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COORDINATION THROUGH DE BRUIJN SEQUENCES 
 

Olivier Gossner and Penélope Hernández 
 
 
 

ABSTRACT 
 
 

Let µ be a rational distribution over a finite alphabet, and ( tχ ) be a n-periodic 
sequences which first n elements are drawn i.i.d. according to µ. We consider automata 
of bounded size that input 1tχ −  and output ty  at stage t. We prove the existence of a 
constant C such that, whenever lnm m Cn≥ , with probability close to 1 there exists an 
automaton of size m such that the empirical frequency of stages such that t ty χ=  is close 

to 1.   In particular, one can take 1
ln

1
p

C
p p

=
−

, where max ( )p θ µ θ∈Θ=  and min ( )p θ µ θ∈Θ= . 
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1 Introduction

A consequence of a Myhill-Nerode’s classical theorem on the theory of regular

languages (see [HMU01] for instance) is that the size of any automaton that

implements a sequence of least period n must be at least n. This result has

been used to measure the complexity of strategies in repeated games played

by finite automata e.g. by [AR88], [Ney97]. More generally, these games lead

to study the complexity of coordination between a periodic sequence (xt) and

an automaton that inputs xt−1 at stage t.

Neyman [Ney97] proves that, if x1, . . . , xn are drawn i.i.d. according to any

probability distribution µ over an alphabet Θ, whenever m ln m ≪ n, with

probability close to 1 there exist no automaton of size m that achieves non-

negligible correlation with the sequence x1, . . . xn, x1, . . .. This implies that in

a repeated zero-sum game, there exists a sequence of size n (and thus an

automaton of size n) that guarantees the value of the stage game against all

automata of size m of the opponent if m ln m ≪ n.

In this article we prove that if µ is rational, there exists a constant C such that,

whenever m ln m ≥ Cn, with probability close to 1 there exists an automaton

of size m that matches the sequence at almost every stage. In particular, one

can take C = p

1−p
ln 1

p
, where p = maxθ∈Θ µ(θ) and p = minθ∈Θ µ(θ). This

implies that the condition m ln m ≪ n in Neyman’s result is (almost) tight

when µ is rational.

In a previous article [GH03], we prove a similar result when µ is the counting

measure. For a given sequence, the construction of an automaton in [GH03]

relies on sequences for which the frequencies of all words y1, . . . , yℓ of length ℓ
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are the same (De Bruijn sequences). In the present work, we rely on generalized

De Bruijn sequences, in which the empirical frequency of a word y1, . . . , yℓ of

length ℓ is Πℓ
k=1µ(yk). The assumption that µ is rational is needed for the

existence of these sequences. The construction of the automaton depends on

a statistical condition on the n periodic sequence that we call regularity. We

prove that the probability of the set of such regular sequences goes to 1 as n

goes to infinity using large deviations properties. This approach simplifies the

computations in [GH03] that relies on counting arguments, and improves the

constant C when µ is uniform over a set X ( 1
|X|−1

ln |X| instead of e|X| ln |X|).

We present the model in Section 2, and state and prove the main result in

Section 3.

2 Model

For z ∈ R, we let ⌊z⌋ and ⌈z⌉ denote the integer part and the superior integer

part of z respectively (z−1 < ⌊z⌋ ≤ z and z ≤ ⌈z⌉ < z+1). The cardinality of

a finite set Z, is denoted |Z|. Let Θ be a finite alphabet, and let Θn represent

the set of n-periodic sequences of elements of Θ.

A (finite) automaton M ∈ FA(m) of size m with inputs and outputs in Θ

is a tuple M = <Q, q∗, f, g>, where Q s.t. |Q| = m is the finite set of states,

q∗ ∈ Q is the initial state, f : Q → Θ is the action function, and g : Q×Θ → Q

is the transition function.

An automaton M ∈ FA(m) and a sequence x = (xt)t ∈ ΘN induce a se-

quence of states and actions (q1, y1, q2, y2, . . .), where q1 = q∗, y1 = f(q∗),

and for t ≥ 2, qt = g(qt−1, xt−1), yt = f(qt). The corresponding sequence of
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actions (yt)t≥1 chosen by the automaton is denoted y(x,M). If xn ∈ Θn, then

(xt, yt(x
n,M))t is periodic of period at most mn after a finite number of stages.

We define the ratio of coincidences between xn ∈ Θn and M ∈ FA(m) is:

ρ(xn,M) = lim
T→∞

1

T
|{1 ≤ t ≤ T : yt(x

n,M) = xn
t }|

ρ(xn,M) is the average proportion of stages for which M predicts correctly

the sequence xn. Given xn, the best ratio of coincidences that an automaton

of size m can achieve with xn is ρm(xn) = maxM∈FA(m) ρ(xn,M).

3 Asymptotic properties

We are concerned with asymptotic properties of the distribution of ρm(xn)

when the first n elements of xn are drawn i.i.d. according to some rational

distribution µ in ∆(Θ). Let Φ be a common denominator of (pi)i∈Θ, and denote

p = maxi pi, p = mini pi. We assume wlog. p > 0. Pr represents the induced

probability on the sets Θn. Neyman [Ney97] proved the following:

Theorem 1 (Neyman 97) For a sequence (m(n))n of positive integers, if

limn→∞
m(n) ln m(n)

n
= 0 then:

∀ε > 0, lim
n→∞

Pr(ρm(xn) < p + ε) = 1

This result provides an asymptotic condition on m and n, namely m ln m
n

→ 0,

under which automata of size m cannot achieve coordination ratios larger than

p with probability close to 1. Our main result shows the existence of a constant

C such that if m ln m
n

is asymptotically larger than C, then automata of size

n can achieve coordination ratios arbitrarily close to 1 with a set of periodic
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sequences of probability close to 1.

Theorem 2 There exists a constant C such that for any sequence of positive

integers (m(n))m∈N with limn→∞
m(n) ln m(n)

n
> C,

∀ε, Pr(ρm(xn) > 1 − ε) −→ 1

In particular, one can take C = p

1−p
ln 1

p
.

To prove this, we define in Section 3.1 a subset of Θn of sequences verifying

a statistical regularity condition. We call those sequences regular. Then, in

Section 3.2, for each regular sequence xn, we construct an automaton in FA(m)

that achieves a large ratio of coincidences with xn. We estimate the probability

of regular sequences in Section 3.3, and conclude the proof in Section 3.4.

3.1 Regularity

In this section we define the statistical regularity condition that ensures a large

ratio of coincidences. Let x = xn = (x1, x2, . . .) ∈ Θn and ℓ ≤ n. We call word

an element of Θℓ. We identify x to its n first elements, thus making the abuse

of notation x ∈ Θn. For 1 ≤ j ≤
⌊

n
ℓ

⌋

, we write rj = (xℓ(j−1)+1, . . . , xℓj) and

r′ = (x⌊n

ℓ ⌋ℓ+1, . . . , xn−1, xn). This way, x can be expressed as the concatenation

of the words r1, . . . , r⌊n

ℓ ⌋
and of r′ ∈ Θn−ℓ⌊n

ℓ ⌋. Let x∗ be the concatenation of

r1, . . . , r⌊n

ℓ ⌋
. The number of times that a word r appears in x∗ is

S(x∗, r) =
∣

∣

∣

∣

{

0 ≤ j ≤
⌊

n

ℓ

⌋

: rj = r

}∣

∣

∣

∣

.

For α > 1, we define the set of (α, ℓ)-regular (or regular for short) sequences

Rℓ(n, α) as the subset of elements x of Θn such that for each word r, S(x∗, r) ≤
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αn
ℓ
Pr(r).

3.2 Construction of an automaton for regular sequences

Proposition 3 Let x ∈ Rℓ(n, α). With m = ⌈α p

1−p
n

ℓΦℓ ⌉Φ
ℓ + ℓ, ρm(x) ≥ 1− 1

ℓ
.

The proof of the proposition is constructive.

3.2.1 Proof of Proposition 3

We present the construction of an automaton M = <Q, q∗, f, g> ∈ FA(m)

that ensures a sufficient coincidence ratio with x ∈ Rℓ(n, α). First, we design

Q and f , second we define q∗ and g. Finally we check that M achieves the

desired ratio of coincidences with x.

3.2.1.1 Construction of the state space and action function The

state space and action function we design depend only on µ, α, n and ℓ, they

are independent of the particular element x of Rℓ(n, α). Our construction

relies on a sequence of elements of Θ such that the empirical frequencies of

each word coincides with its probability under Pr. To construct this sequence,

we first construct a sequence over an alphabet of size Φ of minimal length Φℓ

in which each subsequence of length ℓ appears once.

The empirical frequency of a word r in a sequence s ∈ ΘL is:

EF (s, r) =
1

L
|{1 ≤ j ≤ L : (sj, sj+1, . . . , sj+ℓ−1) = r}|

Lemma 4 There exists a sequence s ∈ ΘΦℓ such that EF (s, r) = Pr(r) for

every word r.
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Proof. Let Φ = {1, . . . , Φ}, and s̃ ∈ ΦΦℓ be a De Bruijn sequence of length Φℓ

over Φ (cf. for instance [vLW01], chapter 8, p. 56). The empirical frequency

EF (s̃, r̃) of each r̃ ∈ Φℓ is then 1
Φℓ .

Let π : Φ → Θ be such that for every i ∈ Θ, |π−1(i)| = piΦ, and let

s = (π(s̃t))t. The application from Φℓ to Θℓ canonically induced by π is also

denoted π. For r ∈ Θℓ, it is straight forward that EF (s, r) = Pr(r).

Let Q = Q1
⋃

Q2 with Q1 = {1, . . . , ⌈α n
ℓΦℓ

p

1−p
⌉} × {1, . . . , Φℓ} and Q2 =

{1, . . . , n − ⌊n
ℓ
⌋ℓ}.

We let (s1, . . . , sΦℓ) ∈ Φℓ be the first elements of a sequence as in Lemma 4,

and define f by f(q) = st if q = (k, t) ∈ Q1 and f(q) = x⌊n

ℓ
⌋ℓ+q if q ∈ Q2

3.2.1.2 Construction of the transition function and initial state

For q = (k, t) ∈ Q1 and c ∈ N we let q + c = (k, t + c mod Φℓ). Given a

word r ∈ Θℓ, let Cr be the set of r ∈ Θℓ such that ri = ri for 1 ≤ i < ℓ and

rℓ 6= rℓ. Notice that the cardinality of Cr equals |Θ| − 1.

The crucial element of the construction is the existence of a map between the

index of the words rt to Q, as stated by the following lemma.

Lemma 5 There exists an injective map β from {1, . . . ,
⌊

n
ℓ

⌋

} to Q1 such that

(f(β(t)), . . . , f(β(t) + ℓ)) ∈ Crt

Proof. Let T (r,Q1) = {q ∈ Q1, (f(q)), . . . , f(q + l)) = r} and T (r,Q1) =

∑

r∈Cr
|T (r,Q1)|. It is enough to prove that for every r, S(x∗, r) ≤ T (r,Q1).

On the one hand, S(x∗, r) ≤ αn
ℓ
Pr(r) since x is regular. On the other hand,

T (r,Q1) = ⌈α p

1−p
n

ℓΦℓ ⌉Φ
ℓ Pr(Cr) ≥ (α p

1−p
n

ℓΦℓ )Φ
ℓ Pr(r)1−p

p
. Hence the result.
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Let the initial state be q∗ = β(1). We first define the transition function when

M matches the sequence.

• For q ∈ Q1, g(q, f(q)) = q + 1

• For q ∈ Q2

· For 1 ≤ t < n − ⌊n
ℓ
⌋ℓ, g(t, f(t)) = t + 1

· g(n − ⌊n
ℓ
⌋ℓ, f(n − ⌊n

ℓ
⌋ℓ)) = q∗.

We now define g(q, a) for a 6= f(q).

• If q = β(t) + ℓ − 1 for some 1 ≤ t ≤
⌊

n
ℓ

⌋

, this t is then unique since β is

injective.

· If t <
⌊

n
ℓ

⌋

, let g(q, a) = β(t + 1) for all a 6= f(q).

· If t =
⌊

n
ℓ

⌋

6= n
ℓ
, let g(q, a) = 1 ∈ Q2 for all a 6= f(q).

· If t =
⌊

n
ℓ

⌋

= n
ℓ
, let g(q, a) = q∗ for all a 6= f(q).

• If there exists no t such that q = β(t) + ℓ − 1 we let g(q, a) when a 6= f(q)

arbitrary.

3.2.1.3 The induced sequence of actions and states We now check

that M has sufficient ratio of coincidences with x.

Lemma 6 ρ(x,M) ≥ 1 − 1
ℓ

Proof. Let (q∗, y1, q2, . . .) be the sequence of states and actions induced by

M and x. We prove by induction that for t = 0, . . . ,
⌊

n
l

⌋

, qℓt+1 = β(t + 1).

This property is verified for t = 0 since q∗ = β(r1). Assume it is true for

some t <
⌊

n
ℓ

⌋

. From the definition of β, the sequence of actions played by M

coincides with rt at stages ℓt + 1, . . . , ℓ(t + 1)− 1 and differs at stage ℓ(t + 1).

Hence the property.
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Furthermore, we have proved that (yℓt+1, . . . , y(ℓ+1)t) ∈ Crt
for those t. The se-

quence of actions and states from stage
⌊

n
ℓ

⌋

ℓ+1 to n is f(1), . . . , f(n − ⌊n
ℓ
⌋ℓ) =

r′, and at stage n+1, M reaches the state qn+1 = q∗, which implies that y(M,x)

is n-periodic.

The ratio of coincidences between x and M is then: ρ(x,M) =
n−⌊n

ℓ
⌋

n
≥ 1 − 1

ℓ

Since the number of states of M is not larger than ⌈α p

1−p
n

ℓΦℓ ⌉Φ
ℓ+ℓ, this proves

Proposition 3.

3.3 Probability of regular sequences

We estimate the probability of the set Rℓ(n, α) of regular sequences.

Lemma 7 For every α > 1, there exists C = C(α) such that for every ℓ, n:

Pr(Rℓ(n, α)) ≥ 1 − Θℓ exp{−C(α)
n

ℓ
pℓ}

Proof. For a given word r, S(x∗, r) is the sum of ⌊n
ℓ
⌋ independent indicator

random variables, and the expected number of occurrences of r is

ES(x∗, r) = ⌊
n

ℓ
⌋Pr(r).

From Azuma’s inequality (see e.g. [AS00]), there exists C = C(α) such that:

Pr(S(x∗, r) > α⌊
n

ℓ
⌋Pr(r)) ≤ exp{−C(α)⌊

n

ℓ
⌋Pr(r)} ≤ exp{−C(α)⌊

n

ℓ
⌋pℓ}

Summing over all possible values of r,

Pr(x 6∈ Rℓ(n, α)) ≤
∑

r∈Θℓ

Pr(S(x∗, r) > α⌊
n

ℓ
⌋P (r)) ≤ |Θ|ℓ exp{−C(α)⌊

n

ℓ
⌋pℓ}
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3.4 Proof of Theorem 2

Consider a sequence m(n) such that lim m(n) ln(m(n))
n

> p

1−p
ln 1

p
, and let α > 1

such that for n sufficiently large, m(n) ln(m(n))
n

> α p

1−p
ln 1

p
.

Let ℓ0(n) be the unique solution of the equation x3(1
p
)x = n and ℓ(n) = ⌈ℓ0(n)⌉.

We denote m(n) by m, and similarly for ℓ. The next lemma states that the

probability of regular sequences Rℓ(n, α) tends to 1 as n goes to infinity.

Lemma 8

lim
n→∞

Pr(Rℓ(n, α)) = 1

Proof. From Lemma 7, there exists C > 0 such that Pr(x 6∈ Rℓ(n, α)) <

|Θ|ℓ exp{−C⌊n
ℓ
⌋pℓ}. We compute the limit of ln Pr(x 6∈ Rℓ(n, α)).

lim
n→∞

ln(|Θ|ℓ exp{−C⌊
n

ℓ
⌋pℓ}) = lim

n→∞
ℓ ln |Θ| − C⌊

n

ℓ
⌋pℓ = −∞

The next lemma shows that the automaton constructed in Proposition 3 be-

longs to FA(m).

Lemma 9 For n large enough, m ≥ ⌈α p

1−p
n

ℓΦℓ ⌉Φ
ℓ + ℓ.

Proof. Let m′ = ⌈α p

1−p
n

ℓΦℓ ⌉Φ
ℓ + ℓ.

lim sup
m′ ln m′

n
≤ α

p

1 − p
ln

1

p
< lim

m ln m

n
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