2η − ε2

t )

]

∂2 logLt

∂α0∂β
=

1

2σ2
t

1

1 − 2η + ηε2
t

[
1

σ2
t

∂σ2
t

∂α0

∂σ2
t

∂β

(
1 − 2η − ε2

t −
1 − η − 2η2

1 − 2η + ηε2
t

ε2
t

)
− ∂2σ2

t

∂α0∂β
(1 − 2η − ε2

t )

]

∂2 logLt

∂α0∂η
=

1

2σ2
t

∂σ2
t

∂α0

ε2
t (3 − ε2

t )

(1 − 2η + ηε2
t )

2

∂2 logLt

∂α2
1

=
1

2σ2
t

1

1 − 2η + ηε2
t

[
1

σ2
t

(
∂σ2

t

∂α1

)2(
1 − 2η − ε2

t −
1 − η − 2η2

1 − 2η + ηε2
t

ε2
t

)
− ∂2σ2

t

∂α2
1

(1 − 2η − ε2
t )

]

∂2 logLt

∂α1∂β
=

1

2σ2
t

1

1 − 2η + ηε2
t

[
1

σ2
t

∂σ2
t

∂α1

∂σ2
t

∂β

(
1 − 2η − ε2

t −
1 − η − 2η2

1 − 2η + ηε2
t

ε2
t

)
− ∂2σ2

t

∂α1∂β
(1 − 2η − ε2

t )

]

∂2 logLt

∂α1∂η
=

1

2σ2
t

∂σ2
t

∂α1

ε2
t (3 − ε2

t )

(1 − 2η + ηε2
t )

2
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∂2 logLt

∂β2
=

1

2σ2
t

1

1 − 2η + ηε2
t

[
1

σ2
t

(
∂σ2

t

∂β

)2(
1 − 2η − ε2

t −
1 − η − 2η2

1 − 2η + ηε2
t

ε2
t

)
− ∂2σ2

t

∂β2
(1 − 2η − ε2

t )

]

∂2 logLt

∂β∂η
=

1

2σ2
t

∂σ2
t

∂β

ε2
t (3 − ε2

t )

(1 − 2η + ηε2
t )

2

∂2 logLt

∂η2
=

4η − 1

2η2(1 − 2η)2
+

1

η3

[
ψ

(
η + 1

2η

)
− ψ

(
1

2η

)
− log

(
1 +

η

1 − 2η
ε2

t

)]

− 1

4η4

[
ψ′

(
1

2η

)
− ψ′

(
η + 1

2η

)]

+
ε2

t

2η(1 − 2η)(1 − 2η + ηε2
t )

[
2

η
+

(η + 1)(ε2
t − 2)

(1 − 2η + ηε2
t )

− 2(η + 1)

(1 − 2η)

]

where
∂2σ2

t

∂α0∂α1

=
βt−1

(1 − α1 − β)2

∂2σ2
t

∂α0∂β
=

1 + βt−2(1 − 2β − t+ tβ)

(1 − β)2
+
βt−2 [(t− 1)(1 − α1 − β) + β]

(1 − α1 − β)2

∂2σ2
t

∂α2
1

=
2α0β

t−1

(1 − α1 − β)3

∂2σ2
t

∂α1∂β
=

t−1∑

i=1

iβi−1y2
t−1−i +

α0β
t−2((t− 1)(1 − α1 − β) + 2β)

(1 − α1 − β)3

∂2σ2
t

∂β2
=

t−2∑

i=1

iβiσ2
t−1−i +

t−2∑

i=0

βi∂
2σ2

t−1−i

∂β2

+βt−2
σ2

y

(1 − α1 − β)2
[(t− 1)(1 − α1 − β) + 2β]

where
∂2σ2

1

∂β2 =
2σ2

y

(1−α1−β)2
.
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