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Figure 1: Glazer and Ma’s mechanism (GMM).

1 Introduction

This paper reports an experimental study on King Solomon’s Dilemma, a simple
allocation problem inspired by the biblical episode.

1.1 Solomon’s Dilemma

King Solomon is called to resolve a dispute between two women, “Anna” and
“Betta”, who both claim to be the mother of a baby. In economic terms, an
indivisible prize is to be allocated between two individuals who hold different
evaluations. The identity of the “true mother” (i.e. the agent with the highest
evaluation) is common knowledge between Anna and Betta, but unknown to
Solomon, whose objective is to rightfully resolve the dispute at no cost for the
true mother.

To solve this dilemma, Glazer and Ma [12] propose the simple mechanism
sketched in Figure 1, to be used when there are only two admissible evaluations,
v and v̄, with v < v̄. Denote by vi ∈ {v, v̄}; i = A,B, i’s evaluation and call
player k, k = 1, 2, the player moving at stage k. According to the game-form
of Figure 1 (labeled as “GMM” in what follows), Anna and Betta sequentially
announce the identity of the true mother. The mechanism is designed in such
a way that a statement in which Anna (Betta) attributes the baby to Betta
(Anna) is never challenged. If both claim to be the true mother, then player 1
pays a penalty δ > 0, while the prize goes to player 2, subject to a lump-sum
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transfer to Solomon whose utility value, v ∈ (v, v̄) lies somewhere in between
the two evaluations.

It is not difficult to show that GMM implements the first-best as the unique
subgame-perfect equilibrium of the induced game. To see this, assume (without
loss of generality) that Anna is the true mother (i.e. vB = v < v̄ = vA).1 If
Anna is player 2, she has an incentive to claim, since vA > v, whereas Betta as
player 1 would have to pay the penalty δ if she claims as well. If Betta is player
2, she has no incentive to claim, since vB < v, which, in turn, makes it worth
for Anna to claim as player 1. Thus, the unique subgame-perfect equilibrium
of the game induced by the mechanism requires Betta to attribute the baby to
Anna, independent of the order in which the two mothers are called to speak.

However, the game induced by GMM has many other “social inefficient”
Nash equilibria. Precisely, there is a component (i.e. a closed and connected
set) of Nash equilibria in which Anna, conditional on being selected as player
1, gives up the baby under the (“incredible”) threat that Betta will claim in
return (leaving Anna without the baby and with a penalty to pay).2 Thus, to
ensure that the first-best is achieved by way of GMM, we need to assume that
both mothers are rational (in the sense that they would never use a dominated
action), and they know that their opponent is also rational.

1.2 (Monotonic) Dynamic Implementation

Whether these are to be considered as demanding assumptions is, essentially,
an empirical matter. In this respect, there is already substantial experimental
evidence that casts doubts on the use of standard game-theoretic equilibrium
notions to describe how people play games in the lab. What we learn from
experiments is that subjects often fail to play the equilibrium, especially if
the equilibrium notion is fairly refined (as is the case of subgame perfection).3

Better results are observed when subjects can acquire some experience through
repeated play.4

Prompted by these experimental findings, Ponti [21] approaches Solomon’s
dilemma taking bounded rationality into account. The underlying theory is
based upon an alternative definition of implementation. Among the variables
that specify the “environment” in which the mechanism is supposed to operate,
this definition includes the learning protocols agents may use, as well as initial
conditions of the learning process. According to this alternative approach, a
social choice rule will be said to be dynamically implemented by a mechanism
if, for all possible environments (i.e. preferences, adjustment processes, initial

1Throughout the paper, we shall always associate Anna with the role of the agent with the
high valuation (i.e. the “true mother”).

2This threat is to be consider “incredible” in the spirit of subgame-perfection insofar, by
claiming the baby, Betta would choose a dominated action.

3See McKelvey and Palfrey [15] and Binmore et al. [3].
4See Güth et al. [13] and Cooper et al. [7].
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Figure 2: Ponti’s mechanism (PM)

conditions), the limiting set of outcomes i) coincides with the set of outcomes
of the social choice rule and ii) is also asymptotically stable, that is, robust to
arbitrarily small perturbations.5

As for the dynamic implementation of GMM, Ponti [21] shows that if the
learning dynamics satisfy Nachbar’s [18] monotonicity condition,6 then many
equilibria in the inefficient Nash equilibrium component can be limit points of
the adjustment process. In other words, GMM fails to implement the first-best
dynamically, if repeated play evolves according to monotonic dynamics.

1.3 An Alternative Solution

To solve this problem, Ponti [21] proposes an alternative mechanism (“PM”
hereafter). Its game-form is shown in Figure 2. According to the biblical story,
Solomon was able to solve the dilemma by threatening to “split the baby in
two”. By using PM, Solomon can still achieve his goal by introducing a lottery in
which splitting occurs “in expected terms”, with no risk of blood being spilled.7

Since no penalty is levied to either player (i.e. no threat is possible), Anna
has now a weakly dominant strategy at her disposal (i.e. claiming the baby
under all possible contingencies). This, in turn, implies that PM is not only
subgame-perfect implementable, but also Nash-implementable, hence every Nash
equilibrium of the induced game is outcome-equivalent to the first-best. As far
as its dynamic implementation, PM is also dynamically implementable with
monotonic dynamics.

5Cabrales and Ponti [6] discuss in detail the rationale behind this alternative approach (see
also Sandholhm [22]).

6This condition essentially implies higher growth rates for those strategies which perform
better and is generally satisfied by all the adjustment processes applied in the evolutionary
literature to model bounded rationality. One particularly well known member of the class
of monotonic dynamics is the Replicator Dynamics of evolutionary game theory (Taylor and
Jonker [24]). These dynamics have been given a learning theoretic foundation by Börgers and
Sarin [4] and they can also be interpreted as a model of imitation (Schlag [23]).

7Although non standard, the use of lotteries is not new in the implementation literature
(see, e.g., Gibbard [11], Abreu and Matsushima [1] and Perry and Reny [20]).
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From the above analysis, a testable theory evolves: does PM perform better
than GMM? The aim of this paper is to compare experimentally the performance
of these two mechanisms and to explore (whether and) how subjects modify their
response when the game-form is played repeatedly.

1.4 Related Studies and Hypothesis

Among the experimental literature on implementation,8. the paper more re-
lated to ours is certainly that of Elbittar and Kagel [8]. They compare the
performance of the mechanisms proposed by Moore [17] and Perry and Reny
[20] to solve Solomon’s Dilemma.9 An important finding of their investigation
is the lack of efficiency in both mechanisms mainly due to Betta’s behavior.
These features of the experimental data do not differ significantly between the
two mechanisms.

Elbittar and Kagel [8] distinguish between two different sources of ‘irrational
behavior” for low-value players:

• Rivalrous behavior. Betta is willing to pay in order to make costly for
Anna to get the prize.

• Level of aspiration. Betta is willing to loose money to get the prize.

They conclude that neither effect seems to be relevant in explaining Betta’s
(out-of-equilibrium) behavior.

As we just explained, there are both static and dynamic grounds to prefer
PM to GMM. This is what we investigate first. However, our hypotheses for
the experimental investigation concern not only outcomes, i.e. whether we can
observe a significant difference in the frequency of first-best outcomes, but also
behavior, that is, whether i) there is evidence that Anna takes advantage of the
weakly dominant strategy provided by PM and ii) if the evolution of subjects’
-individual and aggregate- behavior is monotonic. A third question that we
pursue refers to a more general issue of applicability of mechanisms: does a
quantitative change in the payoff structure matter? In particular, will it affect
players’ behavior if we (i) vary the levels of players’ evaluations and (ii) vary the
difference between their valuation and the price they might have to pay? Since
qualitative incentives remain unchanged, theory would predict no difference in
either player’s behavior.

8See, for example, Cabrales et al. [5] and Katok et al. [14]
9Moore’s [17] mechanism is a modification of GMM when evaluations are drawn from a

finite set. In this case, if both players claim, then the prize is allocated by way of an (out-of-
equilibrium) auction. Perry and Reny’s [20] mechanism employs the iterated elimination of
weakly dominated strategies and is supposed to be used in presence of incomplete information
of the agents’ evaluations.
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1.5 Results

Our experiment shows a practically identical relative frequency of first-best
outcomes, together with a significant evidence of inefficient outcomes in both
mechanisms (about 1

3
of the total observations). This is mainly due to Betta’s

behavior: she claims significantly more often than what theory would predict.
Consistently with Elbittar and Kagel [8], we cannot explain this evidence by
irrationality alone, rivalrous behavior or level of aspiration.

However, we also see that subjects react “strategically” to the alternative
incentive structures provided by the two game-forms. Consistently with our
theoretical conjecture, Anna as player 1 claims the prize significantly more often
in PM than in GMM. In consequence, second-best efficiency (that is, the ability
to allocate the prize to the highest evaluation player) is significantly higher in
PM than in GMM.

The experimental data also show a significant difference in behaviors across
games (that is, varying monetary payoffs). In particular, Betta’s (“irrational”)
choice of claiming the prize is more likely to occur when its opportunity cost
(that is, the amount of money Betta is going to loose) is lower. This effect is
more evident in PM rather than in GMM.

As for our dynamic (monotonicity) assumption, this is consistent with the
evolution of play, both at the aggregate and at the individual level. In other
words, monotonicity seems the appropriate dynamic property to describe the
evolution of subjects’ behavior. On the other hand, the analysis of individ-
ual behavior also shows that, contrary to what monotonicity assumes, memory
matters, that is, players’ behavior is sensitive not only to current payoffs but
also to cumulative payoffs. From the analysis of the individual data we also
observe that individual fixed effects -that is, related to each individual subject-
are stronger in Anna’s population, while common fixed effect -that is, related
to all subjects in the same role- are stronger in Betta’s population. In other

1.6 Things to come

The remainder of the paper is arranged as follows. Section 2 provides a brief
synopsis of the theory underlying the experiment, as developed in Ponti [21].
Section 3 describes the experimental design, while section 4 summarizes the
results. Finally, section 5 concludes, followed by an Appendix containing some
explanation of the test on aggregate learning and the experimental instructions.

2 The Theoretical Background

Let G (Γ) be the game induced by GMM (PM) when Anna is the true mother,
with Gk (Γk) denoting the subgame of G (Γ) in which Anna is player k.

Let also x ≡ (xki ) ∈ Θ ≡ [0,1]4, i ∈ {A,B}, k ∈ {1, 2} denote the vector
collecting all behavioral strategies for game G (Γ). In other words, xki ∈ [0, 1]
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is the probability with which a player in i’s role claims the prize.
The evolution of x(t) is given by the following system of continuous-time

differential equations:

ẋki = fki (x), (1)

with fki : Θ → < satisfying standard regularity conditions.10 We specify our
boundedly rational environment as the set of dynamics (1) which satisfy the
following

Assumption 1 (Behavioral monotonicity) A regular dynamic (1) is called
behavioral monotonic if, for all x, i and k,

fki (x) ≥ 0 ⇐⇒ uki (C,x) ≥ uki (C̄, x), (2)

where uki (C,x) (uki (C̄, x)) denotes the (VNM) utility associated to (not) claiming
in role i and at stage k if the state is x.

First introduced by Nachbar [18], condition (2) is commonly used in the
evolutionary literature to capture the essence of a selective process. Given the
current state of the system, x(t), behavioral strategies with higher expected
payoff should grow faster.

As we explained in the introduction, we shall employ asymptotic stability
and global convergence as sufficient conditions for the first-best outcome to be
dynamically implementable.11

Proposition 1 If repeated play evolves according to monotonic dynamics, then
the first-best can(not) be dynamically implemented by PM (GMM).

Proof. See Ponti [21].12

To understand this result, notice that, unlike PM, GMM is not Nash im-
plementable. This is because GMM induces a game which has a component of
Nash equilibria in which Anna, conditional on being player 1, gives up the baby
under the (“incredible”) threat that Betta will claim in return. This inefficient
Nash equilibrium component is “reachable” by a a non-zero measure of inte-
rior initial conditions (the exact measure depending on the dynamics). This, in
turn, implies that GMM fails to implement the first best dynamically, insofar
the requirement of global convergence is violated. However, both mechanisms
pass the stability test, that is, for initial conditions starting sufficiently close to
the first-best, both mechanisms display the desired stability properties.

10See Weibull [25].
11By asymptotic stability, every trajectory starting arbitrarily close stays sufficiently close

and eventually converges to the solution. By global convergence, every trajectory converges
to the first-best. For formal definitions, see Weibull [25].

12In Ponti [21], the evolutionary properties of the two games are proved for a two-population
model (one population of Bettas and one population of Annas) in which agents play pure
strategies. It can be shown that the same result also holds in the current framework, that is,
with (1-population) behavioral strategies.
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3 The experimental design

In what follows, we describe the features of the experiment in detail. To compare
the experimental properties of the two mechanisms, we run a total of eight
experimental sessions. Four of those (the American sessions hereafter) were
conducted in March 1999 at the University of California, Santa Barbara. Four
additional sessions (the Spanish sessions hereafter) were run in May 2001 at the
Universidad de Alicante, with the specific aim to study learning effects. In what
follows, we shall discuss the experimental design of the American sessions.13

Subjects A total of 160 students (20 per session) were recruited among the
undergraduate student populations of the Santa Barbara and Alicante.14 Each
session lasted for approximately one hour.

Treatment. All experimental sessions were run in a computer lab.15 As for
the American sessions subjects participated to a single session only, playing
20 rounds of GMM or PM. We run two PM session and two GMM sessions.
Subjects were informed that their opponent would change in each round, that
they would be in different roles and positions over the 20 rounds and that their
evaluations would change from one round to the next.

Instructions were provided by a self-paced, interactive computer program
that introduced and described the experiment. Four dry rounds of the respective
mechanism were played during the instructional phase, so as subjects could
familiarize with the basic rules of the game and the computer interface. In each
round, before they were asked to make a decision, subjects were informed about
their own evaluation, their opponent’s evaluation, the price v and the penalty δ
(in the case of GMM). Since the game was played sequentially, subjects selected
as player 2 were also informed about player’s 1 action. At the end of each
round, each player knew about the the game outcome and the monetary payoff
associated with it.

Payoffs. All subjects received eight dollars ($ 8) to show up. Among the 20
rounds of each session, subjects experienced 4 times each of the payoff treat-
ments as shown in Figure 3.16 In this way we could evaluate how subjects played
under different incentive schemes. In GMM, the penalty δ was equal to $3 in
all payoff treatments.

13As for the specific design features for which the Spanish sessions were different, see sub-
section Learning below.

14Mainly, undergraduate students from the Economics Departments with no (or very little)
prior exposure to game theory.

15The experiment was programmed and conducted with the software z-Tree (Fischbacher
[9]). The complete set of instructions can be found in the Appendix.

16All payoffs are expressed in USD.
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Figure 3: The payoff treatments

At the end of each session, a subject was asked to publicly draw one round,
and the monetary payoff of that round was then added (or subtracted, in the
case of a negative payoff) to the show-up fee.17 Average earnings were $ 12,
including the participation fee.

Matching. All four American sessions shared the same matching assignment,
according to the following rules.

Among the 20 rounds, subjects experienced both roles (10 times as Betta
and 10 times as Anna) as well as both positions (10 times as player 1 and 10
times as player 2). The reason for this design is that we wanted to evaluate how
subjects formed a full contingency plan, experiencing every possible role and
position.18 Moreover, we wanted to avoid the possibility that being consistently
assigned Betta’s role in the game would cause a bias, e.g., frustration.

Moreover, all subjects played subgames G1 or Γ1 (G2 or Γ2) within rounds
1-5 and 11-15 (6-10 and 16-20). We also kept the same order of the 5 different
payoff treatments. Game 1 was played in all matches of rounds 1,6,11,16; Game
2 of rounds 2,7,12,17 and so on.

These features were not publicly announced, and we shall analyze the ex-
perimental data under the assumption that subjects did not recognize those
patterns. Since roles, positions, opponents and payoffs were changing at each
round, we believe it was very difficult for subjects to keep track of any systematic
assignment.

4 Results

In analyzing the experimental data, we first look at the distribution of outcomes,
behavior and incentive effects induced by the two mechanisms. We shall use the

17This feature of the experiment was also announced in advance.
18This feature of the experimental design differs from that of Elbittar and Kagel [8] in which

subjects always play either as Betta or Anna in all repetitions.
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American sessions for this purpose. Later, we also check for learning effects in
the Spanish sessions.

4.1 Outcomes.

The aggregate statistics of the experimental outcomes are summarized in Figure
4. GMM (PM) results are reported in the bottom-left (top-right) corner of each
cell.

We begin by noting that, relative frequency of first-best outcome (row 1a))
was virtually identical, 68 % (69 %) of the cases in GMM (PM). With this
difference not being statistically significant,19 we can consider both mechanisms
as successful in implementing the first-best, if compared with the outcome of
a random mechanism in which the price is assigned to either player with equal
probability.20

Things are different if we look at second-best efficiency, measured as the rel-
ative frequency with which the prize is assigned to Anna, even for those cases in
which she has to pay v < vA to get it (row 1)). Again, this frequency is higher
in PM (84%) than in GMM (79%), but now the null hypothesis can be rejected
at the 10 % confidence level.21 We also see that the two mechanisms differ in
the relative frequency with which first and second-best outcomes are achieved
conditional on players’ positions. While in PM the differences in frequencies of

19variable which is 1 if the i−th match of experiment j is first-best efficient and 0 otherwise,
with j = 0 for GMM and j = 1 for PM. Thus, the distribution of Xj

i is BinomialB(1, pj). If we
assume that all 400 repetitions of each experiment correspond to independent and identically

distributed (i.i.d.) observations, then p̄j ≡
∑400

i=1
X
j
i

400 has normal asymptotic distribution

N(pj, p
j(1−pj)

400
). If the null hypothesis is true (i.e. first-best efficiency in GMM at least as

high as in PM), then

Z ≡
p̄1 − p̄0√

p̄1(1−p̄1)
400

+ p̄0(1−p̄0)
400

is asymptotically distributed as a standard normal random variable. Hence, Z can be used as
test statistic. Since we hold a directional hypothesis, we use a one-tailed test, rejecting the
null hypothesis at three different significance levels. If the null hypothesis is rejected at the
10 % (5 %, 1% significance level, resp.) the symbol ∗ (∗∗, ∗∗∗ resp.) appears in the top-right
corner of the corresponding cell. Unless otherwise stated, all other tests are conducted with
entirely similar arguments.

20In both cases, the corresponding Z tests reject the null hypothesis at the 1 % confidence
level.

21Our data on GMM can be compared with Elbittar and Kagel’s [8] evidence on Moore’s
[17] mechanism, to be considered as the natural extension of GMM in the case of multiple
evaluations. While [8] reports a significantly lower frequency of first-best outcomes (37 %)
than in GMM (possibly due to the higher complexity of that game), the relative frequency of
second-best-outcomes (82 %) is not statistically different from that of GMM.
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Total As Player 1 As Player 2

Observations
400

400
200

200
200

200

1) Anna gets the prize
.84∗

.79
.85 ∗∗∗

.65
.825

.95

1a) At no cost
.69

.68
.7

.65
.68

.72

1b) Paying v
.15∗

.11
.15

0 (N/A)
.14 ∗∗

.22

2) Betta gets the prize
.16

.21
.11

0
.24 ∗∗∗

.41

2a) At no cost
.05∗

.08
.01

0
.09 ∗∗

.15

2b) Paying v
.11

.13
.1

0 (N/A)
.15 ∗∗∗

.26

Figure 4: Outcomes for the two mechanisms
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first and second-best outcomes conditional on players’ position are not statis-
tically significant, in GMM the probability of achieving second-best efficiency
is higher (statistically significant at the 1 % significance level) when Anna is
player 2. This clearly depends on how GMM is designed (if both players claim,
the prize goes to player 2).22

As for the inefficient outcomes, our particular interest is to check the case in
which Betta as player 2 gets the prize at no cost (i.e. Anna as player 1 gives up
the prize), which is a Nash equilibrium in GMM but not in PM. In this respect,
we find (see Figure 4, row 2a)) that this outcome occurs in 15 % of the cases
in GMM, compared to only 9 % for PM. This difference is significant at the 5
%-level. Thus, the important difference in the set of equilibria provided by the
two mechanisms, which allows for an inefficient Nash equilibrium only in GMM,
leads to a corresponding difference in the experimental data.

4.2 Aggregate behavior

We now investigate on whether and how the two mechanisms induce subjects
to behave differently at the aggregate level. Figure 5 displays the relative fre-
quencies of subjects claiming at all information sets.

We begin by looking at player 2’s behavior. Remember that both mech-
anisms provide Anna (Betta) with a dominant action when she is player 2:
she should always (not) claim, since her (in the case of PM: expected) payoff
is greater (less) than zero, which is what she would get if she doesn’t claim.
Therefore, first-order rationality requires (Betta) Anna (not) to claim in the
single-person decision problem she faces at stage 2. As Figure 5 shows, this pre-
diction is violated much more frequently by players in Betta’s role, suggesting
that bounded rationality alone cannot explain the variability of the experimental
data. For example, in the case of PM, the relative frequency with which Betta
as player 2 does not behave rationally, i.e. claims, is 28 % whereas, Anna, as
player 2, does not behave rationally, i.e does not claim, only with a relative
frequency of 100− 98 = 2%.23 Since, in GMM, Betta claims with almost equal
probability both as player 1 and player 2, we cannot explain Betta’s irrational
behavior neither by rivalrous behavior nor level of aspiration.

We now move on to player 1’s behavior. In this case, claiming is a weakly
dominant action for Anna only in PM. As Figure 5, shows, this feature seems

22The fact that in GMM player 1 can never pay the price v is highlighted in Figure 4 by
the symbol “N/A” in the corresponding cells.

23For both mechanisms, the null hypothesis that player 2 violates first-order rationality in
both roles with equal frequency can be rejected at the 1 % confidence level. Here the null
hypothesis is tested using use a χ2 distribution, insofar our theoretical model does not yield
a directional hypothesis.
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to have a significant impact on Anna’s behavior: she claims significantly less in
GMM (87 %) than in PM (94 %) as player 1. This difference is significant at
the 1 %-level.

4.3 Do Payoffs Matter?

We varied the levels of vA, vB and v according to five treatments, as shown in
Figure 3. In comparing these five payoff parameterizations (“Games”), notice
that

• Game 1 and Game 3 (Game 3) have the highest evaluations vA (vB).
In other words, if Anna (Betta) gets the prize at no cost, her gain would
be highest in Game 1 and Game 3 (Game 3). Game 4 and Game 5
(Game 4) have the lowest value for vA (vB).

• Game 1 has the highest payoff differences |vB − v| and |vA− v|. In other
words, if Anna (Betta) gets the prize and has to pay the price v, her gain
(loss) would be highest. Game 5 has the lowest payoff differences |vB−v|
and |vA − v| of all games.

• Game 2 and Game 3 share the same payoff differences. However, Game
3 differs from Game 2 insofar all stakes are $ 5 higher.

• Game 2 and Game 4 look identical from Anna’s viewpoint (vA and v are
the same), but not for Betta’s (vB is lower in Game 4).

We now check whether these different incentive schemes might have affected
the performance of the two mechanisms, as well as subjects’ behavior. The
idea behind the analysis is the following: given that we observe the significant
presence of inefficient outcomes (i.e. “irrational play”), are there “games” in
which these phenomena are more likely to occur? If so, are subjects more
sensitive to the levels of their evaluations, vA and vB , or rather to the differences
|vA − v| and |vB − v|?

The summary statistics of outcomes disaggregated for games are shown in
Figure 6.24

Looking at first-best efficiency, Figure 6 (row 1a) shows that relative frequen-
cies differ strongly (significant at the 1 %-level) within the respective mecha-
nism. Game 4 shows the highest relative frequency of first-best outcomes for
both mechanisms: .85 for GMM and .81 for PM. First-best frequencies in the
remaining four games all lie within the interval [.6, .68] for GMM, and [.59, .72]

24Also for Figure 6 p-values are evaluated from a χ2 distribution, testing the null hypothesis
that, within each mechanism, outcome distributions are independent from payoff treatments.
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Observations xki

x1
A

200
200

.94 ∗∗

.87

x2
A

55
46

.9
.98

x1
B

200
200

.27
.23

x2
B

195
182

.29
.28

Figure 5: Aggregate behavior

Game 1 Game 2 Game 3 Game 4 Game 5 H0 : χ2 = 0

Obs.
80

80
80

80
80

80
80

80
80

80
N/A

1)
.86

.79
.85

.75
.82

.78
.88

.9
.77

.79
p < .1

p < .01

1a)
.72

.67
.675

.6
.66

.62
.81

.85
.59

.69
p < .01

p < .01

1b)
.14

.11
.17

.15
.16

.15
.06

.05
.19

.1
p < .05

p < .05

2)
.14

.21
.15

.25
.17

.22
.12

.1
.27

.25
p < .01

p < .01

2a)
.02

.09
.05

.09
.04

.09
.01

.04
.12

.09
p < .01

p > .1

2b)
.11

.12
.1

.16
.14

.14
.11

.06
.15

.16
p > .1

p < .05

Figure 6: Outcomes for the two mechanisms disaggregated for games
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for PM. Thus, in both mechanisms, Game 4 really stands out for its relative
efficiency. For PM, besides the best-performing Game 4, we find that Game 5
has the lowest rate of first-best outcomes, with a relative frequency of .59. Also
notice that ranking games according to their efficiency does not change moving
from first-best to second-best.

What does it make Game 4 and Game 5 so different for subjects who played
PM? Remember that Game 4 (Game 5) has the highest (lowest) difference
|vB − v| of all games. Thus, given that we observe a violation of first order
rationality - Betta as player 2 claims the prize with a negative (expected) payoff
even though she would loose nothing by not claiming- we might expect subjects
to prefer a smaller loss to a bigger one. In other words, the rival’s rule behavior
occurs more frequently when is cheaper. This intuition is supported by our
experimental data: we observe a much higher first- and second-best efficiency in
Game 4 rather than in Game 5 . Also notice that the outcome distributions of
Games 2 and 3 are not significantly different within the respective mechanism.
That is, subjects’ behavior does not seem to be sensitive to income effects payoff
difference matter.

Again, we look at players’ behavior disaggregated for games in Figure 7 to
see how these differences come about. Here we find much more responsiveness to
payoffs in GMM rather than in PM. In fact, the null hypothesis of no difference
in behavior across games is always rejected by the experimental data in GMM
and only for Betta’s behavior as player 1 in PM.

Figure 7 also explains why Game 4 performs best in both mechanisms:
Anna claims more than in any other game and Betta claims less. On the other
hand, the lack of efficiency in Game 5 for PM can be explained by two facts.
First, Anna as player 2 claims in only 87 % of the cases, whereas she always
claims in Game 4. Second, Betta claims 40 % of the times as player 1 in Game
5, and never more than 30 % of the times in all other games. Similarly, Betta
as player 2 claims considerably more often in Game 5 (36 %) compared to all
other games, leading to such a low rate of first- and second-best outcomes of
this game in PM.

The fact that Game 5 stands out in PM for its bad performance especially
through Betta’s behavior may suggest that subjects used this game mostly to
try to “win the object over Anna”, even in the disadvantageous position of the
low-value player.25 If so, Game 5 would have been the one in which they could
do so without losing too much, given that Game 5 has the lowest |vB − v| of
all games. In this case, the presence of a lottery in PM (and the consequent
reduction of Betta’s expected loss) may have played against efficiency especially

25This idea of rivalrous behavior is well-known in the experimental literature (see, for ex-
ample, [10]).
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in PM. To explore this conjecture, Figure 8 tests the correlation between the
ranking of claiming frequencies at all information sets and the ranking of vA,
vB , |vA − v| and |vB − v| using Spearman’s correlation test.

Figure 8 confirms that in PM, Betta’s costs (benefits) are negatively (posi-
tively) correlated with her relative likelihood to claim. Both these correlations
are statistically significant. This feature of the experimental data may suggest
an easy modification in the structure of PM to increase its efficiency. Remem-
ber that, for the mechanism to work, Solomon is assumed to know Anna’s and
Betta’s true valuations. Clearly, those values are not subject to Solomon’s con-
trol. However, he can set the discriminatory price v so as to maximize Betta’s
(expected) loss, measured by the the difference |vB − v|, since Anna’s observed
behavior appears to be less sensitive to |vA − v|.

4.4 Learning

In this section we shall address the following question: what (if at all) did
subjects learn through the course of the experiment? In particular: was their
behavior consistent with our monotonicity assumption? This assumption has
already been described in Section 2 and heuristically reflects the idea that a
strategy that has been profitable in the past will be followed by a higher pro-
portion of subjects in the future (see equation (2)).

Consistently with our theoretical framework, this is done by looking at the
evolution of subjects’ aggregate behavior at each information set. In this case,
testing for monotonicity simply consists in checking whether the evolution of
behavioral strategies “moves in the direction” of current best-replies. We shall
also consider learning at the individual level. That is, we adjust our theoretical
assumptions to test whether subjects individual behavior was also monotonic.

The relevant statistics on outcome distributions disaggregated for periods
for the American sessions are shown in Figure 9.

We shall refer to Period 1 (2,3, and 4 resp.) as the aggregate distribution
of rounds 1-5 (6-10, 11-15 and 16-20 resp.). As noticed earlier,26 subgames G1

and Γ1 -where Anna is player 1- were always played in Period 1 and Period
3 and subgames G2 and Γ2 -where Anna is player 2- were always played in
Period 2 and Period 4. As for first and second-best efficiency, we find that
the null hypothesis (that is, no significant difference in the relative frequency of
efficient outcomes across periods) is rejected for both mechanisms.27

26See section 3.
27Again, a χ2 statistics is used here to test this hypothesis.

jteschen

jteschen
17



Game 1 Game 2 Game 3 Game 4 Game 5 H0 : χ2 = 0

x1
A

.95
.82

.92
.82

.94
.85

.98
.93

.9
.92

p > .1
p < .05

x2
A

1
1

.92
1

.85
1

1
1

.88
.9

p > .1
p < .05

x1
B

.25
.22

.3
.3

.28
.25

.11
.11

.4
.25

p < .01
p < .05

x2
B

.26
.3

.3
.39

.38
.37

.23
.12

.36
.32

p > .1
p < .01

Figure 7: Aggregate behavior disaggregated for games

vA vB |vA − v| |vB − v|

x1
A

.25
-.375

-.6
-.15

.6
-.5

-.85∗∗

-.22

x2
A

-0.12
0.25

-0.87∗∗

-0.25
0.5

0.5
0.75∗

0.5

x1
B

-0.25
-0.12

.6
.5

-.6
-.3

-.85∗∗

-.62

x2
B

0
-0.25

.85∗∗

.2
-.6

-.2
-.85∗∗

-.45

Figure 8: Testing for correlation between claiming rates and payoff incentives

jteschen
18

jteschen



Period 1 Period 2 Period 3 Period 4 H0 : χ2 = 0

Obs.
100

100
100

100
100

100
100

100
N/A

N/A

1)
.77

.58
.88

.97
.83

.66
.87

.99
p < .05

p < .01

1a)
.64

.58
.68

.7
.69

.66
.76

.81
p < .1

p < .01

1b)
.13

N/A
.2

.27
.14

N/A
.11

.18
p < .1

p > .1

2)
.23

.42
.16

.06
.17

.34
.13

.01
p < .1

p < .01

2a)
.08

.15
.07

.05
.04

.1
.01

.01
p < .05

p < .01

2b)
.15

.27
.09

N/A
.13

.24
.12

N/A
p > .1

p > .1

Figure 9: Outcomes for the two mechanisms disaggregated for periods
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This is mainly due to two interacting effects.

• In Periods 2 and 4 outcome distributions are more efficient than in Pe-
riods 1 and 3. In other words, for both mechanisms, first and second-best
efficiency is more likely to be achieved when Anna is player 2.

• Conditional on the subgame being played, for both mechanisms, efficiency
increases over time (i.e. the relative frequency of first and second-best
outcomes is higher in Periods 3 and 4 than in Periods 1 and 2).28

To dissentangle between these two effects, we run four additional sessions
that differ in the design for some crucial aspects.29 These Spanish Sessions were
held in May 2001 at the Universidad de Alicante. In two of the sessions subjects
played 40 rounds GMM and, in the other two sessions subjects played 40 rounds
of PM. Notice that we have increased the number of rounds from 20 to 40 in
order to have more evidence on learning. The basic motivation for the changes
in the design is to reduce the variability of the treatment parameters.

We have only considered one payoff treatment, Game 1. We have also fixed
player positions: subjects selected as player 1 (or player 2) would keep their
position for the entire experiment. The only thing that could change from one
period to the next was whether subjects’ role was that of Anna or Betta, that
is, which of the two subgames G1 (Γ1) or G2 (Γ2) was being played. This was
decided by an aggregate random variable (that is, the same for all 10 groups)
by which either subgame was selected with equal probability. This made easier
the analysis of subjects’ behavior in the two subgames separately.

Figure 10 traces the evolution of aggregate behavior in subgame G1 (Γ1) in
all four experimental sessions. We have concentrated on G1 (Γ1) mainly for two
reasons. First, because subjects’ population is the same in the two subgames
and we observed a very similar learning pattern. Second, and more importantly,
for subgame G2 (Γ2) we have very few observations of players 2’s behavior. This
is because, when Betta is player 1, her best response is not to claim.30

Figure 10 shows four different diagrams, the top (bottom) diagrams refer
to GMM (PM) data. The evolution of x1(x2) is reported on the y axe of
the left (right) diagrams. Each diagram traces two trajectories, one for each
session. Thus, in the left (right) diagrams, the efficient subgame-perfect strategy
corresponds to y = 1 (y = 0). Remember that Betta as player 2 has always a

28With the sole exception of subgame Γ2.
29We thank an anonymous referee for suggesting changes in the original design to test

learning effects more effectively.
30Since we are focusing on a single subgame, we shall abuse our notation by abolishing the

subscript i hereafter.
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dominant action: she should not claim. The same occurs for Anna in PM, since,
for this mechanism, claiming corresponds to a weakly dominant action. On the
contrary, Anna’s best response in GMM depends on the probability with which
she is to face a claiming Betta (if this probability is sufficiently high, she should
not claim). Precisely, given that we only used one payoff parameter (Game 1),
this threshold value for x2 is equal to 0.63 (the horizontal line in the top-right
diagram of Figure 10).

However, Figure 10 shows that the relative frequency of subjects claiming as
Betta are always lower than the threshold. This makes claiming for Anna the
expected payoff maximizing action for all sessions and periods. In other words,
the state of the system of all the adjustment processes always stays in the “basin
of attraction” of the efficient (subgame-perfect) Nash equilibrium component.
In consequence, monotonicity simply implies that x1 (x2) should rise (fall) over
time. As Figure 10 shows, this theoretical prediction is somehow consistent with
the experimental evidence. To proceed in the analysis, we constructed a test.
This test implicitly assumes that, for any given mechanism and session, xk(t) is
the sample mean of an i.i.d. distribution of subjects who claim with probability
pk(t).

To see how the test is constructed, let us consider player 1’s population. In
this case, the test is constructed as follows:

H0 : p1(t) ≤ p1(t + 1)∀t ∈ {1, ..., T};

H1 : p1(t) > p1(t+ 1),

for some t ∈ {1, ..., T}, where T is the number of restrictions, that is, the num-
ber of times that subgame was played in that particular session.31 Given that,
within each period, we deal with small samples we cannot use an asymptotic
approximation of the statistic’s distribution. In particular, we have 10 obser-
vations for player 1 and, given that player 2 moves only if player 1 claims, we
have at most 10 observations for player 2. Therefore, We have employed an
hypergeometric conditional distribution in order to construct the statistic.32

The results for all sessions [h, j] are summarized in Figure 11, where h = 0
(h = 1) for GMM (PM) and j = 1,2 stands for the particular session within
mechanisms. The row variable k refers to player k’s position. Each number in
the table indicates the minimum p-value obtained computing the test across all
T restrictions separately. For example, when k = 1 and [h, j] = [0, 1] (i.e. the
top-left cell in Figure 11) the minimum p-value is .23. This means that, for all
restrictions, H0 is accepted with at least a confidence level of 23%.

31Analogous considerations hold for player 2’s population, once inequalities are reversed.
32See Appendix A.
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[0,1] [0, 2] [1,1] [1, 2]

k = 1 .23 .5 .77 .5

k = 2 .23 .27 .23 .18

Figure 11: Individual monotonicity tests

What can we say about the test with multiple restrictions? We apply the
so-called Bonferroni’s method to this purpose.33 This method says that, if we
want to accept a null hypothesis that involves T restrictions with a significant
level of α, then we must accept each single restriction with a significant level of
αI = α

(T−1) . For example, fix α = 0.1, that is, the highest confidence level used

in the paper. In session [1, 1], we have that T=19, which corresponds to the
smallest number of restrictions across all mechanisms and sessions. To accept
H0 at a significant level of 0.1 in session [1,1] the p-values of all 19 restrictions
must be higher than αI = 0.1

18 = .005. This corresponds to the worst possible
case to accept H0. Figure 11 shows that all values are far above this threshold.
In consequence, monotonicity is overwhelmingly accepted in all sessions.

We now move to individual learning, that is, we consider whether individual
subjects adjusted their behavior over time consistently with our monotonicity
assumption. To check this, we are forced to modify monotonicity to take into
account that subjects only receive a very limited information of the the cur-
rent population strategy by way of their experience in the matches they were
involved. Therefore, we shall assume subjects’ behavior to be sensitive (in the
direction monotonicity requires) to their individual experience only. Following
Mookherjee and Sopher [16], we shall consider a model in which subjects use
information regarding payoffs realized in the past, and increase over time the
probability to select a strategy which yielded higher payoffs.

At any given t ∈ {2, T}, let πks (t − 1) the payoff subject s received in the
previous period she was playing as player k. Let also Πk

s (t − 1) denote the
cumulative payoff acquired by subject s as player k up to period t− 1. In other
words, we assume subjects modify their individual propensity to claim not only
conditional to their single previous experience (as monotonicity assumes), but
also to their extended memory of all previous observations (using Πk

s (t) as a
proxy). Letting f denote the logistic function, this hypothesis postulates

pks (t) = f(βk + γkπks (t− 1) + δkΠk
s (t− 1)), (3)

where pks(t) is the probability with which subject s claims in period t and βk

33See. for example, [19].
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Obs. Coef. Std. Err. p-value 95% CI

β1 eq. (3) 790 -1.9647 1.568 .210 [-.5.0379, 1.1085]

γ1 eq. (3) 790 .0181 .0084 .031 [.0017, .0345]

δ1 eq. (3) 790 .0074 .0028 .007 [.002, .0129]

γ1 eq. (4) 230 .0149 .009 .098 [-.0028, .0325]

δ1 eq. (4) 230 .0059 .003 .049 [0, .0118]

Figure 12: Individual learning for player 1

measures the (aggregate) fixed effect associated to player position k. An alter-
native approach is to include in (3) also fixed individual effects. This yields the
following:

pks(t) = f(βk + γkπks (t− 1) + δkΠk
s(t− 1) + σs), (4)

where σs measures the (individual) fixed effect associated to subject s.
The test statistics for player 1 are summarized in Figure 12.

First, notice that estimates of γ1 and δ1 are all significant and of the right
sign, whether we consider individual effects or not. Moreover we observe that,
for both regressions (3) and (4), the explanatory power of δ1 is higher. In other
words, contrary to what monotonicity requires, memory matters. On the other
hand, regression (4) uses a significant smaller number of observations (230 vs.
790) insofar, among the 40 subjects selected as player 1 (i.e. Anna), 28 of them
claimed at every period. Remember that the estimation of (4) is only based
on the observations of those subjects who used both actions throughout the
experiment. For this reason we can say that, for player 1 population, individual
fixed effects are relevant,34 but learning effects are also relevant, even when fixed
effects are taken into account.

Things are different when we look at player 2, as Figure 13 shows.

34Another evidence of this effect comes from the fact that, for player 1, the confidence
intervals for γ1 and δ1 estimated from equations (3) and (4) are not included one another.
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Obs. Coef. Std. Err. p-value 95% CI

β2 eq. (3) 765 1.5808 .5093 .002 [.5821, 2.5795]

γ2 eq. (3) 765 -.0411 .0097 0 [-.0601, .022]

δ2 eq. (3) 765 -.004 .0008 0 [-.0055, .0025]

γ2 eq. (4) 538 -.0089 .0107 .408 [-.0299, .0122]

δ2 eq. (4) 538 -.003 .0009 .001 [-.0047, .0013]

Figure 13: Individual learning for player 2

Here again estimates of γ2 and δ2 are all of the right sign, with the impact of
δ2 “significantly higher.” However, considering fixed effects makes γ2 no longer
significant.35 Unlike the regressions for player 1, there are fewer subjects playing
the same action (i.e. not claiming) throughout the session (12 out of 40).36

When individual fixed effects are taken into account, we see that player 2’s
behavior is much more sensitive to cumulative payoffs.

There is another clear evidence of difference in behavior due to player’s
position. If we look at the estimates of βk, i.e. the constant in regression (3),
we see that only β2 is significant, with positive sign. In other words, we observe
a tendency to claim of subjects in Betta’s role which is explained neither by
learning nor by individual effects.

5 Conclusion

One of the aims of implementation theory is to provide a formal dress to the
choice among competing mechanisms. In this respect, our theoretical assump-
tion was justified by the simple claim that, ceteris paribus, a Nash-implementable
mechanism should be preferred to a subgame-perfect implementable one. To our
surprise, the experimental results reported here do not support this claim. Our
dynamic analysis provides an explanation for this. Here we find that stability
(rather than convergence) seems to be the key to understand subjects’ behav-
ior, insofar the states of the system are always sufficiently close to the first-best.

35Notice that this does not yield a rejection of monotonicity. By analogy with the test on
aggregate learning, we would reject monotonicity if γ2 were positive and significant.

36Another evidence of this comes from the fact that, for player 2, the confidence intervals
for γ2 and δ2 estimated from equation (3) always contain the confidence intervals estimated
from equation (4).
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In this respect, the two mechanisms display very similar properties and almost
identical rates of first-best outcomes.

This evidence notwithstanding, our experiment also shows that, despite a
significant evidence of out-of-equilibrium (“irrational”) play, incentives matter
in the characterization of the aggregate play and that subjects react “strategi-
cally” to the competing implementation schemes. In other words, our experi-
mental evidence can be fruitfully applied to reduce inefficiency in the presence
of bounded rationality.

References

[1] D. Abreu and H. Matsushima. Virtual implementation in iteratively un-
dominated strategies: Complete information. Econometrica, 60:993–1008,
1992.

[2] S. Arnold. Mathematical Statistics. Prentice-Hall, Englewood Cliffs NJ,
1990.

[3] K. Binmore, J. McCarthy, G. Ponti, L. Samuelson, and A. Shaked. A
backward induction experiment. Journal of Economic Theory, 104:48–88,
2002.

[4] T. Borgers and R. Sarin. Learning through reinforcement and the replicator
dynamics. Journal of Economic Theory, 77:1–14, 1997.

[5] A. Cabrales, Gary Charness, and Luis Corchon. An experiment on nash
implementation. Journal of Economic Behavior and Organization, 2002.
forthcoming.

[6] A. Cabrales and G. Ponti. Implementation, elimination of weakly domi-
nated strategies and evolutionary dynamics. Review of Economic Dynam-
ics, 3:247–282, 2000.

[7] R. Cooper, D.V. DeJong, R. Forsythe, and T.W. Ross. Cooperation with-
out reputation: Experimental evidence from prisoner’s dilemma games.
Games and Economic Behavior, 12:187–218, 1996.

[8] A. Elbittar and J. Kagel. King Solomon’s dilemma: An experimental study
on implementation. mimeo, University of Pittsburgh, 1997.

[9] U. Fischbacher. z-Tree. toolbox for readymade economic experiments. IEW
Working paper 21, University of Zurich, 1999.

[10] L. E. Fouraker and S. Siegel. Bargaining Behavior. McGraw-Hill, New
York, 1963.

jteschen
25



[11] A. Gibbard. Manipulation of voting schemes: A general result. Economet-
rica, 41:587–601, 1973.

[12] J. Glazer and A. Ma. Efficient allocation of a prize—King Solomon’s
dilemma. Games and Economic Behavior, 1:222–233, 1989.

[13] W. Guth, R. Schmittberger, and B. Schwarze. An experimental analysis of
ultimatum bargaining. Journal of Behavior and Organization, 3:367–388,
1982.

[14] E. Katok, M. Sefton, and A. Yavas. Implementation by iterative domi-
nance and backward induction: an experimental comparison. Journal of
Economic Studies, 104:89–103, 2002.

[15] R. McKelvey and T. Palfrey. An experimental study of the Centipede
Game. Econometrica, 60:803–836, 1992.

[16] D. Mookherjee and B. Sopher. Learning behavior in experimental matching
pennies games. Games and Economic Behavior, 7:62–91, 1994.

[17] J. Moore. Implementation, contracts and renegotiation in environments
with complete information. In J-J. Laffont, editor, Advances in Economic
Theory I. Cambridge University Press, Cambridge, 1992.

[18] J. Nachbar. Evolutionary selection dynamics in games: Convergence and
limit properties. International Journal of Game Theory, 19:59–89, 1990.

[19] D. Peña Sánchez de Rivera. Estadística Modelos y Métodos. Alianza Uni-
versidad Textos, Madrid, 1991.

[20] M. Perry and P. J. Reny. A general solution to King’s Solomon’s dilemma.
Games and Economic Behavior, 26:279–85, 1999.

[21] G. Ponti. Splitting the baby in two: Solving Solomon’s dilemma with
boundedly rational agents. Journal of Evolutionary Economics, 10:449–
455, 2000.

[22] W. H. Sandholm. Evolutionary implementation and congestion pricing.
University of Wisconsin, mimeo, 2000.

[23] K. Schlag. Why do imitate, and if do, how? a bounded rational approach
to multi-armed bandits. Journal of Economic Theory, 78:130–56, 1998.

[24] P. Taylor and L. Jonker. Evolutionary stable strategies and game dynamics.
Mathematical Biosciences, 40:145–156, 1978.

[25] J. Weibull. Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995.

jteschen
26



Appendix A. Testing for monotonicity.

Fix a mechanism and a session [h, j] and denote by by

yks (t) ≡
{

1 if subject s claims at round t,
0 if player s does not claim at round t.

We assume that, for all s and t, yks (t) follows a binomial distribution B(1, pk(t)).
Let nk(t) denote the number of observations of player k at time t. More pre-
cisely, n1(t) = 10 for all t, since we have 10 groups per sessions and player 1
always moves. On the contrary, n2(t) ≤ 10 is endogenously given by the number
of players 1 that have claimed at time t.

Given that we deal with small samples, we apply the following method.37

Consider the variables: v = nk(t)χk(t), and w = nk(t + 1)χk(t + 1) +
nk(t)χk(t), where χk(t) is the theoretical distribution of xks (t). Under the null
hypothesis, the variable v/w follows a hypergeometric distribution with the
density function being

f(v/w) =

[
nk(t+ 1)

v

] [
nk(t)
w − v

]

[
nk(t) + nk(t+ 1)

w

] .

In this case, v/w will be the statistic we will use to test the null hypothesis
H0, but considering each of the T restrictions individually. The p-value for each
of these tests can be calculated by P (v ≥ v/w = w) where v and w are the
statistics evaluated at the samples. The results are summarized in Figure 11,
in which we present the minimum p-value across periods.

37See Arnold [2]
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Appendix B. The experimental instructions (Amer-

ican Sessions).

Screen 1: Welcome to the Experiment

This is an experiment to study how people bargain over a prize. We are only
interested in what people do on average and keep no record at all of how our
individual subjects behave. Please do not feel that any particular behavior is
expected from you.

On the other hand, keep also in mind that your behavior will affect the sum
of money you may win during the course of this experiment.

On the following pages you will find a series of instructions explaining how
the experiment works and how to use the computer during the experiment.

When you are ready to continue, please Click Here

Screen 2: How you can make money (I)

You will be playing two different experiments for 20 rounds each. In both
experiments, you and another person will have to determine which of you is to
receive a prize.

Please keep in mind that

• at the beginning of each round each player will be matched with a different
opponent;

• at the beginning of each round a new value for the prize will be assigned
to each player;

• the values that will be assigned will always differ, so that there will always
be one high-value player and one low-value player;38

• your value determines your payoff in the game. If you get the prize, you
will be awarded of the sum of money the prize is worth to you (and the
same holds for your opponent).

When you are ready to continue, please Click Here

38The terminology of high-value (low-value player) was always associated with the color
blue (red). Also payoffs in the experiments were highlighted by the corresponding color.
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Screen 3: How you can make money (II)

Sometimes you will be the high-value player, sometimes you will be the
low-value player. Remember that this information is PUBLIC. You and your
opponent will ALWAYS know how much the prize is worth to each of you.

At the end of today’s experiments, one round will be selected at random.
The payoff you obtained in that particular round will be added (or subtracted,
if the payoff was negative) to your showing-up fee of $ 8.

When you are ready to continue, please Click Here

Screen 4: The experimental setting

This experiment is played in Stages.

• At the beginning of each round, the computer will select at random
whether you or your opponent will play at Stage 1.

• We will refer to this player as Player 1, while the player who is selected
to play at Stage 2 will be referred as Player 2.

• Sometimes you will play the game as Player 1, sometimes you will play
the game as Player 2.

• Remember that you and your opponent have equal chance, at the begin-
ning of each round, to be selected to play first.

When you are ready to continue, please Click Here
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Screen 5(GM): The Game
In this game Player 1 chooses either to claim the prize or not to claim the

prize. If Player 1 does not claim the prize, the prize automatically goes to
Player 2. If Player 1 claims the prize, then Player 2 must decide whether
or not to also claim the prize.

The payoffs in the game are as follows:

• If Player 1 does not claim the prize, the prize goes to PLAYER 2.
Neither player has to pay anything. If Player 1 claims the prize and
PLAYER 2 does not claim the prize, the prize goes to Player 1. Neither
player has to pay anything.

• If Player 1 and Player 2 both claim the prize, the prize goes to
PLAYER 2. But Player 2 has to pay a price of $ v for the prize and
Player 1 has to pay $ 3 even though s/he doesn’t get the prize. The
value of $ v may differ between rounds. However, it will always be in
between the high value and the low value.

We shall now practice through the various instructions, stage by stage.

When you are ready to continue, please Click Here
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Screen 5(PM): The Game

In this game Player 1 chooses either to claim the prize or not to claim the
prize. If PLAYER 1 does not claim the prize, the prize automatically goes to
Player 2. If Player 1 claims the prize, then Player 2 must decide whether
or not to also claim the prize.

The payoffs in the game are as follows:

• If Player 1 does not claim the prize, the prize goes to Player 2. Neither
player has to pay anything.

• If Player 1 claims the prize and Player 2 does not claim the prize, the
prize goes to Player 1. Neither player has to pay anything.

• If Player 1 and Player 2 both claim the prize, the outcome is deter-
mined by a lottery.

The payoffs in the lottery are as follows:

• With probability 1/2 Player 1 pays a price of $ v and gets the prize (in
this case, Player 2 neither gets nor pays anything).

• With probability 1/2 Player 2 pays the price of $ v and gets the prize
(in this case, Player 1 neither gets nor pays anything).

• The value of $ v may differ between rounds. However, it will always be in
between the high value and the low value.

We shall now practice through the various instructions, stage by stage.

When you are ready to continue, please Click Here
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Figure 14: GMM: User Interface
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Figure 15: PM: User Interface
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