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ABSTRACT 

 

This paper studies an auction model in which one of the bidders, the insider, has 

better information about a common component of the value of the good for sale, than 

the other bidders, the outsiders. Our main result shows that the insider may have 

incentives to disclose her private information if she faces sufficiently strong 

competition from the outsiders. We also show that the insider can protect the value of 

her private information by hiding her presence in the auction to the outsiders. Finally, 

we analyze the implications of information revelation on the efficiency of the auction 

and on the auctioneer's expected revenue. 
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1 Introduction

This paper provides an auction model that shows that strong competition, in the sense

of either a large number of competitors or competitors with ex ante1 greater willingness

to pay, may create bidders’ incentives to disclose their private information. This result

provides new insights into a long pending question whose origins may be traced back

to Hayek (1945): does competition in a market aggregate information privately held

by the agents? Strategic models of price formation, for instance Milgrom (1979, 1981),

show that there may be situations in which agents’ incentives to manipulate the market

can preclude the price to fully aggregate agents’ private information.2 Our results show

that competition may give rise to a direct path to information aggregation alternative

to the price.

The existence of incentives to disclose private information is not novel. In fact, our

result builds on a well-known result in strategic games: to hold private information

may be bad for an agent if known by the other agents. This is, for instance, the root

of the adverse selection problem, a central concept in information economics. Similar

results have also been obtained in other market settings with different intuitions. For

instance, Milgrom and Weber (1982a) and Ottaviani and Prat (2001) show that full

information disclosure may be beneficial to a monopolist.3

However, these models differ from ours in one important aspect. They assume that

an agent’s private information refers to the preferences of the agents on the other side

of the market.4 We, on the contrary, assume that it refers to the preferences of agents

on the same side of the market. More precisely, we assume that some bidders compete

1By ex ante we mean taking expectations with respect to the bidders’ private information.
2Although there are other papers that show that the price can fully aggregate agents’ private

information in some limit cases, for instance Pesendorfer and Swinkels (1997) and Pesendorfer and

Swinkels (2000).
3The incentives of monopolistic auctioneers to reveal information that affects bidders’ values has

also been studied by Bergemann and Pesendorfer (2004), Ganuza (2004), Ganuza and Penalva-Zuasti

(2004), and Hagedorn (2004).
4This means that if the agent is a buyer, she has private information about the sellers’ preferences,

and that if she is a seller, she has private information about the buyers’ preferences.
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for an indivisible good, and one of them, the insider, privately knows a common

component of the bidders’ values, whereas the others, the outsiders, only have noisy

estimates. We show that the insider may get less expected utility in this situation

than when the common value is common knowledge if bidders’ values also have private

components. It is in this sense that we say that the insider has incentives to disclose

her private information about the common component.

There are many real-life auctions that are captured reasonably well with our set-

up. An example is the auction of a license to operate a service, say mobile telephones,

rubbish collection, or highways. The common value component may come from the

demand of the service whereas the private value may be due to differences in the

bidders’ cost structure. The insider may be, for instance, a bidder who has been

operating the same or a related service for some time before. Another example is the

auction of art and antique objects. The common value may be associated with the

quality of the object and the private component with the taste of the bidder. In this

case, we may identify insiders with expert dealers.

Our results may also be applied to other less formalized selling processes resembling

an auction. An example is a takeover battle and, as a particular case, a leveraged buy-

out. The common value of the firm may be the value of the company’s assets and

the private value can be due to portfolio decisions, synergies or buyers’ differences

in managerial skills or aims. Insiders may be the management team in the case of

leveraged buy-outs, a white knight5 in the case of a hostile take-over, or simply buyers

that have special links with the firm for sale.6 Another example is the job market in

which firms compete for a worker. The common component may refer to the ability of

the worker, and the private component to the suitability of the matching between the

firm and the worker. In this case, the obvious insider is the firm that currently hires

the worker.

5A white knight is a bidder that has been persuaded by the management team of another company

to rescue the company from a hostile takeover.
6Some other authors, for instance Bulow, Huang, and Klemperer (1999), have considered that

insiders may have a private value advantage. We consider the complementary case that insiders’

advantage may be in terms of better information.
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An important aspect of our analysis is that we model the market as an open

ascending auction.7 In this mechanism, the price increases continuously starting from

a sufficiently low value. Bidders may exit the auction at any time, and the auction

finishes when no more than one bidder remains in the auction. Quite crucially, bidders

observe at all times the identity of the bidders that still remain in the auction. Note

that this is not only a standard auction mechanism, but also a reasonable model of a

real-life bargaining situation in which one single seller receives public offers by several

buyers.

In this auction format, the fact that the insider remains in the auction may increase

the outsider’s incentives to do so. For instance, if an outsider knows to have a greater

private value than the insider, she may be willing to outbid any insider’s bid, even bids

above her expected value conditional on her private information. The reason is that

such an outsider finds it profitable to win at any price at which the insider does so.

Note, for instance, the following quote from Cassady (1967):

A collector of antiques, if reasonably sure that an opponent is a dealer who

must allow for a retail markup in his bidding, may consider himself safe in

raising the latter’s bid[...]

Of course, in a world in which bidders have uncertainty about the other bidders’

private values, the above argument does not work. Nevertheless, we shall show that

outsiders with large private value tend to gamble that they have a higher private value

than the insider and, as a consequence, tend to bid higher whenever the insider does

so. We shall explain this phenomenon as a consequence of the interplay between the

winner’s and the loser’s curse.8

7Note, however, that our analysis would also apply to the second price sealed bid auction when

there are two bidders. The reason is that in this case, the open auction and the second price sealed

bid auction are strategically equivalent.
8The study of the incentives to bid in terms of the winner’s and the loser’s curse was introduced

in multi-unit auctions by Pesendorfer and Swinkels (1997) in symmetric models, and by Hernando-

Veciana (2004b) in asymmetric models. They also provide a formal definition of the winner’s curse

and the loser’s curse in terms of statistical events. In the current paper, we show that these effects

may also be useful to understand the incentives to bid in single-unit auctions.
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Clearly, the above effect would not exist, if the outsiders knew the common value.

This explains why the insider may prefer to fully reveal the common value when the

insider expects to compete with outsiders with large private values. This is what

happens in the two cases we study: when there is a sufficient number of outsiders,

and when outsiders have sufficiently larger private values than the insider ex ante. We

shall refer to the case in which the insider is better off revealing the common value as

the insider’s curse, as in some sense, the insider regrets being an insider.

It is remarkable that the insider’s curse depends on the fact that the outsiders are

aware of the presence of the insider and that they know her identity. This suggests

that the insider may protect herself from the insider’s curse if she can hide her presence

to the outsiders. Quoting Cassady (1967):9

Another element of the bidding strategy is to decide whether one should

execute bids himself or employ an agent to do so. A buyer who is known

as an outstanding figure in an important field frequently chooses the latter

approach, for his own bidding, if detected, suggests that the item is highly

desirable and therefore arouses strong competition[...]

Our results show that whenever there is an insider’s curse, the insider is better

off when the outsiders have uncertainty about her presence, than when the outsiders

know regardless of whether the insider reveals the common value. Nevertheless, it is

important to note that there may be many real-life cases in which it may be infeasible

for the insider to hide. Often, it may be under the control of the auctioneer whether

the insider can hide, for instance by allowing anonymous bids.

The game with a hidden insider is also interesting from a technical point of view. It

is the first model, to the best of our knowledge, that studies a non-trivial auction game

in which bidders have uncertainty not only about bidders’ preferences, but also about

the precision of the information that other bidders have. The technical challenge of

this model is that, in equilibrium, bidders’ beliefs must take into account the different

9Quite interestingly, Cassady (1967) also argues that buyers with high private interest in the good

may profit by revealing their identity, as predicted by our model.
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bid behavior of bidders with differences in the precision of their information. In our

model, this problem is even richer due to the dynamic structure of our auction game.

The plan of the paper is as follows. In the next section, we review the related

literature. Section 3 presents a simple model that illustrates the main insights of our

results. Section 4 and Section 5 constitute the core of our theoretical analysis. Section

4 covers the study of the insider’s curse and Section 5 the insider’s incentives to hide.

Section 6 concludes. We also include an Appendix with the most technical proofs.

2 Related Literature

In a closely related paper, Milgrom and Weber (1982b) study a model that, despite

the similarity to ours, leads to opposite conclusions. In their set-up, an insider never

wants to reveal her private information, and she always prefers to signal her presence

to the other bidders. We think that there are two reasons for these discrepancies.

The first one is that they consider a different auction set-up, a sealed bid auction. In

this format, there is less information revelation along the game and, as a consequence,

a stronger winner’s curse that makes outsiders less willing to outbid the insider.10 In

fact, we show that, in our model, the same results as in Milgrom and Weber (1982b)

arise when the winner’s curse is sufficiently strong. This happens in our model when

either there are few outsiders or they have a low private value ex ante.

The other reason is that in their model there is no private value component. Clearly,

in this case, once the insider reveals the common value, she has no private information

and, hence, does not get positive expected utility. In fact, Larson (2004) shows that

in a two bidder-second price sealed bid auction, open11 information acquisition about

the common value12 has positive returns. Notice that our results are consistent with

10This idea is explored by Hernando-Veciana (2004a) to show that additional private information

about a common value component is more valuable in a sealed bid second price auction than in an

open ascending auction.
11We mean by open information acquisition that the decision of a bidder to acquire information is

observed by the other bidders.
12Note that in our paper we do not address the issue of information acquisition but rather of

information disclosure. However, both issues are closely related. In fact, if all signals are independent
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these findings, since in our model, the insider’s curse vanishes as the private value

component becomes sufficiently small.

Technically, Larson’s analysis is similar to ours since he also considers the effect

of private value components. He also arrives at the conclusion that more private

information about a common value component by a bidder may increase the dispersion

of the other bidders’ bids. However, the coincidences between our paper and his ends

here as Larson’s focus is on the problem of equilibrium selection in a pure common

value auction. In this sense, Larson studies how the introduction of small private value

perturbations allow us to select different equilibriums.

Hagedorn (2004) provides results in the same direction as Milgrom and Weber

(1982b) and Larson (2004). He shows that marginal open information acquisition

has positive value in an efficient auction when the number of bidders is sufficiently

large. However, the key assumption that leads to opposite results seems to be that

in Hagedorn’s model, bidder’s private information is a one dimensional signal that

is informative of both the private and the common value. Hence, to acquire a more

informative signal does not only mean to get more information about the common

value, as in our model, but also about the private value.

Campbell and Levin (2000), and Benoit and Dubra (2003) have also shown that

additional private information can decrease a bidder’s expected utility. The intuition

of their results is, however, quite different. In the first paper, a bidder acquires infor-

mation about the other bidder’s private information, and not about the common value

of the good, as in our paper. In the second paper, more private information decreases

the bidder’s expected utility not in the auction game, but in an information revelation

stage played before the auction. Benoit and Dubra (2003) also provide an example

of an auction game in which a bidder is ex ante better off when she fully discloses

her private information. Nevertheless, their intuition is completely different as they

assume for their example a pure private value setting.

(as is the case in our Section 3, or in Larson’s paper), it may be shown that a version of the revenue

equivalence theorem implies that open information acquisition of an additional signal informative of

the common value has negative returns if and only if there is an insider’s curse with respect to the

same additional signal.
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3 A Simple Model

We start our analysis with a simple example. We assume that there is a pool of bidders

I ≡ {0, 1, ..., n} who participate in the sale of an indivisible unit of a good through

an open ascending auction that has been called the Japanese auction. According to

Milgrom and Weber (1982a):

[In the Japanese auction], the price is raised continuously, and a bidder

who wishes to be active at the current price depresses a button. When he

releases the button, he has withdrawn from the auction.

More precisely, we assume that at all times there are two types of bidders: active

bidders and inactive bidders. Bidders are active until they manifest that they want

to become inactive. Once a bidder has decided to become inactive her decision is

irreversible. The identity of the active bidders is publicly observable along the auction.

During the auction the price is publicly observable and increases continuously from

zero. At any time bidders can decide to become inactive. The price stops increasing

whenever there is no more than one bidder active. In this case, if a bidder remains

active, she wins the auction. If no bidder remains active, the good is randomly allocated

(with equal probability) among the bidders that quit at the last price. The price paid

by the winner is the last price at which the bidders quit. We shall assume that there

is neither an entry fee nor a reserve price.

The fact that we do not allow bidders to reenter the auction may may seem un-

realistic for some relevant real-life examples. However, this assumption is not crucial

for our analysis, but rather simplifies it. It allows us to solve the game by iterated

elimination of weakly dominated strategies. Our main result, the existence of an in-

sider’s curse, is robust to this assumption. In fact, there are perfect Bayesian equilibria

of the auction game with reentry in which bidders leave the auction according to the

strategies proposed below and do not use reentry along the equilibrium path.

We assume that bidders maximize expected payoffs and that the monetary value

of the object for a given bidder i is equal to Q+Ti

2 . The component Q (for quality)

is common to all bidders, and the component Ti (for taste) is idiosyncratic. Using
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the terminology of auction theory, we refer to Q as the common value and Ti as the

private value. We also assume that Q and the Ti’s are independent random variables

with uniform distribution and support [0, 1]. We assume that each bidder has private

information about her own private value Ti. Moreover, bidder I ∈ I, whom we shall

call the insider, also knows Q.

We shall distinguish three cases according to the information that the other bidders,

which we call the outsiders, may have. In the first case, that we call the symmetric

information structure (SIS), Q is common knowledge. In the second case, Q is private

information of the insider, the outsiders only know its distribution; moreover, we as-

sume that the identity of I is common knowledge. We call this model the asymmetric

information structure (AIS). Finally, in the third case, we shall assume that the out-

siders bid as if there were no insider, this is, they bid as in a model in which no bidder

has any private information about Q. We refer to this last case as the hidden insider

structure (HIS). The careful reader will realize that the last model is not logically con-

sistent. We analyze it for its simplicity. We shall show in Section 5 that the insights

we learn from this model also hold true in a logically consistent model.

The comparison between the insider’s expected utility in the asymmetric informa-

tion structure and the symmetric information structure tells us whether the insider

has incentives to reveal his private information about the common value. As we an-

ticipated in the Introduction, we shall say that there is an insider’s curse if there

are such incentives. Moreover, the comparison of the insider’s expected utility in the

asymmetric information structure and in the hidden insider structure tells us whether

the insider wants the outsiders to know that she is an insider. If it is not the case, we

shall say that the insider has incentives to hide.

To analyze the three structures, note first that in our open ascending auction, it is

weakly dominant for the insider to stay in the auction until the price reaches her value.

The reason is the same as in a private value auction. The insider has no uncertainty

about her value, and hence the above strategy assures the bidder to win whenever the

final price in the auction is below her value and that she loses otherwise.
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In the symmetric information structure, outsiders also know the common value.

As a consequence, and for the same reasons as above, it is weakly dominant for them

to remain in the auction until the price reaches their value. The hidden symmetric

structure is somewhat similar. Although the outsiders do not know the common value

component, they behave as if no bidder has any private information about the common

value. Under these beliefs, the outsiders find it optimal to remain in the auction until

the price reaches their expected value computed by taking averages with respect to

the common component. This means that an outsider with type ti bids ti+E[Q]
2 .

The asymmetric information structure is more complicated. In its analysis we shall

fix the insider’s strategy to be her unique weakly dominant strategy described above.

Thus, we are effectively doing one step of elimination of weakly dominated strategies.

First, we study information sets in which the insider is no longer active in the

auction because she quit, say at a price p. An outsider learns from this information

that the insider’s value is equal to p. The expected value of an outsider with type ti

conditional on this information is equal to ti+E[Q|(TI+Q)/2=p]
2 , which can be simplified to

ti+p
2 . Such outsider finds it profitable to win at any price below this value since all the

remaining bidders have no private information about the common value. Consequently,

it is weakly dominant for our outsider to remain in the auction until the price reaches

ti+p
2 .

Consider now the information sets in which the insider is still active. Our outsider

can only win if the insider quits before she does. In this case, two things may happen:

either the auction finishes, in which case our outsider wins and pays the price at which

the insider quit, say b; or the game moves to the information sets we discussed in the

previous paragraph. In both cases, an outsider with type ti find it profitable to remain

in the auction at b if and only if ti+E[Q|(Q+TI)/2=b]
2 − b is positive. It is easy to see

this holds true if and only if ti ≥ b. Hence, it is weakly dominant for the outsider to

remain in the auction until the price reaches ti.

The next proposition sums up the previous results:

Proposition 1. In our proposed solution of the game, the insider remains in the

auction until the price reaches her true value, whereas the outsiders play the following
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strategies:

• Symmetric information structure (SIS): an outsider with type ti leaves the auc-

tion at price ti+q
2 , where q is the realization of the common value.

• Hidden insider structure (HIS): an outsider with type ti leaves the auction at

price ti+E[Q]
2 (note that E[Q] = 1/2.)

• Asymmetric information structure (AIS): an outsider with type ti leaves the auc-

tion at price ti+p
2 , if the insider has left the auction at price p; and at price ti, if

the insider has not left the auction yet.

Figure 1 compares the outsiders’ bid function in the asymmetric information struc-

ture with those that correspond to the symmetric information and the hidden insider

structures. Note that we cannot represent the bid function of the symmetric informa-

tion structure directly since it depends on the realization of Q. What we do is to plot

it taking averages with respect to Q. Note that the expected bid function in the sym-

metric information structure equals the bid function of the hidden insider structure.

Finally, we only plot the bid function that corresponds to information paths in which

the incumbent is still active in the asymmetric information structure. This is the only

part of the bid function that affects the incumbent’s expected utility.

Figure 1 shows that outsiders with high types keep bidding longer (on average)

in the asymmetric information structure than in the symmetric information structure

(or than in the hidden insider structure) if the insider remains in the auction. The

opposite happens to outsiders with low type. To understand why, we shall look at

the information that an outsider infers in the asymmetric information structure in the

event that she wins at a price p at which the insider quits. Recall that this information

determines whether the outsider finds it profitable to remain in the auction at price

p when the insider is still active in the auction. The outsider learns from the former

event that: (i) the insider finds it unprofitable to win at prices above p, and (ii) the

insider finds it profitable to win at lower prices.

In the asymmetric information structure, the outsider may have less incentives to

remain active if she thinks that the cause of (i) is that the insider knows that the
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Figure 1: Equilibrium bid functions for the symmetric information structure (SIS), the

asymmetric information structure (AIS) and the hidden insider structure (HIS).

common value is less than what the outsider thought. We call this effect the winner’s

curse, as ignoring this information may lead the outsider to win when it is unprofitable.

However, the outsider may think that the cause of (i) is that the insider has a lower

private value than her.

Similarly, the outsider may have more incentives to remain active if she thinks that

the cause of (ii) is that the insider knows that the common value is larger than what

the outsider thought. We call this effect the loser’s curse, as ignoring this information

may lead the outsider to lose when it is profitable to win. However, the outsider may

also think that the cause of (ii) is that the insider has a greater private value.

If the outsider has a relatively large private value, the probability of the winner’s

curse will be low and that of the loser’s curse will be large, and thus, the overall effect

will be an increase in the outsider’s incentives to remain active. Moreover, we would

expect the opposite effect if the outsider has a relatively low private value. However,

if the common value component is common knowledge, or simply if the outsiders are

unaware of the presence of the insider, none of these effects exist. This explains the

difference in the bid behavior shown in Figure 1.
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The different shape of the bid functions in Figure 1 suggests that if there is a suffi-

cient number of outsiders, the insider may be better off in the hidden insider structure

or in the symmetric information structure than in the asymmetric information struc-

ture. To see why, note that the insider can win if and only if she bids higher than the

highest type of the outsiders, and that this type will be close to one when there is a

sufficient number of outsiders.

To check the above conjecture, note that in both auction formats the insider wins

if and only if her bid is higher than the highest bid of the outsiders. By substituting

the equilibrium bid function it is easy to see that the insider’s expected utility in the

symmetric information structure is equal to:

E

[

max

{
TI + Q

2
−

T(1) + Q

2
, 0

}]

=

∫ 1

0

∫ 1

t

x − t

2
dx dtn, (1)

where T(1) denotes the highest type of the outsiders.

Similarly, the insider’s expected utility in the asymmetric information structure is

equal to:

E

[

max

{
TI + Q

2
− T(1), 0

}]

=

∫ 1

0

∫ 1

t
(x − t) f̂(x) dx dtn, (2)

where f̂ denotes the distribution function of TI+Q
2 , this is f̂(x) = 4x, if x ∈ [0, 1/2],

and f̂(x) = 4(1 − x), if x ∈ [1/2, 1].

If we compare the above two equations, we may distinguish two forces operating

in opposite directions, at least for large n. The first one is related to the existence

of the winner’s and loser’s curse in the asymmetric information structure but not in

the symmetric structure. Formally, it corresponds to the fact that we integrate x with

respect to the density of TI+Q
2 , this is f̂ , in Equation (2), but with respect to the

density of TI , which is equal to one, in Equation (1).

In the asymmetric information structure, high type outsiders bid as if they had

good news about the common value to protect themselves from the loser’s curse. This

means that an insider can beat in the auction a high type outsider if and only if the

insider has a high private value and the common value is also high. On the other hand,
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in the symmetric information structure, an insider beats a high private value outsider

if and only if the insider has a high private value. In particular, the event that the

insider wins is independent of the common value, since the realization of the common

value shifts the insider’s and the outsiders’ bids in the same way.

The event “high private and common value” has lower probability than the event

“high private value”. This is reflected in the fact that f̂(x) is less than one for x

sufficiently close to one. But, if the number of outsiders is sufficiently large, the

distribution of T(1) in the equations above put most of its probability on values of x

close to one. We can then conclude that the first force operates in the direction of

making more advantageous for the insider the symmetric information structure if n

sufficiently large.

The second force makes it less profitable for the insider to win the auction in

the symmetric information than in the asymmetric information structure. Formally,

it corresponds to the fact that in Equation (1) we integrate x − t and in Equation

(2) we integrate x−t
2 . The intuition of this effect is that for a fixed realization of

the bidders’ private values, and conditional on the insider winning the auction, an

increase in the common value increases the profitability of winning in the asymmetric

information structure but not in the symmetric information structure. The reason

is that in the symmetric information structure, the increase in the common value

increases the insider’s value and the price paid, whereas in the asymmetric information

structure it only increases the insider’s value. We refer to this effect as the loss of

informational rents, since it is due to the fact that the common value is no longer

private information of the insider.

The first effect dominates the latter if n is sufficiently large. To see why, note that

in this case, the integral with respect to t puts most of its probability measure on

values close to one, which means that x must also be close to 1. But, if x is sufficiently

close to one, (x − t)f̂(x) < x−t
2 , and hence the first effect dominates. Consequently,

the insider gets higher expected utility in the symmetric information structure than in

the asymmetric information structure.

The next proposition sums up these arguments:
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Proposition 2. If n is large enough, the insider’s expected utility in the symmetric

information structure is larger than in the asymmetric information structure, i.e. there

is an insider’s curse.

We now turn to the hidden insider structure. As in the symmetric information

structure, there is neither a winner’s curse nor a loser’s curse. Actually, the outsiders’

equilibrium bid functions coincide in both information structures when we take av-

erages with respect to the common value. Nevertheless, they differ in one important

aspect. In the hidden insider structure, the outsiders’ bids do not depend on the the

common value. This means that the insider gets the informational rents from the

common value. Since this is not the case in the symmetric information structure, it

suggests that the insider may get greater expected utility in the hidden insider struc-

ture. To demonstrate this, note that the insider’s expected utility in the hidden insider

structure is equal to:

E

[

max

{
TI + Q

2
−

T(1) + E[Q]

2
, 0

}]

, (3)

which is greater than:13

E

[(
TI + Q

2
−

T(1) + E[Q]

2

)

1{TI≥T(1)}

]

. (4)

This can be shown to be equal to the incumbent’s expected utility in the symmetric

information structure, see Equation (1).

Combining this result with Proposition 2 we get the following result:

Proposition 3. If n is large enough, the insider’s expected utility in the hidden insider

structure is larger than in the symmetric information structure and also than in the

asymmetric information structure, i.e. the insider has incentives to hide.

Figure 2 illustrates Propositions 2 and 3.

13We write 1X for the indicative function of the condition X. It takes value one if X is true and

zero otherwise.
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1 2 3 4 5 6 ...
n

Insider’s curse
︷ ︸︸ ︷

The insider has incentives to hide
︷ ︸︸ ︷

Figure 2: Region in which there is an insider’s curse and region in which the insider

has incentives to hide.

4 A General Model of the Insider’s Curse

We demonstrated in the previous section, and by means of an example, that there may

be an insider’s curse in auctions. A careful reader may suspect that this counterintu-

itive result was an artifact of our special assumptions. This section shows that this is

not the case. In fact, we shall prove that there may also be an insider’s curse when

outsiders have private information about the common value, when there are ex ante

asymmetries in the distribution of the private value, when bidders are risk averse or risk

lovers, and when the private and the common value present general complementarities

or substitutabilities. We shall also consider in this section the effect of information

disclosure on the allocative efficiency of the auction and on the auctioneer’s expected

revenue. Finally, we shall relate the insider’s curse to the weight of the private value

component by showing that when it tends to zero, the insider’s curse disappears.

Basically, we assume the same set of players, the same auction set-up, and the

same structure of private information as in the previous section. However, we assume

neither additive separability of the private and common value nor risk neutrality. We

assume that each bidder gets a von Neuman-Morgestern utility u(v(Q, Ti)− p) (i ∈ I)

from winning the auction at price p, and a von Neuman-Morgestern utility u(0) from

losing the auction that we normalize to zero. We assume u and v to be continuous,
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bounded, strictly increasing and such that there exists a µ > 0 that satisfies:

1

µ
≤

|u(x) − u(x′)|

|x − x′|
,
|v(q, t) − v(q, t′)|

|t − t′|
,
|v(q, t) − v(q′, t)|

|q − q′|
≤ µ,

for any x 6= x′, any q 6= q′ and any t 6= t′.

We also allow the Ti’s to be correlated with Q, this is, we allow the signals Ti to

be informative of the other bidders Ti’s and of Q, although with one restriction. We

assume that there exists a random variable W such that the Ti’s and Q are independent

conditional on W , i.e. that each Ti is informative of Q and the other Ti’s only up to W .

This assumption together with the assumptions in the next paragraph implies that an

outsider that observes the price at which all the other outsiders have quit, and hence

knows the other outsiders’ types in equilibrium, still has uncertainty about Q, and

that this uncertainty does not vanish as n tends to infinity. Otherwise, the revelation

of Q could be meaningless.

We denote by H the distribution of W and by W its support. We assume the

distribution of Q conditional on {W = w}, denoted by G(.|w), to have a density g(.|w)

and support [q, q]. We also denote by F (.|w) the distribution of the insider’s private

value, say TI , conditional on {W = w}, and assume it to have a density f(.|w) and

support [t, t]. Let G(.) and F (.) be the marginal distribution of Q and TI respectively,

and g(.) and f(.) their densities.

Finally, we assume that each Ti (i 6= I) follows the same distribution, but we

allow this distribution to differ from that of TI . For simplicity, we assume that the

conditional distribution of each Ti’s (i 6= I) is the same as that of TI but shifted to

the left a parameter14 γ ∈ (−∆, ∆), where ∆ ≡ t − t, this is15 Pr{Ti ≤ t|W = w} =

F (t+γ|w). The parameter γ measures the strength of the private value advantage (or

disadvantage, if negative) of the insider. For instance, if γ tends to ∆ the probability

that the insider’s private value is larger than the outsiders’ tends to one. Similarly, if

γ tends to −∆, the former probability tends to zero. Finally, we assume that there

14All the results of the paper still hold if the distribution of each Ti conditional on Q = q parame-

terized by γ, say Fγ , satisfies two conditions: (i) F0 = F , and (ii) limγ→−∆ min[support(Fγ)] = t.
15We denote with Pr{.|.}, the probability of the event at the left hand side of the vertical bar

conditional on the event at the right hand side.
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exists an η > 0 such that
1

η
≤ g(q|w), f(t|w) ≤ η,

for any t ∈ [t, t], q ∈ [q, q] and w ∈ W.

Note that although outsiders may have private information about the common

value, we are assuming that their information is redundant to the insider. This as-

sumption, reasonable in many real-life examples, makes our model tractable.16 We can

apply the same arguments as in Section 3 to show that the insider has a unique weakly

dominant strategy, to remain in the auction until v(Q, TI) is reached, independent of

the information that outsiders may have. We shall assume that the insider follows this

strategy so that we do not consider her as a strategic player. Similarly, the symmetric

information structure has a very simple analysis as, again, outsiders have a unique

weakly dominant strategy, to bid v(Q, Ti). We shall assume they follow this strategy.

Nevertheless, the equilibrium analysis of the asymmetric information structure un-

der our general assumptions presents one complication: a separating equilibria does

not always exist. We may construct partially pooling equilibria, but they are com-

plicated to characterize. Instead, we shall present our main result without assuming

equilibrium behavior. More precisely, we only assume that outsiders do not use weakly

dominated strategies.17 We later provide natural conditions under which a separating

equilibrium exists, and we characterize this equilibrium.

Proposition 4. Suppose that the outsiders do not use weakly dominated strategies.

The insider gets greater expected utility in the symmetric information structure than

in the asymmetric information structure, i.e. there is an insider’s curse, if either:

• n is sufficiently large and γ = 0,

• γ is sufficiently small.

16In general, auction models in which bidders have information of different precision with respect

to a common value component present problems of existence of equilibrium, see Athey (2000). Thus,

we may expect these problems had we not made the latter assumption.
17We mean weakly dominated strategies in the reduced game that results from assuming that the

insider follows her unique weakly dominant strategy. In this sense, it is like applying two steps of

elimination of weakly dominated strategies

18



See the proof in the Appendix.

The first point of the above proposition generalizes in some sense Proposition 2.

The second point says that there may be an insider’s curse if the outsiders have a

sufficiently strong private value advantage compare to the insider. As we explain in

the Introduction, these are the two cases in which we would expect to find an insider’s

curse.

Clearly, if there exists an equilibrium in which outsiders do not use weakly domi-

nated strategies, it will have an insider’s curse in the same conditions as in Proposition

4. We, next, prove the existence of such equilibrium under some additional assump-

tions. To make things simpler we assume in what follows that the bidders’ types are

independent, i.e. that the random variables TI , ..., Tn, Q are stochastically indepen-

dent. The analysis may be extended to correlated types, but some new difficulties will

arise. For instance, we could not use an equilibrium concept based on weakly dominant

strategies. We also make the following assumption:

Assumption (SCC): For any t ∈ [t, t], E[u(v(Q, t) − b)|v(Q, TI) = b] crosses zero at

most once for b ∈ [v(q, t), v(q, t)].

This assumption is related to the single crossing condition as defined by Krishna

(2002), although it differs in that the insider’s signal is a two dimensional vector and we

do not assume risk neutrality. This assumption guarantees that the outsider’s expected

utility of winning when the price, say b, equals the outsider’s bid (i.e. E[u(v(Q, t) −

b)|v(Q, TI) = b]) is lower at higher prices. This condition is not only intuitive, but

it is also satisfied with some generality. For instance, if the private and the common

components are perfect substitutes in u, a sufficient condition is that E[TI |Q+TI = b]

is increasing in b. This last condition holds if the density of G is log-concave.18 Note

that log-concavity of the density is a common feature of many distribution functions,

for instance the uniform, the beta with parameters no less than one (a particular case

18This result may be proved checking that the random variables X(t) ≡ v(Q, TI) − v(Q, t) and

V̂ ≡ v(Q, TI) are affiliated for any t.

19



is F (q) = qr, where r ≥ 1) and any truncated exponential, normal, logistic, extreme-

value, chi-square, chi, and Laplace distributions.19

We now characterize a separating equilibrium for the asymmetric information struc-

ture using an auxiliary function that we introduce in the next lemma.

Lemma 1. Under assumption (SCC), there exists a unique function β : [t, t] →

[u(v(q, t)), u(v(q, t))] that satisfies E[u(v(Q, t)−β(t))|v(Q, TI) = β(t)] = 0. This func-

tion is continuous and strictly increasing.

See the proof in the Appendix.

Proposition 5. Suppose that the Assumption (SCC) holds, and that the insider is

playing her unique weakly dominant strategy. Then, it is weakly dominant for the

outsiders to play the following bid functions:

• If the insider is still active,

bAIS(t) =







u(v(q, t)) if t < t

β(t) if t ∈ [t, t],

u(v(q, t)) if t > t.

• If the insider left the auction at price p, to use the bid function bAIS(t|p) implicitly

defined20 by the equation E[u(v(Q, t) − bAIS(t|p))|v(Q, TI) = p] = 0.

Proof. In an open ascending auction, a bidder’s strategy determines at which prices

the bidder wins. A strategy is, thus, optimal if it assures that the bidder wins at any

price at which it is profitable to win. Our proof will show that this is actually the

case of our proposed strategy, if the insider follows her weakly dominant strategy, and

independently of the strategies followed by the other outsiders. An outsider i can win

the auction in two cases: (i) when the last bidder to quit the auction is the insider, and

(ii) when the last bidder to quit the auction is another outsider. In case (i), the price

19A detailed list of distribution functions with log-concave densities can be found in Bagnoli and

Bergstrom (1989).
20Note that Assumption (SCC) implies that bAIS(t|p) is uniquely defined.
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that our outsider pays is equal to the price at which the insider quit, say p, and in that

case our outsider’s expected utility if she wins is equal to E[u(v(Q, ti)−p)|v(Q, TI) = p],

where ti denotes outsider i’s private type. By Assumption (SCC), this expected utility

is positive if and only if β(ti) ≥ p, i.e. exactly in the cases in which our outsider

wins if she follows our proposed strategy. Consider now that the outsider wins in case

(ii). The fact that an outsider fixes the price, say at a level b, means that the insider

must have left the auction at a lower price, say p. Our outsider’s expected utility of

winning is in this case E[u(v(Q, ti) − b)|v(Q, TI) = p], which is positive if and only if

bAIS(ti|p) ≥ b, exactly the cases in which our outsider wins if she follows our proposed

strategy. �

Jackson (1999) and Pesendorfer and Swinkels (2000) have argued that auction

models with private and common value components and multidimensional types (i.e.

private and common value components privately known by the agents) may have prob-

lems of existence of equilibria with some generality. Proposition 5 shows that our model

does not present these problems under some mild assumptions.

We next explore the consequences of the insider’s curse on the efficiency and opti-

mality of the auction. To do so, we compare the symmetric information structure with

the asymmetric information structure. From this comparison we can study whether a

social planner or a revenue-maximizing auctioneer has incentives to allow the insider

to reveal her private information about the common value, or even to make it easier,

for instance by making verifiable the insider’s revelation.

The following proposition follows trivially and hence no proof is provided.

Proposition 6. The good is allocated to the bidder with highest private value in the

symmetric information structure, but not in the asymmetric information structure.

Consequently, the symmetric information structure implements a more efficient allo-

cation than the asymmetric information structure.

For the next proposition, we shall assume that types are statistically independent,

bidders are risk neutral, F has an increasing hazard rate, i.e. that f(x)
1−F (x) is increasing

in x, and γ = 0 (i.e. the outsiders and the insider preferences are ex ante symmetric).
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We refer to these assumptions as the regular case.

Proposition 7. In the regular case, the auctioneer gets higher expected revenue in

the symmetric information structure than in the asymmetric information structure.

In fact, the open auction under the symmetric information structure gives higher ex-

pected revenue than any auction mechanism that always sells the good, either under

the symmetric or the asymmetric information structure.

See the proof in the Appendix.

To understand the intuition of the last proposition, note that the auctioneer’s

expected revenue in the asymmetric information structure cannot exceed the maximum

expected revenue in the hypothetical case in which outsiders do not know the common

value, the insider knows it, and the auctioneer also knows it. It can be shown that in

this case the auctioneer can maximize his expected revenue by revealing the common

value to the outsiders. Intuitively, since bidders do not have any ex ante asymmetry

with respect to the private types, the revelation of the common value levels the playing

field and makes it more competitive. The proposition follows since the open ascending

auction is an optimal mechanism in the symmetric information structure.

Nevertheless, it can be shown that there are cases in which the auctioneer gets

higher expected revenue in the asymmetric information structure than in the symmetric

information structure. For instance, this may happen when the outsiders have an ex

ante private value advantage sufficiently strong, (in our model, γ sufficiently smaller

than 0). In this case, giving additional private information to the disadvantaged bidder

may increase the competition and hence, the auctioneer’s revenue.

Finally, to understand more clearly the role played by the private value component,

we study the possibility of an insider’s curse as the private value component vanishes.

For this purpose, we shall analyze a variation of the model studied in this section.

Basically, we maintain all the assumptions of this section except the bidder’s utility

function. We assume that a bidder i ∈ I gets a von Neumann-Morgenstern utility

u(v(Q, αTi) − p), where α ∈ (0, 1) from winning the auction at price p, and a utility

of u(0) = 0 from losing the auction. However, we maintain the assumptions on u and
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v that we made at the beginning of the section. Note that for a fixed value of α this

new model is simply a relabelling of the model studied in the rest of the section.

Proposition 8. Suppose that outsiders do not play weakly dominated strategies, that

γ = 0 and that n is fixed. The insider gets greater expected utility in the asymmetric

information structure than in the symmetric information structure if α is sufficiently

small.

See the proof in the Appendix.

To understand why the Proposition holds it is useful to think of the limit game

in which there is no private value, this is when α = 0. In this case, it is easy to see

that the insider gets zero expected utility in the symmetric information structure in

equilibrium. However, in the asymmetric information structure, there are equilibria

in which the insider gets positive expected utility. Proposition 8 holds because in the

proposed limit, one of these equilibria is selected. It is, however, important to remark

that if γ < 0, it may be the case that, in the limit, an equilibrium of the asymmetric

information structure in which the insider gets zero expected utility can be selected.

Thus, in general, the above proof cannot be used for γ < 0, and in fact, it is unclear

if a version of the above proposition would hold.

5 A General Model with a Hidden Insider

In this section, we reconsider the insider’s incentive to hide. Recall that one important

drawback of the analysis in Section 3 was that we assumed that outsiders behave as

if there were no insider when, in fact, the insider was present in the auction. We fix

this problem in this section and also study the validity of the argument with a more

general model of uncertainty, general complementarities and substitutabilities between

the common and the private value, and when bidders are not risk neutral.

For this purpose, we shall redefine the hidden insider structure studied in Section 3,

compute the insider’s expected utility and compare it with the insider’s expected utility

in the symmetric and asymmetric information structure studied in the last section.
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In this section, we assume the same auction set-up, the same set of bidders, and the

same utility function, with its restrictions, as in the former section. We also assume

that each bidder knows privately her private value. However, we assume that with

some probability 1 − ρ ∈ (0, 1) none of the bidders knows the common value, whereas

with the complementary probability, ρ, one of the bidders randomly drawn from the

pool of bidders, and only her, knows the common value. We again call this bidder,

the insider, and the other bidders, outsiders. We assume that all the bidders have the

same probability of being an insider.

In particular, we assume that if there is an insider, she knows the common value

component, whereas outsiders know neither the common value, nor the identity of the

insider, nor the presence of the insider in the auction. They only know the probability

distribution of these events. Technically, this implies a complication as bidders have

to make equilibrium conjectures not only about the common value, but also about the

presence of the insider, and the identity of the insider. This is even more complicated

due to the dynamic structure of our game.

We shall make the same assumptions as in the former section with respect to

the distribution of the insider’s and outsiders’ private value, and the common value.

Note that these assumptions imply that the insider not only differs from outsiders in

the fact that she has better information, but also in the distribution of the private

value. Additionally, we shall assume, for the sake of tractability, that all these random

variables are stochastically independent.

Although our model does not include the case in which outsiders know that there

is an insider but they do not know her identity, this is ρ = 1, we cover cases arbitrarily

close. Moreover, it seems reasonable to conjecture similar results. We think so because

the analysis of the continuation game after one bidder leaves the auction is the same

as in our game, at least for the case in which, in equilibrium, the quitting of the first

bidder does not perfectly reveal if this bidder is the insider.

Our study, however, does not cover situations in which bidders do not have ex ante

the same probability of being the insider. A particular case is when there is only one

single bidder, say the suspected insider, who can be the insider. Our arguments do not
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extend easily to this case. The main difficulty seems to be that in the cases in which

revealing helps the insider, i.e. large n or small γ, the outsiders may learn anyway if

there is an insider in the most relevant cases. Consider, for instance, the case in which

the number of outsiders is large. A suspected insider wins mostly with high bids since

other bids are outbid with high probability. But, sufficiently high bids of the suspected

insider must reveal in equilibrium that she does know the common value, i.e. that she

is an insider. This is because the maximum bid that a suspected insider is willing to

submit is higher when she knows the common value than when she does not. Note that

in the model of this section, this does not happen because all outsiders suspect all the

other bidders as being potential insiders, and these suspicions make them bid above

their maximum expected value when another bidder does so. But, since all outsiders

do so, they cannot distinguish if there is really an insider or not.

In our comparison, we assume that the insider plays her unique weakly dominant

strategy to stay in the auction until the price reaches v(Q, TI). Consequently, we shall

consider that the outsiders are the only strategic players. We state our results without

ensuring existence of an equilibrium. In the last section of the Appendix we provide a

characterization of an equilibrium in terms of a partial differential equation.

Proposition 9. Suppose that the private types are independent, and that the bid-

ders are risk neutral, i.e. u is linear. If the outsiders play a symmetric equilibrium

in increasing strategies, the insider gets greater expected utility in the hidden insider

structure than in the asymmetric information structure and also than in the symmet-

ric information structure if either γ is sufficiently small, or n is sufficiently large for

γ = 0.

See the proof in the Appendix.

To understand the proposition note that in both, the symmetric and the asymmet-

ric information structure, and when we take either of the limits, the insider’s expected

utility converges to zero. It is straightforward to see that this holds in the case of the

symmetric information structure, and thus, because of Proposition 4, that it also holds

in the asymmetric information structure.
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However, this cannot happen in the hidden insider structure. The reason is that

for this to be the case, the price in the auction should converge to the insider’s value or

above when the insider is in the auction. In particular, this means that if the insider

is present in the auction and her private component and the common component are

maximum, the price must converge to the insider’s maximum value or above. In this

case, outsiders with the same private component as the insider would get at most

zero expected utility. However, outsiders cannot distinguish during the auction if

the insider is present or not before the insider quits. This means that if the insider

were not present when the price reaches the former maximum value, outsiders would

have negative expected value. They pay a price that corresponds to the maximum

realization of the common value, but since there is no insider, outsiders can only expect

an average common value. The conclusion is that if this were the case, outsiders would

have incentives to deviate by leaving the auction earlier to protect from the negative

expected utility of winning at those prices.

6 Conclusions

We study an auction model that shows that strong competition may create bidder’s

incentives to disclose private information about a common component of the value of

the good for sale. We provide an intuitive explanation based on the interplay of two

forces, the winner’s and the loser’s curse, that affect in equilibrium the bids of the

other bidders.

Although our model displays incentives to reveal information, an important issue

is whether this information can be revealed credibly or not. This question is specially

relevant because in our model, the insider has incentives to mislead the outsiders, for

instance, by understating the value of the good. This is a problem that also arises in

other results about information disclosure, for instance those of Milgrom and Weber

(1982a). It is usually argued that this should not be a concern if either the informed

party cares about her reputation or the information disclosed can be verified.

Another important feature of our results is that we only consider the case in which
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the insider can either reveal no information or reveal it fully. For instance, we may

suspect that in real auctions, the insider will disclose information only when she has

bad news. Note, however, that in this case, the outsiders would infer in equilibrium

that if the insider does not give any news, it must be because she has got good news.

This argument has been explored by Postlewaite, Okuno-Fujiwara, and Suzumura

(1990) in an abstract model of strategic information revelation, and by Benoit and

Dubra (2003) in an auction set-up similar to ours. Their results imply that when the

insider’s private information about the common value is verifiable, there must be full

information disclosure in equilibrium if the information revelation game takes place

before the insider learns her private value. Otherwise, Benoit and Dubra’s results

applied to our model show that although we can always find an equilibrium of the

game of information revelation in which there is full information revelation, this may

not be the case in other equilibria.

We may interpret the insider’s difficulties to reveal her private information from a

normative point of view. To see why, it is important to remark, first, that our results

also show that insider’s information revelation improves social welfare, and under some

regularity conditions, the auctioneer’s expected revenue. Hence, we may conclude from

our analysis that it is in the interest of the auctioneer or the regulator to develop the

mechanisms that may allow the insider to reveal her private information. Two such

mechanisms may be introducing stronger penalties for false information disclosure or

developing institutions like more transparent accounting that help verifiability.

It is interesting to note another normative implication of our analysis. Our results

show that under strong competitive pressure, the main dangers of insider trading may

come from the fact that an insider can hide. Otherwise, we have shown that there

exists an insider’s curse, and hence, either the insider is willing to disclose her private

information, or she does not have any incentives to acquire it in the first place.

Another key element of our analysis is that the bidders’ value of the good has pri-

vate components. In fact, we show that the incentives to disclose private information

disappear as the weight of the private value component vanishes. Our results also sug-

gest some kind of strategic complementarities between additional private information
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about a common value component and ex ante private value advantages. The returns

for additional private information are negative for a bidder with a private value dis-

advantage sufficiently strong and positive for a bidder with a private value advantage.

This point, however, requires further analysis.

Appendix

Proof of Proposition 4

To compare the insider’s expected utility under the two information set-ups, the sym-

metric information structure and the asymmetric information structure, it is useful to

condition on a realization of the highest type of the outsiders, say T(1) = t(1). We shall

refer to these expected values as u∗
SIS(t(1)) and u∗

AIS(t(1)) respectively.

In the symmetric information structure, the insider wins if and only if her private

value is greater than t(1), and in that case the insider pays the bid of t(1) that equals

v(Q, t(1)). Hence,

u∗
SIS(t(1)) =

∫

W

∫ q

q

∫ t

t(1)

U
(
v(q, tI) − v(q, t(1))

)
f(tI |w) dtI dG(q|w) dH(w)

≥

∫ t

t(1)

tI − t(1)

η µ2
dtI . (5)

We next compute an upper bound for U∗
AIS . To do so, we start by providing a

lower bound to the outsiders’ bids:

Lemma 2. In the asymmetric information structure model, it is weakly dominated for

an outsider with type ti > t − v(q,t)−v(q,t)
2η4µ5 to leave the auction at a price b < b(ti) ≡

v(q, t) − 2η4 µ5 (t − ti), if the insider is still active in the auction at price b.

Proof. Suppose that outsider i uses the above strategy, then we argue that she can

weakly increase her expected utility when she has type ti if she remains in the auction

when the insider is active until either price b(ti) is reached or the insider quits, instead

of quitting at price b. This change only affects the outsider’s payoffs if the insider
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leaves the auction at a price, say b′, between b and b(ti) and the outsider wins at that

price. We, next, show that the outsider’s expected utility is strictly positive in these

cases, or similarly, that:

E[u(v(Q, ti) − b′)|v(Q, TI) = b′, ~T = ~t] > 0,

for any vector of outsider’s private values ~t ∈ [t, t]n such that its i-th component is

equal to ti.

The claim of the lemma for bids b′ < v(q, t) is straightforward since the condi-

tions of the lemma, and in particular that ti > t − v(q,t)−v(q,t)
2η4µ5 , imply that ti ≥ t.

Suppose next that b′ ≥ v(q, t), and denote by q∗(t; b′) the function implicitly defined

by v(q∗(t; b′), t) = b′, this is the insider’s indifference curve that corresponds to a

price b′ without uncertainty. Moreover, let t∗(b′) ≡ min{t ∈ [t, t] : v(q, t) ≥ b′} and

t
∗
(b′) ≡ max{t ∈ [t, t] : v(q, t) ≤ b′}, i.e. the minimum and the maximum insider’s
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private value associated to the indifference curve v(q, t) = b′. Thus, we have:

E[u(v(Q, ti) − b′)|v(Q, TI) = b′, ~T = ~t] =

E[u(v(Q, ti) − v(Q, TI))|v(Q, TI) = b′, ~T = ~t] ≥

E[u(v(Q, t) − µ(t − ti) − (v(Q, t) −
1

µ
(t − TI)))|v(Q, TI) = b′, ~T = ~t] ≥

E[u(−µ(t − ti) +
1

µ
(t − TI))|v(Q, TI) = b′, ~T = ~t] ≥

E[u(−µ(t − ti)) +
1

µ2
(t − TI)|v(Q, TI) = b′, ~T = ~t] ≥

E[−µ2(t − ti) +
1

µ2
(t − TI)|v(Q, TI) = b′, ~T = ~t] =

− µ2(t − ti) +
1

µ2
E[t − TI |v(Q, TI) = b′, ~T = ~t] =

− µ2(t − ti) +
1

µ2

∫ t
∗
(b′)

t∗(b′)

∫

W(t − tI)f(tI |w)Πj 6=If(tj − γ|w)g(q∗(tI ; b
′)|w) dH(w)dtI

∫ t
∗
(b′)

t∗(b′)

∫

W f(tI |w)Πj 6=If(tj − γ|w)g(q∗(tI ; b′)|w) dH(w)dtI
≥

− µ2(t − ti) +
1

η4 µ2

∫ t
∗
(b′)

t∗(b′)

∫

W(t − tI)Πj 6=If(tj − γ|w) dH(w)dtI
∫ t

∗
(b′)

t∗(b′)

∫

W Πj 6=If(tj − γ|w) dH(w)dtI
=

− µ2(t − ti) +
1

η4 µ2

∫ t
∗
(b′)

t∗(b′) (t − tI)dtI

t
∗
(b′) − t∗(b′)

=

− µ2(t − ti) +
1

η4 µ2
(t −

t
∗
(b′) + t∗(b′)

2
) ≥

− µ2(t − ti) +
t − t∗(b′)

2 η4 µ2
≥ −µ2(t − ti) +

v(q, t) − v(q, t∗(b′))

2 η4 µ3
,

which is strictly positive under the conditions of the Lemma. To see why, we can

distinguish two cases, when b′ > v(q, t) and when b′ ≤ v(q, t). In the first case,

v(q, t∗(b′)) = b′, and thus, we can prove our claim using the fact that b′ < b(ti). In

the second case, v(q, t∗(b′)) = v(q, t), and thus, the claim can be proved using the fact

that we restrict to ti > t − v(q,t)−v(q,t)
2η4µ5 . �

This lemma implies an upper bound to the insiders’ expected utility in the asym-

metric information structure21 for t(1) > t − v(q,t)−v(q,t)
2η4µ5 :

u∗
AIS(t(1)) ≤ E

[[
u(v(Q, TI) − b(t(1)))

]
1{v(Q,TI)≥b(t(1))}|T(1) = t(1)

]

.

21We denote by H(.|T(1) = t(1)) the distribution function of W conditional on T(1) = t(1).
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To operate on this expression, it is easier to integrate the insider’s utility with respect

to the random variable V̂ = v(Q, TI), whose distribution conditional on W = w we

denote by F̂ (.|w). This is,

u∗
AIS(t(1)) ≤

∫

W

∫ v(t,t)

b(t(1))
u(v̂ − b(t(1))) dF̂ (v̂|w) dH(w|T(1) = t(1)).

Lemma 3. For any, w ∈ W, the distribution function F̂ (v̂|w) has support [v(q, t), v(q, t)]

and a density, say f̂(v̂|w), which is bounded above by η2µ2(v(q, t) − v̂), for any v̂ in

the support.

Proof. That the support of F̂ (v̂|w) is [v(q, t), v(q, t)] follows directly from the fact that

Q and TI conditional on W = w, for w ∈ W, have support [q, q] and [t, t] respectively.

Next, note that using the functions t∗, t
∗

and q∗ introduced in the proof of Lemma 2,

F̂ (v̂|w) = F (t∗(v̂)|w) +

∫ t
∗
(v̂)

t∗(v̂)
G(q∗(t; v̂)|w)f(t|w) dt.

This distribution function has a density. To see why we only need to differentiate it.

Note that this can be done using the implicit function theorem to compute ∂q∗(t;v̂)
∂v̂ ,

and ∂t
∗
(v̂)

∂v̂ if v̂ < v(q, t), and ∂t∗(v̂)
∂v̂ if v̂ > v(q, t). Note also that if v̂ ≤ v(q, t), then

q∗(t
∗
(v̂); v̂) = q, and if v̂ ≥ v(q, t), then q∗(t∗(v̂); v̂) = q. Finally, note that if v̂ ≥ v(q, t),

then t
∗
(v̂) = t, and that if v̂ ≤ v(q, t), then t∗(v̂) = t. We may use the above remarks

to show after some straightforward simplifications on the differential of F̂ (v̂|W ) that:

f̂(v̂|w) =

∫ t
∗
(v̂)

t∗(v̂)

g(q∗(t; v̂)|w)f(t|w)
∂v(q∗(t;v̂),t)

∂q

dt

which is bounded above by η2µ(t
∗
(v̂) − t∗(v̂)) ≤ η2µ(t − t∗(v̂)) ≤ η2µ2(v(q, t) −

v(q, t∗(v̂))) which implies the lemma since v(q, t∗(v̂)) = max{v̂, v(q, t)}. �

If t(1) ∈ (t − v(q,t)−v(q,t)
2η4µ5 , t], the last two lemmas can be used to show:
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u∗
AIS(t(1)) ≤

∫ v(q,t)

b(t(1))
u(v̂ − b(t(1)))η

2µ2(v(q, t) − v̂) dv̂ ≤

∫ v(q,t)

b(t(1))
(v̂ − b(t(1)))η

2µ3(v(q, t) − v̂) dv̂ ≤

Change of variable:







v̂ = b(tI)

dv̂ = 2η4 µ5dtI






=

2η6µ8

∫ t

t(1)

(b(tI) − b(t(1)))(v(q, t) − b(tI)) dtI =

8η16µ16

∫ t

t(1)

(tI − t(1))(t − tI)dtI . (6)

As a consequence:

u∗
SIS(t(1)) − u∗

AIS(t(1)) ≥

∫ t

t(1)

(tI − t(1))
1 − 8η17µ18(t − tI)

η µ2
dtI ,

for t(1) ∈ (t − v(q,t)−v(q,t)
2η4µ5 , t]. From which we can derive the following result:

Lemma 4. If t(1) ∈
(

t − min
{

v(q,t)−v(q,t)
2η4µ5 , 1

8η17µ18

}

, t
)

, then u∗
SIS(t(1))− u∗

AIS(t(1)) >

0.

The ex ante difference of the insider’s expected utility in the symmetric information

structure and the asymmetric information structure equals:

∫

W

∫ t−γ

t−γ

∫ t

t(1)

(
u∗

SIS(t(1)) − u∗
AIS(t(1))

)
dtI dF (t(1) − γ|w)n dH(w).

Thus, Proposition 4 (ii) follows directly from Lemma 4. To prove Proposition 4

(i) note that for γ = 0, and by a continuity argument on Lemma 4, for an ǫ > 0

sufficiently small there must exist a partition [t, a)∪ [a, b]∪ (b, t] of the support of T(1)

such that u∗
SIS(t(1)) − u∗

AIS(t(1)) ≥ ǫ for t(1) ∈ [a, b], and u∗
SIS(t(1)) − u∗

AIS(t(1)) ≥ 0

for t(1) ∈ [b, t]. Thus, we have the following lower bound for the ex ante difference of

the insider’s expected utility:
∫

W
F (b|w)n

{[
F (a|w)

F (b|w)

]n

(−M) +

(

1 −

[
F (a|w)

F (b|w)

]n)

ǫ

}

dH(w),

where −M ≡ mint(1)∈[t,a]{u
∗
SIS(t(1))−u∗

AIS(t(1))}. Clearly, the above integral is strictly

positive for n sufficiently large.
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Proof of Lemma 1

The equation that defines β is continuous in t and β, the left hand side is positive at

β = u(v(q, t)), and negative at β = u(v(q, t)), hence, there exists a β that solves the

equation of the lemma for any t ∈ (t, t). Moreover, Assumption (SCC) implies that

it is uniquely defined, and hence, continuous. By inspection, β(t) = u(v(q, t)) and

β(t) = u(v(q, t)). Finally, to see that β is strictly increasing suppose that β(t) ≥ β(t′)

for t < t′. From the definition of β applied to t and the assumption that u and v

are strictly increasing, we have that E[u(v(Q, t′) − β(t))|v(Q, TI) = β(t)] > 0. At

the same time, the definition of β at t′ plus Assumption (SCC) imply E[u(v(Q, t′) −

β(t))|v(Q, TI) = β(t)] ≤ 0, which is a contradiction.

Proof of Proposition 7

We provide an indirect proof. We, first, compute the optimal mechanism in an auxil-

iary problem in which bidders’ private information is as in the asymmetric information

structure but in which we assume that the auctioneer knows the common value Q.

This last assumption means that the auctioneer’s mechanism can depend directly on

the common value without the need of including the corresponding insider’s incentive

compatibility constraint. In order to characterize the optimal mechanism in this aux-

iliary problem we can restrict without loss of generality to direct mechanisms. In our

set-up, these are mechanisms in which: (i) each bidder’s strategy space is equal to

her space of private values [t, t]; (ii) the mechanism is characterized by two functions

P : [t, t]n+1 × [q, q] → [0, 1]n+1 and X : [t, t]n+1 × [q, q] → R
n+1, where Pi(ti, t−i, q) and

Xi(ti, t−i, q) are respectively Bidder i’s probability of winning the auction and Bidder

i’s transfers to the auctioneer when i announces ti, and all the other bidders announce

the vector of private types t−i, and the common value equals q; and (iii), there is

an equilibrium in which all bidders report their private value truthfully. This last

condition can be expressed formally in terms of the following incentive compatibility

constraints:
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• For i 6= I,

∫

[t,t]n

∫

[q,q]
[(ti + q)Pi(ti, t−i, q) − Xi(ti, t−i, q)] g(q)

∏

j 6=i

f(tj) dq dt−i ≥

∫

[t,t]n

∫

[q,q]

[
(ti + q)Pi(t̃i, t−i, q) − Xi(t̃i, t−i, q)

]
g(q)

∏

j 6=i

f(tj) dq dt−i,

for any ti, t̃i ∈ [t, t].

• For i = I,

∫

[t,t]n
[(tI + q)PI(tI , t−I , q) − XI(tI , t−I , q)]

∏

j 6=I

f(tj) dt−I ≥

∫

[t,t]n

[
(tI + q)PI(t̃I , t−I , q) − XI(t̃I , t−I , q)

] ∏

j 6=I

f(tj) dt−I ,

for any ti, t̃i ∈ [t, t], and q ∈ [q, q].

And the following individual rationality constraints:

• For i 6= I,

∫

[t,t]n

∫

[q,q]
[(ti + q)Pi(ti, t−i, q) − Xi(ti, t−i, q)] g(q)

∏

j 6=I

f(tj) dq dt−i ≥ 0,

for any ti ∈ [t, t].

• For i = I,

∫

[t,t]n
[(tI + q)PI(tI , t−I , q) − XI(tI , t−I , q)]

∏

j 6=I

f(tj) dt−I ≥ 0,

for any tI ∈ [t, t], and q ∈ [q, q].

Note that since the insider knows the common value, her incentive compatibility

and participation constraints hold for any value of Q. On the other hand, since the out-

siders do not know the common value, their incentive compatibility and participation

constraints hold only on average with respect to Q.

If we apply Myerson’s (1981) machinery to this problem, we find that a mechanism

is optimal in our auxiliary problem if and only if: the good is allocated to the bidder
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with highest private value, any outsider with a private value t gets zero expected utility

and an insider with a private value t and conditional on any realization of the common

value q ∈ [q, q] gets also zero expected utility.

One possible implementation of the above optimal mechanism of our auxiliary

problem is that the auctioneer announces, first, the common value component and,

afterwards, runs an open ascending auction. The revenue of this mechanism is the

same as the revenue that the auctioneer gets with an open ascending auction in the

symmetric information structure. Hence, the proposition follows because our auxiliary

problem include as an special case the open ascending auction in the asymmetric

information structure. The reason is that the auctioneer can always commit to forget

the common value.

Proof of Proposition 8

We first show that the insider’s expected utility in the symmetric information structure

converges to zero as α tends to zero. For this purpose, note that under this assumption,

the model is a pure private value auction, and as such, any bidder i bids v(Q, Ti), in an

equilibrium in non weakly dominated strategies. As a consequence, the insider wins if

and only if v(Q, αTI) is greater than v(Q, αT(1))), and in that case, pays v(Q, αT(1))).

This means that the limit of the insider’s expected utility is equal to:

lim
α→0

E
[
max{u(v(Q, αTI) − v(Q, αT(1))), 0}

]
= 0. (7)

We complete the proof by showing that this is not the case for the asymmetric

information structure if outsiders do not use weakly dominated strategies. Note that

the insider bids v(Q, TI) and hence, conditional on winning she gets non negative

utility. This means that the insider gets strictly positive probability if there exists

a set of outsiders’ types with probability bounded away from zero that quit before a

certain bound strictly lower than v(q, αt) whenever the insider is still in the auction.

To prove this, we shall show that prices above v(q, αt) are weakly dominated for

outsiders with a type below t + 1
η4µ4

t−t
2 , if the insider is still active. This may be
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proved by showing that for an outsider i, the expected utility of winning at a price

p ≥ v(q, αt) when the insider quits at b ∈ [v(q, αt), p] and conditional on any vector

of outsiders’ types ~t, is negative. We show this below with the help of the functions

t∗(b) ≡ min{t ∈ [t, t] : v(q, αt) ≥ b}, and q∗(t; b) implicitly defined by v(q∗(t; b), αt) = b

which mimic the same functions that we used in the proof of Lemma 2 but for the

indifference curve v(q, αt) = b. Recall that since b ≥ v(q, αt), the maximum value of t

in the indifference curve of b is t, this is max{t ∈ [t, t] : v(q, αt) ≤ b} = t.

E[u(v(Q, αti) − p)|v(Q, αTI) = b, ~T = ~t] ≤

E[u(v(Q, αti) − v(Q, αTI))|v(Q, αTI) = b, ~T = ~t] =

E[u(v(Q, αti) − v(Q, αt) − (v(Q, αTI) − u(v(Q, αt))))|v(Q, αTI) = b, ~T = ~t] ≤

E[u(αµ(ti − t) −
α

µ
(TI − t))|v(Q, αTI) = b, ~T = ~t] ≤

E[u(αµ(ti − t)) −
α

µ2
(TI − t)|v(Q, αTI) = b, ~T = ~t] ≤

E[αµ2(ti − t) −
α

µ2
(TI − t)|v(Q, αTI) = b, ~T = ~t] =

α

(

µ2(ti − t) −
1

µ2
E[(TI − t)|v(Q, αTI) = b, ~T = ~t]

)

=

α



µ2(ti − t) −
1

µ2

∫ t
t∗(b)

∫

W(tI − t)f(tI |w)Πj 6=If(tj |w)g(q∗(tI ; b)|w) dH(w)dtI
∫ t
t∗(b)

∫

W f(tI |w)Πj 6=If(tj |w)g(q∗(tI ; b)|w) dH(w)dtI



 ≤

α



µ2(ti − t) −
1

η4µ2

∫ t
t∗(b)

∫

W(tI − t)Πj 6=If(tj |w) dH(w)dtI
∫ t
t∗(b)

∫

W Πj 6=If(tj |w) dH(w)dtI



 =

α



µ2(ti − t) −
1

η4µ2

∫ t
t∗(b)(tI − t)dtI

t − t∗(b)



 =

α

(

µ2(ti − t) −
1

η4µ2

(
t + t∗(b)

2
− t

))

≤

α

(

µ2(ti − t) −
1

η4µ2

t − t

2

)

< 0.
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Proof of Proposition 9

Proposition 4 says that the insider gets higher expected utility in the symmetric infor-

mation structure than in the asymmetric information structure in the same limits as in

the current proposition. Consequently, in order to prove the Proposition, we only need

to show that in these limits the insider gets higher expected utility in the hidden insider

structure than in the symmetric information structure. The strategy of the proof is to

show that in either limit considered in the proposition, the insider’s expected utility

in a symmetric equilibrium converges to zero in the symmetric information structure

but remains bounded away from zero in the hidden insider structure.

We start computing an upper bound to the insider’s expected utility in the symmet-

ric information structure. A similar argument to that in Equation (5) in the Appendix

may be used to show that:

u∗
SIS(t(1)) ≤

∫ t

t(1)

µη(tI − t(1)) dtI .

Thus, taking expectations with respect to T(1) it is easy to see that the insider’s

expected utility in the symmetric information structure goes to zero as either γ goes

to −∆ or n goes to infinity for γ = 0.

We next complete the proof by contradiction. We assume that the insider’s ex-

pected utility in an equilibrium of the hidden insider structure converges to zero (in

either of the above limits), and we show that if the outsiders use the same strictly

increasing strategies, they have incentives to deviate. We shall focus on our exposition

in the limit γ → −∆. We explain at the end of the proof how to adapt the proof for

the limit n → ∞.

If the insider’s expected utility tends to zero, it must also tend to zero conditional

on the insider’s maximum type (Q, TI) = (q, t). This insider bids v(q, t) and wins

with a positive profit whenever the final price in the auction is bounded away from

this value. As a consequence, for any p < v(q, t), the probability that the price in the

auction is strictly less than p conditional on the event that there is an insider with

type (Q, TI) = (q, t), must tend to zero.

The set of equilibrium paths that correspond to the event that there is an insider
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with a given type, for instance (q, t), and she wins at a price below p is the same as

the set of equilibrium paths that correspond to the event that there is no insider and

an outsider i with maximum type, i.e. Ti = t − γ, wins at a price below p. These

equilibrium paths are those generated by the bids of n outsiders with type in [t−γ, t−γ]

whenever they fix the price below p. Consequently, the probability that the price in

the auction is strictly less than p conditional on the event that there is no insider and

that an outsider i with a type Ti = t− γ wins must tend to zero when γ tends to −∆.

We next claim that, for any t̃ ∈ (t, t + ∆), the same limit as above must hold if we

condition on Ti = t̃ instead of on Ti = t − γ. Formally that,

lim
γ→−∆

Pr{P < p|NI, i wins, Ti = t̃} = 0, (8)

where P denotes the price in the auction, “NI” the event that there is no insider, and

“i wins” the event that the outsider i wins. To see why note three things. First, from

the conclusions of the former paragraph we can deduce that the probability that the

price in the auction is strictly less than p conditional on the events that there is no

insider, that an outsider i with a type Ti = t − γ wins, and that the largest type of

the losing outsiders is less than or equal to t̃, also tends to zero when γ tends to −∆.

The reason is that we are conditioning on a smaller set whose probability conditional

on the original set is bounded away from zero as γ tends to −∆.

Second, if there is no insider, the winner in the auction is the outsider with highest

type, and the price is determined by the bids of the other outsiders. As a consequence,

and because of the independency of the outsiders’ types, the type of the outsider that

wins is informative of the price only up to the point that it establishes an upper bound

for the distribution of the types of the losing bidders. Hence, if we condition on a

lower upper bound, for instance t̃, the type of the outsider that wins is not informative

of the price. A consequence is that the distribution of the price in the auction when

we condition on the event that there is no insider, and that the types of the losing

outsiders are not more than t̃, is the same whether we condition additionally on the

type of the winning bidder is equal to t − γ or on the type of the winning bidder is

equal to t̃.
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Third and last, the event that the winning outsider has a type equal to t̃ implies

the event that the types of the losing outsiders are no more than t̃.

Clearly, the event that there is no insider and an outsider with type Ti = t̃ wins

the auction has probability bounded away from zero, as γ tends to −∆. We can thus

conclude from the limit in Equation (8) that an outsider with type Ti = t̃ wins the

auction at prices above p with probability bounded away from zero as γ tends to −∆.

But the expected utility of winning the auction at such prices is bounded from above

by:

(
1 − Pr

{
NI|P ≥ p, i wins, Ti = t̃

})
v(q, t̃)+

Pr
{
NI|P ≥ p, i wins, Ti = t̃

}
E

[
v(Q, t̃)

]
− p. (9)

The reason is that if there is an insider, the most optimistic case in which the outsider

may win is when the common value is q, but when there is no insider, the expected

value of the good is equal to E
[
v(Q, t̃)

]
. Moreover, the price paid would be no less

than p.

We can use the limit in Equation (8) to show that the bound for the outsider’s

expected utility in Equation (9) is bounded from above by v(q, t̃)+(1−ρ)E[v(Q, t̃)]−p,

as γ tends to −∆. Suppose that t̃ is such that the latter expression is negative. Then,

we can conclude that an outsider with such a type t̃ gets negative expected utility if

she wins the auction at a price above p if γ is sufficiently close to −∆. This implies

that such outsiders may prove with a deviation in which they quit before the price

reaches p.

The proof for the limit n → ∞ is similar. The only difference is that instead of

taking a generic t̃ we take t. Note that this proof is simpler as some of the former steps

become unnecessary.
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Characterization of an Equilibrium of the Hidden Insider

Structure

In this section of the appendix we provide a characterization of a symmetric separating

equilibrium of the model in Section 5 assuming additionally: risk neutrality (u(x) = x),

additive separability of the private and the common value component (v(q, t) = q + t),

and Assumption (SCC). We also restrict to the case γ = 0, this is to the case in which

the distribution of the insider’s private value coincides with the outsiders’ one. Our

equilibrium can be extended to the case γ 6= 0, however, the proofs become much longer

and more complex, mostly because we have to consider different cases to analyze the

partial differential equation in Equation (11).

To construct our equilibrium we shall use some auxiliary functions. Let

Ψ(b2, t2|ρ2, q2) ≡
(1 − ρ2)f(t2)

ρ2f̂(b2)

t2 + q2 − b2

b2 − (t2 + E[Q|TI + Q = b2])
,

where b2 ∈ [q + t, q + t], t2 ∈ [t, t], ρ2 ∈ (0, 1), and q2 ∈ [q, q]. The function Ψ is such

that the following condition is satisfied if b′2 = Ψ(b2, t2|ρ2, q2):

t2 +
ρ2f̂(b2)

ρ2f̂(b2) + (1 − ρ2)f(t2)/b′2
E[Q|TI + Q = b2]+

(1 − ρ2)f(t2)/b′2

ρ2f̂(b2) + (1 − ρ2)f(t2)/b′2
q2 = b2. (10)

This condition will assure that in our proposed equilibrium, the expected value of

the good for an outsider with type t2 conditional on winning at price b2 is equal to b2

in information sets with two bidders active. To understand why, note that the terms

in the left hand side and after t2 indicate the expected common value conditional on

the last bidder leaving the auction at price b2, given that the other outsiders use a bid

function that equals b2 and has slope b′2 at t2, given that the probability that the other

bidder still active is the insider is equal to ρ2 and given that the expected common

value conditional on the event that the other remaining bidder in the auction is not

the insider22 is equal to q2.

22Recall that the insider may not be active in a given information sets because either all the bidders

40



Let also,

ρu(t, b, b′, ρ) ≡
ρf(t)/b′

ρf(t)/b′ + ρf̂(b) + (1 − ρ)f(t)/b′
,

and,

qu(t, b, b′, q, ρ) ≡

ρf̂(b)

ρf̂(b) + (1 − ρ)f(t)/b′
E[Q|Q + TI = b] +

(1 − ρ)f(t)/b′

ρf̂(b) + (1 − ρ)f(t)/b′
q.

The function ρu will be used to update the probability that the insider is among

the active bidders when the game moves to a new information set because one bidder

has left the auction at a price b. Similarly, the function qu will be used to update the

expected common value conditional on the event that the insider is not among the

remaining bidders, when the game moves to a new information set because one bidder

has left the auction at a price b. To avoid long expressions, we shall refer to both

functions simply as ρu(.) and qu(.) when there is no risk of misunderstanding.

Finally, let t∗(q) be such that β(t∗(q)) = t∗(q)+ q, and b∗(q) = β(t∗(q)) = t∗(q)+ q

for any q ∈ (q, q), where recall that the function β was already defined in Section 4. We

shall assume for simplicity that the function t∗ is uniquely defined, and thus b∗(q).23

Thus, if t ∈ [t, t∗(q)), then β(t) < t + q, and otherwise β(t) ≥ t + q, see Figure 3.

Note that t + q and β(t) are, respectively, the price at which an outsider with type t

is indifferent between winning and losing if the last bidder in leaving the auction is an

outsider or an insider. Thus, depending on whether t > t∗(q) or t < t∗(q), an outsider

with type t has, respectively, more or less incentives to remain in the auction if there

is an insider than if there is not.

For any ρ3 ∈ (0, 1), q3 ∈ (q, q), and t4 ∈ [t, t∗(q0)] we define the following partial

differential equation:

(PDE) ≡
∂b2(t2, t3)

∂t2
= Ψ(b2(t2, t3), t2|ρ

u(.), qu(.)), (11)

in the domain {(t2, t3) ∈ [t4, t]
2 : t2 ≥ t3}, and with boundary conditions b2(t3, t3) =

b3(t3) and b2(t, t) = t + q, and where, stands for ρu(t3, b3(t3), b
′
3(t3), ρ3), and qu(.)

were outsiders or because one bidder was an insider but she has already left the auction.
23A sufficient condition is that the densities of f and g are log-concave.
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Figure 3: Functions β(t), t + q, t∗ and b∗.

for qu(t3, b3(t3), b
′
3(t3), q3, ρ3). Figure 4 displays the domain of the partial differential

equation and the boundary conditions.

The function b3(t3) will be used to define the equilibrium bid of an outsider with

type t3 when there are three bidders active, and the function b2(t2; t3), the bid of an

outsider with type t2 when there are two bidders active and where t3 is the outsider’s

type that corresponds in equilibrium to the price at which the last bidder quit. Equa-

tion (11) says that b2 as a function of t2 satisfies the condition (10) given the updated

values ρu and qu. The boundary conditions specify some kind of continuity in the

transition from bid function b3 to bid function b2, see also the comments immediately

before Proposition 10, and that b2 finishes at a level equal to the maximum possible

value of the insider, i.e. q + t.
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Figure 4: Domain and boundary conditions of (PDE).

In the next lines, we assume that there exists a pair of functions strictly increasing

a.e. in the first argument that are solution to (PDE). We shall refer to these functions

as b∗2(t2; t3|ρ3, q3, t4) and b∗3(t3|ρ3, q3, t4). We use these functions to define a strategy

that we later show it is in fact an equilibrium strategy of the hidden insider structure.

To simplify the exposition, we shall assume that the number of bidders is strictly

greater than three. We use two auxiliary state variables, ρi and qi, i = 2, 3, ..., n, n+1,

where n will refer to the number of active bidders. These two variables will carry

information inferred from the history that we use to define the strategy. Let ρn+1 ≡

ρ
(n−1)(1−ρ)+ρ and qn+1 ≡ E[Q].

We define our strategy for the case in which no bidder has left the auction yet as

the minimum of β(t) and t + qn+1. We next proceed recursively. We assume that the
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bid function has been defined for any information set with i + 1 bidders or more and

define the bid function for information sets with i bidders.

First, we consider the case of information sets in which the price at which the last

bidder quit, that we denote by bi+1, does not correspond to the bid of any outsider’s

type in the information set immediately before the one under consideration. In that

case, the strategy specifies a quitting price t+E[Q|Q+TI = bi+1] in all the remaining

information sets.

Finally, we consider the remaining information sets. Then, we denote by ti+1

the outsiders’ type that corresponds to the price at which the last bidder quit, bi+1,

and by b′i+1 the slope of the bid function in the information set before the current

one and evaluated at type ti+1. We also let ρi ≡ ρu(ti+1, bi+1, b
′
i+1, ρi) and qi ≡

qu(ti+1, bi+1, b
′
i+1, ρi+1, qi+1). Then, the bid function is equal to:

• min{β(t), t + qi}, if i > 3.

• b∗3(t|ρ3, q3, t4), if i = 3.

• b∗2(t; t3|ρ3, q3, t4), if i = 2.

We provide next an intuitive description of the proposed bid function. We start

with the bid function at information sets with more than three bidders active. In these

information sets we have some freedom to determine equilibrium bids. The reason is

that the auction does not finish there, and hence, the bids do not determine the price

directly. The only restriction is that the quitting prices are not too high, as otherwise,

it could rise the prices in information sets in which the price is finally set, this is, when

there are two bidders active, to too high levels. Our proposed bid function takes into

account this restriction.

The situation in information sets with three bidders active is similar up to one

point. The strategy must be continuous in the sense that if an outsider with type t

quits at p when three bidders are active, an outsider with type t must also quit at p in

the continuation game with two bidders active. This means that after one bidder quits

at p, there is no interval of prices with lower bound p in which the probability that
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an outsider quits is zero. This condition is included as a boundary condition of the

partial differential equation (PDE). Note that if this condition were not satisfied, and

the insider had a type in that interval, the final price in the auction would be equal to

the insider’s bid. In that case, it may be shown that the outsider that wins the auction

either gets strictly positive or strictly negative expected utility with generality. The

anticipation of these gains or losses may create outsiders’ incentives to deviate in the

information set with three bidders active.

Finally, the intuitive explanation of the strategy in information sets in which there

are only two bidders active and in information sets after a bid that does not correspond

to the outsider’s strategy is similar. In both cases, the bid function is such that the

outsider is indifferent between winning and losing at the price at which she quits,

given the information that can be derived from the observable history and under the

assumption that all the outsiders has followed the proposed strategy in the former

information sets. The explanation for this in information sets after a bid that does not

correspond to the outsider’s strategy is straightforward. In the other information sets,

this is true because because b∗2 satisfies the indifference condition (10), since it solves

the partial differential equation (PDE).

Proposition 10. Suppose that (PDE) has a solution that it is strictly increasing a.e.,

then the strategy defined above is an equilibrium of the hidden insider structure.

Proof. We compute the expected utility of winning of a given outsider of type t as-

suming that all the other bidders follow the proposed strategy. We distinguish two

possible histories in which our outsider may win the auction. In the first one, there is

an information set in which one bidder quits at a price, say p, that does not correspond

to any type of the outsiders according to the proposed strategy. Note that by definition

of our strategy this may only happen in information sets in which there are at least

three active bidders. In such histories, the bidder that left the auction at price p must

be the insider and hence, the expected value of the good for our outsider is equal to

t + E[Q|Q + TI = p]. Moreover, since there must be at least one other outsider in the

auction after the insider’s quit and our proposed strategies are strictly increasing, if

our outsider wins, the price must be equal to t2 + E[Q|Q + TI = p], where t2 denotes
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the highest type of the other outsiders. Consequently, our outsider finds profitable to

win the auction if and only if t ≥ t2. This is achieved with the proposed strategy.

Consider now histories in which all the prices observed in the auction belong to

the range of our bid function. Denote by {bj}j=2,...,n+1 the sequence of prices where bj

corresponds to the price at which a bidder quit in the information set with i bidders

active. Denote also by {tj}j=2,...,n+1 the types of the outsiders that corresponds to

the prices {bj}j=2,...,n+1 according to our proposed strategy. Let also {b′j}j=2,...,n+1

be the slope (with respect to the bidder’s type) of our bid function evaluated at the

corresponding type and information set. In this case, the expected value of the good

for an outsider of type t that wins the auction equals:

t +

(1 − ρ)n!
n+1∏

i=2
f(ti)/b′i · q +

n+1∑

i=2
ρ (n − 1)! f̂(bj)

n+1∏

i=2,i6=j

f(ti)/b′i · E[Q|Q + TI = bj ]

(1 − ρ)n!
n+1∏

i=2
f(ti)/b′i +

n+1∑

j=2
ρ (n − 1)! f̂(bj)

n+1∏

i=2,i6=j

f(ti)/b′i

The price that this bidder pays if she wins is equal to b2, that corresponds to the

bid of an outsider’s type t2 in an information set with only two bidders active. The

value of this bid can can be computed after some tedious substitution of the state

variables ρi and qi as:

t2 +

(1 − ρ)n
n+1∏

i=2
f(ti)/b′i · q +

n+1∑

j=2
ρ f̂(bj)

n+1∏

i=2,i6=j

f(ti)/b′i · E[Q|Q + TI = bj ]

(1 − ρ)n
n+1∏

i=2
f(ti)/b′i +

n+1∑

j=2
ρ f̂(bj)

n+1∏

i=2,i6=j

f(ti)/b′i

It can be shown by simple substraction and simplification of the two last equations

that our outsider finds profitable to win the auction if and only if t ≥ t2, and this is

exactly what the proposed strategy does. �
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