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SHORT-TERM OPTIONS WITH STOCHASTIC VOLATILITY:

ESTIMATION AND EMPIRICAL PERFORMANCE

Gabriele Fiorentini, Ángel León and Gonzalo Rubio

A B S T R A C T

This paper examines the stochastic volatility model suggested by Heston (1993). We
employ a time-series approach to estimate the model and we discuss the potential effects of
time-varying skewness and kurtosis on the performance of the model.  In particular, it is found
that the model tends to overprice out-of-the-money calls and underprice in-the-money calls. It
is also found that the daily volatility risk premium presents a quite volatile behavior over time;
however, our evidence suggests that the volatility risk premium has a negligible impact on the
pricing performance of Heston´s model.

Keywords: Stochastic, Volatility, Skewness, Kurtosis, Pricing.
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1.  INTRODUCTION

Given the Black-Scholes (1973) (BS henceforth) assumptions, all option prices on the

same underlying security with the same expiration date but with different exercise prices

should have the same implied volatility. However, the well known smiles and smirks suggest

that the BS formula exhibits systematic biases in pricing options. There have been various

attempts to deal with this apparent failure of the BS valuation model. In principle, as

explained by Das and Sundaram (1999), the existence of the smile effect may be attributed to

the presence of excess kurtosis in the conditional return distributions of the underlying assets.

It is clear that excess kurtosis makes extreme observations more likely than in the BS case.

This increases the value of out-of-the-money and in-the-money options relative to at-the-

money options, creating the smile. Meanwhile, if the pattern shown by data contains a clear

asymmetry in the shape of the smile, i.e. a smirk pattern, then this may be due to the presence

of skewness in the distribution which has the effect of accentuating just one side of the smile.

Given this evidence, extensions to the BS model that exhibit excess kurtosis and

skewness have been proposed in recent years along two lines of research: Jump-diffusion

models under a Poisson-driven jump process, and the stochastic volatility framework are the

key developments in the theoretical option pricing literature1.

A recent and important attempt to summarize alternative option pricing models is

carried out by Bakshi, Cao and Chen (1997). They are able to derive a closed-form jump-

diffusion model that includes previously studied models. It allows not only stochastic

volatility, but also stochastic interest rates and stochastic jumps. Moreover, following Bates

(1996), they use a cross-sectional framework to implement their model, and analyze the

performance and hedging behavior of the nested option pricing models. Das and Sundaram

(1999) also examine the extent to which these models are able to capture the observed

anomalies discussed in literature. Bakshi, Cao and Chen (1997) find that both stochastic

volatility and jumps are important for pricing. However, they suggest that recognizing

stochastic volatility alone produces the best hedging performance. On the other hand, Das and

Sundaram (1999) argue that, generally speaking, stochastic volatility models yield better

                                                          
1  Alternatively, Corrado and Su (1996), and Backus, Foresi, Li and Wu (1997) adapt a Gram-Charlier series
expansion of the normal density function to obtain skewness and kurtosis adjustment terms for the BS formula.
Eberlein, Keller and Prause (1998) introduce the hyperbolic density to account for excess kurtosis and skewness,
and they are even able to obtain a closed option pricing formula under this assumption. Rosenberg (1998)
suggests the so called flexible density function methodology to estimate risk-neutral densities implied by option
pricing data.
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pricing results than jumps, although none of them is able to explain all patterns of kurtosis,

skewness and volatility smiles found in empirical pricing literature.

Stochastic volatility option valuation start with the bivariate diffusion processes of

Hull and White (1987), Scott (1987) and Wiggins (1987). In these models the volatility risk

premium is not rewarded and thus removed from the valuation equation. Further, the

correlation between the volatility and the stock return is zero in Hull and White (1987) and

Scott (1987). Heston (1993) provides a closed-form solution for a European call option

without imposing the restrictions of zero correlation and zero price of volatility risk by using

Fourier inversion methods.

The key objective of the paper is to analyze the empirical performance of the

stochastic volatility model proposed by Heston (1993) relative to the BS framework for

options on the Spanish IBEX-35 stock exchange index. At the same time, the empirical and

theoretical behavior of the parameters characterizing the diffusion process assumed for the

instantaneous variance is studied. Their behavior is discussed relative to the appropriate

skewness and kurtosis underlying in Heston´s model. This provides us with insights clarifying

the reasons behind the poor performance found for the stochastic volatility option pricing

model.

Since the Spanish option market shows a very limited number of exercise prices traded

simultaneously and where liquidity is also less generalized than in the US market, then there

are serious consequences for the empirical implementation of the cross-sectional estimation of

implied parameters proposed by Bates (1996) and Bakshi, Cao and Chen (1997), that is; there

are just not enough prices available in order to estimate jointly all parameters embedded in

Heston’s model. This forces us to turn to estimate the parameters in two separate steps. First,

we estimate the parameters of the stochastic volatility, which are required inputs of Heston’s

model, by employing the indirect inference estimation technique of Gourieroux, Monfort and

Renault (1993) on a time-series of the underlying hourly return. Second, the price of the

volatility risk and instantaneous variance are backed out by minimizing the sum of squared

pricing errors between the option model and market prices as in Bakshi, Cao and Chen (1997).

Besides this practical argument, it should also be pointed out that the cross-sectional approach

may easily ignore relevant information in the original series that may not be embedded in the

option prices.

The remainder of the paper is organized as follows: Section 2 contains a brief

summary of the Spanish options market features and the options data. The theoretical model,
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i.e. Heston’s model, employed in this paper appears in Section 3. The empirical results

regarding the time series estimation of the stochastic volatility parameters, the theoretical

discussion on the relationship between these parameters and the appropriate skewness and

kurtosis in Heston´s framework appears in Section 4. The implied volatility graphs of the

daily implied variance, the estimation and testing of the volatility risk premium through

option prices is shown in Section 5. In Section 6, the out-of-sample pricing performance is

carried out. Finally, in Section 7, we conclude with a summary.

2.  THE SPANISH  IBEX-35 INDEX OPTIONS

2.1.  Market description

The Spanish IBEX-35 index is a value-weighted index comprising the 35 most liquid

Spanish stocks traded in the continuous auction market system. The official derivative market

for risky assets, which is known as MEFF, trades a futures contract on the IBEX-35, the

equivalent option contract for calls and puts, and individual option contracts for blue-chip

stocks. Trading in the derivative market started in 1992. The market has experienced

tremendous growth from the very beginning. Relative to the volume traded in the Spanish

continuous market, trading in MEFF represented 40% of the regular continuous market in

1992, 156% in 1994, and 170% in 1995. The number of all traded contracts in MEFF relative

to the contracts traded in the CBOE reached 20% in 1995.

The IBEX-35 option contract is a cash settled European option with trading during the

three nearest consecutive months and the other three months of the March-June-September-

December cycle. The expiration day is the third Friday of the contract month. Trading occurs

from 10:30 to 17:15. During the sample period covered by this research, the contract size is

100 Spanish pesetas times the IBEX-35 index, and prices are quoted in full points, with a

minimum price change of one index point or 100 pesetas2. The exercise prices are given in 50

index point intervals.

It is important to point out that liquidity is concentrated in the nearest expiration

contract. Thus, during 1995 and 1996 almost 90% of crossing transactions occurred in this

type of contracts. Finally, it should be noticed that options and futures contracts are directly

associated. The futures contract has exactly the same contract specifications as the IBEX-35

                                                          
2  This has recently been changed to 1,000 pesetas.
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options. This will allow us to employ the futures price rather than the spot price in our

empirical exercise. In fact, this is what is usually done by practitioners.

2.2.  The data

For this paper, our database is comprised of all call options on the IBEX-35 index

traded daily on MEFF during the period January 3, 1996 through April 30, 1996. Given the

concentration in liquidity, our daily set of observations includes only calls with the nearest

expiration day. Moreover, we eliminate all transactions taking place during the last week

before expiration (to avoid the expiration-related price effects).

As usual in this type of research, our primary concern is the use of simultaneous prices

for the options and the underlying security. The data, which are based on all reported

transactions during each day throughout the sample period, do not allow us to observe

simultaneously enough options with the same time-to-expiration on exactly the same

underlying security price but with different exercise prices. In order to avoid large variations

in the underlying security price, we restrict our attention to the 45-minute window from 16:00

to 16:45. It turns out that, on average and during our sample period, almost 25% of crossing

transactions occur during this interval. Moreover, care was also taken to eliminate the

potential problems with artificial trading that are most likely to occur at the end of the day.

Thus, all trades after 16:45 were eliminated so that we avoid data which may reflect trades to

influence market maker margin requirements. At the same time, using data from the same

period each day avoids the possibility of intraday effects in the IBEX-35 index options

market.

These exclusionary criteria yield a final daily sample of 768 observations. Table 1

describes the sample properties of the call option prices employed in this work. Average

prices, average relative bid-ask spread and the number of available calls are reported for each

moneyness category. Moneyness is defined as the ratio of the exercise price to the futures

price. A call option is said to be deep out-of-the-money if the ratio K/F belongs to the interval

(1.03, 1.08); out-of-the-money if 1.03 > K/F ≥ 1.01; at-the-money when 1.01 > K/F ≥ 0.99; in-

the-money when 0.99 > K/F ≥ 0.97; and deep-in-the-money if  0.97 > K/F ≥ 0.90. As we

already discussed, there are 768 call option observations, with OTM, ATM and ITM options

respectively representing 51%, 32% and 17%. The average call price ranges from 12.88

pesetas for deep OTM options to 185.42 pesetas for deep ITM options. The average relative
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bid-ask spread goes exactly in the opposite direction to the average price. In particular, it

ranges from 0.39 for deep OTM options to 0.10 for deep ITM calls.

The implied volatility for each of our 768 options is estimated next. Note that we take

as the underlying asset the average of the bid and ask price quotation given for each futures

contract associated with each option during the 45-minute interval3. Recall that we are

allowed to use futures prices given that the expiration day of the futures and options contracts

systematically coincides during the expiration date cycle. Moreover, note that dividends are

already taken into account by the futures price. To proxy for riskless interest rates, we use the

daily series of annualized repo T-bill rates with either one week, two weeks or three weeks to

maturity. One of these three interest rates will be employed depending upon how close the

option is to the expiration day. Finally, as discussed by French (1984), volatility appears to be

a phenomenon that is basically related to trading days. However, interest rates are paid by the

calendar day. Thus, in order to estimate the implied volatility of each option in our sample, we

employ Black´s (1976) option pricing formula adjusted by two time measures to reflect both

trading days and calendar days until expiration. These implied volatilities will be used later as

the basis for comparison with Heston´s implied instantaneous volatilities.

3.  HESTON’S STOCHASTIC VOLATILITY OPTION PRICING

MODEL

Heston (1993) obtains a closed-form solution for the price of a European call option on

an asset with stochastic volatility. Heston works with Fourier transforms of conditional

probabilities that the option expires in-the-money. The characterization of these probabilities

is achieved through their characteristic function.

The stochastic volatility model proposed by Heston generalizes Geometric Brownian

Motion by allowing the volatility of the return process itself to evolve stochastically over time

in a square root mean-reverting fashion:

                                                          
3  It might be that lack of liquidity in the futures market is responsible for the lack of variation in the price of the
underlying asset during the 45-minute window. However, this is not the case. In fact, the futures market is at least
as liquid as the spot market in terms of comparable measures of trading volume.
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                                             dS S dt V S dWt t t t t= +µ 1

                                        ( )dV V dt V dWt t t t= − +κ θ σ 2                                      (1)

                                            dW dW dtt t1 2 = ρ

where µ is the instantaneous expected rate of return of the underlying asset, Vt is the

instantaneous stochastic variance, θ is the long-term mean of the variance, κ governs the rate

at which the variance converges to this mean, and σ represents the volatility of the variance

process. The parameters of the variance process,θ κ σ, ,and are all strictly positive constants.

W1t and W2t are each a standard Brownian motion allowed to be instantaneously correlated.

Thus increases (decreases) in volatility could be related to the level of the underlying asset.

The risk-neutral probability measure incorporates the market price of volatility,

denoted as λ , to distinguish the objective probability measure from the risk-neutral one. The

volatility risk premium is assumed to be proportional to the instantaneous variance, tVλ , and

its sign arises from the (sign of) correlation between the Brownian processes assumed for the

instantaneous variance and the (aggregate) consumption. The model is given by:

                                       ( )

dS rS dt V S dW

dV V dt V dW

dW dW dt

t t t t t

t t t t

t t

= +

= − +

=

1

2

1 2

*

* * *

* *

κ θ σ

ρ

                            (2)

where κ κ λ* = + , θ κθ κ λ* ( )= + .

Let ( )c S t, ,υ  be the value of a European call option where S ≡ St and υ ≡Vt to

abbreviate. Heston´s formula is given by:

                                  ( )c S t S P Ke Pt
r T t, , ( )υ = − − −

1 2                                       (3)

where, P1 and P2 are two risk-neutralized probabilities having the same interpretation

as in the standard BS expression.
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In the application below, we use future options so that the actual version of the

formula we employ is given by:

                                ( ) ( )c F t e F P KPr T t
t, , ( )υ = −− −

1 2                                       (4)

where F is the future price on the underlying spot price, and

               [ ]( ) [ ]( )P x T t K x K x xj T t t, , ; ln ln ,υ υ υ− = ≥ = =Prob                     (5)

where, [ ]x Ft≡ ln , j = 1 or 2 (the probability of the event [ ]{ }x K≥ ln depends on

whether we chose the futures for j = 1, or the riskless rate for j = 2), and Pj is, therefore, the

conditional probability that the option expires in-the-money. These probabilities depend on

the vector of parameters (κ θ λ σ ρ, , , , ) given by the process assumed by Heston under the

original probability. It is important to note that the expressions for these probabilities are

slightly different from the original values given by Heston (1993) since we are using futures.

The actual formulae employed in this paper are provided in Appendix A.

In the empirical implementation of the model, we could always go to option prices and

implicitly infer the parameters under the risk neutral probabilities. Given the limited number

of daily option prices available to the 45-minute window from 16:00 to 16:45, the cross-

sectional approach is just not possible if we wish to estimate all the parameters implied in

Heston’s model for calculating daily call prices. Our estimation approach consists of a two

step procedure. First, we employ the original asset data (a time series of the spot IBEX-35

return) to estimate the parameters from the true process, i.e. equation (1), by adjusting the

discretization biases throughout the indirect inference estimation methodology which is

discussed in the following section. Second, we estimate the volatility risk premium and daily

instantaneous variance from option prices. Definitively, this methodology needs two different

sources of data for estimating the parameters, both time series data and cross section data.
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4.  INDIRECT ESTIMATION

4.1.  Parameter estimation of the stochastic variance process

To estimate the process under the original probability measure given by (1), we have to

assume that available data are discrete-time observations of a continuous time process. If we

apply regular econometric methods to discrete-time approximations, we would have a serious

estimation -discretization- bias in our results. In order to avoid this bias, we employ the

indirect estimation proposed by Gouriéroux, Monfort and Renault (1993). The procedure

consists of two steps. First of all, by maximum likelihood techniques, we estimate an

appropriate auxiliary model. Secondly, the estimates of the auxiliary model are compared with

estimators based on simulations of the path of the continuous time process given by (1). More

specifically, we have to introduce a discrete time analogue of (1) corresponding to a small

time unit τ, such that 1/τ is an integer. This is done by Euler approximation. Then for a given

value of the parameters, we simulate the process, and obtain simulated values for the

observation dates by merely selecting the values corresponding to integer indexes. This yields

an accurate simulation of V as long as τ is sufficiently small. In Appendix B, we precisely

describe the steps necessary for the indirect estimation procedure.

With respect to the empirical results, we first estimate the in-sample period from

January 2, 1994 to January 2, 1996 with continuously compounded hourly returns from the

Spanish IBEX-35 index. The calculation of returns is based on the last recorded logarithmic

index levels over consecutive hourly intervals. It is well known that the first hourly return

incorporates adjustments to the information which has arrived overnight, and therefore

presents a higher average return variability than any other hourly return. This basically implies

that this first return is not an hourly return, and we consequently delete it from the estimation.

Our final sample length consists of 2,450 hourly observations.

The results for the in-sample period are reported in Table 2. We consider four

alternative combinations of simulations and frequencies and the Euler discretization

specification4. The results contained in the first column are obtained simulating the process

once (N = 1), and 2,450x10 data points since the frequency used is equal to τ = 1/10. In the

second column of Table 1, we simulate (η1,η2) 10 times (N = 10), and we generate 10 series

of size 2,450x10 given that the frequency is again τ = 1/10. Hence, our final estimates are

                                                          
4  Nowman (1997) discretization was also carried out but the results were similar to Euler discretization.
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based on the following minimization: min i
i

Ω
Ψ Ψ! ~−
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. In the third column, the process

is simulated once (N = 1), but the calibration of the Nagarch (1,1) model is performed with

more data. In particular, the length of the vector used in the estimation is 2,450x10. Given that

the frequency is  τ = 1/10, we have a total of 2,450x10x10 data points. Note, of course, that

once we go back to the Nagarch (1,1) model using simulated data of equal frequency as the

real data, we have 2,450x10 observations. This is the methodology employed in the rolling

procedure for the out-of-sample estimation which will be used in testing Heston´s option

pricing model under Euler discretization. Finally, the results reported in the fourth column

simulate the process once (N = 1), but the frequency is established at τ = 1/50.

The estimations contained in Table 2 suggest that, independently of the alternative

procedure employed, the results tend to be quite similar. There seems to be some minor

difference in the estimator of the volatility of the variance process, and the estimator of the

correlation coefficient between the shocks when we use the frequency at τ = 1/50. In any case,

independently of the procedure employed, the estimate of the correlation coefficient is,

surprisingly, positive and close to zero. Given the asymmetry coefficient found in the Nagarch

(1,1) structure, we would have expected a negative correlation coefficient to reflect the

asymmetry generally observed in literature to reflect that agents seem to react more to bad

news than to good news5.

For the out-of-sample estimation, the same process is estimated 80 times using

systematically 2,450 past observations. This rolling procedure of the indirect inference is

necessary to yield estimates of the parameters involved in Heston´s expression for each day

between January 3, 1996 and April 30, 1996. Thus, the daily changing estimates of these

parameters are used as inputs in Heston´s option pricing formula. Figure 1 presents the

evolution of the parameters associated with the stochastic variance process throughout the

out-of-sample period. As we can observe from the figure, the long-term volatility, θ , the

rate of convergence of the instantaneous variance to the long-term average, κ , and the

volatility of the variance process, σ ,  remain quite stable over the out-of-sample period.

However, the coefficient of correlation between the shocks for the stock and the variance, ρ ,

                                                          
5 Duan (1997) shows that both the Glosten, Jagannathan and Runkle (1993) -GJR (1,1)- and Nagarch (1,1)
models converge to the same limiting diffusion process for the stochastic volatility, i.e. the mean-reverting
Geometric Brownian motion. León and Sentana (1998) shows that the relationship between the parameters of this

Brownian process and the ones corresponding to the Nagarch (1,1) model is exactly given by: ρ γ γ= +2 1 2 2 .

Then, it must be the case that sign(ρ) = sign (γ). Of course, this limiting result does not hold for the square-root
mean reverting process.
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increases continuously. As before, it is interesting to observe that the correlation remains

positive throughout the out-of-sample period.

4.2. Skewness, kurtosis and the parameters of the stochastic volatility process

The time-varying behavior of the correlation coefficient found above may have a

serious impact on the capacity of Heston´s model to explain option pricing data. It suggests

that, in this case, we may have a similar problem than the one we have when assuming

constant volatility in the BS context. If correlation between prices and volatility changes

continuously over time, skewness of the underlying asset may also exhibit time-varying

behavior. This is clearly a potential and relevant problem for models with stochastic volatility.

On the other hand, according to the estimates shown in Figure 1, it seems that the

behavior of the volatility of volatility is rather stable over time. This suggests that accounting

for changing kurtosis of the underlying asset may not be as crucial as taking into consideration

changing skewness.

Das and Sundaram (1999) obtain closed-form expressions for conditional and

unconditional skewness and kurtosis under Heston´s stochastic volatility model. Their

expressions, for a given frequency of ∆t = 1 can be seen in Appendix C.

Given our rolling estimates of ρ and σ from January 1996 to April 1996, we can daily

estimate (C1) and (C2) from Appendix C, so that we may observe how the characteristics of

the distribution of the underlying asset -skewness and kurtosis- change with both the

correlation coefficient and the volatility of volatility.

Figure 2 depicts the conditional and unconditional skewness over the sample period.

As we can easily observe, their behavior closely follows the pattern of the correlation

coefficient of Figure 1. As expected, skewness mainly arises from the correlation between

changing prices and stochastic volatility of the underlying asset. The problem is that, of

course, Heston´s model assumes a constant unconditional skewness over time6.

                                                          
6 Given the similarity between the behavior of unconditional and conditional skewness, the impact of the
instantaneous stochastic variance on the conditional skewness must be negligible relative to the effect of the
correlation coefficient.
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In León and Rubio (2000), it is shown that, all else being constant, the relationship

between skewness and the correlation coefficient is positive; i.e. SKEW 0∂ ∂ρ >  for both the

conditional and unconditional cases. This explains the behavior of skewness in Figure 2.

Therefore, if (as is in fact the case) the correlation coefficient tends to be rather unstable, an

option pricing model with a stochastic differential equation for correlation would be

welcomed7. Given this evidence, we should not expect to find a good performance of the

stochastic volatility model when we compare observed market prices with theoretical prices.

We will come back to this issue later in the paper.

Figure 3 contains the same evidence for the kurtosis case. In principle, the impact of

time-varying kurtosis on the misspecification of Heston´s model seems to be much less severe

than the influence of the correlation coefficient. Its pattern over time is much more stable than

ρ. This is related to the behavior of the volatility of volatility, σ, in Figure 1. This is the

parameter that allows for kurtosis in the stochastic volatility option pricing model, and it does

not seem to change much over time. Once again, in León and Rubio (2000), it is shown that

the relationship between kurtosis and σ is positive, i.e KURT / 0∂ ∂σ > , for both the

conditional and unconditional cases.

As a summary, time-varying skewness may be the key issue to analyze if we want to

understand the failure of the tests we report below. Its consequences may be much more

serious than the potential effects of changing kurtosis. However, this point will be clarified in

Section 6.

5. ESTIMATING THE IMPLIED VARIANCE AND THE VOLATILITY RISK

PREMIUM

Volatilities from the BS model and both the instantaneous variance and the volatility

risk premium from Heston model are estimated every day from option prices, specifically all

available call options transacted over the 45-minute interval from 16:00 to 16:45 during the

period January 3, 1996 to April 30, 1996.

                                                          
7 See Nandi (1998) for an exhaustive discussion of the importance of the correlation coefficient
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5.1. Estimation procedure

Note that, once we have estimated for each day the parameters of the variance process,

κ θ σ ρ, , ,  and ,  using the rolling indirect inference procedure, we still need to estimate the

volatility risk premium, λ, and the instantaneous variance, tV , before we can actually price a

given call option under Heston’s model. Therefore, it seems reasonable to expect that we may

use cross-sectional data to implicitly infer the parameters that minimize the sum of squared

errors (SSE) in a given day of the sample.

Given the set of parameters of the indirect estimation procedure obtained for a

particular day t in the sample, ( )! ! , ! , ! , !Ω t t t t t= κ θ σ ρ , and for each option, i (i = 1, . . ., n) and

each day t, we define the pricing error as:

                                   ( ) ( ) ( )e V c K c Kit t t it i it i, ; ! !λ Ω = −                             (6)

where ( )!c Kit i  is the theoretical price of call i in day t, and ( )c Kit i  is the

corresponding observed market price. We then want to find the instantaneous variance, Vt,

and the risk premium parameter, λ, to solve:

                               
{ } ( )[ ]SSE min e Vt
Vt

it t t
i

n
≡ ∑

=,
, ; !

λ
λ Ω

2

1
                              (7)

Direct inspection of the quadratic form in (7) shows that it is highly valley shaped and,

therefore, it is extremely flat along a direction corresponding to a nontrivial combination of λ
and tV . As a consequence, derivative based minimization methods are expected to perform

poorly since the numerically computed gradient is very unstable in a neighborhood of a

minimum. This is confirmed by some experiments that we performed with the Newton-

Raphson method. In order to avoid the above problem, a derivative-free minimization

algorithm is called for. Since the function in (7) only depends on two parameters, the downhill

simplex method of Nelder and Mead (1965) seems to be a natural candidate. We have

robustified the method by choosing randomly several starting triplets and in those cases of

convergence to different local minima their minimum was selected as the global solution. So,

we obtain daily estimates of both λ and tV  from January 3, 1996 to April 30, 1996; i.e. a
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sample of 80 days. Finally, a series for daily implied volatilities estimated in the

corresponding BS’s versions of (6) and (7) is also obtained.

5.2.  The volatility risk premium

In Figure 4, we can see that the estimated daily values of λ further suggest that the

volatility risk premium varies over time in the IBEX-35 futures option market. Notice that this

time-varying behavior of volatility risk premium is not consistent with Heston’s model since λ
must be a constant value as we can see in equation (2). The estimated values of λ ranges from

–0.252 to 0.333. The mean (median) for the time-series of λ is –0.021 (-0.027) and the

standard deviation is 0.113. The skewness and the excess kurtosis are 0.527 and 0.747

respectively. The p-value of the Jarque-Bera test (normality test) for the time-series of λ is

0.085, so the normal distribution is rejected at the 10% significance level. The null hypothesis

of 0λ =  was tested under three different methods. First, assuming that λ  values were drawn

from a normal distribution, a Student t test was performed, so the Student t ratio was –1.58 (p-

value=0.1183).

Second, a nonparametric test for the population median of λ  values, specifically the

sign test8, was performed whose p-value was 0.1544.

Third, we also test 0H : 0λ =  by obtaining accurate confidence intervals for λ based on

the “bootstrap-t“ confidence interval (see Efron and Tibshirani, 1993). By selecting 10,000

independent bootstrap samples, each consisting of 80 data values drawn with replacement

from the series of λ , then the 90%, 95% and 99% bootstrap-t confidence intervals for the

mean are respectively: [-0.0426; 0.0021], [-0.0467; 0.007] and [-0.0551; 0.0175]. Summing

up, we conclude that the evidence does not support rejection of the null hypothesis, i.e. the

volatility risk premium is zero. The finding of a zero volatility risk premium for Ibex-35 index

options is opposite to those of Guo (1998), Sarwar and Krehbiel (2000) using currency

options, Lin, Strong and Xu (1999) using FTSE 100 index options. Nevertheless, our result is

consistent with Bakshi, Cao and Chen (1997) who find that the maximum likelihood estimates

of κ  and θ  are statistically indistinguishable from their respective S&P 500 option-implied

counterparts, i.e. *κ  and *θ .

                                                          
8 Since the empirical distribution is skewed, the sign test is more appropriate than the popular nonparametric
Wilcoxon signed-rank test because the last one assumes that the underlying distribution is symmetric (see
Rohatgi, 1984).
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Since the λ  parameter in Heston’s model is a constant value and given that we can

impose that 0λ =  for the volatility risk premium embedded in Heston option prices on the

Spanish Ibex-35 index, according to the conclusions from the above tests, then we can solve

equations (6) and (7) and obtain a daily estimate of instantaneous variance from January 3,

1996 to April 30, 1996. We also repeat the above procedure for two alternative λ  values,

specifically 0.50λ =  and 0.50λ = − , in order to analyze the sensibility of the estimated

instantaneous variance under different magnitudes of λ  which are in accordance with our

sample of λ  values. Definitively, in Section 6 we will test the out-of-sample pricing

performance for Heston’s model under the three candidate values of λ and compare each with

BS’s performance.

5.3. Implied volatility graphs

Figure 5 contains the evolution for several series of implied volatilies from January 3,

1996 to April 30, 1996 for each version of Heston’s model, i.e. for 0.5,0,0.5λ = −  and for a

different daily λ value, and also, of course, for the BS formula. It can be easily appreciated

that Heston’s volatility, independently of the volatility risk premium assumed, tends to be

higher than BS’s volatility. A priori, this may have serious implications for pricing. Also, note

that the four implied volatility series under Heston’s model are very similar and for

0.5,0,0.5λ = − , in general, the larger the required volatility risk premium imposed, the (very

slightly) larger the instantaneous volatility.

To obtain a general picture of the potential misspecifications of the option pricing

models employed in this research, we report the average pattern of implied volatilities across

degree of moneyness. The results are shown in Figure 6.

In the BS case, we back out the implied volatility of each call option and for each day

of the above period using the procedure discussed in sub-section 2.2. Then, the equally-

weighted implied volatility for each moneyness category and each day in the sample period is

calculated. There is a U-shaped pattern with a hump in the middle in Figure 6. This suggests

that the BS model tends to underprice deep OTM and deep ITM calls. This is the typical smile

pattern of the Spanish option market analyzed by Peña, Rubio, and Serna (1999). Any

reasonable alternative model to BS must be able to properly price deep OTM and deep ITM

call options. Of course, Heston´s stochastic volatility model, given by equations (4) and (5), is

a potential and particularly interesting candidate.
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For 0.5,0,0.5λ = − , we may analyze the pattern of implied volatilities across

alternative degrees of moneyness. The evidence reported in this regard in Figure 6 suggests a

rather asymmetric smile in Heston´s model independently of the volatility risk premium

imposed. It seems that Heston´s approach tends to underprice (deep) ITM calls and overprice

(deep) OTM calls.

We now turn to formal tests of the alternative option pricing specifications considered

in this paper.

6. OUT-OF-SAMPLE PRICING PERFORMANCE

In order to test the out-of-sample pricing performance for each model analyzed in this

work, we employ two years of rolling data to estimate, by indirect inference, the parameters of

the stochastic variance process assumed in (1). Given these estimates, and a chosen volatility

risk premium, λ, we use all call options available in our 45-minute window to compute for

each day from January 2, 1996 to April 29, 1996 the instantaneous variance that minimized

the squared error between the theoretical value and the market price of the call options

according to (6) and (7). We then compute the theoretical price of each option using the

previous day´s instantaneous variance and the corresponding parameters of the stochastic

volatility process. For the BS case, the previous day´s implied volatility that minimized the

squared error between the theoretical value and the market price of the options is used to

obtain the theoretical BS price of each option in the sample.

In this way, we have 768 pricing errors for each of the calls available from January 3,

1996 to April 30, 1996, and for each of the models analyzed. These pricing errors are the basis

for our analysis. Table 3 reports two measures of performance for the alternative model

specifications. Panel A contains the absolute pricing error which is the sample average of the

absolute difference between the model price and the market price for each call in the testing

sample period. This statistic is reported for each moneyness category and for all calls in the

sample. In Panel B, the reported percentage pricing error is the sample average of the

theoretical price minus the market price, divided by the market price. Again, this statistic is

calculated for each moneyness category and for all calls in the sample.
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Overall, in absolute terms, Heston´s option pricing model tends to value slightly better

than BS. The absolute pricing error over all calls is approximately 2.8 pesetas for Heston´s

model independently of the volatility risk premium assumed, and 3.2 pesetas for the BS

model. It is quite important to notice that the level of the volatility risk premium does not

seem to have any influence on the performance of Heston´s stochastic volatility model. The

pricing errors obtained under alternative λ values are practically identical. There might be

some evidence in favor of a positive risk premium, but we can safely conclude that option

prices do not seem to be sensitive to the volatility risk premium. This is an important

empirical result. Kapadia (1998) shows that the expected value of the delta-hedged gain,

under a stochastic volatility model where volatility risk is not priced, is equal to zero. This is

exactly the same result that holds under BS. Consequently, if we may assume that volatility

risk is not priced, the analysis of the dynamic hedging performance of both models is clearly

facilitated9.

It should be pointed out that  the overall slightly better performance of Heston´s model

is not maintained throughout all moneyness categories. In particular, Heston´s model tends to

value ATM and ITM calls better than BS. However, the opposite result holds for OTM calls.

This is also the case when we analyze the percentage pricing error in Panel B. Heston´s

model, regardless of the volatility risk premium imposed, tends to overvalue OTM calls and,

at the same time, the model undervalues ITM calls. However, the percentage pricing for ATM

calls is practically zero. In fact, ATM calls are clearly more consistent with a stochastic

volatility model than with the well known lognormal assumption.  BS, on the other hand,

tends to undervalue deep OTM and deep ITM calls. This is consistent with a U-shaped

volatility smile. In Heston´s case, the evidence points towards a sneer rather than a regular

smile.

6.1. The statistical significance of the out-of-sample performance

Overall, at least over the sample period studied and regardless of λ, Heston´s model

seems to overvalue, while BS tends to undervalue call options. Unfortunately, however, the

simple statistics reported above do not help in making inferences in terms of the statistical

significance of improvement when we contrast one model versus another.

                                                          
9  On the other hand, if volatility risk is priced, the average delta-hedged gain is proportional to the magnitude
and sign of the volatility risk premium. Comparisons of the dynamic hedging performance between Heston´s
model and BS may be much more complicated than the analysis carried out by Bakshi, Cao, and Chen (1997).
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In this paper, the statistical significance of performance for out-of-sample pricing

errors is assessed by analyzing the proportion of theoretical prices lying outside their

corresponding bid-ask spread boundaries10. The following Z-statistic for the difference

between two proportions is employed in the tests. The statistic is given by:

Z
p p

p p n p p n
=

−
− + −

1 2

1 1 1 2 2 21 1( ) ( )

where p1 is always the proportion of BS prices outside the bid-ask boundaries, and p2

is the equivalent proportion for alternative Heston´s specifications. n1 and n2 are sample sizes

corresponding to these proportions. The statistic is asymptotically distributed as a

standardized normal variable.

The empirical results are reported in Table 4. Given that we are also interested in

knowing whether a given theoretical valuation model undervalues or overvalues market

prices, the Z-statistic is also calculated to obtain the proportion for which the theoretical

model yields a price below the bid quote, and the proportion for which the model gives a price

above the ask quote. If a theoretical model tends to undervalue market prices, it would yield a

higher proportion of prices below the bid quote. If, on the other hand, the model tends to

overvalue market prices, it would have a higher proportion of prices above the ask quote.

When we consider all call options together, the p-value for statistiscal improvement of

Heston´s model over the BS formula is equal to 0.068. The proportion of BS prices lying

outside the bid-ask boundaries is 48%, while the proportion of Heston´s model, regardless of

the volatility risk premium, is about 42%. As we see, there is a slight improvement, but we

might interpret the results as rather disappointing. It is not clear at all that, given the costs of

implementation, Heston´s approach is worthwhile in terms of practical applications.

It is also the case that 35% of BS prices are below the bid quote. Given that Heston´s

model yields approximately 18% of prices below the bid, we can conclude that BS, on

average, significantly undervalues market prices relative to Heston´s approach. At the same

time, Heston´s prices are 24% of total observations above the ask quote. We can also conclude

that Heston´s model tends to significantly overvalue market prices relative to the BS formula.

Thus, mispricing associated with BS is basically related to the tendency of the model to yield

prices below market values. However, Heston´s mispricing is a consequence of the model´s

tendency to offer prices above their corresponding market values.

                                                          
10  See Corrado and Su (1996).
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When we classify all call options by moneyness, similar conclusions are obtained. A

call option is said to be OTM if K/F > 1, and a call is classified as ITM when K/F < 1. In

general, within a given category of moneyness, neither model is statistically superior to the

other. However, once again, BS mispricing comes from the tendency of the model to

undervalue either OTM or ITM calls relative to Heston´s model (and relative to market

prices). The opposite is true for Heston´s formula relative to BS (and market prices). It should

be pointed out that in the latter case, the main problem arises when we value OTM with

Heston´s formula. There seems to be a strong tendency in Heston´s model to overvalue this

type of options. This was also reflected in Table 3.

It was mentioned above that the percentage pricing error of Heston´s model for ATM

calls turns out to be quite small. It may be the case that Heston´s formula works particularly

well for ATM options. Calls are said to be ATM when 1.01 > K/F ≥ 0.99. The exercise

described above is repeated for this type of options.  Overall,  as expected, Heston´s model

tends to yield lower proportions of prices lying outside the bid-ask spread than in previously

analyzed cases. However, the p-value for the difference relative to BS proportions is just

0.078. As before, BS tends to yield a statistically significant higher proportion of prices lower

than the bid quote relative to Heston´s prices, and Heston´s model presents a statistically

significant higher proportion of prices above the ask quote relative to BS prices. Now,

however, Heston´s formula has similar proportions above the ask or below the bid. Regarding

ATM calls, Heston´s misspecification cannot be explained by either overvaluation or

undervaluation of call prices.

6.2. The structure of pricing errors

Given the poor empirical performance of both BS formula and Heston´s stochastic

volatility model, a further analysis trying to understand the structure of pricing errors of these

models would seem to be called for. Following the evidence reported by Peña, Rubio, and

Serna (1999) and Bakshi, Cao, and Chen (1997), we use a simple regression framework to

study the relation between the percentage pricing errors and factors that are either option-

specific or market dependent. We first take as given an option pricing model, and let eit be the

i-th call option´s percentage pricing error on day t. Finally, we run the following regression for

the whole sample period:

e X SP VOL TERM SKEW KURTit it it t t t t t it= + + + + + + + +α β β τ β β β β β ω1 2 3 4 5 6 7

(8)
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where X is the moneyness of the ith call at time t as defined by the ratio between the

exercise price (K) and the futures price (F); τit is the annualized time to expiration of the ith

call on day t; SP is the average relative bid-ask spread of all calls and puts transacted between

16:00 and 16:45 on date t; VOLt is the annualized standard deviation of the IBEX-35 index

returns computed from 1-minute intradaily returns; TERMt is the yield differential between

the annualized ten-year government bond and the annualized one-month repo Treasury bill;

SKEWt is the conditional skewness, and KURTt the conditional kurtosis. They are given by

expression (C1)11 from Appendix C.

Table 5 contains the regression results based on the entire sample period and 768 call

options, and where the standard error for each coefficient estimate is adjusted by the White

(1980) heteroskedasticity-consistent estimator.

The explanatory variables employed in the regressions tend to be statistically

significant. However, there are important differences between the percentage errors associated

with either BS or Heston.

In particular, a key point of the results is the statistical significance of the coefficient

estimates related to skewness and kurtosis, when we consider Heston´s model under any of

the three volatility risk premia used in the analysis. This is a very important result. As we

argued in sub-section 4.2, the assumption of constant correlation between stochastic variance

and price changes, and even the assumption of constant volatility of variance under Heston´s

model do not seem to be the appropriate assumptions to adequately explain the behavior of

option prices even allowing for stochastic volatility.

 Note that, on the other hand, the coefficient associated with kurtosis is not statistically

significant in the BS case. However, as in Heston´s case, the skewness bias is also relevant to

explain the BS pricing errors.

Table 5 also shows that the annualized standard deviation of the IBEX-35 index

slightly explains the percentage pricing errors independently of the model employed in the

estimation. On average, pricing errors tend to be lower the higher the volatility of the index.

However, the statistical significance of the coefficients is very weak.

                                                          
11  The same regression was run using one day lagged values for the market dependent variables. Very similar
results were found. The actual regressions employ excess kurtosis as an explanatory variable.
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Traditional biases are not corrected for any of the models. The bias associated with

moneyness has the opposite sign in both types of models. As expected, given previous results,

Heston tends to price OTM options worse than ITM calls. However, on average, the opposite

result is found for BS. Moreover, the bias related to time to expiration seems to be relevant for

both types of models. On average, the percentage pricing errors are larger the longer the time

to expiration.

The influence on percentage pricing errors of both the yield differential between

interest rates and the average spread for all calls and puts transacted over the 45 minute

window are, interestingly enough, different for Heston and BS expressions. In the BS case, the

higher the long-term yield relative to the short-term rate, the lower the percentage pricing

error. However, this result disappears when we allow for stochastic volatility under any of

Heston´s specifications.

Let us analyze the spread variable. Regressions of a similar type were run including the

relative bid-ask spread at date t of the call i. This is, contrary to the results reported in Table 5,

a contract-specific variable. Surprisingly, the estimated coefficients are never significant

regardless of the model considered. By doing this, we are really incorporating a transaction

cost variable directly associated with the liquidity of each individual option. Again, this

variable does not seem to be significant in explaining percentage pricing errors. On the other

hand, however, when we include the average spread over all call and put options for a

particular day t, the estimated coefficient becomes positive and significant in Heston´s case.

This aggregate variable may indicate the average consensus about the uncertainty of trading

throughout the option market. It may be understood as the average adverse selection

confronting market makers in trading options on the Spanish index. As we see from Table 5,

the larger the average spread -larger average adverse selection among traders- the higher the

percentage pricing error in Heston´s stochastic volatility models. The impact of this type of

uncertainty does not seem to be relevant in explaining the percentage pricing errors of BS.

In short, the pricing errors from Heston´s framework have some moneyness, maturity,

average (aggregate) bid-ask spread, skewness and kurtosis related biases. On the other hand,

the BS case presents some moneyness, maturity, yield differential and skewness associated

biases. Neither model seems to capture appropriately the underlying distribution

characteristics of the underlying asset. Further research is clearly justified.
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7.  CONCLUSIONS

This paper introduces a two-step procedure, based on both time series and cross

section data, for estimating all the parameters that we need to compute Heston call price. This

estimation approach should be particularly useful in thin markets where a single cross-

sectional estimation approach may be difficult to implement, for instance Spanish options data

on the Ibex-35 stock index. Moreover, to employ just a cross-sectional procedure may ignore

relevant information that may be included in the original series but not in the option prices.

The empirical results, however, are quite disappointing. On average, over all call

options available in our sample, Heston´s model improves the (poor) performance of BS just

marginally. It is clear that this extremely limited improvement cannot justify the

implementation costs involved in the estimation of Heston´s approach12. The overall rejection

of Heston´s model coincides with recent findings by Bakshi, Cao and Chen (1997) and

Chernov and Ghysels (1998) for options written on the S&P 500 index.

We are quite convinced that the ultimate reasons behind the performance failure of

Heston´s model are closely related to the time-varying skewness and kurtosis found in the

data. In particular, the assumption of a constant correlation coefficient between returns and

stochastic volatility should be relaxed if we really want to have a richer model. Unfortunately,

of course, the complexities needed to price options seem to increase without bounds. It may

be the case that simple nonparametric methodologies are able to incorporate the missing

(realistic) factors in our option pricing models.

It is also found that the daily volatility risk premium presents a quite volatile behavior

over time. However, our evidence suggests that the volatility risk premium has a negligible

impact on the pricing performance of Heston´s model.

A potentially interesting area of research might be related to endogenously

incorporating liquidity costs in option pricing models with either stochastic volatility,

stochastic jumps or both. Once again, this approach may be extremely demanding from a

theoretical point of view but it would probably be welcomed.

                                                          
12 Hedging performance of alternative models is not analyzed in this paper. It is possible that the hedging
improvement under Heston´s stochastic volatility model might be clearly superior to BS.
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APPENDIX A

Heston´s stochastic volatility model using futures options

Given that we use futures options, the actual version of the formula we employ is

given by:

( ) ( )c F t e F P KPr T t
t, , ( )υ = −− −

1 2

where F is the future price on the underlying spot price, K is the exercise price and the

probabilities are given by:
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13 As we have already pointed out, the expression for C(T-t;φ) below is slightly different than the original value
given by Heston (1993) since we are using futures.
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verifying that C(0) = D(0) = 0, and where C(T-t;φ) and D(T-t;φ) (and therefore the

probabilities Pj; j = 1, 2) depend on the vector of parameters, (κ θ λ σ ρ, , , , ) given by the

processes assumed by Heston under the original probability.
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APPENDIX B

Indirect estimation procedure

1. Let x St t≡ ln , then equation (1) becomes

                             ( )dx V dt V dWt t t t= − +µ 2 1 2
1                                                (B1)

                             ( )dV V dt V dWt t t t= − +κ θ σ 1 2
2                                               (B2)

                                 dW dW dtt t1 2 = ρ

The above expressions are used to obtain the set of estimators ( ), , , ,µ κ θ σ ρΩ ≡ .

2. Let us consider next the Euler discretization14 of both (B1) and (B2) with frequency

τ:

                                   x x
V

Vt t
t

t t= + − +−
−

−τ
τ

τµτ τ τ η
2

1 2 1 2
1                                (B3)

                                   V Vt t t= + − +−κθτ κτ ετ( )1                                                 (B4)

where

[ ]ε στ ρη ρ ητt t t tV= + −−
1 2 1 2

1
2 1 2

21( )

( ) ( )η η1 2 0t t

iid
N I, ,′ ≈ .

3. Our auxiliary model is given by the Nagarch (1,1) model15.:

                                     

( )

R h N

h h h

t t t t t

iid

t t t t

= + = ≈

= + + +− − −

µ ξ ξ ε ε

ω β α ξ γ

; ; ( , )/  t
1 2

1 1 1
1 2 2
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                             (B5)

where R x xt t t≡ − −1  and γ represents the relation between the shocks and the

conditional variance. The set of parameters to be estimated by maximum likelihood is given

by ( )Ψ ≡ µ ω α β γ, , , , .

4. Now we discuss the steps for the indirect estimation itself:

                                                          
14 Bakshi, Cao and Chen (2000) also use the Euler discretization for the method of simulated moments which is
employed to estimate the structural parameters of the continuous stochastic volatility (SV) process of the
underlying asset. They also use a square root process for the SV model..
15  See León and Mora (1999) for the behavior of alternative specifications within the GARCH family in the
Spanish stock market.
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[4.1]  Estimation of the auxiliary Nagarch (1,1) model with the observed data ( )τ = 1

( )⇒ ≡! ! , ! , ! , ! , !Ψ µ ω α β γ .

[4.2]  Let 0Ω  be a initial value for Ω .

[4.3]  We simulate ( )η η1 2t t, ′  with τ = 1
10 , so ( )1 2,  t tη η ′

is a ( )/ 1T τ ×  dimensional

vector, i.e.

( )Θτ η η τ≡ ′ =
1 2 1 2t t t T, : , ,..., .

[4.4]  Given [4.2] and [4.3], simulate with Euler discretization equation (B4) to

generate Vt, and then equation (B3), where the set of simulated values from (B3) is denoted

by:

( ) { }X x t TtΩ Θ0 0 2, ~ ; , , ,...,τ τ τ τ≡ =

[4.5]  In order to work with the same frequency as the real data, take from ( )X Ω Θ0 , τ

the following values:

( ) { }Γ Ω Θ0 0 10 20, ~ , ~ , ~ ,..., ~τ τ τ≡ x x x xT

[4.6]  Now, we go back to the auxiliary model and with the data from [4.5], we have a

new set of Rt in (B5). We estimate the Nagarch model with the simulated data at real

frequency and get ( )~
,Ψ Ω Θ0 τ  which is the vector of ML estimators of the Nagarch model

with τ = 1 10  for ( )Γ Ω Θ0 , τ .

[4.7]  We have the same number of parameters in Ω Ψ  and  , so that we, in fact,

minimize a distance with I as the weighting matrix16. Then, if

 ( )! ~
,Ψ Ψ Ω Θ Ω= ⇒ ⇒0 τ indirect e ENDstimators are 0

[4.8]  If ( ) [ ]! ~
,Ψ Ψ Ω Θ≠ ⇒0 τ GO  TO 4.2 . So, let 1Ω  be another new value for Ω ,

continue the process and stop if ( )! ~
,Ψ Ψ Ω Θ= 1 τ ; otherwise come back to [4.2] and repeat the

process until convergence.

                                                          
16  Since the model is exactly identified, the results are unaffected by the choice of the weighting matrix.
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APPENDIX C

(Un)conditional skewness and kurtosis

a) The conditional case:
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where
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and where υ ≡ Vt .

b) The unconditional case:
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TABLE 1.

SAMPLE CHARACTERISTICS OF IBEX-35 FUTURES OPTIONS

Average prices, average relative bid-ask spread and the number of available calls are reported for each

moneyness category. All call options transacted over the 45 minute interval from 16:00 to 16:45 are employed

from January 2, 1996 to April 30, 1996. K is the exercise price and F denotes the futures price of the IBEX-35

index. Moneyness is defined as the ratio of the exercise price to the futures price. OTM, ATM, and ITM are out-

of-the-money, at-the-money, and in-the-money options respectively.

---------------------------------------------------------------------------------------------------------------------------

                                         Moneyness            Average                Average            Number of

                                              (K/F)                   Price              Bid-Ask Spread    Observations

---------------------------------------------------------------------------------------------------------------------------

DEEP OTM CALLS: 1.03-1.08  12.88 0.3903      116

OTM CALLS: 1.01-1.03  28.68 0.2205      273

ATM CALLS: 0.99-1.01  57.20 0.1491      245

ITM CALLS: 0.97-0.99  98.54 0.1273      108

DEEP ITM CALLS: 0.90-0.97 185.42 0.0987        26

ALL CALLS:        -  50.52 0.2015      768

------------------------------------------------------------------------------------------------------------------------------
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TABLE 2.
INDIRECT INFERENCE IN-SAMPLE ESTIMATION

January 1994-December 1995

The parameters of the following processes are estimated using the indirect inference technique:

dSt Stdt Vt StdW t

dVt Vt dt Vt dW t
dW t dW t dt

= +

= − +
=

µ

κ θ σ
ρ

1

2

1 2

( )

where µ is the instantaneous expected rate of return of the underlying asset, Vt is the instantaneous stochastic
variance, θ is the long-term mean of the variance, κ governs the rate at which the variance converges to this
mean, σ represents the volatility of the variance process, and ρ is the instantaneous correlation. The auxiliary
model employed in the estimation is the following Nagarch(1,1) model1/:

Rt t ht t
iid

N

ht ht t ht

= + = ≈

= + − + − + −






µ ξ ξ ε ε

ω β α ξ γ

; / ; ( , ) t  t
1 2 0 1

1 1 1
1 2 2

where Rt is the hourly rate of return of the IBEX-35 index, and γ is the asymmetric parameter of the Nagarch.
Euler discretization technique is employed in the estimation. Moreover, alternative frequencies and simulations
are also used.

------------------------------------------------------------------------------------------------------------------------------
                    N = 1; τ = 1/102/            N =10; τ = 1/103/          N =1 τ = 1/104/                   N = 1; τ = 1/505/

                    Length = 2,450              Length = 2,450           Length = 2,450x10             Length = 2,450
                ------------------------       ------------------------         ------------------------            --------------------

!µ 6/       0.619           0.696           0.702              0.868

!θ 7/       12.09           12.77           11.92              11.73

!κ       0.029           0.034           0.034              0.025

!σ 8/       1.631           1.864           1.857              1.542

!ρ       0.044           0.038           0.020              0.087

------------------------------------------------------------------------------------------------------------------------------

1/ The estimates of the Nagarch(1,1) parameters are:

! . ; ! . ; ! . ; ! . ; ! .µ ω α β γ= = = = = −0 00412 0 00301 0 07680 0 89025 01225

2/ The process is simulated once (N = 1), so that we employ 2,450x10 data points since τ = 1/10, where 2,450 is
the number of hourly returns available from January 1994 to December 1995.
3/ The process is simulated 10 times ( N = 10), so that we generate 10 series of size 2,450x10 since, as in 2/,  τ =
1/10.
4/ The process is simulated once (N = 1), but now we employ 2,450x10x10 data points since τ = 1/10. Thus, the
calibration of the Nagarch is done with more data: 2,450x10.
5/ The process is simulated once (N = 1), so that we employ 2,450x50 data points since τ = 1/50
6/ This is annualized and is given in percentage terms.
7/ This represents the standard deviation of the long-term variance. It is annualized and is given in percentage
terms.
8/ This is annualized and is given in percentage terms.
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TABLE 3.
OUT-OF-SAMPLE PRICING ERROR FOR ALTERNATIVE OPTION PRICING MODELS

ABSOLUTE PRICING ERROR AND PERCENTAGE PRICING ERROR

Two years of rolling daily data are employed to estimate by indirect inference the parameters of the stochastic
volatility process under Heston´s model. Given these estimates, and a chosen volatility risk premium, λ, we use
all call options transacted over the 45 minute interval from 16:00 to 16:45 to compute for each day from January
2, 1996 to April 29, 1996, the instantaneous variance that minimized the squared error between the theoretical
value and the  market price of the options. We then compute the theoretical price of each option using the
previous day´s instantaneous variance and the corresponding parameters of the stochastic volatility process. For
the Black-Scholes case, the previous day´s implied volatility that minimized the squared error between the
theoretical value and the market price of the options is used to obtain the theoretical price of each option in the
sample. The reported absolute pricing error is the sample average of the absolute difference between the model
price and the market price for each call in a given moneyness category. The reported percentage pricing error is
the sample average of the theoretical price minus the market price, divided by the market price. K is the exercise
price and F denotes the futures price of the IBEX-35 index. Moneyness is defined as the ratio of the exercise
price to the futures price. OTM, ATM, and ITM are out-of-the-money, at-the-money, and in-the-money options
respectively.
------------------------------------------------------------------------------------------------------------------------------
                                                     PANEL A: ABSOLUTE PRICING ERROR
------------------------------------------------------------------------------------------------------------------------------
                                         Moneyness     Black-Scholes                                 Heston (Ptas.)
                                              (K/F) (Ptas.)        ----------------------------------------------
                                                                                                               (λ=0)     (λ=0.5)    (λ= -0.5)
-----------------------------------------------------------------------------------------------------------------------------
DEEP OTM CALLS: 1.03-1.08  1.829  2.033   2.030    2.038

OTM CALLS: 1.01-1.03  2.641  2.815   2.819    2.774

ATM CALLS: 0.99-1.01  3.847  2.874   2.854    2.896

ITM CALLS: 0.97-0.99  4.690  3.593   3.586    3.600

DEEP ITM CALLS: 0.90-0.97  4.357  3.809   3.795    3.823

ALL CALLS:        -  3.249  2.859   2.852    2.853
------------------------------------------------------------------------------------------------------------------------------

                                      PANEL B: PERCENTAGE PRICING ERROR
------------------------------------------------------------------------------------------------------------------------------
                                         Moneyness      Black-Scholes                                  Heston (%)
                                              (K/F)    (%)        -----------------------------------------------
                                                                                                              (λ=0)       (λ=0.5)     (λ= -0.5)
------------------------------------------------------------------------------------------------------------------------------
DEEP OTM CALLS: 1.03-1.08  -7.091  5.916    6.009     5.673

OTM CALLS: 1.01-1.03   1.189  8.429    8.583     8.310

ATM CALLS: 0.99-1.01  -3.894 -0.053   -0.021    -0.089

ITM CALLS: 0.97-0.99  -3.285 -1.351   -1.331    -1.371

DEEP ITM CALLS: 0.90-0.97  -2.560 -2.251   -2.243    -2.260

ALL CALLS:        -  -2.439  3.607    3.689     3.513
------------------------------------------------------------------------------------------------------------------------------
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TABLE 4.
NONPARAMETRIC TESTING FOR ALTERNATIVE OPTION PRICING MODELS

The statistical significance of performance for out-of-sample pricing errors is assessed by analyzing the
proportion of theoretical prices lying outside their corresponding bid-ask spread boundaries. The following Z-
statistic for the difference between two proportions given by:

Z
p p

p p n p p n
=

−
− + −

1 2

1 1 1 1 2 1 2 2( ) ( )

is employed in the tests, where p1 is always the proportion of Black-Scholes prices outside the bid-ask
boundaries, and p2 is the equivalent proportion for alternative Heston´s model specifications. n1 and n2 are
sample sizes corresponding to these proportions. The statistic is asymptotically distributed as a standardized
normal variable. All call options transacted over the 45 minute interval from 16:00 to 16:45  from January 3,
1996 to April 30, 1996 are used in the tests below. K is the exercise price and F denotes the futures price of the
IBEX-35 index. Moneyness is defined as the ratio of the exercise price to the futures price.
------------------------------------------------------------------------------------------------------------------------------
Categories                                          BS      Heston    Z-stat.   Heston   Z-stat.    Heston       Z-stat.
                                                                     (λ=0)    (p.value)  (λ=0.5)  (p-value) (λ= -0.5)   (p-value)
------------------------------------------------------------------------------------------------------------------------------
ALL OPTIONS:
p(Bid>cMODEL>Ask) 0.4761 0.4249 1.825 0.4249 1.825 0.4233    1.882

(0.068) (0.068)    (0.060)

p(cMODEL<Bid) 0.3487 0.1837 6.730 0.1821 6.804 0.1901    6.434
(0.000) (0.000)    (0.000)

p(cMODEL>Ask) 0.1274 0.2412 -5.253 0.2428 -5.319 0.2332    -4.919
(0.000) (0.000)    (0.000)

OTM OPTIONS (K/F>1):
p(Bid>cMODEL>Ask) 0.4821 0.4347 1.421 0.4347 1.421 0.4324    1.421

(0.155) (0.155)    (0.155)
p(cMODEL<Bid) 0.3184 0.1351 6.694 0.1329 6.791 0.1419    6.399

(0.000) (0.000)    (0.000)

p(cMODEL>Ask) 0.1637 0.2995 -4.864 0.3018 -4.940 0.2905    -4.566
(0.000) (0.000)    (0.000)

ITM OPTIONS (K/F<1):
p(Bid>cMODEL>Ask) 0.4615 0.4011 1.166 0.4011 1.166 0.4011    1.1656

(0.244) (0.244)    (0.244)

p(cMODEL<Bid) 0.4231 0.3022 2.418 0.3022 2.418 0.3077    2.303
(0.015) (0.015)    (0.021)

p(cMODEL>Ask) 0.0385 0.0989 -2.294 0.0980 -2.294 0.0934    -2.123
(0.022) (0.022)    (0.034)

ATM OPTIONS (1.01>K/F≥0.99):
p(Bid>cMODEL>Ask) 0.4583 0.3750 1.762 0.3749 1.763 0.3735    1.765

(0.078) (0.078)    (0.077)

p(cMODEL<Bid) 0.3981 0.1806 5.134 0.1800 5.395 0.1893    5.189
(0.000) (0.000)    (0.000)

p(cMODEL>Ask) 0.0602 0.1944 -4.272 0.1987 -4.341 0.1915    -4.231
(0.000) (0.000)    (0.000)

------------------------------------------------------------------------------------------------------------------------------
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TABLE 5.
PERCENTAGE PRICING ERRORS AND EXPLANATORY VARIABLES

For a given option pricing model, the following regression is employed to explain the percentage pricing errors

of all call options transacted over the 45 minute interval from 16:00 to 16:45  from January 3, 1996 to April 30,

1996:

e X SP VOL TERM SKEW KURTit it it t t t t t it= + + + + + + + +α β β τ β β β β β ω1 2 3 4 5 6 7

where eit is the percentage pricing error of the ith call on date t; X is the moneyness of the ith call at time t as

defined by the ratio between the strike price (K) and the futures price (F); τit is the annualized time to expiration

of the ith call on day t; SP is the average relative bid-ask spread of all calls and puts transacted between 16:00

and 16:45 on date t; VOLt is the annualized standard deviation of the IBEX-35 index returns computed from 1-

minute intradaily returns; TERMt is the yield differential between the annualized ten-year government bond and

the annualized one-month repo Treasury bill; SKEWt in the conditional skewness and KURTt is the conditional

(excess) kurtosis. The t-statistic reported in parenthesis in based on White´s heteroskedasticity consistent

estimator of standard errors. A total of 768 call options are employed in the regressions.

------------------------------------------------------------------------------------------------------------------------------

Coefficient                  Black-Scholes       Heston (λ=0)     Heston (λ=0.5)     Heston (λ= -0.5)

------------------------------------------------------------------------------------------------------------------------------

Constant 0.683 -0.563 -0.590    -0.550

(2.17) (-1.79) (-1.87)     (-1.77)

Moneyness (X) -0.746 0.715 0.737      0.694

(-2.20) (2.02) (2.08)      (1.98)

Time to expiration (τ) 0.025 0.027 0.026      0.027

(2.67) (2.84) (2.77)      (2.84)

Spread (SP) 0.225 0.404 0.409     0.406

(1.48) (2.69) (2.72)     (2.71)

Volatility (VOL) -0.998 -0.976 -0.986    -0.941

(-1.69) (-1.70) (-1.72)    (-1.64)

Term structure (TERM) -0.129 -0.008 -0.007    -0.009

(-4.65) (-0.26) (-0.24)    (-0.30)

Skewness (SKEW) 1.545 1.238 1.227      1.223

(2.65) (2.15) (2.13)      (2.13)

Kurtosis (KURT) 0.217 -0.827 -0.805     -0.808

(0.77) (-2.38) (-2.31)     (-2.33)

------------------------------------------------------------------------------------------------------------------------------
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