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CHOICE FUNCTIONS: RATIONALITY

RE-EXAMINED

Begoña Subiza and Josep E. Peris

WP-AD 99-27

A B S T R A C T

On analyzing the problem that arises whenever the set of maximal ele-

ments is large, and a selection is then required (see Peris and Subiza, 1998),

we realize that logical ways of selecting among maximals violate the clas-

sical notion and axioms of rationality. We arrive at the same conclusion if

we analyze solutions to the problem of choosing from a tournament (where

maximal elements do not necessarily exist). So, in our opinion the notion of

rationality must be discussed, not only in the traditional sense of external

conditions (Sen, 1993) but in terms of the internal information provided by

the binary relation.
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1 Introduction.

One of the most common models employed in economic and social sciences is

that of describing individual choices by means of a maximization problem:

the individual makes choices by selecting, from each feasible set of alter-

natives, those which maximize his own preference relation. There are two

di¤erent ways in which such a procedure may fail to be useful:

1. The set of maximal elements is too large, and a selection among this

set is required.

2. The set of maximal elements is empty.

Consider the following examples that illustrate such cases.

Example 1 An individual chooses according to the binary relation R de-

…ned on X = fa; b; c; d; eg by:
aPe; bPc; bPd; cPd

(the non-mentioned relationships being indi¤erences), but when more than

one maximal exists he selects those which he prefers over the highest number

of alternatives (see Peris & Subiza, 1998). Thus, for instance,

F (fa; b; c; eg) = fa; bg; F (fa; b; cg) = fbg:

Example 2 An individual chooses according to the binary relation R de-

…ned on X = fa; b; c; d; eg by:
aPb; aPd; aPe; bPc; cPa; cPd; cPe; dPe

(the non-mentioned relationships being indi¤erences), but when maximals

do not exist, he chooses the Copeland winners. Thus, for instance,

F (fa; b; c; d; eg) = fa; cg; F (fa; cg) = fcg:
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If we observe the above choice functions, and ask ourselves if they are

rational, in the sense that if a binary relation R¤ exists such that

F (A) =Maximals of R¤ in A for all A µ X;
the answer is no.

The rationality of a choice function is a familiar theme in social choice

theory and has been extensively studied. Basically, most of the results are

devoted to …nding conditions (which, in a sense, may be interpreted as

individual coherence of choice or, in Sen’s words, internal consistency of

choice (Sen, 1993)) that ensure the rationality of the choice function. Such

a notion, however, has been discussed from many di¤erent points of view

(see, for instance, Sen (1993) where this author argues ”against a priori

imposition of requirements of internal consistency of choice”). As Sen points

out, the reasons for violations of rationality are ”easily understandable when

the external context is spelled out”. In other words, the choice function

violates internal consistency due to some external conditions (good manners,

additional information about the menu, freedom of choice, ...) which are

independent from the real preferences.

In our context, however, those violations may be due to choosing by using

additional information from the binary relation, which is not a¤ected by

external conditions. The previous examples show how rationality conditions

are not ful…lled by reasonable choice functions which are not in‡uenced by

external contexts. So, as pointed out by Schwartz (1986), ”how reasonable is

rationality?”. In fact, we can consider the individuals in our examples to be,

in a certain sense, ”more than rational”, since they are able to distinguish,

among maximals, and select the ”better ones”, or to …nd the ”best elements”
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when the set of maximals is empty. It seems clear that rational individuals

should choose maximal elements, but what rationality, in the classical sense,

entails is that:

the individual chooses maximals, all maximals, and nothing but maximals.

In this paper, we are interested in de…ning weaker notions of rationality,

so that reasonable choice functions (as the ones de…ned in the previous

examples), which fail to be rational in the usual sense, may ful…ll them.

2 Preliminaries.

Throughout the paperX denotes the …nite set of all conceivable alternatives,

whereas P(X) represents the family of all non-empty subsets of X; each
A 2 P(X) is called an issue (or agenda) and R denotes a complete and

re‡exive binary relation de…ned on X. From R the two following relations

(the symmetric and asymmetric part, respectively) are de…ned as usual,

indi¤erence: xIy , xRy and yRx;

strict preference: xPy , xRy and not(yRx):

The transitive closure of the asymmetric part of a binary relation R is de-

noted by P1 and is de…ned by:

xP1y , 9 x1; x2; :::; xk¡1; xk 2 A such that x = x1Px2P:::Pxk¡1Pxk = y.
The set of maximal elements of a complete binary relation R on a subset

A 2 P(X) will be denoted by
M(A;R) = fx 2 A j xRy , for all y 2 Ag:

We will use the following types of binary relations. LetR be a binary relation

de…ned on X; it is said to be:
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¡ A preorder if xRyRz implies xRz; for all x; y; z 2 X.
¡ An interval-order if xPyRzPt implies xPt, for all x; y; z; t 2 X.
¡ A semiorder if it is an interval-order such that whenever xPyPz, for any
t then xPt or tPz; for all x; y; z; t 2 X:
¡ Quasi-transitive if xPyPz implies xPz; for all x; y; z 2 X.
¡ Acyclic if x1Px2P:::Pxk implies not(xkPx1); for all x1; x2; :::; xk 2 X:
A choice function is a functional relationship, F : P(X) ¡! P(X) such
that, for every A 2 P(X); F (A) is a non-empty subset of A; which represents
those outcomes chosen by the individual or society. The choice function F is

said to be rational, if there is a complete binary relation R such that for all

A 2 P(X); F (A) =M(A;R). It must be noted that, in our framework, this
condition implies that the binary relation R is acyclic. Moreover, if a choice

function F is rational, the binary relation which rationalizes it coincides

with the base relation RF de…ned as follows:

aRF b if and only if a 2 F (fa; bg) for all a; b 2 X;
so the notion of rationality can be rewritten as:

F (A) =M(A;RF ) 8 A µ X:
(This condition is also known in the literature as binariness (Deb, 1983), or

binary choice property (BICH) (Schwartz, 1986)).

Di¤erent axioms have been used in order to characterize rational choice

functions (see Moulin, 1985). The following one will be useful in our discus-

sion:

Sen: for all B 2 P(X) and all a 2 B :
a 2 F (B), fa 2 F (fa; bg); for all b 2 Bg:

A choice function is rational if and only if it satis…es Sen. The next axiom
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is a necessary condition for a choice function to be rational,

Cherno¤ : B µ B0 ) F (B0) \B µ F (B) for all B;B0 2 P(X):
The notion of rationality has been relaxed, in the literature, in di¤erent

ways. For instance, Deb (1983) introduced the notion of sub-rational choice

function F; if for some order R; M(A;R) µ F (A); for all A 2 P(X) (see
Moulin, 1985). In contrast to the classical notion of rationality, if a choice

function is sub-rational, the binary relation which provides this property

does not necessarily coincide with the base relation, although in this case

the base relation is acyclic and M(A;R) µ M(A;RF ): A condition which

characterizes sub-rationality is given by Deb (1983):

(Deb) for all B 2 P(X), there is x¤ 2 F (B) such that
x¤ 2 A µ B ) x¤ 2 F (A)

3 Reconsidering rationality 1: choosing amongmax-

imals.

We begin this section with a survey of some speci…c ways of choosing, among

the elements in M(X;R); the ”better ones” by using ”internal” additional

information obtained from the binary relation R.

If the preferences of an individual happens to be a preorder, then the

maximal elements in a feasible set are equivalent, in the sense that if x

and y are maximal elements, they are both simultaneously indi¤erent, or

preferred, to any other element. In such a case, no additional information

can be obtained from the binary relation in order to choose among the

maximal elements. This is not the case of more general kinds of binary
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relations, which, as pointed out by Luce (1956), represent the individual’s

behavior in a better way. In Luce (1956) one way of selecting among the

maximal elements of a binary relation R is presented. In order to de…ne this

selection, a previous result would be required.

De…nition 1 (Luce, 1956). Given the binary relation R de…ned on A, the

binary relation R¤is de…ned as follows: xR¤y , not(yP ¤x); where

xP ¤y ,

8>>>>><>>>>>:
xPy; or

9 z such that xPz; zIy; or
9 z such that zIx; zPy:

Theorem 1 (Luce, 1956) The binary relation R de…ned on A is a semiorder

if and only if R¤ is a preorder. Moreover, ; 6=M(A;R¤) µM(A;R):

De…nition 2 Let R be a complete and re‡exive binary relation de…ned on A.

Luce’s maximals are the maximal elements of R¤, LM(A;R) =M(A;R¤):

The problem with Luce’s selection, when R is a general preference rela-

tion (interval-orders, quasiorders or acyclic binary relations), is that such a

selection may be empty-valued. In order to propose a nonempty selection

of the set of maximal elements in those cases , in Peris and Subiza (1998)

two other ways of choosing among maximals are presented (undominated

maximals and strong maximals).
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De…nition 3 Let R be a complete, re‡exive and acyclic binary relation de-

…ned on A; and let a; b 2 A. It is said that a dominates b in A (aDAb),
if

for all x 2 A; bPx) aPx; bIx) aRx; and

there is z 2 A; such that faPz; zRbg or faIz; zPbg:
Then, the set of undominated maximals in A consists of

UM(A;R) = fx 2 A j xRy for all y 2 A; and for no z 2 A : zDAxg

It is obvious, from this de…nition, that undominated maximals are a

selection of the set of maximal elements. Moreover, if the binary relation

is an interval-order, the elements in UM(A;R) are equivalent, that is, if

x; y 2 UM(A;R) then xPz if and only if yPz; and xIz if and only if yIz;
for all z 2 A.

An alternative way of choosing among maximal elements, consists of

selecting those maximals which are preferred (direct or indirectly) to the

greatest number of alternatives.

De…nition 4 Let R a complete, re‡exive and acyclic binary relation de…ned

on A: To each alternative a in A we assign the number:

u(a;A) = #fx 2 A j aP1xg
The set of strong maximals of R on A consists of

SM(A;R) = fx 2 A j for no y 2 A : u(y;A) > u(x;A)g

Function u(x;A) in the above de…nition is a speci…c weak-utility function

representing the binary relation R; that is, satisfying that

xPy ) u(x;A) > u(y;A);
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and it is now obvious that the alternatives that maximize a weak-utility

function are maximal elements; strong maximals are therefore a selection of

the set of maximal elements.

Every strong maximal is undominated, so this is a more discriminating

selection. The next result summarizes the relationship between maximals,

Luce’s maximals, undominated maximals and strong maximal elements, de-

pending on the type of relation we consider.

Theorem 2 (Peris & Subiza, 1998). Let R be a complete and re‡exive

binary relation de…ned on the (…nite) set A. Then, if R is

a) acyclic, M(A;R) ¶ UM(A;R) ¶ SM(A;R) 6= ;
b) an interval-order, M(A;R) ¶ UM(A;R) = SM(A;R) 6= ;
c) a semiorder, M(A;R) ¶ LM(A;R) = UM(A;R) = SM(A;R) 6= ;
d) a preorder, M(A;R) = LM(A;R) = UM(A;R) = SM(A;R) 6= ;

De…nition 5 Let R be a complete and re‡exive binary relation de…ned on

the (…nite) set X. Then, it is possible to de…ne the following choice func-

tions:

a) If R is acyclic, the undominated choice function assigns for all A 2
P(X); the set UM(A;R)
b) If R is acyclic, the strong maximal choice function assigns for all

A 2 P(X); the set SM(A;R)
c) If R is a semiorder, Luce’s choice function assigns for all A 2 P(X);
the set LM(A;R)

As LM(A;R) = M(X;R¤), it is obvious that Luce’s choice function is

rational. Nevertheless, a choice function coming from an individual who
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is not only able to obtain the maximal elements, but also to di¤erentiate

among them by choosing either undominated or strong maximals, does not

satisfy the usual axioms of rationality, so it would be criticized for being non

rational, even non sub-rational. The following example shows this fact.

Example 3 Let X = fa; b; c; dg and the binary relation on X de…ned by:

aPc; bPd;

being indi¤erences the remainder pairwise relations. If we de…ne the choice

function

F (A) = UM(A;R) = SM(A;R); for all A 2 P(X);
we obtain:

F (fa; b; c; dg) = fa; bg; F (fa; b; cg) = fag; F (fa; b; dg) = fbg;
F (fa; c; dg) = fag; F (fb; c; dg) = fbg; F (fa; bg) = fa; bg;
F (fa; cg) = fag; F (fa; dg) = fa; dg; F (fb; cg) = fb; cg;
F (fb; dg) = fbg; F (fc; dg) = fc; dg; F (fxg) = fxg for all x,

which does not satisfy either Cherno¤ or Deb.

Our objective is, therefore, to propose a weaker notion of rationality,

that is adequate for considering individuals who can, in a logical way, select

some of their maximal elements. In order to do so, it seems natural to relax

the classical notion of rationality by asking for the existence of a complete

binary relation R such that for all A 2 P(X); F (A) µ M(A;R): It is clear
that this binary relation has to be acyclic, since the existence of maximal

elements in every feasible set is ensured by the non-emptiness of the choice

function. A closer look at the above generalization, will convince us that it

is void because every choice function ful…lls it (consider the binary relation
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that makes all the elements indi¤erent).

A possible approach, in order to generalize rationality in a non-trivial

way, would require that the condition F (A) µ M(A;R); apply to some

particular binary relation. In so doing, as we have already mentioned, if a

choice function F is rational, then the binary relation which rationalizes it

coincides with the base relation. We use this binary relation in the next

de…nition.

De…nition 6 A choice function F is called basically-rational (b-rational

in what follows) if for all A 2 P(X);
F (A) µM(A;RF ):

It is clear that rationality implies b-rationality. Moreover, as in the case

of rational choice functions, b-rationality implies that the base relation RF

is acyclic. The converse however is not true, as we show in the following

example.

Example 4 Let X = fa; b; cg; and the choice function de…ned by:
F (X) = fa; bg;F (fa; bg) = fag;F (fa; cg) = fag;
F (fb; cg) = fbg;F (fxg) = fxg for all x 2 X:

The base relation is acyclic (in fact, it is the order aPF bPF c) but F (X) is

not contained in M(X;RF ); so F is not b-rational.

The above example also shows that b-rationality is not a trivial con-

dition, in the sense that not all choice functions are b-rational. The idea

of this de…nition is to require that the individual be completely rational in
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pairwise comparisons; that is to say, when the feasible set has just two ele-

ments, the individual must choose both of them if and only if he considers

these elements to be ”equally good” for him.

In order to analyze how strong b-rationality is, some considerations can

be made. Given a choice function we can consider the (non-empty) family

of binary relations:

R(F ) = fR 2 R(X) j F (A) µM(A;R); for all A 2 P(X)g:
If there is a binary relation R¤ such that its maximal elements coincide withT
R2R(F )

M(A;R), such a relation will be the minimal one (with respect to

the set-inclusion of its maximal elements) in R(F ). There are some clear
cases in which such a relation exists: the most obvious example is that of a

rational choice function, where R¤ coincides with the base relation. In the

following Proposition we show that this relation always exists (and coincides

with the revealed preference relation).

Proposition 1 Let F : P(X) ! P(X) be a choice function. Then, there
exists a binary relation R¤ such that:

a) F (A) µM(A;R¤) for all A 2 P(X):
b) If for some binary relation R it is satis…ed that

F (A) µM(A;R) for all A 2 P(X);
then M(A;R¤) µM(A;R) for all A 2 P(X):
Moreover, F is b-rational if and only if R¤ = RF :

Proof. De…ne relation R¤ as follows (revealed preference relation):

x R¤ y , 9 B 2 P(X) such that x; y 2 B and x 2 F (B):
From this de…nition, it is clear that if a 2 F (A); then a R¤ x for all x 2 A;
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so a 2 M(A;R¤) and F (A) µ M(A;R¤): If R is any binary relation such

that F (A) µM(A;R); then a 2M(A;R¤) implies aR¤y for all y 2 A: Thus,
some By 2 P(X) will exist such that, a; y 2 By and a 2 F (By) µM(By; R);
which implies aRy for all y 2 A; so M(A;R¤) µM(A;R):

Finally, if R¤ = RF it is obvious that the choice function is b-rational.

Conversely, if F is b-rational,M(fx; yg; R¤) ¶ F (fx; yg) =M(fx; yg; RF ) ¶
M(fx; yg; R¤); so R¤ = RF :

From the above result, a question arises: can we presume that a choice

function is b-rational or, if not R¤ is the trivial relation (all alternatives

are indi¤erent)?. Example 2 shows that this is not the case, since F is not

b-rational and the binary relation R¤ is:

aI¤b; aP ¤c; bP ¤c:

We know that rational choice functions can be characterized in terms of

some coherence properties which involve the behavior of the choice function

when the set presented for choice expands or contracts. The following axiom

characterizes the b-rationality of a choice function:

Axiom 1 (A1): for all B 2 P(X) and all a 2 B :
a 2 F (B)) fa 2 F (fa; bg); for all b 2 Bg:

One can readily see that condition (A1), also called Inverse Condorcet

Property in the literature, is part of Sen’s property, so that it is a necessary

condition (though not su¢cient) for rational choice functions. This condition

can be also interpreted as a weak Cherno¤ condition, applying only to binary

subsets. As mentioned in Deb (1983), condition (A1) has a simple intuitive

interpretation: ”if x is picked in some set B it should never be rejected in

14



pairwise choice for all pairs which are subsets of B": The elemental proof of

the characterization result is omitted.

Theorem 3 A choice function is b-rational i¤ it satis…es (A1).

Sub-rationality, as we have already mentioned, requires that a choice

function contains a rational selection; the idea behind this notion (or a pos-

sible interpretation of it) is that the individual chooses some non-maximal

alternatives due, for instance, to some lack of perception (as in the famous

co¤ee and sugar example, Luce 1956). Our analysis has the converse intu-

ition: it may be the case that the agent knows his maximal elements per-

fectly, and moreover, chooses among them in a speci…c way. The following

example then, shows that sub-rationality and b-rationality are independent

conditions.

Example 5 Let X = fa; b; cg and the choice function de…ned by:
F (fxg) = fxg; x 2 X; F (fa; bg) = a; F (fa; cg) = a;
F (fb; cg) = b; F (fa; b; cg) = fa; b; cg:

It is sub-rational, but it does not satisfy (A1).

Conversely, consider the choice function F de…ned on X = fa; b; c; dg by:
F (fa; b; c; dg) = fbg;F (fa; b; cg) = fag;F (fa; b; dg) = fag;
F (fa; c; dg) = fag;F (fb; c; dg) = fbg;F (fa; bg) = fa; bg;
F (fa; cg) = fag;F (fa; dg) = fag;F (fb; cg) = fbg;
F (fb; dg) = fbg;F (fc; d)g) = fcg;F (fxg) = fxg; for all x:

This choice function is not sub-rational, yet it is easy to observe that (A1)

holds.
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When analyzing rationality, several additional conditions can be found

in the literature that provide more information about the binary relation

that rationalizes the choice function. For instance, the Arrow axiom char-

acterizes rationality by means of a preorder, whereas Aizerman, Cherno¤

and Expansion axioms characterize rationality by means of a quasitransi-

tive relation (see, for instance, Moulin (1985)). It is possible to analyze

conditions in order to ensure such properties of the base relation in the case

of b-rationality. The Aizerman axiom, and a weak modi…cation of the Ar-

row axiom, are su¢cient to imply, respectively, the quasitransitivity and

transitivity of the base relation.

Aizerman: for all A;B 2 P(X); F (B) µ A µ B ) F (A) µ F (B):

Axiom 2 (A2): for all a; b; c 2 X; and for all fx; yg ½ fa; b; cg;
F (fa; b; cg) \ fx; yg 6= ; ) F (fx; yg) = F (fa; b; cg) \ fx; yg:

Theorem 4 Let F : P(X)! P(X) be a choice function satisfying (A1).
a) If F satis…es Aizerman, then F is quasitransitive b-rational (RF is qua-

sitransitive).

b) If F satis…es (A2), then F is transitive b-rational (RF is transitive).

Proof. We know that (A1) implies b-rationality. In order to prove the

quasitransitivity in a), consider x; y; z 2 X such that xPFy; yPF z, that is,

F (fx; yg) = fxg; F (fy; zg) = fyg:
(A1) implies that the only possibility for F (fx; y; zg) is,

F (fx; y; zg) = fxg;
and then Aizerman implies F (fx; zg) = fxg; that is xPF z:
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The proof of b) runs parallel to the one in Moulin (1985), Theorem 3,

and it is omitted.

The following example shows a choice function satisfying (A1), (A2) and

Aizerman, which is not rational in the classical sense.

Example 6 Consider the choice function F de…ned on X = fa; b; c; dg as
follows:

F (X) = fa; b; cg; F (A) = A for all A 2 P(X); A 6= X:
It is clear that F satis…es the axioms in Theorem 4, but it is not rational,

since it does not satisfy Sen’s axiom.

In the following result, we prove that the undominated and the strong

maximal choice functions satisfy b-rationality.

Proposition 2 1) The undominated choice function is b-rational.

2) The strong maximal choice function is b-rational.

Proof. 1) Let R be a binary relation, and consider the choice function

de…ned by:

F (A) = UM(A;R) µM(A;R) for all A 2 P(X):
If we prove that R coincides with RF , then the choice function is b-rational.

Let a; b 2 X such that aPF b; this implies F (fa; bg) = fag; and therefore
UM(fa; bg; R) = fag; that is aPb: The converse is also true, so that we have
aPF b if and only if aPb:

2) Analogous to part 1).

The following example shows that there are b-rational choice functions

that cannot be expressed either as the undominated maximals, or as the

strong maximals of the base relation.
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Example 7 Consider the choice function F de…ned in X = fa; b; c; dg as:
F (fxg) = fxg; for all x 2 X; F (X) = fcg; F (fa; b; cg) = fag;
F (fa; b; dg) = fag; F (fa; c; dg) = fag; F (fb; c; dg) = fcg;
F (fa; bg) = fag; F (fa; cg) = fa; cg; F (fa; dg) = fag;
F (fb; cg = fcg; F (fb; dg) = fbg; F (fc; dg) = fcg

Is is obvious that F (A) µ M(A;RF ); so the choice function is b-rational.

Nevertheless, F (X) 6= UM(X;RF ) = SM(X;RF ) = fa; cg.

4 Reconsidering rationality 2: there are not max-

imal elements.

So far, we have tried to extend the notion of rationality by looking for a

binary relation R in such a way that the choice function is a subset of the

set of maximal elements of R. This fact implies that such a binary relation is

acyclic, and there are well-known choice functions de…ned for more general

binary relations This is the case, for instance, that of the solutions to the

problem of choosing from tournaments: complete and assymetric binary

relations P , where aPb is interpreted as ”alternative a beats alternative

b”. This kind of binary relation arises in many di¤erent models: sports

competitions, biometric and psychometric models, collective choice,... (see

Moulin, 1986).

An important approach to discussing the notion of rationality may be

found in Schwartz (1986). He argues that if the choice function comes from

the aggregation of several individual preferences (social choice functions),

”the impossibility theorems show [rationality] to be unreasonable as a gen-
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eral assumption”. This fact gives sense to the analysis of the problem of

choosing from binary relations which may have no maximal elements and,

for instance, with this aim Schwartz (1986) introduces two choice functions,

namely GETCHA and GOCHA. We now introduce these solutions.

De…nition 7 Given a binary relation R de…ned on X; and given A 2 P(X);
a subset B of A is said to be dominant in A; if B is nonempty and xPy for

every x 2 B and every y 2 A¡B: Moreover, B is a minimum dominant

subset of A if B is dominant and no proper subset of B is dominant.

Schwartz (1986) proves that if P is an asymmetric binary relation then

every set A has a unique minimum dominant subset, so we have the following

de…nition.

De…nition 8 Given a binary relation R the GETCHA choice function is

given by: for all A 2 P(X);
Ge(A) = minimum dominant subset of A:

De…nition 9 Given a binary relation R de…ned on X; and given A 2 P(X);
a subset B of A is said to be undominated in A; if B is nonempty and

not(yPx) for every x 2 B and every y 2 A¡B: Moreover, B is aminimum
undominated subset of A if B is undominated and no proper subset of B

is undominated.

Unlike the dominant sets, there is not single minimum undominated

subset, so the following choice function is de…ned in terms of the union of

minimum undominated subsets.
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De…nition 10 Given a binary relation R the GOCHA choice function is

de…ned by: for all A 2 P(X);
Go(A) = the union of minimum undominated subsets of A:

Another important solution function for choosing the ”best” elements

whenever maximals do not exist, is given by the notion of uncovered set

(introduced by Miller (1977) and Fishburn (1977) for asymmetric binary

relations, and extended for general binary relations in Peris and Subiza

(1999)). Formally,

De…nition 11 Let R be a complete and re‡exive binary relation de…ned on

A; and let a; b 2 A. It is said that a covers b in A (aCAb), if
aPb; and

for all x 2 A; bPx) aPx; bIx) aRx:

De…nition 12 Given a binary relation R the Uncovered choice function

is de…ned by:

UC(A;R) = fx 2 A j for no y 2 A : yCAxg:

Apart of the above mentioned choice functions, other ways of choosing

in non acyclic binary relations have been introduced in the literature. We

must mention the important notion of minimal covering (Dutta 1988; also

extended for general binary relations in Peris and Subiza (1999)), as well as

the bipartisan set (La¤ond, Laslier and Le Breton, 1995), the essential set

(Dutta and Laslier (1999)), and the Copeland set (Copeland, 1951, Henriet,

1985), among others.
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None of these choice functions satisfy the classical notion of rationality.

In order to extend such a notion to the context we are now analyzing, where

maximal elements may or may not exist, it must be mentioned that it seems

natural to assume that maximals, provided they exist, must be selected

(Condorcet consistency). All the above mentioned solution functions satisfy

Condorcet consistency and we can therefore de…ne an extension of the notion

of rationality in an opposite direction as in the previous section: by looking

for a complete binary relation R such that, for all A 2 P(X);
F (A) ¶M(A;R):

The idea is to ask for the same condition as in Deb (1983), without imposing

acyclicity on the binary relation. It must be noted, however, that every

choice function satis…es this condition: it is su¢cient to de…ne the binary

relation P as follows:

xPy for all x; y 2 X;x 6= y:
Since the set of maximal elements in every subset with at least two elements

is empty, the condition is obviously ful…lled.

By following a parallel analysis as in the previous section, we ask that

the base relation be the one which ful…lls this condition.

De…nition 13 A choice function F is called basically-sub-rational (bs-

rational in what follows) if for all A µ X;
F (A) ¶M(A;RF ):

The following axiom characterizes bs-rationality (the elemental proof of

the result is omitted).
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Axiom 3 (A3): for all B µ X and all a 2 B :
fa 2 F (fa; bg); for all b 2 Bg ) a 2 F (B):

Theorem 5 A choice function is bs-rational i¤ it satis…es (A3).

Note that this axiom, known in the literature as Direct Condorcet Prop-

erty, is the other part of Sen’s axiom (the …rst half is axiom (A1)). This is

not surprising, since b-rationality plus bs-rationality coincide with the clas-

sical notion of rational choice functions. The next result, taken from Deb

(1983), shows how asking for any additional property on the base relation,

gives rise to the notion of sub-rationality.

Theorem 6 (Deb, 1983). A choice function F : P(X) ! P(X) is bs-
rational with RF being acyclic i¤ F satis…es Deb axiom.

In the following result, we prove that the usual solution concepts we have

introduced in this section de…ne choice functions which are bs-rational (we

only prove it for the GETCHA, GOCHA and Uncovered choice functions,

although the result is also true for the minimal covering and the essential

set).

Proposition 3 1) The GETCHA choice function is bs-rational.

2) The GOCHA choice function is bs-rational.

3) The Uncovered choice function is bs-rational.

Proof. It is easy to observe that, in all three cases, the base relation RF

coincides with the binary relation R which de…nes the choice functions.
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1) It is clear that M(A;RF ) is contained in every dominant subset of A;

since there is not x 2 A such that xPFa for a 2M(A;RF ): So M(A;RF ) is
contained in the minimum dominant subset.

2) If a 2 M(A;RF ); then it is obvious that fag is a minimum undom-

inated subset, and M(A;RF ) is contained in the union of the minimum

undominated subsets.

3) Since a maximal element is not covered by any other, M(A;RF ) is

contained in the uncovered subset.

23



REFERENCES

1. Copeland, A.H.: 1951, ”A Reasonable Social Welfare Function”. Mimeo.

2. Deb, R.: 1983, ”Binariness and Rational Choice”. Mathematical So-

cial Sciences, 5, 97-106.

3. Dutta, B.: 1988, ”Covering Sets and a New Condorcet Choice Corre-

spondence”. Journal of Economic Theory, 44, 63-80.

4. Dutta, B. and Laslier, J.F.: 1999, ”Comparison Functions and Choice

Correspondences”. Mimeo.

5. Fishburn, P.C.: 1977, ”Condorcet Social Choice Functions”. SIAM

Journal of Applied Mathematics, 33, 469-489.

6. Henriet, D.: 1985, ”The Copeland Choice Functions: an Axiomatic

Characterization”. Social Choice and Welfare, 2, 49-63.

7. La¤ond, G., Laslier, J.F. and Le Breton, M.: 1993, ”The Bipartisan

Set of a Tournament Game”. Games and Economic Behavior, 5, 182-

201.

8. Luce, R.: 1956, ”Semiorders and a Theory of Utility Discrimination”.

Econometrica, 24, 178-191.

9. Miller, N.R.: 1977, ”Graph Theoretical Approaches to the Theory of

Voting”. American Journal of Political Sciences, 21, 769-803.

10. Moulin, H.: 1985, ”Choice Functions Over a Finite Set: A Summary”.

Social Choice and Welfare, 2, 147-160.

24



11. Moulin, H.: 1986, ”Choosing from a Tournament”. Social Choice and

Welfare, 3, 271-291.

12. Peris, J.E. and Subiza, B.: 1998, ”Choosing among Maximals”. A

Discusión, w.p. Universitat d’Alacant.

13. Peris, J.E. and Subiza,B,: 1999, ”Condorcet Choice Correspondences

for Weak Tournaments”. Social Choice and Welfare, 16, 217-231.

14. Schwartz, T.: 1986, The Logic of Collective Choice, Columbia U. Press.

15. Sen, A.K.: 1993, ”Internal Consistency of Choice”. Econometrica, 61,

No. 3, 495-521.

25


