

COORDINATION THROUGH DE BRUIJN SEQUENCES*

Olivier Gossner and Penélope Hernández**

WP-AD 2005-05

Corresponding author: O. Gossner. Paris-Jourdan Sciences Économiques, UMR CNRS - EHESS - ENPC - ENS. 48 boulevard Jourdan. 75014 Paris. Tel.: +33 4 43 13 63 80 / E-mail: Olivier.Gossner@enpc.fr.

Editor: Instituto Valenciano de Investigaciones Económicas, S.A. Primera Edición Febrero 2005 Depósito Legal: V-998-2005

IVIE working papers offer in advance the results of economic research under way in order to encourage a discussion process before sending them to scientific journals for their final publication.

^{*} P. Hernández thanks the financial support from the Spanish Ministry of Education under project SEJ 2004-02172/ECON and the Instituto Valenciano de Investigaciones Económicas (Ivie).

^{**} O. Gossner: Paris-Jourdan Sciences Économiques. P. Hernández: Universidad de Alicante. Dpto. Fundamentos del Análisis Económico.

COORDINATION THROUGH DE BRUIJN SEQUENCES

Olivier Gossner and Penélope Hernández

ABSTRACT

Let μ be a rational distribution over a finite alphabet, and (c_t) be a *n*-periodic sequences which first *n* elements are drawn i.i.d. according to μ . We consider automata of bounded size that input c_{t-1} and output y_t at stage *t*. We prove the existence of a constant *C* such that, whenever $m \ln m \ge Cn$, with probability close to 1 there exists an automaton of size *m* such that the empirical frequency of stages such that $y_t = c_t$ is close to 1. In particular, one can take $C = \frac{\overline{p}}{1-\overline{p}} \ln \frac{1}{p}$, where $\overline{p} = \max_{q \in \Theta} \mathbf{m}(q)$ and $\underline{p} = \min_{q \in \Theta} \mathbf{m}(q)$.

Key words: Coordination, complexity, De Bruijn sequences, automata

1 Introduction

A consequence of a Myhill-Nerode's classical theorem on the theory of regular languages (see [HMU01] for instance) is that the size of any automaton that implements a sequence of least period n must be at least n. This result has been used to measure the complexity of strategies in repeated games played by finite automata e.g. by [AR88], [Ney97]. More generally, these games lead to study the complexity of coordination between a periodic sequence (x_t) and an automaton that inputs x_{t-1} at stage t.

Neyman [Ney97] proves that, if x_1, \ldots, x_n are drawn i.i.d. according to any probability distribution μ over an alphabet Θ , whenever $m \ln m \ll n$, with probability close to 1 there exist no automaton of size m that achieves nonnegligible correlation with the sequence $x_1, \ldots, x_n, x_1, \ldots$. This implies that in a repeated zero-sum game, there exists a sequence of size n (and thus an automaton of size n) that guarantees the value of the stage game against all automata of size m of the opponent if $m \ln m \ll n$.

In this article we prove that if μ is rational, there exists a constant C such that, whenever $m \ln m \ge Cn$, with probability close to 1 there exists an automaton of size m that matches the sequence at almost every stage. In particular, one can take $C = \frac{\overline{p}}{1-\overline{p}} \ln \frac{1}{\underline{p}}$, where $\overline{p} = \max_{\theta \in \Theta} \mu(\theta)$ and $\underline{p} = \min_{\theta \in \Theta} \mu(\theta)$. This implies that the condition $m \ln m \ll n$ in Neyman's result is (almost) tight when μ is rational.

In a previous article [GH03], we prove a similar result when μ is the counting measure. For a given sequence, the construction of an automaton in [GH03] relies on sequences for which the frequencies of all words y_1, \ldots, y_ℓ of length ℓ are the same (De Bruijn sequences). In the present work, we rely on generalized De Bruijn sequences, in which the empirical frequency of a word y_1, \ldots, y_ℓ of length ℓ is $\Pi_{k=1}^\ell \mu(y_k)$. The assumption that μ is rational is needed for the existence of these sequences. The construction of the automaton depends on a statistical condition on the *n* periodic sequence that we call *regularity*. We prove that the probability of the set of such regular sequences goes to 1 as *n* goes to infinity using large deviations properties. This approach simplifies the computations in [GH03] that relies on counting arguments, and improves the constant *C* when μ is uniform over a set $X(\frac{1}{|X|-1}\ln |X|)$ instead of $e|X|\ln |X|)$.

We present the model in Section 2, and state and prove the main result in Section 3.

2 Model

For $z \in \mathbb{R}$, we let $\lfloor z \rfloor$ and $\lceil z \rceil$ denote the integer part and the superior integer part of z respectively $(z-1 < \lfloor z \rfloor \le z \text{ and } z \le \lceil z \rceil < z+1)$. The cardinality of a finite set Z, is denoted |Z|. Let Θ be a finite alphabet, and let Θ_n represent the set of *n*-periodic sequences of elements of Θ .

A *(finite)* automaton $M \in FA(m)$ of size m with inputs and outputs in Θ is a tuple $M = \langle Q, q^*, f, g \rangle$, where Q s.t. |Q| = m is the finite set of states, $q^* \in Q$ is the initial state, $f : Q \to \Theta$ is the action function, and $g : Q \times \Theta \to Q$ is the transition function.

An automaton $M \in FA(m)$ and a sequence $x = (x_t)_t \in \Theta^{\mathbb{N}}$ induce a sequence of states and actions $(q_1, y_1, q_2, y_2, \ldots)$, where $q_1 = q^*$, $y_1 = f(q^*)$, and for $t \ge 2$, $q_t = g(q_{t-1}, x_{t-1})$, $y_t = f(q_t)$. The corresponding sequence of actions $(y_t)_{t\geq 1}$ chosen by the automaton is denoted y(x, M). If $x^n \in \Theta_n$, then $(x_t, y_t(x^n, M))_t$ is periodic of period at most mn after a finite number of stages.

We define the ratio of coincidences between $x^n \in \Theta_n$ and $M \in FA(m)$ is:

$$\rho(x^n, M) = \lim_{T \to \infty} \frac{1}{T} |\{1 \le t \le T : y_t(x^n, M) = x_t^n\}|$$

 $\rho(x^n, M)$ is the average proportion of stages for which M predicts correctly the sequence x^n . Given x^n , the best ratio of coincidences that an automaton of size m can achieve with x^n is $\rho^m(x^n) = \max_{M \in FA(m)} \rho(x^n, M)$.

3 Asymptotic properties

We are concerned with asymptotic properties of the distribution of $\rho^m(x^n)$ when the first *n* elements of x^n are drawn i.i.d. according to some rational distribution μ in $\Delta(\Theta)$. Let Φ be a common denominator of $(p_i)_{i\in\Theta}$, and denote $\overline{p} = \max_i p_i, \ \underline{p} = \min_i p_i$. We assume wlog. $\underline{p} > 0$. Pr represents the induced probability on the sets Θ_n . Neyman [Ney97] proved the following:

Theorem 1 (Neyman 97) For a sequence $(m(n))_n$ of positive integers, if $\lim_{n\to\infty} \frac{m(n)\ln m(n)}{n} = 0$ then:

$$\forall \varepsilon > 0, \lim_{n \to \infty} \Pr(\rho^m(x^n) < \overline{p} + \varepsilon) = 1$$

This result provides an asymptotic condition on m and n, namely $\frac{m \ln m}{n} \to 0$, under which automata of size m cannot achieve coordination ratios larger than \overline{p} with probability close to 1. Our main result shows the existence of a constant C such that if $\frac{m \ln m}{n}$ is asymptotically larger than C, then automata of size n can achieve coordination ratios arbitrarily close to 1 with a set of periodic sequences of probability close to 1.

Theorem 2 There exists a constant C such that for any sequence of positive integers $(m(n))_{m \in \mathbb{N}}$ with $\lim_{n \to \infty} \frac{m(n) \ln m(n)}{n} > C$,

$$\forall \varepsilon, \Pr(\rho^m(x^n) > 1 - \varepsilon) \longrightarrow 1$$

In particular, one can take $C = \frac{\overline{p}}{1-\overline{p}} \ln \frac{1}{\underline{p}}$.

To prove this, we define in Section 3.1 a subset of Θ_n of sequences verifying a statistical regularity condition. We call those sequences *regular*. Then, in Section 3.2, for each regular sequence x^n , we construct an automaton in FA(m)that achieves a large ratio of coincidences with x^n . We estimate the probability of regular sequences in Section 3.3, and conclude the proof in Section 3.4.

3.1 Regularity

In this section we define the statistical regularity condition that ensures a large ratio of coincidences. Let $x = x^n = (x_1, x_2, ...) \in \Theta_n$ and $\ell \leq n$. We call word an element of Θ^{ℓ} . We identify x to its n first elements, thus making the abuse of notation $x \in \Theta^n$. For $1 \leq j \leq \lfloor \frac{n}{\ell} \rfloor$, we write $r_j = (x_{\ell(j-1)+1}, ..., x_{\ell j})$ and $r' = (x_{\lfloor \frac{n}{\ell} \rfloor \ell+1}, ..., x_{n-1}, x_n)$. This way, x can be expressed as the concatenation of the words $r_1, ..., r_{\lfloor \frac{n}{\ell} \rfloor}$ and of $r' \in \Theta^{n-\ell \lfloor \frac{n}{\ell} \rfloor}$. Let x^* be the concatenation of $r_1, ..., r_{\lfloor \frac{n}{\ell} \rfloor}$. The number of times that a word r appears in x^* is

$$S(x^*, r) = \left| \left\{ 0 \le j \le \left\lfloor \frac{n}{\ell} \right\rfloor : r_j = r \right\} \right|.$$

For $\alpha > 1$, we define the set of (α, ℓ) -regular (or regular for short) sequences $R_{\ell}(n, \alpha)$ as the subset of elements x of Θ_n such that for each word $r, S(x^*, r) \leq$

 $\alpha \frac{n}{\ell} \Pr(r).$

3.2 Construction of an automaton for regular sequences

Proposition 3 Let $x \in R_{\ell}(n, \alpha)$. With $m = \left\lceil \alpha \frac{\overline{p}}{1-\overline{p}} \frac{n}{\ell \Phi^{\ell}} \right\rceil \Phi^{\ell} + \ell, \ \rho^{m}(x) \ge 1 - \frac{1}{\ell}$.

The proof of the proposition is constructive.

3.2.1 Proof of Proposition 3

We present the construction of an automaton $M = \langle Q, q^*, f, g \rangle \in FA(m)$ that ensures a sufficient coincidence ratio with $x \in R_{\ell}(n, \alpha)$. First, we design Q and f, second we define q^* and g. Finally we check that M achieves the desired ratio of coincidences with x.

3.2.1.1 Construction of the state space and action function The state space and action function we design depend only on μ , α , n and ℓ , they are independent of the particular element x of $R_{\ell}(n, \alpha)$. Our construction relies on a sequence of elements of Θ such that the empirical frequencies of each word coincides with its probability under Pr. To construct this sequence, we first construct a sequence over an alphabet of size Φ of minimal length Φ^{ℓ} in which each subsequence of length ℓ appears once.

The empirical frequency of a word r in a sequence $s \in \Theta_L$ is:

$$EF(s,r) = \frac{1}{L} |\{1 \le j \le L : (s_j, s_{j+1}, \dots, s_{j+\ell-1}) = r\}|$$

Lemma 4 There exists a sequence $s \in \Theta_{\Phi^{\ell}}$ such that $EF(s,r) = \Pr(r)$ for every word r.

Proof. Let $\Phi = \{1, \ldots, \Phi\}$, and $\tilde{s} \in \Phi_{\Phi^{\ell}}$ be a De Bruijn sequence of length Φ^{ℓ} over Φ (cf. for instance [vLW01], chapter 8, p. 56). The empirical frequency $EF(\tilde{s}, \tilde{r})$ of each $\tilde{r} \in \Phi^{\ell}$ is then $\frac{1}{\Phi^{\ell}}$.

Let $\pi : \Phi \to \Theta$ be such that for every $i \in \Theta$, $|\pi^{-1}(i)| = p_i \Phi$, and let $s = (\pi(\tilde{s}_t))_t$. The application from Φ^ℓ to Θ^ℓ canonically induced by π is also denoted π . For $r \in \Theta^\ell$, it is straight forward that $EF(s, r) = \Pr(r)$.

Let $Q = Q_1 \cup Q_2$ with $Q_1 = \{1, \ldots, \lceil \alpha \frac{n}{\ell \Phi^\ell} \frac{\overline{p}}{1-\overline{p}} \rceil\} \times \{1, \ldots, \Phi^\ell\}$ and $Q_2 = \{1, \ldots, n - \lfloor \frac{n}{\ell} \rfloor \ell\}.$

We let $(s_1, \ldots, s_{\Phi^\ell}) \in \Phi^\ell$ be the first elements of a sequence as in Lemma 4, and define f by $f(q) = s_t$ if $q = (k, t) \in Q_1$ and $f(q) = x_{\lfloor \frac{n}{\ell} \rfloor \ell + q}$ if $q \in Q_2$

3.2.1.2 Construction of the transition function and initial state For $q = (k,t) \in Q_1$ and $c \in \mathbb{N}$ we let $q + c = (k,t + c \mod \Phi^{\ell})$. Given a word $r \in \Theta^{\ell}$, let $\overline{C_r}$ be the set of $\overline{r} \in \Theta^{\ell}$ such that $\overline{r_i} = r_i$ for $1 \le i < \ell$ and $\overline{r_{\ell}} \ne r_{\ell}$. Notice that the cardinality of $\overline{C_r}$ equals $|\Theta| - 1$.

The crucial element of the construction is the existence of a map between the index of the words r_t to Q, as stated by the following lemma.

Lemma 5 There exists an injective map β from $\{1, \ldots, \left|\frac{n}{\ell}\right|\}$ to Q_1 such that

$$(f(\beta(t)),\ldots,f(\beta(t)+\ell))\in\overline{C}_{r_t}$$

Proof. Let $T(\overline{r}, Q_1) = \{q \in Q_1, (f(q)), \dots, f(q+l)\} = \overline{r}\}$ and $\overline{T}(r, Q_1) = \sum_{\overline{r} \in \overline{C}_r} |T(r, Q_1)|$. It is enough to prove that for every $r, S(x^*, r) \leq \overline{T}(r, Q_1)$. On the one hand, $S(x^*, r) \leq \alpha \frac{n}{\ell} \Pr(r)$ since x is regular. On the other hand, $\overline{T}(r, Q_1) = \lceil \alpha \frac{\overline{p}}{1 - \overline{p} \ell \Phi^\ell} \rceil \Phi^\ell \Pr(\overline{C}_r) \geq (\alpha \frac{\overline{p}}{1 - \overline{p} \ell \Phi^\ell}) \Phi^\ell \Pr(r) \frac{1 - \overline{p}}{\overline{p}}$. Hence the result. Let the initial state be $q^* = \beta(1)$. We first define the transition function when M matches the sequence.

- For $q \in Q_1$, g(q, f(q)) = q + 1
- For $q \in Q_2$ • For $1 \le t < n - \lfloor \frac{n}{\ell} \rfloor \ell$, g(t, f(t)) = t + 1• $g(n - \lfloor \frac{n}{\ell} \rfloor \ell$, $f(n - \lfloor \frac{n}{\ell} \rfloor \ell)) = q^*$.

We now define g(q, a) for $a \neq f(q)$.

- If $q = \beta(t) + \ell 1$ for some $1 \le t \le \lfloor \frac{n}{\ell} \rfloor$, this t is then unique since β is injective.
- If there exists no t such that $q = \beta(t) + \ell 1$ we let g(q, a) when $a \neq f(q)$ arbitrary.

3.2.1.3 The induced sequence of actions and states We now check that M has sufficient ratio of coincidences with x.

Lemma 6 $\rho(x, M) \ge 1 - \frac{1}{\ell}$

Proof. Let $(q^*, y_1, q_2, ...)$ be the sequence of states and actions induced by M and x. We prove by induction that for $t = 0, ..., \lfloor \frac{n}{l} \rfloor$, $q_{\ell t+1} = \beta(t+1)$. This property is verified for t = 0 since $q^* = \beta(r_1)$. Assume it is true for some $t < \lfloor \frac{n}{\ell} \rfloor$. From the definition of β , the sequence of actions played by M coincides with r_t at stages $\ell t + 1, ..., \ell(t+1) - 1$ and differs at stage $\ell(t+1)$. Hence the property.

Furthermore, we have proved that $(y_{\ell t+1}, \ldots, y_{(\ell+1)t}) \in \overline{C}_{r_t}$ for those t. The sequence of actions and states from stage $\lfloor \frac{n}{\ell} \rfloor \ell + 1$ to n is $f(1), \ldots, f(n - \lfloor \frac{n}{\ell} \rfloor \ell) =$ r', and at stage n+1, M reaches the state $q_{n+1} = q^*$, which implies that y(M, x)is n-periodic.

The ratio of coincidences between x and M is then: $\rho(x, M) = \frac{n - \lfloor \frac{n}{\ell} \rfloor}{n} \ge 1 - \frac{1}{\ell}$

Since the number of states of M is not larger than $\left\lceil \alpha \frac{\overline{p}}{1-\overline{p}} \frac{n}{\ell \Phi^{\ell}} \right\rceil \Phi^{\ell} + \ell$, this proves Proposition 3.

3.3 Probability of regular sequences

We estimate the probability of the set $R_{\ell}(n, \alpha)$ of regular sequences.

Lemma 7 For every $\alpha > 1$, there exists $C = C(\alpha)$ such that for every ℓ, n :

$$\Pr(R_{\ell}(n,\alpha)) \ge 1 - \Theta^{\ell} \exp\{-C(\alpha)\frac{n}{\ell}\underline{p}^{\ell}\}$$

Proof. For a given word r, $S(x^*, r)$ is the sum of $\lfloor \frac{n}{\ell} \rfloor$ independent indicator random variables, and the expected number of occurrences of r is

$$\mathbf{E}S(x^*, r) = \lfloor \frac{n}{\ell} \rfloor \Pr(r).$$

From Azuma's inequality (see e.g. [AS00]), there exists $C = C(\alpha)$ such that:

$$\Pr(S(x^*, r) > \alpha \lfloor \frac{n}{\ell} \rfloor \Pr(r)) \le \exp\{-C(\alpha) \lfloor \frac{n}{\ell} \rfloor \Pr(r)\} \le \exp\{-C(\alpha) \lfloor \frac{n}{\ell} \rfloor \underline{p}^{\ell}\}$$

Summing over all possible values of r,

$$\Pr(x \notin R_{\ell}(n,\alpha)) \le \sum_{r \in \Theta^{\ell}} \Pr(S(x^*,r) > \alpha \lfloor \frac{n}{\ell} \rfloor P(r)) \le |\Theta|^{\ell} \exp\{-C(\alpha) \lfloor \frac{n}{\ell} \rfloor \underline{p}^{\ell}\}$$

3.4 Proof of Theorem 2

Consider a sequence m(n) such that $\lim \frac{m(n)\ln(m(n))}{n} > \frac{\overline{p}}{1-\overline{p}} \ln \frac{1}{\underline{p}}$, and let $\alpha > 1$ such that for n sufficiently large, $\frac{m(n)\ln(m(n))}{n} > \alpha \frac{\overline{p}}{1-\overline{p}} \ln \frac{1}{\underline{p}}$.

Let $\ell_0(n)$ be the unique solution of the equation $x^3(\frac{1}{\underline{p}})^x = n$ and $\ell(n) = \lceil \ell_0(n) \rceil$. We denote m(n) by m, and similarly for ℓ . The next lemma states that the probability of regular sequences $R_\ell(n, \alpha)$ tends to 1 as n goes to infinity.

Lemma 8

$$\lim_{n \to \infty} \Pr(R_{\ell}(n, \alpha)) = 1$$

Proof. From Lemma 7, there exists C > 0 such that $\Pr(x \notin R_{\ell}(n, \alpha)) < |\Theta|^{\ell} \exp\{-C\lfloor \frac{n}{\ell} \rfloor \underline{p}^{\ell}\}$. We compute the limit of $\ln \Pr(x \notin R_{\ell}(n, \alpha))$.

$$\lim_{n \to \infty} \ln(|\Theta|^{\ell} \exp\{-C\lfloor \frac{n}{\ell} \rfloor \underline{p}^{\ell}\}) = \lim_{n \to \infty} \ell \ln |\Theta| - C\lfloor \frac{n}{\ell} \rfloor \underline{p}^{\ell} = -\infty$$

The next lemma shows that the automaton constructed in Proposition 3 belongs to FA(m).

Lemma 9 For *n* large enough, $m \ge \lceil \alpha \frac{\overline{p}}{1-\overline{p}} \frac{n}{\ell \Phi^{\ell}} \rceil \Phi^{\ell} + \ell$.

Proof. Let $m' = \left\lceil \alpha \frac{\overline{p}}{1-\overline{p}} \frac{n}{\ell \Phi^{\ell}} \right\rceil \Phi^{\ell} + \ell.$

$$\limsup \frac{m' \ln m'}{n} \le \alpha \frac{\overline{p}}{1 - \overline{p}} \ln \frac{1}{p} < \lim \frac{m \ln m}{n}$$

-	10	
	τυ	

References

- [AR88] D. Abreu and A. Rubinstein. The structure of nash equilibrium in repeated games with finite automata. *Econometrica*, 56:1259–1281, 1988.
- [AS00] N. Alon and J. Spencer. The probabilistic method. Interscience Series in Discrete Mathematics and Optimization. John Wiley, New York, second edition, 2000.
- [GH03] O. Gossner and P. Hernández. On the complexity of coordination. Mathematics of Operations Research, 28:127–141, 2003.
- [HMU01] J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Amsterdam, second edition, 2001.
- [Ney97] A. Neyman. Cooperation, repetition, and automata. In S. Hart and A. Mas-Colell, editors, *Cooperation: Game-Theoretic Approaches*, volume 155 of NATO ASI Series F, pages 233–255. Springer-Verlag, 1997.
- [vLW01] J.H. van Lint and R.M. Wilson. A course in combinatorics. Cambridge University Press, Cambridge, second edition, 2001.