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TESTING RESTRICTIONS IN NORMAL DATA MODELS
USING GIBBS SAMPLING

Matteo Ciccarelli

A B S T R A C T

The problem of testing a set of restrictions R(q) = 0 in a complex hierarchical
model is considered. We propose a di¤erent approach from the standard PO
ratio test, which can be viewed as the Bayesian analogous to the classical Wald
type test. With respect to the PO ratio, it has the advantage of being easier
to implement and, unlike the PO ratio test, it can be computed also when some
prior in the hierarchy is di¤use. Several Monte Carlo simulations show that the
procedure scores very well both in terms of power and unbiasedness, generally
doing as well as the standard PO ratio approach, or even better in cases where
the degree of coe¢cient heterogeneity is not high.

JEL: C12, C15
Keywords: Linear restrictions, Gibbs sampling, Monte Carlo
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Lo más trágico no es ser mediocre pero inconsciente de esa mediocridad; lo más
trágico es ser mediocre y saber que se es así y no conformarse con ese destino que,
por otra parte (éso es lo peor) es de estricta justicia.
(Mario Benedetti, La Tregua)

1. INTRODUCTION

In these paper we consider the simple problem of testing the vector of restrictions
R(µ) = 0, where µ 2 £ is the unknown parameter vector of a model for the data
Y; de…ned by a normal pdf, Á (Y j µ). The aim is to form a posterior probability
for the truth of the set of restrictions, conditional to the data. The paper can
also be considered as a further illustration of the versatility and ease of practical
implementation of the Gibbs sampler, a sampling-based approach proposed by
Geman and Geman (1984) and popularized by Gelfand and Smith (1990) to cal-
culate marginal posterior densities in complex hierarchical models. The setting
of the problem and its solution are purely Bayesian, but the results are easily
comparable (at least in terms of interpretation) with the classical approach to
testing.
Traditionally, the comparison of two or more parametric (not necessarily nested)

models in the Bayesian framework is based on posterior model probabilities. In
the simplest case in which we have two models or hypotheses, H0;H1 with prior
probabilities p (H0), p (H1), the statistic that is most frequently employed to com-
pare H0 and H1 is the posterior odds (PO) ratio

p (Ho j y)
p (H1 j y) =

p (y j Ho)
p (y j H1)

p (Ho)

p (H1)

If the loss is one for choosing the incorrect model and zero for choosing the correct
one, then we select model Ho if this ratio is greater than one.1

This way of comparing and eventually choosing between two models is feasible
when all priors involved are informative. In fact, the marginal likelihood m (y) =
p (y j Hk) is generally obtained computing the integral

m (y) =
Z
p (#k) p (y j #k) d#k (1.1)

1In fact the model with the highest posterior probability p (Hk j D) must be chosen (and this
rule is optimal, in the sense described by Zellner, 1971, pp.294–297), provided we can de…ne a
symmetric loss structure. For discussion and applications of other loss functions, see Schorfheide
(2000).
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where #k denotes the vector of all the parameters of model k. In some very
elementary cases this integral can be analytically tractable (Zellner, 1971, ch.10).
However, when the dimension of the parameter vector increases, the integration
can hardly be an easy task, and must be overcome with a Monte Carlo method.
Chib (1995) developed an approach based on the simple fact that m (y), by virtue
of being the normalizing constant of the posterior density, can be written as

m (y) =
f (y j #) p (#)
p (# j y)

where the numerator is the product of the sampling density and the prior, with
all integrating constants included, and p (# j y) is the posterior density of #. For
a given # (the ML estimate, for instance), the latter quantity can be estimated
with the Rao–Blackwellization technique suggested by Gelfand and Smith (1990),
using the Gibbs output, while the numerator is easily evaluated at the same #
chosen. In order to compute the marginal density m (y), it is important that all
integrating constants of the full conditional distribution of the Gibbs sampler be
known.
Since non di¤use prior information a¤ects posterior odds in both small and

large samples, a special care must be exercised in representing the prior informa-
tion to be employed in the analysis. In many situations a vague or di¤use prior
information needs to be employed. When the prior information on the param-
eters is vague or di¤use, the posterior odds ratio cannot be calculated. In this
case Lindley (1965) suggested a procedure that, for many problems leads to tests
which are computationally equivalent to sampling-theory tests. This procedure
uses a Bayesian con…dence region. If we have a joint hypothesis about two or
more parameters, say µ, a Bayesian ”highest posterior density” con…dence region
for µ is …rst obtained with a given probability content 1¡ ®. If our hypothesis is
for example µ = µo, where µo is a given vector, we accept if µo is contained in the
con…dence region and reject otherwise at the ® level of signi…cance.2

This procedure is appropriate only when prior information is vague or di¤use,
otherwise it is important to take into account any prior knowledge. Consider a
simple hypothesis µ = µo; where µo is a value suggested by the theory. In this case,
it is reasonable to believe that µo is a more probable value for µ than any other.
Thus, a testing procedure that allows to incorporate non di¤use prior information

2See Zellner, 1971, p. 298-302, for details. Notice that in most problems the interval (region)
is numerically exactly the same as a sampling theory con…dence interval (region) but is given
an entirely di¤erent interpretation in the Bayesian approach.
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is needed, and the comparison of alternative hypotheses might be based on the
posterior odds ratio. In fact, as shown in Zellner (1971, p. 304), as sample
size increases a ”sampling theory test of signi…cance can give results di¤ering
markedly from those obtained from a calculation of posterior probabilities which
takes account of non-di¤use prior and sample information”. For large sample sizes,
the paradox of obtaining a probability of µ = µo close to one even in regions that
would lead to rejection of the hypothesis µ = µo can arise (Lindley’s paradox).
The aim of this paper is to test the set of restrictions R(µ) = 0 in a complex

hierarchical model with a procedure that avoids the computational di¢culties of
the PO ratio and could be used under di¤use and non di¤use prior information.
The rationale of the approach is very simple, being based on the comparison
between two distributions which are immediately obtained in the Gibbs sampler.
One is the posterior distribution of µ and the other is the posterior distribution
of the parameter vector under the restriction. The degree of overlap of the two
distributions provides a criterium to verify the restriction: the larger the distance
between these two posterior distributions, the higher the (posterior) probability
of rejecting the null. The idea is closer in spirit to Lindley’s suggestion and can be
considered as the Bayesian version of the classical Wald type tests. This similarity
and the fact that the properties of the approach we propose are analyzed to a large
extent using the sampling properties of the estimators involved, should make the
approach attractive also to classical sampling-theory econometricians.
With the help of several simulation experiments, we …nd that this empirical

method has very good properties in terms of power and size of the test, under
di¤erent prior assumptions, and is competitive with the standard PO ratio both
in small and in large samples. As the sample size increases, simulations do not
seem to give rise to Lindley’s paradox when prior information is vague or di¤use.
The paper is organized as follows. Section 2 describes the empirical approach.

Section 3 discusses the design of the Monte Carlo study. In section 4 we analyze
the properties of the test in terms of power and unbiasedness in several simulation
experiments, under di¤erent assumptions on the prior information, and compare
with PO ratio when informative priors are used. Section 5 concludes.
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2. AN EMPIRICAL APPROACH

In many circumstances it is reasonable to assume linearity. So, let the model be

y = Xµ + " (2.1)

where y is a vector of dimensions n£1, X is a n£k matrix of explanatory variables
and " is a vector of disturbances of dimensions n £ 1. Notice that under the
assumption of linearity, several possible speci…cation can be adapted. As a matter
of fact, Eq. (1) can refer to both univariate and multivariate models; matrix X
can contain lagged endogenous and exogenous variables; data can proceed from
cross section, time series or panel analysis, dimensions changing accordingly in
the speci…cation (2.1).
Let us assume normality

" » N (0;§") ; (2.2)

where §" is the error term variance-covariance matrix of dimensions n £ n; and
model the population structure as

µ » N
³
Ao¹µ;§µ

´
(2.3)

where Ao is a known matrix of dimensions k£m, relating the regression vector µ
to a parameter vector ¹µ of dimensions m£ 1, possibly with m · k, and §µ is the
k £ k variance-covariance matrix of the random vector µ.
Notice that this is a hierarchical model of the kind introduced by Lindley

and Smith (1972), whose applications abound in …elds as di¤erent as educational
testing (Rubin 1981), medicine (DuMouchel and Harris 1983), and economics
(Hsiao et al., 1998).
A full implementation of the Bayesian approach is easily achieved – at least

for the normal linear hierarchical model structure –using the Gibbs sampler. It
requires the speci…cation of a prior for §", ¹µ and §µ. Assuming independence, as
it is customary, we may take the joint prior distribution

p
³
¹µ;§¡1" ;§

¡1
µ

´
= p

³
¹µ
´
p
³
§¡1"

´
p
³
§¡1µ

´
to have, for example, a normal–Wishart–Wishart form:

p
³
¹µ
´
= N (A1¹;C)

p
³
§¡1"

´
= W

h
(¾"S")

¡1 ; ¾"
i
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p
³
§¡1µ

´
=W

h
(¾µSµ)

¡1 ; ¾µ
i

where A1 is a known matrix of dimensions m £ p, relating the regression vector
¹µ to a parameter vector ¹ of dimensions p £ 1, possibly with p · m, while
the hyperparameters ¹, C, ¾", S"; ¾µ, Sµ are assumed all known. The notation
W [­; !] identi…es a Wishart distribution with ! degrees of freedom and scale
matrix ­.
The unfeasible integrability of this model to get the posterior distributions

of interest justi…es the use of the Gibbs sampler. Typical inferences of interest
in such studies include marginal posteriors for the population parameters µ or ¹µ.
Our purpose is to show how these inferences can be achieved by using the Gibbs
sampling output in a very natural way.
In particular, let us concentrate our attention on ¹µ. It is easy to show that the

posterior distribution of ¹µ conditional on §¡1" , §
¡1
µ , µ, y, is of the form

p
³
¹µ j §¡1" ;§¡1µ ; µ; y

´
= N

³
¹µ
¤
; V ¤

´
(2.4)

where

¹µ
¤
= V ¤

h
C¡1A1¹+A0o§

¡1
µ µ

i
(2.5)

V ¤ =
³
C¡1 +A0o§

¡1
µ Ao

´¡1
(2.6)

Suppose now that we are interested in testing the set of linear restrictions

R¹µ = r (2.7)

where R is a known matrix of dimensions s£m, with s · m. From (2.4) we have
the additional information that, conditional on §";§¡1° ; µ; y; the quadratic form

q =
h
R
³
¹µ ¡ ¹µ¤

´i0
[RV ¤R0]¡1

h
R
³
¹µ ¡ ¹µ¤

´i
(2.8)

is distributed as a Â2(s): The marginal posterior distribution of this quantity can
easily be obtained in the Gibbs sampling. It provides a rational for examining
the posterior plausibility of the set of linear restrictions (2.7). As a matter of
fact, according to (2.8), the probability that R¹µ would equal r is related to the
probability that, at each iteration of the Monte Carlo, a Â2(s) variable would assume
the value

q1 =
h
R¹µ ¡ r

i0
[RV ¤R0]¡1

h
R¹µ ¡ r

i
(2.9)
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Therefore, the probability that a Â2(s) variable could exceed this magnitude rep-
resents the probability that the random variable R¹µ might be as far from the
posterior mean R¹µ¤ as is represented by the point R¹µ¤ = r.
Provided we can obtain the empirical posterior distributions of q e q1 , in

order to construct a rejection region it is su¢cient to compare these two distribu-
tions. The larger the distance between q and q1, the greater is the probability, a
posteriori, of rejecting the null.
Notice that, based on the comparison between (2.8) and (2.9), we are not

testing the exact restriction (2.7), but rather the fact that R¹µ is distributed a
posteriori around r.3

It is immediate to see that the prior hyperparameters can be speci…ed in such
a way that they re‡ect vague initial information relative to that to be provided
by the data. It is enough to assume, for example, an in…nite uncertainty on the
second stage of the hierarchy, by taking C¡1 = 0. Under this prior assumption,
(2.5) and (2.6) change accordingly without modifying the characteristics of the
testing discussed above.
The idea behind the approach is basically the same as in the classical Wald test,

where we compare two distributions: one under the null, which is asymptotically
Â2(s); and the other under the alternative. The greater is the numerical value of
the quadratic form where the set of restrictions has been substituted, the more
likely this value belongs to the distribution under the alternative, which is a non-
central Â2(s). Here (2.8) plays the role of the distribution under the null. The main
di¤erence is that this is an exact distribution whose posterior can be computed
empirically and used to make probability assessments in a Bayesian fashion. On
the other hand, the posterior distribution of (2.9) (and not just one value, as
in the classical analysis) can also be computed and compared with (2.8). The
greater is the distance between the two posterior distributions, the more likely
the restriction we put is converting the reference distribution in a non-central

3The test of the exact restriction can be conducted instead by constructing the quadratic
form

q2 =
£
r ¡R¹µ¤¤0 [RV ¤R0]¡1 £r ¡R¹µ¤¤ :

In a Bayesian set up like the one described above, previous works (see Hsiao et al., 1998, for
references) have shown that the estimates of the average coe¢cients (¹µ

¤
) have a very reduced

bias, even in a dynamic panel data model. Therefore, it is very likely that, when the null is
true, the distance

£
r ¡R¹µ¤¤ would be much lower than £R¹µ ¡ r¤ in the same metric [RV ¤R0]¡1,

hence leading to a much lower number of rejections, given the size of the test. Since several
simulation experiments (not shown) con…rmed this …nding, we prefer to base our reasoning on
the comparison between q and q1.
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one, and the more likely we reject the null.
There are several ways of measuring this distance, beside the graphical over-

lap. The simplest one can be based on a test on the means of the distributions of
q and q1. More sophisticated nonparametric methods can concern the comparison
of the cumulative distribution functions (cdf) of q and q1 (Kolmogorov-Smirnov
Goodness-of-Fit test), as well as of the percentiles of the empirical posterior den-
sity functions of the two quantities (one-sample sign test).
Notice that this framework can be adapted to non linear restrictions as well.

Concretely, assume the following null hypothesis

©
³
¹µ
´
= r

where ©
³
¹µ
´
is a vector of non linear function of ¹µ. The method can be accom-

plished by linearizing the function ©
³
¹µ
´
, for example, around the conditional

posterior mean of ¹µ with a Taylor expansion approximated at the …rst order

©
³
¹µ
´
' ©

³
¹µ
¤´
+r©

³
¹µ
¤´0 ³¹µ ¡ µ¤´

wherer©
³
¹µ
¤´ is the gradient of © ³¹µ´ computed at ¹µ¤. The quadratic forms (2.8)

and (2.9) then becomes respectively

q =
h
©
³
¹µ
´
¡ ©

³
¹µ
¤´i0 µr© ³¹µ¤´0 V ¤r© ³¹µ¤´¶¡1 h© ³¹µ´¡ © ³¹µ¤´i

q1 =
h
©
³
¹µ
´
¡ r

i0 µr© ³¹µ¤´0 V ¤r© ³¹µ¤´¶¡1 h© ³¹µ´¡ ri
and the reasoning follows as before.
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3. THE MONTE CARLO STUDY

In order to analyze the statistical properties of the testing procedure we take the
following data generating process for each observation

yit = ®i + ½iyit¡1 + "it (3.1)

with i = 1; :::;N and t = 1; :::; T .
We assume that the disturbances are generated from

"it » N
³
0; ¾2i

´
(3.2)

E ("it"js) = 0; i 6= j; t 6= s
and

¾2i » IG
Ã
v

2
;
±

2

!
(3.3)

where IG
³
v
2
; ±
2

´
denotes an inverted gamma distribution with shape v and scale

±.
Random coe¢cients are obtained from the joint distributionÃ

®i
½i

!
» N

"Ã
¹®
¹½

!
;

Ã
¾2® ¾®½
¾½® ¾2½

!#
(3.4)

This set up (Eq. (3.1) through (3.4)) can easily be written in terms of (2.1)-(2.3).
In particular µ = (µ1; :::; µN)

0, µi = (®i; ½i)
0, Ao = (I2; :::; I2)

0, ¹µ = (¹®; ¹½), X =
diag (X1:::; XN), with Xi = (xi1; :::; xiT )

0 and the matrix §" = diag (¾21; :::; ¾
2
N ).

This means that in terms of model (2.1)-(2.3), we have: n = NT , k = 2N , m = 2.
This model speci…cation can be seen as a dynamic heterogeneous panel data

model, where i denotes the cross sectional dimension, whereas t is the time di-
mension. In a recent paper, Hsiao et al. (1998) show that a hierarchical Bayesian
approach, like the one considered in the previous section, performs reasonably
well in the estimation of dynamic panel data models relatively to other tradi-
tional methods, in the presence of coe¢cient heterogeneity across sectional units,
especially in small samples. Fixed e¤ect or instrumental variable estimators, ne-
glecting the coe¢cient heterogeneity, are biased and inconsistent, the degree of
inconsistency being a function of the degree of coe¢cient heterogeneity and the
extent of serial correlation in the regressors.
These points motivate to some extent the choice of the data generating process

in these notes. If we believe that data behave as (3.1) and perhaps we need to
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make inference on the mean of the coe¢cients, then we might need to estimate
the model in a hierarchical Bayes fashion.
In the benchmark simulations the hyperparameters v and ± are set equal to 6

and 1, respectively, while ¹½ = 0:4, ¹® = 0:6, ¾2® = ¾
2
½ = 0:025, and ¾½® = ¡0:00625.

This choice implies that data are generated form a stationary process (½i lies
inside the unit interval) with low variability (v = 6 and ± = 1 implies that
the mean and the standard deviation of ¾2i are both equal to 0:25) and with
population parameters showing low heterogeneity. Three departures from this
benchmark situations are analyzed. First, because the degree of heterogeneity
can be important in the estimation of this model, in most simulation experiments
we also take ¾2® = 0:25, ¾

2
½ = 0:05. Second, the case of near non-stationarity is also

considered by setting ¹® = 0:1 and ¹½ = 0:9. Though in principle there is no need
to restrict data to be stationary, we have been more cautious both in increasing
the variance of ½i and the true parameter ¹½, because the y series become explosive
with simulated data when ½i lies outside the unit interval, even with small T .
So when it happens that ½i lies outside the unit interval we generate ½i from a
truncated normal distribution, by truncating the distribution to the unit interval.
The problem is that when coe¢cients are generated with such a restriction, the
prior distribution must be di¤erent and the derivation of the Bayes estimators
should take this into account. Given the relative complexity, we decided not to
pursue this adjustment on the prior, because in any case it is interesting to see how
the test performs without the adjustment. Finally, the case of higher variability
of the yi series is considered by setting v = 4:2, and ± = 2. This choice implies
that the mean and the standard deviation of ¾2i are approximately equal to 1.0
and 3.0 respectively, values much greater than the benchmark ones.
The number of cross sectional units is N = 10; 20 in all simulations with

T = 150, while the number of time data points is T = 10; 20 in all simulations
in which N = 50. The …rst combination may be typical in a ”macro” data
…eld, whereas the second combination is more typical in a ”micro” panel data
set. For each sectional units T + 50 data points are generated starting from
yi0 » Uniform (¡0:5; 2:) : The …rst 50 observations are then dropped in order to
reduce the dependency on the initial conditions.
The number of replications chosen for the Monte Carlo is 100 in all cases, while

the number of replications used for the Gibbs sampling is 2500, after discarding
the …rst 500, when N = 10; 20 with T = 150, and 1500, after discarding the …rst
500, when T = 10; 20 in all cases in which N = 50. Without loss of generality,
the null hypothesis chosen is Ho : ¹® + ¹½ = 1 when T = 150. In this case the
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restriction matrix is R =
h
1 1

i
, and r = 1. When N = 50 and T is smaller

the null hypothesis is simply Ho : ¹® = 0:6 (or Ho : ¹® = 0:1 when the true ¹® is
0.1). Here trivially R =

h
1 0

i
, and r = 0:6 (or 0.1). The reason for di¤erent

restrictions according to the sample sizes is simple. When the dimension of the
time series is high, the mean coe¢cients ¹® and ¹½ are estimated with much greater
precision than in the case of small T . On the contrary, when the time series size of
each cross section is small, relatively to N , the parameter ¹½ are usually estimated
with a downward bias, whereas and as a consequence of this, the estimate of ¹®
is upward biased. This means that the sum ¹®+ ¹½ is still giving approximately 1,
and, as a result, the properties of the testing approach would be indistinguishable
from those in the case of T = 150 and N = 20.
We also brie‡y comments on the properties of the approach in the case of non

linear restrictions. The null hypothesis here is Ho : ¹®¹½ = 0:24 (or Ho : ¹®¹½ = 0:09)
in all cases analyzed.
The procedure for the Monte Carlo experiments includes the following steps:

(i) generate the data according to Eq. (3.1)-(3.4) and the numerical values of
the hyperparameters presented above; (ii) estimate initially the model using the
mean group estimator4 and subsequently use these estimation results to initialize
the Gibbs sampling; (iii) run the Gibbs sampling to get the marginal posterior
of interest, in particular the posterior distributions of ¹µ, ¾2i , §µ, q, and q1. Steps
(i)-(iii) are then repeated 100 times.
To analyze the properties of the testing procedure, we pay attention to several

aspects. For each set of the Monte Carlo simulation we consider 20 departures
form the true parameters to be able to compute the power function and to test the
distance between the posterior distributions of q and q1. Speci…cally, maintaining
…xed the true value of ¹½ (0.4, or 0.9), we consider 10 progressively di¤erent values
of ¹® above and below its value (0.6, or 0.1). Because the results are pretty much
the same, we only show the 10 departures above ¹®. Concretely the Monte Carlo si
performed assuming the true ¹®j progressively equal to ¹®j¡1+0:2, with j = 1; ::; 11,
and ¹®0 = 0:6 or 0:1. For each case j, the estimated values of the parameters are
averaged over 100 and so are the distributions of q and q1. In this way, for each j
we are able to: (i) evaluate the performance of the hierarchical Bayes estimation
under di¤erent prior assumptions; (ii) compare the means of the distributions of

4For the de…nition and the properties of the mean group estimator see Pesaran and Smith,
(1995). The authors show that in the context of dynamic heterogeneous panel data models, this
is a consistent estimator. Hsiao et. al (1998) then prove the asymptotic equivalence between
the full Bayesian and the mean group estimator.
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q and q1; (iii) compare the entire distributions of these quantities testing the nulls
of equal cdf and equal percentiles of the respective empirical density functions;
(iv) get a ‡avor on the size and the unbiasedness of the test; (v) compute the
power function in a classical sampling-theory fashion; (vi) compare this approach
with the standard PO ratio, whenever possible.
The experiment is performed by assuming the following general prior informa-

tion
p
³
¹µ; ¾2i ;§

¡1
µ

´
= p

³
¹µ
´
p
³
¾2i
´
p
³
§¡1µ

´
with

p
³
¹µ
´
= N (¹;C)

p
³
¾2i
´
= IG

"
Á

2
;
¿2Á

2

#

p
³
§¡1µ

´
=W

h
(¾µSµ)

¡1 ; ¾µ
i

The simulations explained above are then repeated for most cases under an infor-
mative and non informative prior on ¹µ. Table 1 resumes the Monte Carlo design
and in Table 2 the values of the hyperparameters of the prior chosen in each
subcase are reported.

In the case of non-di¤use or informative prior two further subcases are ana-
lyzed, according to the values given to the hyperparameter vector ¹. Speci…cally,
in one case we take, for each j > 1; ¹ = (0:6; 0:4)0 (or ¹ = (0:1; 0:9)0), while in
the other the vector is the true one corresponding to j. We consider the former
as a way of putting more weight on the null, and the latter as a way of assigning
more weight to the alternative hypothesis.
The comparison between our approach and the standard PO ratio is possible

only when the prior is informative. In this case the PO ratio is computed using
the technique suggested by Chib (1995), as surveyed in section 1.
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ΤΤ ΝΝ αα ρρ σ(α)σ(α) σ(ρ)σ(ρ) v δδ prior null
Linear

1 150 10 0,6 0,4 0,025 0,025 6,0 1,0 i/ni α + ρ = 1
2 150 10 0,6 0,4 0,25 0,05 6,0 1,0 i/ni α + ρ = 1
3 150 10 0,1 0,9 0,025 0,025 4,2 2,0 ni α + ρ = 1
4 150 10 0,1 0,9 0,25 0,05 4,2 2,0 i α + ρ = 1
5 150 20 0,6 0,4 0,025 0,025 6,0 1,0 i/ni α + ρ = 1
6 150 20 0,6 0,4 0,25 0,05 6,0 1,0 i/ni α + ρ = 1
7 150 20 0,1 0,9 0,025 0,025 4,2 2,0 i α + ρ = 1
8 150 20 0,1 0,9 0,25 0,05 4,2 2,0 ni α + ρ = 1
9 10 50 0,6 0,4 0,025 0,025 6,0 1,0 i/ni α = 0.6
10 10 50 0,6 0,4 0,25 0,05 6,0 1,0 i/ni α = 0.6
11 10 50 0,1 0,9 0,025 0,025 4,2 2,0 i α = 0.1
12 10 50 0,1 0,9 0,25 0,05 4,2 2,0 ni α = 0.1
13 20 50 0,6 0,4 0,025 0,025 6,0 1,0 i/ni α = 0.6
14 20 50 0,6 0,4 0,25 0,05 6,0 1,0 i/ni α = 0.6
15 20 50 0,1 0,9 0,25 0,05 4,2 2,0 i α = 0.1

nonlinear
16 150 20 0,6 0,4 0,025 0,025 6,0 1,0 ni αρ = 0.24
17 150 20 0,1 0,9 0,025 0,025 4,2 2,0 ni αρ = 0.09
18 10 20 0,6 0,4 0,025 0,025 6,0 1,0 ni αρ = 0.24
19 10 20 0,1 0,9 0,025 0,025 4,2 2,0 ni αρ = 0.09

Note: "i" = informative; "ni" = non-informative

Table 1. Design of the Monte Carlo study



informative non informative

C = diag(4.0) C^(-1) = 0
S(θ) = diag(3.0) S(θ) = diag(3.0)

T = 150 σ(θ) = 4.0 σ(θ) = 2.0
φ = 0.3,  τ = 3.0 φ = 0.0

B
C = diag(1.0) C^(-1) = 0

N = 50 S(θ) = diag(10, 1.0) S(θ) = diag(10, 1.0)
σ(θ) = 10.0 σ(θ) = 2.0

φ = 0.3,  τ = 3.0 φ = 0.0

C = diag(4.0) C^(-1) = 0
S(θ) = diag(5.0) S(θ) = diag(5.0)

T = 150 σ(θ) = 4.0 σ(θ) = 2.0
φ = 0.3,  τ = 3.0 φ = 0.0

DB
C = diag(1.0) C^(-1) = 0

N = 50 S(θ) = diag(20, 1.0) S(θ) = diag(20, 1.0)
σ(θ) = 10.0 σ(θ) = 2.0

φ = 0.3,  τ = 3.0 φ = 0.0

Note:  B = Benchmark;  DB = departures from B

Table 2. Prior hyperparameters in the Monte Carlo



4. RESULTS

Tables 3-9 present the simulation results. The posterior estimates, a comparison
of the distributions of q and q1 and the comparison between this approach and
the PO ratio are reported.
In table 3 we show the posterior mean estimates of the parameters of the model

and of the quantities q and q1. The …rst column refers to the corresponding column
in table 1, while the second column gives the true ¹®. Parameter ¹® is estimated
quite precisely when T = 150, with a bias that falls within the range of 0 to
40%, both in the informative and in the non informative case. The bias increases
in small samples (T = 10; or T = 20) and in some cases (particularly when data
show high variability and the degree of coe¢cient heterogeneity is high – cases 11,
12, 19) it exceeds 100%. As one would expect, the issue is more serious when the
prior is di¤use (cases 12 and 19). The characteristics of the bias in the estimation
of ¹½ are similar, though the bias seems to be more reduced with respect to the
estimation of the constant, falling within the range of 2,5 to 50% in all cases
analyzed. This performance of the Bayes estimator is not very surprising in view
of the fact that all the estimation results are derived conditional on initial yio:
Previous studies (e.g. Blundell and Bond, 1996) have outlined that the bias due
to ignoring initial observation may be quite signi…cant in sampling approaches,
when the time series dimension is small. Roughly speaking, our results seem to
replicate the features obtained in Hsiao et al. (1998), though they are not directly
comparable because of the di¤erent speci…cation of the data generating process.5

Another feature which con…rms the …ndings of previous studies is the upward
bias in the estimation of the posterior elements of the matrix §µ. As discussed
in Hsiao et al., these results may depend upon the choice of the scale matrix
Sµ, as well as the actual degree of coe¢cient heterogeneity. Our choice of Sµ
and ¾µ has followed previous studies on typical examples of the Gibbs sampling
applications (Gelfand et al., 1990, among others). To check the sensitivity of
the results we have tried di¤erent choices, according to the sample size and the
degree of coe¢cient heterogeneity in the data generating process. In the cases of
low heterogeneity and large samples, the Swamy (1971) estimate of §µ seems to
give better performances in terms of posterior estimates of the elements of this

5In Hsiao et al. data are generated from a model which does not include the constant term,
while consider the presence of a stationary explicative variable.
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αα αα^ ρρ^ σ(α)σ(α) σ(ρ)σ(ρ) σ(α,ρ)σ(α,ρ) σ(ε)σ(ε) q q1

1 0,6 0,62 0,39 0,81 0,80 -0,0115 0,25 1,00 1,02

2 0,6 0,61 0,39 0,99 0,80 -0,0150 0,25 1,00 1,08

4 0,1 0,11 0,80 1,07 0,80 0,0007 0,97 1,00 1,20

5 0,6 0,61 0,39 0,84 0,84 -0,0587 0,24 1,00 1,03

6 0,6 0,62 0,39 0,85 0,84 -0,0052 0,26 1,00 1,05

7 0,1 0,13 0,83 0,81 0,77 -0,0031 0,99 1,00 1,07

9 0,6 0,75 0,23 0,87 0,72 -0,0646 0,31 1,00 1,12

10 0,6 0,73 0,22 2,07 1,22 -0,0909 0,32 1,00 1,14

11 0,1 0,21 0,54 1,08 0,98 -0,1129 1,06 1,00 1,03

13 0,6 0,65 0,31 1,00 0,72 -0,0349 0,27 1,00 1,09

14 0,6 0,70 0,31 0,88 0,85 -0,0182 0,27 1,00 1,00

15 0,1 0,16 0,64 1,11 0,73 -0,0235 1,01 1,00 1,02

Non informative

αα αα^ ρρ^ σ(α)σ(α) σ(ρ)σ(ρ) σ(α,ρ)σ(α,ρ) σ(ε)σ(ε) q q1

1 0,6 0,61 0,39 0,84 0,83 -0,0142 0,26 1,00 1,02

2 0,6 0,61 0,38 1,00 0,80 -0,0108 0,25 1,01 1,18

3 0,1 0,14 0,80 0,86 0,81 -0,0049 0,98 0,99 1,04

5 0,6 0,62 0,38 0,81 0,81 -0,0004 0,26 1,00 1,04

6 0,6 0,60 0,39 0,20 0,30 -0,0260 0,25 1,00 1,02

8 0,1 0,12 0,75 1,24 0,50 0,0041 0,99 1,00 1,03

9 0,6 0,81 0,21 2,89 0,80 -0,0688 0,32 1,00 1,07

10 0,6 0,86 0,21 2,26 1,13 -0,1036 0,31 1,02 1,10

12 0,1 0,37 0,49 1,14 2,82 -0,1011 1,12 1,00 1,07

13 0,6 0,72 0,31 2,28 0,75 -0,0303 0,28 1,00 1,06

14 0,6 0,74 0,30 2,46 1,07 -0,0395 0,28 1,00 1,03

16 0,6 0,62 0,38 0,82 0,81 -0,0067 0,25 1,00 1,08

17 0,1 0,15 0,80 1,69 0,75 -0,0040 0,96 1,13 1,15

18 0,6 0,79 0,21 1,06 0,91 -0,0775 0,31 1,00 1,00

19 0,1 0,41 0,54 1,42 0,92 -0,0444 1,00 1,29 1,54

Informative

Table 3.  Posterior estimates of the mean parameters



matrix. The estimation of §µ is given by
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where ¾̂2i = "̂
0
i"̂i= (T ¡ k), and the hats ”^” denote OLS estimation for each cross

sectional units.
On the contrary, when the degree of heterogeneity is high and the sample is

small (especially in the time dimension), the choice described in table 2 performs
better. In both cases, the choice of the scale matrix seems to a¤ect only the
posterior estimates of the matrix and sometimes the posterior estimates of the
other parameters, but not the results on the properties of the testing procedure,
which is our main concern.
The last three columns of table 3 report the estimated average posterior mean

of the variance of the error term, which does not show serious biases in all cases
analyzed, and the estimated posterior means of the distributions of q and q1. In
all cases under discussion, except two concerning the nonlinear restriction (17
and 19), the mean of q is not statistically di¤erent from the mean of a chi–square
with one degree of freedom (not shown). This result is more general and applies
not only to the posterior mean of q but also to its entire empirical posterior
distribution, whose draws in all cases analyzed (with the exception of case 17 and
19) are statistically indistinguishable from those of a Â2(1). This is not surprising,
provided the model speci…cation is based on natural conjugate priors. However,
this …nding is not strictly necessary for the assessment of the goodness of the
testing procedure. As a matter of fact, the empirical posterior density of q is
our reference distribution, independently of its exact shape. In the non linear
restriction, when data are generated from a close-to-non-stationary model with
high variability (cases 17 and 19), approximating at the …rst order the Taylor
expansion is probably not enough to get a posterior chi-square for q with the
right degrees of freedom. Notwithstanding the comparison between q and q1 is
still possible. As remarked above, this point represents the main di¤erence with
the classical hypotheses setting where the comparison must be conducted between
a single value of the distribution under the restriction and a critical value of a
standard distribution to which the former should asymptotically converge under
the null.
Table 4 tests the equality of the posterior means of q and q1. The test is a

two sample Wilcoxon test and the corresponding p-value is reported.6 For each
6This is a non-parametric technique used to test whether two sets of observations come

15



Non  informative                Informative
 

p-value j p-value (1) j p-value (2) j

1 a 0,2372 1 1 a 0,9160 1 0,9160 1

b 0,0000 2 b 0,0000 3 0,0006 2

2 a 0,0143 1 2 a 0,2538 1 0,2538 1

b 0,0000 2 b 0,0000 3 0,0000 2

3 a 0,2597 1 4 a 0,0098 1 0,0098 1

b 0,0012 2 b 0,0000 2 0,0000 2

5 a 0,9726 1 5 a 0,7760 1 0,7760 1

b 0,0000 2 b 0,0000 2 0,0000 2

6 a 0,6577 1 6 a 0,1515 1 0,1515 1

b 0,0000 2 b 0,0000 2 0,0000 2

8 a 0,1774 1 7 a 0,7864 1

b 0,0000 3 b 0,0000 2

9 a 0,1149 1 9 a 0,8843 1

b 0,0000 2 b 0,0000 2

10 a 0,1340 1 10 a 0,0764 1 0,0764 1

b 0,0003 2 b 0,0000 2 0,0000 2

12 a 0,1286 1 11 a 0,3834 1

b 0,0000 2 b 0,0000 3

13 a 0,2985 1 13 a 0,2774 1 0,2774 1

b 0,0000 2 b 0,0000 3 0,0000 2

14 a 0,2634 1 14 a 0,8564 1

b 0,0428 2 b 0,0000 2

16 a 0,0426 1 15 a 0,4034 1

b 0,0000 2 b 0,0000 3

17 a 0,0873 1

b 0,0002 2

18 a 0,7550 1

b 0,0000 2

19 a 0,0742 1

b 0,0009 2

Notes:   

1. The test used is a Wilcoxon Two-Sample t-Test

2.  In all cases except 17 and 19 we accept the null hypothesis that the mean of q is
     equal to the mean of a chi-square with 1 degree of freedom

3. "a" is the case in which α is the benchmark (see the corresponding j); "b" is the first departure
      from the benchmark where the means of q and q1 start to be significatively different

4. "p-value(1)" is the p-value when more weight is given to the null
    "p-value(2)" is the p-value when more weight is given to the alternative

 

Table 4. Testing equality of the posterior means of q and q1



case, the table presents only two of these probabilities. The …rst (case a) tests
the equality when the null is true, whereas the second (case b) reports the p-value
under the …rst rejected null, when the null is false. The corresponding column j
gives the iteration number in the departures from the assumed true value of ¹® (see
previous section). Hence the ideal situation in all cases would be to accept when
the null is true and start rejecting for low values of j, i.e., small departures from
the null. Clearly, the cases in which the test rejects the equality of q and q1 when
the null is true (j = 1) would reveal a bias in the testing procedure. The tables
has two sides. The left-hand side refers to the estimation under a non-informative
prior, while the right-hand side considers an informative prior. In the latter case,
two subcases are analyzed: one in which more weight is given to the null and the
other where more weight is given to the alternative, as explained in the previous
section.
A rough look of the table reveals that in most cases the distributions of q and

q1 seem to share the same locations when j = 1. The only exceptions concern the
cases where the degree of coe¢cient heterogeneity is high or the sample size is
small (case 2 and 16 in the non informative case, and case 4 in the informative one).
The high heterogeneity seems to be crucial when the cross sectional dimension is
small relative to the time dimension. This conclusion is easily achieved from
the comparison of case 2 and case 6 in the non informative prior and from the
comparison of cases 4 (non informative) and 8 (informative). When the prior is
informative the high degree of coe¢cient heterogeneity does not seem important
(case 2) unless data are generated from a close-to-non stationary process with a
high variability (case 4). Finally, when the cross sectional dimension increases
(cases 9 to 15), the high heterogeneity, non-stationarity and high variability do
not a¤ect any longer the equality of the means of q and q1 at j = 1, though in
case of small time dimension with high heterogeneity (case 10, informative) and
in three out of the four non linear cases (16, 17 and 19) the p-values would reveal
a statistical di¤erence at the 10% level of con…dence.
The means of the two quantities start to be statistically di¤erent at most when

j = 3 in all cases. As one would expect, this event is more frequent when the
model is estimated under an informative prior when more weight is given to the
null, especially when the degree of coe¢cient heterogeneity is low.

from the same distribution. The alternative hypothesis is that the observations come from
distributions with identical shape but di¤erent locations. Although a standard two-sampled t-
test produced the same results, we prefered not to use it because it assumes that the observations
come from Gaussian distributions, which is not the case here.
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In order to have a better idea about the posterior shape of the quantities
q and q1, tables 5 and 6 compare not only the posterior means but the entire
distributions. Both tables are organized as table 4. Concretely, in table 5 we
compare the posterior densities of q and q1 testing the equality of the respective
5, 25, 75 and 95 percentiles. The reported p-value is the one calculated in the
so called one-sample sign test and is based on an exact binomial distribution.7

The null hypothesis is Ho : »p = », where »p is the p-th percentile of the posterior
density of q1 and » is the value taken by the corresponding percentile of q. In
table 6 the equality of the cdf of the two quantities is examined by means of the
Kolmogorov-Smirnov goodness of …t test.8 The p-values can be considered as a
measure of the distance between the two distributions. Again, as for table 4 the
…rst p-values reported (case a) are computed under the null, while the second
ones (case b) represent the …rst rejection after departing from the null. The last
column of table 6 provides an idea about the power of the test. Concretely, if we
cannot reject the equality under the null, the distributions of q and q1 overlap.
In this case, using a classical terminology, we would say that the power coincides
with the size. From the …rst rejection on, the power is greater than the size
(ideally, it is equal to 1). The interpretation is the same as discussed above.
The posterior distribution of q is a reference distribution, i.e., the one which in a
classical analysis would be tabulated. The larger is the distance between q and
q1, the higher the probability that the more likely values of q1 fall in the tale of
the less likely values of q, leading to a rejection. Both in table 5 and in table 6
the p-values are compared with a signi…cance level of 0.05.
The values reported in these two tables tend to con…rm what discussed above

for table 4. In particular, the only cases in which the test seems to be biased
are those in which the degree of parameter heterogeneity is high (case 2, non
informative and case 4 informative), or the cross sectional dimension is small
(case 10, informative). Under a non informative prior, when the cross sectional
size increases, the bias disappears, even with a small time dimension. In the non
linear restriction case the test seems to show more serious problems, as the low
p-values indicate (cases 16, 17, and 19). When the prior is informative the test is
clearly biased when coe¢cients are highly heterogeneous (case 10) and data show

7For a simple description, see for example Mood et al. (1974), p. 514, 515.
8This statistic is used to test whether two sets of observations could reasonably have come

from the same distribution. This test assumes that the samples are random samples, the two
samples are mutually independent, and the data are measured on at least an ordinal scale. In
addition, the test gives exact results only if the underlying distributions are continuous. See
Mood et al. (1974, p. 508-511) for more details.
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      p-value j        p-value (1) j          p-value (2) j

5 25 75 95 5 25 75 95 5 25 75 95

1 a 0,1994 0,1796 0,5020 0,1365 1 1 a 0,4086 0,6946 0,9632 0,7134 1 0,4086 0,6946 0,9632 0,7134 1

b 0,0006 0,0000 0,0000 0,0000 3 b 0,0000 0,0000 0,0000 0,0000 3 0,1995 0,0583 0,0000 0,0000 2

2 a 0,2191 0,0000 0,0000 0,0000 1 2 a 0,9634 0,8354 0,7118 0,7830 1 0,9634 0,8354 0,7118 0,7830 1

b 0,0400 0,0000 0,0000 0,0000 2 b 0,0000 0,0000 0,0000 0,0000 3 0,0045 0,0000 0,0000 0,0000 2

3 a 0,2191 0,4235 0,3527 0,3555 1 4 a 0,0089 0,0000 0,0000 0,0000 1 0,0089 0,0000 0,0000 0,0000 1

b 0,0400 0,0000 0,0000 0,0000 3 b 0,0089 0,0000 0,0000 0,0000 1 0,0089 0,0000 0,0000 0,0000 1

5 a 0,6785 0,6983 0,7656 0,8590 1 5 a 0,4768 0,7885 0,2967 0,3137 1 0,4768 0,7885 0,2967 0,3137 1

b 0,0014 0,0000 0,0000 0,0000 2 b 0,0374 0,0000 0,0000 0,0000 2 0,0974 0,0000 0,0000 0,0000 2

6 a 0,0854 0,5313 0,9525 0,1726 1 6 a 0,8125 0,0400 0,6764 0,5533 1 0,8125 0,0400 0,6764 0,5533 1

b 0,0000 0,0000 0,0000 0,0000 2 b 0,0579 0,0564 0,0000 0,0000 2 0,0076 0,0000 0,0000 0,0000 2

8 a 0,4065 0,7205 0,0042 0,3428 1 7 a 0,3741 0,3252 0,7656 0,5533 1

b 0,0000 0,0000 0,0000 0,0000 3 b 0,0679 0,0000 0,0000 0,0000 2

9 a 0,9528 0,8347 0,1140 0,0854 1 9 a 0,9528 0,6123 0,7656 0,6785 1

b 0,0020 0,0000 0,0000 0,0000 2 b 0,0237 0,0000 0,0000 0,0000 2

10 a 0,1558 0,1704 0,3401 0,0379 1 10 a 0,9056 0,0046 0,0157 0,0127 1 0,9056 0,0046 0,0157 0,0127 1

b 0,0438 0,0000 0,0000 0,0000 2 b 0,3428 0,0017 0,0000 0,0000 2 0,0045 0,0000 0,0000 0,0000 2

12 a 0,2374 0,8815 0,0790 0,0541 1 11 a 0,3741 0,5313 0,4383 0,1726 1

b 0,0000 0,0000 0,0000 0,0000 2 b 0,3741 0,0122 0,0000 0,0000 3

13 a 0,7220 0,8347 0,3401 0,7220 1 13 a 0,5940 0,2835 0,6983 0,8125 1 0,5940 0,2835 0,6983 0,8125 1

b 0,0813 0,0318 0,0000 0,0000 2 b 0,0108 0,0000 0,0000 0,0000 3 0,0152 0,0000 0,0000 0,0000 2

14 a 0,4768 0,6764 0,9762 0,5533 1 14 a 0,5147 0,9900 0,7656 0,4768 1

b 0,0515 0,0001 0,0000 0,0000 3 b 0,0108 0,0038 0,0001 0,0000 2

16 a 0,7672 0,0145 0,0002 0,1381 1 15 a 0,5533 0,3872 0,5915 0,9056 1

b 0,0004 0,0000 0,0000 0,0000 2 b 0,0974 0,0491 0,0000 0,0000 3

17 a 0,0477 0,6334 0,8815 0,5533 1

b 0,0379 0,0122 0,0000 0,0000 3

18 a 0,5940 0,9800 0,9900 0,8900 1

b 0,0579 0,0011 0,0000 0,0000 2

19 a 0,4768 0,0008 0,3711 0,0659 1

b 0,0053 0,0050 0,0000 0,0000 2

Notes:   

1. The test used is a one-sample sign test. 

2.  In all cases, except 17 and 19 we accept the null hypothesis that the mean of q is equal to the mean of a chi-square with 1 degree of freedom

3. "a" is the case in which α is the benchmark (see the corresponding j)
"b" is the first departure from the benchmark when at least two quantiles of q and q1 start to be significatively different

4. "p-value(1)" is the p-value when more weight is given to the null
"p-value(2)" is the p-value when more weight is given to the alternative

Table 5. Testing equality of the 5, 25, 75 and 95 percentiles of the posterior densities of q and q1

Non informative Informative



Non informative Informative

p-value j power p-value j power p-value j power

1 a 0,5923 1 size 1 a 0,8600 1 size 0,8600 1 size

b 0,0000 2 1 b 0,0295 2 1 0,0000 3 1

2 a 0,0068 1 greater than size 2 a 0,8826 1 size 0,8826 1 size

b 0,0000 2 1 b 0,0000 3 1 0,0000 2 1

3 a 0,8189 1 size 4 a 0,0000 1 greater than size 0,0000 1 greater than size

b 0,0000 3 1 b 0,0000 1 1 0,0000 1 1

5 a 0,9117 1 size 5 a 0,9601 1 size 0,9601 1 size

b 0,0000 2 1 b 0,0000 2 1 0,0000 2 1

6 a 0,5474 1 size 6 a 0,3349 1 size 0,3349 1 size

b 0,0000 2 1 b 0,0000 2 1 0,0000 2 1

8 a 0,2008 1 size 7 a 0,8909 1 size

b 0,0000 3 1 b 0,0000 2 1

9 a 0,5474 1 size 9 a 0,9713 1 size

b 0,0000 2 1 b 0,0000 2 1

10 a 0,1336 1 size 10 a 0,0289 1 greater than size 0,0289 1 greater than size

b 0,0000 2 1 b 0,0000 2 1 0,0000 2 1

12 a 0,3126 1 size 11 a 0,1579 1 size

b 0,0000 2 1 b 0,0002 3 1

13 a 0,8909 1 size 13 a 0,7601 1 size 0,7601 1 size

b 0,0051 2 1 b 0,0000 3 1 0,0013 2 1

14 a 0,9803 1 size 14 a 0,9713 1 size

b 0,0000 3 1 b 0,0002 2 1

16 a 0,0051 1 greater than size 15 a 0,7001 1 size

b 0,0000 2 1 b 0,0000 3 1

17 a 0,0998 1 size

b 0,0065 2 1

18 a 0,8590 1 size

b 0,0000 2 1

19 a 0,0941 1 size

b 0,0023 2 1

Notes:   

1. The test used is the Kolmogorov-Smirnov

2.  In all cases except 17 and 19 we accept the null hypothesis that the cdf of q is

equal to the cdf of a chi-square with 1 degree of freedom

3. "a" is the case in which α is the benchmark (see the corresponding j)
"b" is the first departure from the benchmark where the cdf of q and q1 start to be significatively different

Table 6. Testing equality of the cdf of q and q1



non stationarity and high variability (case 4). In all other cases, the performance
of the testing procedure seems quite good and its power function si close to an
ideal one, being equal to the size for those values of µ corresponding to the null
hypothesis and greater than the size (ideally equal to 1) for those µ corresponding
to the alternative.9 As commented before for table 4, the restriction to be tested
converts the distribution of q1 in a non-central one with respect to the reference
distribution q at most when j = 3. We interpret this …nding as a strong signal
that the testing approach shows a good power function.
The performance of the test can be evaluated also on a sampling-theory base.

Tables 7 and 8, for example, report the size and the power function of the test as
in a classical analysis. Concretely, we can compute the power function calculating,
at each iteration of the Gibbs sampling, the Prob (Â21 ¸ q1), and then counting
the number of times of this probability being less or equal to 0.05, the signi…cance
level chosen. After repeating the previous steps 100 times, the power function
can be taken as the average of these probabilities. The size of the test would just
be the power function when the null is true. By using the 100 iteration of the
Monte Carlo, table 7 reports more precisely 4 percentiles of the ”distribution” of
the size over the draws. The two tables refer only to the non informative, low
and high heterogeneity cases with N = 10, and N = 20, (cases 1,2, and 5,6).
The results of the two tables con…rms the …ndings discussed above with some
caveats. In particular, the test seems unbiased, in the sense that, on average, the
probability of rejecting the null is greater or equal than the size for all the values
of ¹® considered. Moreover, for N = 20, the power is almost one for relatively low
values of j. If instead we use a more precise de…nition of unbiasedness such that,
if ¼ (µ) is our power function and the null Ho : µ 2 £o is to be tested against the
alternative H1 : µ 2 £1, the test is unbiased if and only if

sup
µ2£o

¼ (µ) · inf
µ2£1

¼ (µ)

then, it turns out that over the 100 iteration of the Monte Carlo, the infµ2£1 ¼ (µ)
start to be larger than the supµ2£o ¼ (µ) only when j = 3. Notice also that when
the degree of coe¢cient heterogeneity is high the percentage of rejections when
the null is true is always greater than the level of signi…cance chosen (0.05). In
our opinion, these caveats simply suggest to be cautious in the use of a sampling-
theory evaluation of the performance of a Bayesian approach.

9Here ”size” means the signi…cance level we should consider if we used the distribution of q
as the reference distribution to which a given value of q1 (the mean or the median, for example)
would be compared in a classical analysis.
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5 25 75 95
low 0,0448 0,0496 0,0556 0,0605

n = 10
high 0,0468 0,0539 0,08 0,1153

low 0,042 0,0487 0,0587 0,0688
n = 20

high 0,046 0,0527 0,0837 0,1331

Note: "low"  = Low heterogeneity; "high" = high heterogeneity

              n = 10               n = 20
j αα low high low high

1 0,6 0,05 0,07 0,05 0,06
2 0,8 0,08 0,09 0,16 0,17
3 1 0,17 0,17 0,49 0,38
4 1,2 0,31 0,29 0,78 0,69
5 1,4 0,46 0,43 0,94 0,87
6 1,6 0,63 0,56 0,99 0,97
7 1,8 0,75 0,70 1,00 0,99
8 2 0,85 0,79 1,00 1,00
9 2,2 0,90 0,86 1,00 1,00

10 2,4 0,94 0,91 1,00 1,00
11 2,6 0,96 0,94 1,00 1,00

Note: "low"  = Low heterogeneity; "high" = high heterogeneity

Table 7. Classical size. Quantiles. Diffuse case

Table 8.  Classical Power. Diffuse case



Finally, table 9 reports a comparison between the procedure proposed and the
standard P.O. ratio test. The …rst four columns of the table are the same as in
table 6 (informative). In the last two columns the percentage of negative values
of the log(PO) over the Monte Carlo simulations is reported, together with the
benchmark (j = 1) and the …rst j in which the average posterior log(PO) starts
to be negative.
A couple of comments are in order. First, when j = 1, the average PO ratio

is greater than one in all cases considered and hence it always selects the null
hypothesis against the alternative, whereas the empirical procedure proposed here
has some problem when the degree of heterogeneity is high or the data are non
stationary (cases 4 and 10) as discussed above. Notwithstanding, when the time
dimension is small and the degree of heterogeneity is high or the data are generated
from a close to non stationary process with high variability, the percentage of
negative log (PO) is quite high (cases 10, 11, 14 and 15). If we interpret this
percentage as the equivalent of the signi…cance level in a sampling-theory test,
this result indicates that in these cases the PO ratio would produce too many
rejections of the null when it is true and hence that it could be biased. On the
contrary, in the same cases (especially 14 and 15) our procedure accepts without
doubts the null when it is true as the high p-values of the test F (q) = F (q1)
reveal.
The second important thing to notice is that the minimum j at which the

average log (PO) starts to be negative is 3, whereas the proposed procedure starts
rejecting the null when it is false at most when j = 3. This means that in most
situations considered our q–test may be more powerful than the PO ratio, though
one must be cautious with such a conclusion provided we are not sure about the
comparison of the sizes of the two testing approaches.
In summary, the few Monte Carlo experiments tend to indicate that the proce-

dure proposed in this paper seems to perform fairly well under di¤erent behaviors
of the data and the vector of coe¢cients and di¤erent prior assumptions. As al-
ready remarked, this good performance is based on estimation results which have
been obtained conditional on initial observations yio and, in some cases, generating
the autoregressive coe¢cient from a truncated normal distribution without mod-
ifying its prior distribution. We believe that following the suggestions of Sims
(1998) of using a proper likelihood function for (yio; :::; yiT ) and modifying the
prior assumption without necessarily restricting the model only to the stationary
case cannot worsen the …ndings obtained here.
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B E

F(q) = F(q1) j % log(PO)<0.0 j

1 a 0,860 1 4,8 1

b 0,030 2 52,2 4

2 a 0,883 1 5,9 1

b 0,000 3 51,9 4

4 a 0,000 1 4,6 1

b 0,000 1 55,4 7

5 a 0,960 1 2,6 1

b 0,000 2 50,4 4

6 a 0,335 1 3,5 1

b 0,000 2 59,4 4

7 a 0,891 1 3,4 1

b 0,000 2 54,1 5

10 a 0,029 1 15,3 1

b 0,000 2 53,6 4

11 a 0,158 1 23,1 1

b 0,000 3 50,1 4

13 a 0,760 1 2,4 1

b 0,000 2 59,9 5

14 a 0,971 1 11,6 1

b 0,000 2 55,2 5

15 a 0,700 1 20,9 1
b 0,000 3 52,4 3

Notes:   

1. "a" is the case in which α is the benchmark (see the corresponding j)
"b" is the first departure from the benchmark where 
 the cdf of q and q1 start to be different (column B)
and where the log(PO) averaged over the MC draws starts to be negative (column E)

Table 9. Comparison with the P.O. Ratio



5. CONCLUSIONS

In this paper we have discussed a simple way of verifying restrictions in complex
hierarchical normal data models using the output of the Gibbs sampling in a
natural way. The procedure has the advantage that can be used under informative
and non informative priors on the parameters of interest and does not require the
estimation of two models, one with and the other without the restriction to be
tested. In a sense, we could say that this procedure stays to the PO ratio test
as, in the classical analysis, the Wald test stays to the Likelihood ratio test. This
parallel and the similarity of interpretation should make the method appealing also
to sampling theory econometricians. The limited Monte Carlo experience seems to
indicate that under di¤erent behaviors of the data and di¤erent prior assumptions,
the procedure has good properties and is competitive with the standard PO ratio
approach, besides being computationally easier in the kind of models considered
here and more useful when the prior is di¤use.
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