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CAPITAL SKILL COMPLEMENTARITY?
EVIDENCE FROM A PANEL OF COUNTRIES

John Duffy, Chris Papageorgiou and Fidel Pérez-Sebastián

ABSTRACT

Since Griliches (1969), researchers have been intrigued by the idea that physical capital and
skilled labor are relatively more complementary than physical capital and unskilled labor. This
capital—skill complementarity hypothesis has received renewed attention recently, as researchers
have suggested that this phenomenon might account for rising wage inequality between skilled
and unskilled workers in several developed countries. In this paper we consider the cross—country
evidence for capital—skill complementarity using a time—series, cross—section panel of 73 developed
and less developed countries over a 25 year period. In particular, we focus on three empirical
issues. First, what is the best specification of the aggregate production technology to address the
capital—skill complementarity hypothesis. Second, how should we measure skilled labor? Finally, is
there any cross—country evidence in support of the capital—skill complementarity hypothesis? Our
main finding is that we are unable to reject the null hypothesis of no capital—skill complementarity
using our panel data set.

KEYWORDS: Input Complementarities, Production Function Estimation

JEL Classification Numbers: O40, O47.
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1 Introduction

Over 30 years ago, Griliches (1969) provided evidence from U.S. manufacturing data suggesting

that capital and skilled labor are relatively more complementary as inputs than are capital and

unskilled labor. Griliches referred to this finding as the “capital—skill complementarity” hypothesis.

Griliches’ hypothesis has received renewed attention lately, as the U.S. and other developed nations

have invested heavily in “skill—biased” information technology and this development appears to

have coincided with a rise in the wages earned by skilled workers relative to the wages of unskilled

workers. Indeed, belief in the existence of capital—skill complementarity is so strong that some

researchers have suggested modifying the standard neoclassical production technology to account

for this phenomenon in addressing questions of economic growth, trade and inequality (see, e.g.

Stokey (1996), and Krusell et al. (2000)).

Goldin and Katz (1998) have recently reminded us that physical capital and skilled labor have

not always been viewed as relative complements. For example, they note that in an earlier era, the

transformation from skilled artisan shops to factories involved the substitution of physical capital

and/or unskilled labor for highly skilled labor — precisely the opposite of what is hypothesized to

be happening today. Goldin and Katz’s findings suggest that capital—skill complementarities, to

the extent they exist, may only be transitory phenomena that change with changes in production

processes. As countries progress through various stages of development, skilled labor may change

from being relatively more substitutable with capital and unskilled labor to being highly comple-

mentary to these two inputs. It therefore seems important to consider the evidence for capital—skill

complementarity over long periods of time and across countries at different stages of development.

The aim of this paper is to conduct such an exercise. In particular we examine the evidence for

capital—skill complementarity using a panel data set of 73 countries over the period 1965—1990.

Not surprisingly, since Griliches (1969), the capital—skill complementarity hypothesis has at-

tracted the attention of many researchers who have mainly used cross—sectional manufacturing

data for a single (typically) developed country to test this hypothesis. Hamermesh (1993) assesses

the findings from most of these studies and concludes that there “may be” capital—skill comple-

mentarity. However, he cautions that “many of the studies that disaggregate the work force by

demographic group exclude capital as a productive input due to the difficulty of generating satis-

factory data on capital stocks in the cross sections examined” (Hamermesh (1993) p. 113). For
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example, in the original Griliches (1969) study, the assumption of perfectly competitive markets

allows gross rates of return to proxy for the marginal product of capital and capture variations in

the stock of capital. By contrast, in this paper, we make use of the Penn World Tables—Version

5.6 dataset on investment rates across countries to construct physical capital stocks. We examine

the capital—skill complementarity hypothesis directly, without resorting to assumptions of perfectly

competitive markets, by estimating the parameters of various different specifications of an aggre-

gate production function.1 While the competitive markets assumption may seem reasonable for

developed countries, it may be less reasonable for developing countries where factors may be less

mobile and markets less complete.

Hamermesh (1993) also notes the difficulties that earlier studies had in using occupational

data to differentiate between skilled and unskilled workers. In this paper, we follow the tradition

in the macro—growth literature and differentiate labor according to educational attainment levels

using the recent Barro and Lee (2000) dataset. In particular, we consider four alternative proxies

for skilled labor ranging from workers possessing some secondary education to workers who have

completed post secondary education; for each proxy, the remainder of the labor force is regarded as

unskilled. We also examine what happens when we augment our labor data with data on returns to

schooling (earnings) in an effort to account for disparities in efficiency units across workers within

the class of workers regarded as skilled or unskilled. Our analysis of several different classifications

and measures of skilled and unskilled labor is another novel feature of this study; in prior studies

involving skilled and unskilled labor, a single educational threshold has been chosen to divide

workers into skilled and unskilled classes without much consideration being given to the empirical

relevance of the threshold choice.

International examinations of the capital—skill complementarity hypothesis have been conducted

by Fallon and Layard (1975), Berman et al. (1998) and Flug and Hercowitz (2000). Our approach

is most closely related to the Fallon and Layard (1975) study; the Berman et al. and Flug and Her-

cowitz studies do not employ aggregate production functions to test capital—skill complementarity

across countries. Fallon and Layard used data pieced together for 9 developed and 13 less devel-

oped countries for a single year, 1963, to estimate reduced form equations derived from two—level

CES production functions that allowed for there to be differences in the elasticity of substitution

1The methodology used in this paper follows Duffy and Papageorgiou (2000) who investigate a general two—factor
CES aggregate specification in which output is generated using physical capital and labor or human capital adjusted
labor serving as inputs.
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between capital and skilled labor and the elasticity of substitution between capital and unskilled

labor. At the economy—wide level, they find “mild” (though statistically insignificant) evidence

in favor of the capital—skill complementarity hypothesis. In this paper, we also make use of the

two—level CES production function specification that Fallon and Layard advocate. However, since

we use nonlinear estimation methods that were not feasible at the time of the Fallon and Layard

study, we do not need to follow Fallon and Layard further in assuming perfectly competitive mar-

kets so that factor price data (reflecting marginal products under perfect competition) can be used

to estimate linear reduced form equations. Furthermore, we use data for many more countries, 73,

and there is also a time dimension to our panel dataset that was missing from Fallon and Layard’s

study. Specifically, for each of the 73 countries, we have 6 annual observations, spaced five years

apart: 1965,1970,...,1990 (a total of 438 observations). Finally, we report the results of Monte Carlo

experiments that demonstrate the accuracy of the nonlinear estimation algorithm that we employ

for small samples sizes comparable to those we examine.

Our analysis thus allows for a clearer and more convincing assessment of whether the capital—

skill complementarity hypothesis is common to many countries over some length of time. If it is,

then we may profit from modifying our specifications of the aggregate production technology to

account for capital—skill complementarity. On the other hand, if the capital—skill complementarity

hypothesis is not a robust phenomenon then it is not clear that this hypothesis is important to

understanding economic growth patterns across countries, at least at the aggregate level that we

examine. In addition, our findings may serve to stimulate alternative explanations for rising wage

and income inequality that stress other factors, for example institutional changes or government

interventions that may (or may not) be country—specific.

2 Examining The Case for Capital Skill Complementarity using
Aggregate Production Functions

The capital—skill complementarity hypothesis states that physical capital is more complementary

to skilled labor than to unskilled labor. More formally, suppose aggregate output, Y , is given by a

three—factor production technology Y = F (K,S,N), where K denotes the physical capital stock,

S denotes the quantity of skilled labor and N denotes the quantity of unskilled labor. Denote by

σi,j the elasticity of substitution (ES) between inputs i and j.
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Capital—skill complementarity holds if σK,N > σK,S ⇔ ∂
∂K

FS
FN

> 0. To show that this is true

we use the following definitions of the elasticity of substitution:

σK,N = ElRK,N (K/N) =
RK,N
K/N

∂(K/N)

∂(RK,N )
,

σK,S = ElRK,S (K/S) =
RK,S
K/S

∂(K/S)

∂(RK,S)
,

where Elx(z) denotes the elasticity of z with respect to x (the percentage change in z given a

percentage change in x), Ri,j =
Fj
Fi
is the Marginal Rate of Technical Substitution (MRTS) between

inputs i and j. Starting from the inequality σK,N > σK,S and manipulating the ES definitions we

obtain that
∂(FS/FK)

∂(K/S)

1

SFS
>

∂(FN/FK)

∂(K/N)

1

NFN
.

Finally, using the chain rule one can show that
FS,K
FS

>
FN,K
FN

, where Fi,j is the cross—partial deriv-

ative. It is then easily shown that

FS,K
FS

>
FN,K
FN

⇔ ∂

∂K

FS
FN

> 0.

In order to assess the extent of capital skill complementarity, we must work with a functional

form that is general enough to accommodate different elasticities of substitution. For example, the

relatively general CES form for F (K,S,N),

Y = A [aKρ + bSρ + cNρ]
1
ρ ,

where a+b+c = 1 and ρ ≤ 1, implies that the elasticity of substitution between any two inputs, σi,j
for i, j ∈ {K,S,N}, is constant and equal to 1

1−ρ . To allow for different elasticities of substitution

between any two inputs requires a two—level CES form á la Fallon and Layard (1975). The two

most interesting versions of this two—level CES form for the purposes of testing the capital—skill

complementarity hypothesis are

Y = A a[bKθ + (1− b)Sθ]ρ/θ + (1− a)Nρ
1/ρ
, σK,S =

1

1− θ
,σK,N = σN,S =

1

1− ρ
, (1)

Y = A a[bKθ + (1− b)Nθ]ρ/θ + (1− a)Sρ 1/ρ
, σK,N =

1

1− θ
,σK,S = σN,S =

1

1− ρ
, (2)

where A is a positive technological parameter, a, b are distribution parameters and θ, ρ ≤ 1 are
the elasticity of substitution parameters (θ, ρ = 1 imply perfect substitutability, θ, ρ = 0 imply the
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Cobb—Douglas specification, and θ, ρ = −∞ imply perfect complementarity). Using the two—level

CES technology of equation (1)[2] implies that capital—skill complementarity hypothesis holds iff

ρ > θ [ρ < θ].2 Even though the two specifications are obviously very similar, they differ in one

important way. Notice that where (1) implies that the elasticity of substitution between K and

N, and N and S are the same (i.e. σK,N = σN,S), equation (2) implies that the elasticity of

substitution between K and S, and N and S are the same (i.e. σK,S = σN,S).

Though further disaggregation is possible, e.g. through the use of a translog specification (see,

e.g. Bergström and Panas (1992)), we focus on these two—level CES specifications as they are the

ones that have been used in the recent literature examining the consequences of the capital—skill

complementarity hypothesis. For example, Fallon and Layard (1975) and Caselli and Coleman

(2000) both prefer to work with specification (1). Krusell et al. (2000) consider an expanded

version of specification (1)

Y = AKα
s a[bKθ

e + (1− b)Sθ]ρ/θ + (1− a)Nρ
1−α
ρ ,

where Ks represents the stock of capital structures, and Ke represents the stock of capital equip-

ment. While we would like to estimate such a specification, we lack the requisite data on capital

structures and capital equipment for all of the countries in our sample.3

Stokey (1996), on the other hand, has proposed a more restrictive version of specification (2):

Y = A[bKθ + (1− b)Nθ]γ/θS̃(1−γ). (3)

Here S̃ = S + qN represents “mental effort”, q < 1 is the relative efficiency of unskilled labor in

contributing to mental effort, and 1− γ is the share of output that accrues to S̃. Equation (3) is

clearly a restricted form of (2) as it requires finding that estimates of ρ are not significantly different

from zero. Conditional on this finding capital—skill complementarity holds if 0 < θ ≤ 1.4
2Fallon and Layard show that after some algebra the specification (1) implies

FS,K
FS

− FN,K
FN

> 0⇔ a(1− a)b(1− b)A2ρY 2(1−ρ)Kθ−1Sθ−1Nρ−1[bKθ
it + (1− b)Sθit](ρ−2θ)/θ(ρ− θ) > 0

⇒ (ρ− θ) > 0.

3Krusell et al. (2000) only consider the U.S. economy, for which such data are available.
4Following Stokey’s formulation, the restricted version of the two—level CES specification (1) is:

Y = A[bKθ + (1− b)Sθ]γ/θN1−γ ,

and capital—skill complementarity holds if θ < 0.
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Goldin and Katz (1998) start off with the two—level CES specification (1) but further specialize

it to the case where 1) θ → −∞ and 2) ρ → 0. This is even more restrictive than Stokey (1996),

since it implies, as in Stokey, that final output Y has the Cobb—Douglas form but it further requires

that the K—S aggregate, which Goldin and Katz refer to as K∗, have the Leontief form:

Y = A (min [bK, (1− b)S])γ N1−γ .

In this case, since σK,S = 0 < 1 and σK∗,N = 1, the authors are making the empirically testable

assumption that σK,S < σK∗,N . Their aim is to show that if technology changes, represented by a

change in A, then it need not be the case that the relative demand for skilled labor increases. As

A increases, less is needed of both the K∗ aggregate and N to produce the same level of output.

While there is some supporting evidence for the capital—skill complementarity hypothesis using

alternative data sets and methodologies as noted in the introduction, the hypothesis has not been

tested 1) using aggregate production function specifications directly or 2) using a cross—section,

time—series panel dataset.5 The latter point is particularly relevant in growth models that use the

aggregate production functions motivated by the supposed existence of capital—skill complemen-

tarities. In addition, as our literature review suggests, there is no consensus yet on the appropriate

functional form to use to capture capital—skill complementarity. Our estimation exercise, to which

we now turn, sheds some light on this question as well.

3 Estimation Procedures and Specifications

The various versions of the two—level CES production technologies presented above are highly

nonlinear and therefore, nonlinear estimation methods (in particular NLLS and GMM) will be

used to obtain estimates of ρ and θ. These computationally intensive methods were not feasible

when Fallon and Layard (1975) first proposed estimation of production function specifications, and

consequently, they had to resort to estimation of restrictive linear specifications as noted in the

introduction.

5Flug and Hercowitz (2000) who investigate the related idea of an equipment—skill complementarity hypothesis do
use international panel data from 35 countries. However, they do not estimate production functions directly as we
do here. Instead, they use a linear regression model of wage and unemployment ratios of skilled to unskilled workers.
Their results suggest that investment in equipment raises the relative demand for skilled workers.
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3.1 The Two—Level CES Specifications

The two—level CES production function equations that will be empirically tested are:

Yit = Ai0 a[bK
θ
it + (1− b)Sθit]ρ/θ + (1− a)Nρ

it

1/ρ
eλt+εit , (4)

Yit = Ai0 a[bK
θ
it + (1− b)Nθ

it]
ρ/θ + (1− a)Sρit

1/ρ
eλt+εit , (5)

where i denotes the country, t denotes the year and ε is the error term. We assume exogenous,

Hicks neutral technological growth. In particular, we assume A is growing at the rate λ, with

Ai0 representing the initial (t = 0) value of A for country i.
6 Notice that model specification (4)

corresponds to the first version of the two—level CES form, equation (1), and model specification

(5) corresponds to the second version of the two—level CES form, equation (2). While it is possible

to linearize equations (4—5), the resulting equations are complicated and impossible to estimate.7

The only remaining viable option is nonlinear estimation and that is how we proceed.

In using panel data for our estimation exercise, we must confront two potential econometric

problems. First, there is the problem of unmodeled, country specific fixed—effects, due for example,

to differences in technology, culture or geography (see, e.g. Islam (1995)). Assuming these factors

are time invariant, we can resolve the fixed effects problem by supposing that the error term,

εit = ηi + it, where ηi represents the country specific fixed factors in country i. Under this

assumption, log differencing (4) and (5) yields

log
Yit
Yi,t−1

= λ+
1

ρ
log

a[bKθ
it + (1− b)Sθit]ρ/θ + (1− a)Nρ

it

a[bKθ
i,t−1 + (1− b)Sθi,t−1]ρ/θ + (1− a)Nρ

i,t−1
+ it − i,t−1, (6)

log
Yit
Yi,t−1

= λ+
1

ρ
log

a[bKθ
it + (1− b)Nθ

it]
ρ/θ + (1− a)Sρit

a[bKθ
i,t−1 + (1− b)Nθ

i,t−1]ρ/θ + (1− a)Sρi,t−1
+ it − i,t−1. (7)

A second problem concerns the possible endogeneity of the input variables in our regression speci-

fications, as emphasized by Caselli et al. (1996). We resolve this second problem by using a GMM,

instrumental variables procedure to estimate the log—differenced model, where we use lagged values

of the right hand side input variables as instruments.

6That is, Ait = Ai0e
λt. In an interesting paper, Caselli and Coleman (2000) use a two—level CES specification in

which they allow the efficiency parameters for the three different factors, unskilled labor, skilled labor and capital to
differ from one another.

7Using a second order Taylor series expansion it is possible to obtain a linear approximation of the two—level CES
specification. Unlike the linearized version of Stokey’s formulation, discussed below (in footnote 9), the linearized
approximation of the two—level CES specification (linearized around ρ, θ = 0) contains a large number of linear parts
with multiple coefficients that cannot be identified using standard linear estimation techniques.
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3.2 CES—nested—in—Cobb—Douglas Specification

An alternative to the two—level CES specifications is the more restricted version of these specifi-

cations proposed by Stokey (1996) as given by equation (3). Our estimated version of Stokey’s

production function specification is of the following form:

Yit = Ai0[bK
θ
it + (1− b)Nθ

it]
γ/θS1−γit eλt+εit . (8)

In (8), capital and unskilled workers are combined into an aggregate by a CES specification. The

resulting aggregate measure is then combined with skilled labor using a Cobb—Douglas technology.

Notice that our specification (8) is really a special case of (3) in that we assume that q = 0; this

assumption implies that mental effort in the production process is exerted only by skilled workers.8

The capital—skill complementarity would hold in this case if the elasticity of substitution between

capital and unskilled workers is greater than unity, σK,N =
1
1−θ > 1 or 0 < θ ≤ 1. Similarly, the

restricted version of specification (1) that we will estimate is given by

Yit = Ai0[bK
θ
it + (1− b)Sθit]γ/θN1−γ

it eλt+εit , (9)

where the sufficient condition for capital—skill complementarity is reversed, σK,S =
1
1−θ < 1 or

θ < 0. We will refer to specifications (8—9) as the “CES—nested—in—Cobb—Douglas” specifications,

and we will estimate them using nonlinear least squares.

As in the case of the general, two—level CES specifications, we also consider a log—difference

version of the “CES—nested—in—Cobb—Douglass” specification that gets rid of country—specific fixed

effects. Log—differencing (9) and (8) (note the change in order) we obtain the following two expres-

sions:

log
Yit
Yi,t−1

= λ+
γ

θ
log

[bKθ
it + (1− b)Sθit]

[bKθ
i,t−1 + (1− b)Sθi,t−1]

+ (1− γ) log
Nit
Ni,t−1

+ it − i,t−1, (10)

log
Yit
Yi,t−1

= λ+
γ

θ
log

[bKρ
it + (1− b)Nθ

it]

[bKθ
i,t−1 + (1− b)Nθ

i,t−1]
+ (1− γ) log

Sit
Si,t−1

+ it − i,t−1. (11)

We will estimate (10—11) using nonlinear least squares and using a GMM, instrumental variables

procedure where lagged values of the right hand side variables are used as instruments.9

8There exists no empirical evidence on q (the contribution of unskilled labor to mental effort). Stokey (1996) simply
assumes that q = 0.25 in order to keep the skill premium within a reasonable range in her calibration exercises.

9We note that it is possible to obtain a linearized version of the restricted “CES—nested—in—Cobb Douglas”
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4 The Data

Our estimation requires data for real GDP (Y ), the stock of physical capital (K), unskilled labor

(N), and skilled labor (S). We obtain data for Y from the Penn World Tables v. 5.6 (PWT—

5.6), and construct data for K using investment shares data from the PWT—5.6 and the perpetual

inventory approach. Data for both Y and K are in constant U.S. dollars (1985 international prices).

Since the data we use to construct the skilled labor proxies are only available every five years, our

dataset consists of a number of annual observations (6) for each country, spaced five years apart.

We construct four alternative proxies for skilled (unskilled) labor since it was not clear to us how

skilled (unskilled) labor should be defined. Our four proxies for skilled labor are: workers who have

completed a post—secondary (college) education (labeled S1), workers with some post—secondary

education (S2), workers who have completed a secondary education (S3), and workers with some

secondary education (S4). Our four proxies for skilled labor were constructed by multiplying

enrollment rate data (from Barro and Lee (2000)) for each of the four different cut—off criteria

by the size of the labor force in each country at each date in our sample. The remainder of the

labor force (those not classified according to the definition of skilled labor (S1—S4) was regarded

as unskilled labor, and was designated by N1, N2, N3 or N4, corresponding to the definition of

skilled labor. The resulting dataset consists of 73 countries; for each country there are six annual

observations of all input and output variables spaced five years apart starting in 1965 and ending in

1990 (438 observations). We choose to work with a large panel of countries, rather than estimating

production functions for individual countries as we have only six observations per country and the

CES specifications involve as many as six parameters.

Since workers with a college degree may contribute more efficiency units than workers with

a secondary education only, the proxies we used for skilled (unskilled) labor could suffer from

specification. Divide the left and right hand sides of (9) by Nit, and the left and right hand sides of (8) by Sit.
Log—linearizing the resulting equations around θ = 0 gives respectively:

log yit = logAi0 + λt+ γb log kit + γ(1− b) log sit + 1/2γb(1− b)θ log
kit
sit

2

+ εit,

where y = Y
N
, k = K

N
, s = S

N
and

log yit = logAi0 + λt+ γb log kit + γ(1− b) lognit + 1/2γb(1− b)θ log
kit
nit

2

+ εit,

where y = Y
S
, k = K

S
, n = N

S
. We obtained estimates from these linear specifications using OLS with time and fixed

effects and instrumental variables but found that they did not change the main conclusions we obtained from the
more general nonlinear specifications. We therefore chose to omit these findings from the paper.
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aggregation problems, for example, when skilled labor is defined as those who have completed a

secondary education (S3). In an effort to address this problem, we follow Caselli and Coleman

(2000) and employ additional data on returns to schooling to weight individuals within our two

divisions of the labor force into skilled or unskilled labor. We will refer to this dataset as the

“weighted” labor data, to differentiate it from the data where returns to schooling data are not

used in the construction of proxies for skilled and unskilled labor (the “unweighted” labor data).

While adjusting the skilled/unskilled labor proxies to account for returns to schooling may seem

quite reasonable, it comes at the cost of drastically reducing our sample size from 73 to 49 countries

(from 438 to 294 observations) due to the lack of data on returns to schooling for 24 countries. We

will return to this issue later in the paper.10 Because of this data constraint, we report results for

both the larger, unweighted labor dataset and the smaller weighted labor dataset.

The appendix provides further details concerning the sources and construction of the data used

in this paper as well as a table reporting the mean values of Y , K, S1 and N1 for each country in

the sample.

5 Results

Our results consist of several sets of findings. First, we consider the question of the appropriate

specification for the aggregate production function for purposes of assessing whether capital—skill

complementarity exists. We also discuss the appropriate definition of skilled labor. Given an

answer to the specification question, we then report estimation results for the preferred specification

using the various estimation techniques; without and with fixed effects removed (with FE) and

using instrumental variable (IV) estimators. We then consider the robustness of our specification

and estimation results using additional data on wage rates to augment our measures of skilled

labor. Finally, we report the results of a Monte Carlo exercise which validates the reliability of the

parameter estimates we report in the paper. We proceed by first reporting our estimation results

obtained from using the unweighted—labor data and then commenting on the respective results

obtained from using the weighted—labor data (the latter results are qualitatively similar to those

obtained using the unweighted data and hence are presented in the appendix).

10Using the same educational attainment threshold across time and nations to classify the labor input by skill
class can also be criticized. For example, workers who are just able to read and write might have been considered
skilled workers at the beginning of the last century, whereas today, they might be classified as unskilled workers.
Unfortunately, data that would allow us to adjust for quality does not exist.
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5.1 Specification Search

The two competing specifications for testing the capital—skill complementarity hypothesis are given

by our equations (1) and (2). Table 1 reports measures of fit for these two specifications for the two

different estimation specifications: 1) the two—level CES model corrected for fixed effects (equations

6—7) and 2) the CES—nested—in—CD model corrected for fixed effects (equations 10—11), We regard

these estimation specifications which correct for fixed effects as our baseline specifications; later in

the paper we will consider alternative estimation models. According to the log—likelihood criterion,

specification (1) is preferred to specification (2) in six out of eight specification searches using

nonlinear estimation methods. It is worth mentioning that the various estimates we obtained for

specification (2) were frequently implausible, in that many of the estimated distribution parameters

and elasticity of substitution parameters took on implausibly negative values. This problem never

arose in our various different regression results for the preferred specification (1) and therefore, in

the remainder of the paper we focus on this specification (1) alone.

Table 1: Specification Search Results

Model Specification Skilled Labor Specification 1 Specification 2
(Estimation Method) Definition Log L Log L

Compl. Coll 237.1 237.1
Two—Level CES Att. Coll 236.0 235.5
(NLLS with FE) Compl. Sec. 232.8 237.7

Att. Sec. 232.6 228.5

Compl. Coll 243.7 221.0
CES—in—CD Att. Coll 230.8 220.2
(NLLS with FE) Compl. Sec. 241.9 229.2

Att. Sec. 242.7 225.9

In addition to revealing which of the two competing CES production function specifications is

preferred, the results presented in Table 1 also shed some light on the appropriate definition of

skilled labor. If attention is restricted to the preferred specification (1) — column 3 of Table 1—

we see that the log likelihood value is maximized for both the two—level CES and the CES—in—CD

specifications when skilled labor is defined as those who have completed college. To our knowledge,

these estimation findings using different definitions of skilled labor represent the first ever attempt

to assess the appropriate definition of skilled labor; most researchers simply choose a threshold for
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skilled/unskilled labor without examining any alternative specifications. Our findings suggest that

a popular choice for the skilled labor threshold as comprising those who have completed secondary

education, may not be the choice most preferred by the data.11

5.2 Parameter Estimates

Tables 2—3 present coefficient estimates obtained from nonlinear regressions using the unweighted—

labor data in various versions of specification (1).12 In Table 2 we report parameter estimates for the

two—level CES specifications (4) and (6). Under the column “NLLS,” we report NLLS parameter

estimates for specification (4) (the two—level model uncorrected for fixed effects) for each of the four

ways of classifying skilled labor. Under the column “NLLS with FE,” we report NLLS estimates

for the log difference specification (6) (the two—level model corrected for fixed effects, FE) again for

all four ways of classifying skilled labor. Finally, under the column “GMM—IV with FE” we report

estimates from a GMM—IV procedure applied to the log—difference specification (6).13

The GMM—IV estimator was chosen to deal with a possible endogeneity problem, arising from

the fact that the lagged error term i,t−1 in the log—difference specification (6) is likely to be

correlated with time t values of the input variables, Kit, Sit and Nit. More generally, the perpetual

inventory approach used to construct capital stock values (see the appendix for details) implies

that Kit will always depend on such lagged error terms. To address these possible endogeneity

problems, we employ the GMM—IV method and use as instruments lagged values of the right hand

variables.14 All of the NLLS estimation results reported in Tables 2 and 3 were obtained using

economically plausible initial parameters. A grid search on the initial parameter values was also

conducted to assess the robustness of the results.

Recall that in the two—level specification, capital—skill complementarity is said to obtain if ρ > θ.

Standard NLLS estimation of specification (4) without fixed effects or instruments yields estimates

11Papers where skilled labor is defined as those who have completed secondary education include Krusell et al.
(2000) and Caselli and Coleman (2000) among others.
12Corresponding results using the weighted—labor data and specification (1) appear in Tables A3—A4 in the

appendix.
13The GMM—IV procedure we use is different from the standard two—stage NLLS procedure in that it allows for

the possibility of heteroscedastic and/or autocorrelated disturbances.
14In our GMM estimation of (6) and (10) (results from the latter are presented later in Table 3) we used logKi,t−1,

logKi,t−2, logSi,t−1, logSi,t−2 and logNi,t−1, logNi,t−2 as instruments for the right hand side variables. We have
used alternative sets of instruments including one set with logKi,t−1, logSi,t−1 and logNi,t−1 and another set with
logKi,t−2, logSi,t−2 and logNi,t−2. We do not report these results as they are very similar to those reported in the
paper.
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for ρ and θ that imply capital—skill complementarity — see the “NLLS” column of Table 2. The

difference ρ− θ is shown to be significantly positive only when skilled labor is defined as those who

have attained or completed college.

However, estimates for our baseline specification, the nonlinear, two—level CES specification

with fixed effects removed (6) as presented in the column “NLLS with FE”, suggest that the

evidence for capital—skill complementarity disappears once country specific fixed effects are taken

into account. In particular, the estimated difference ρ− θ is found to be negative for three of the

four skilled labor classifications, and is never significantly different from zero. Similarly, when we

estimate the log difference specification (6) using the GMM—IV procedure that uses instruments

for the right hand side variables and allows for both autocorrelation and heteroskedasticity in the

error term, we continue to find a lack of evidence in favor of capital—skill complementarity; that

is, we cannot reject the null hypothesis of no capital—skill complementarity — see the last column

of Table 2. These findings of an absence of capital—skill complementarity are consistent with the

work of Caselli and Coleman (2000) who obtain a similar result using a more indirect estimation

method.

Table 3 reports a similar set of estimates for the nonlinear CES—nested—in—CD specification

(10). Recall that for this specification, capital—skill complementarity obtains if the estimated value

of θ < 0; estimates of 0 < θ ≤ 1 imply capital—skilled labor substitutability and capital—unskilled
labor complementarity. As Table 3 reveals, for the nonlinear CES—nested—in—CD specification, we

do observe estimates of θ that are positive and significantly different from zero, implying capital—

unskilled labor complementarity. However, we note that the positive and highly significant NLLS

estimates for θ are mainly observed in the models without fixed effects or instruments; in the fixed

effects specification without or with instruments (NLLS with FE) and (GMM—IV with FE), the

estimates of θ are positive and, with a single exception, are not significantly different from zero.
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Table 2: Two—Level CES Nonlinear Estimation

Skilled Labor Parameter NLLS NLLS with FE GMM—IV with FE

ρ 0.51934∗∗∗
(0.06686)

0.22673∗∗∗
(0.07779)

0.63517∗
(0.35936)

Completed θ 0.26292
(0.13901)

∗∗ 0.49147
(18.54100)

0.73120
(598.76)

College ρ - θ 0.25642∗
(0.16002)

−0.26474
(18.56400)

−0.09604
(598.58)

logL −149.1 237.1 –

ρ 0.54638
(0.06839)

∗∗∗ 0.23861∗∗∗
(0.07568)

0.78032
(1.0959)

Attained θ 0.20459
(0.15939)

0.52216
(1.01680)

0.63377
(257.64)

College ρ - θ 0.34179
(0.19206)

∗ −0.28355
(1.04190)

0.14656
(256.94)

logL −137.8 236.0 –

ρ 0.54344∗∗∗
(0.07226)

0.37839∗∗∗
(0.07248)

0.78558
(0.70160)

Completed θ 0.43718∗∗
(0.20005)

0.50824
(0.29852)

0.60498
(25.075)

Secondary ρ - θ 0.10626
(0.20522)

−0.12985
(0.30483)

0.18059
(24.745)

logL −129.0 232.8 –

ρ 0.59841∗∗∗
(0.08194)

0.50364∗∗∗
(0.07467)

0.67895
(0.84761)

Attained θ 0.45194∗∗∗
(0.16511)

−0.07194
(0.20993)

0.33610
(4.1474)

Secondary ρ - θ 0.14647
(0.19111)

0.57559
(0.20739)

0.34285
(3.7565)

logL −138.5 232.6 –

Obs. 438 365 292

Notes: Standard errors are given in parentheses and were recovered using standard approx-

imation methods for testing nonlinear functions of parameters. White’s heteroskedasticity

correction was used. *** Significantly different from 0 at the 1% level. ** Significantly

different from 0 at the 5% level. * Significantly different from 0 at the 10% level.
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Table 3: CES—Nested—in—CD Nonlinear Estimation

Skilled Labor Parameter NLLS NLLS with FE GMM—IV with FE

θ 0.35175∗∗
(0.18157)

0.45712∗
(0.25482)

0.23068
(0.56734)

Completed γ 0.60928∗∗∗
(0.01352)

0.53608
(0.10457)

∗∗∗ 0.36238∗∗∗
(0.13471)

College logL −185.1 243.7 –

θ 0.53668∗∗∗
(0.18897)

0.62413
(0.50871)

0.03111
(1.1565)

Attained γ 0.64516∗∗∗
(0.01179)

0.43305∗∗∗
(0.03515)

0.20655
(0.24558)

College logL −174.7 230.8 –

θ 0.31833∗
(0.16877)

0.33990
(0.71577)

0.08753
(143.91)

Completed γ 0.70372∗∗∗
(0.01204)

0.63800
(0.90695)

0.47642
(0.51821)

Secondary logL −165.2 241.9 –

θ 0.36866∗∗∗
(0.13689)

0.75042
(0.68256)

0.22003
(379.00)

Attained γ 0.77621∗∗∗
(0.01294)

0.45653∗∗∗
(0.10581)

0.53275
(1.1929)

Secondary logL −180.1 242.7 –

Obs. 438 365 292

Notes: Standard errors are given in parentheses and were recovered using standard approx-

imation methods for testing nonlinear functions of parameters. White’s heteroskedasticity

correction was used. *** Significantly different from 0 at the 1% level. ** Significantly

different from 0 at the 5% level. * Significantly different from 0 at the 10% level.
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5.3 Discussion of the Estimation Results

To summarize, our main finding is that using a time—series, cross section panel of 73 countries, there

appears to be little evidence to support the capital—skill complementarity hypothesis, especially

once country specific fixed effects have been removed. Indeed, if attention is restricted to the log—

difference estimation model then according to the NLLS and GMM results for both the two—level

and CES—nested in—CD specifications, there is no evidence of any capital—skill complementarity for

any definition of skilled labor. This finding is consistent with the possibility that over countries and

across time, the extent of capital—skill complementarity (or substitutability) is subject to change,

as argued by Goldin and Katz (1998).

According to the log—likelihood criterion, defining skilled labor as those persons who have com-

pleted or attained college is the preferred criterion in Table 1 for the baseline regression estimates

based on the log—differenced version (fixed effects removed) of specification (1). We see from Tables

2 and 3, however, for the non—differenced model, the log—likelihood criterion favors a definition of

skilled labor as those who have only completed a secondary education (see column 3 in Tables 2

and 3).

Finally, recall that the CES—nested—in—CD specification is just a restricted version of the two—

level CES specification. In particular, the restriction is that in the latter, more general specification,

ρ is equal to zero, so that the elasticity of substitution between capital and unskilled labor σK,N

and (symmetrically) between skilled and unskilled labor, σN,S are both equal to unity. We can test

this restriction by examining whether estimates of ρ as reported in Table 2 for the more general,

two—level CES specification are significantly different from zero. If attention is restricted to the

case where skilled labor is defined as those who have completed college, then this restriction is

rejected for all three estimation methods, making the two—level CES specification the preferred

specification. Our rejection of the restricted CES—nested—in—CD specification is consistent with the

findings of Krusell et al. (2000) who obtained the same finding using only U.S. data.

5.4 Robustness of the Results using Adjusted Skilled Labor Data

We have also examined the robustness of our results by considering an alternative and possibly

more appropriate definition for skilled/unskilled labor. As discussed earlier, this “weighted” labor

dataset adjusts for disparities in efficiency units across workers who belong to different educational

subgroups within the class of workers we have designated as skilled or unskilled labor. Adjusting the
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measures of skilled and unskilled labor for the returns earned by the various educational subgroups

provides us with a more precise measure of the contribution of skilled labor to output. Further

details concerning the construction of this weighted labor data can be found in the appendix.

Unfortunately due to a lack of data on returns to schooling for all 73 countries, this adjustment

to the labor data eliminates approximately one—third of the countries our sample; we have 49

countries left, yielding just 294 observations (as compared with the 438 observations available

in the full sample). Large sample sizes are particularly crucial to our work, as the results from

estimating (the curvature of) the highly nonlinear nested CES production specifications requires

a sufficiently large number of observations. Indeed, the GMM—IV estimation procedure for the

nonlinear models, which requires the use of instruments, reduces the sample size even further to

just 196 observations; the results from applying this procedure to the smaller weighted—labor dataset

were unreliable resulting in economically implausible coefficient estimates and are not reported. The

results from applying NLLS to the two—level model and the log—difference version of this model

using the weighted—labor data (for which 294 observations were available) are presented in Tables

A2—A4 in the appendix.

Table A2 (the analog of Table 1) shows that specification (1) remains the preferred specification

for the two—level CES models for three out of four definitions of skilled labor. In contrast to our

earlier findings using the unweighted skilled labor data, Table A2 reveals that for the CES—nested—

in—CD specification, the weighted skilled labor data favors specification (2) for all four definitions

of weighted—skilled—labor. We note however, that while the value of the log—likelihood function is

higher for specification (2) the parameter estimates for this specification were frequently empirically

implausible. In particular, the elasticity parameter θ was often greater than unity. This was never

the case for specification (1), so we continue to focus attention on specification (1) only. Focusing

on specification (1), Table A2 also reveals that defining skilled labor as workers who completed

college is no longer the preferred definition when the weighted labor data are used. According

to the log-likelihood values, the definition of skilled workers as those who completed secondary

education is preferred in the two—level CES specification, and the definition of skilled workers as

those who attained some college is preferred for the CES—nested—in—CD specification.

Table A3 (row1, column 1) reveals that for the un—differenced two—level CES model specification

(1), the difference ρ − θ is significantly positive when skilled labor is defined as those who have

completed college or those who have completed secondary education. However, correcting for fixed
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effects makes this estimate insignificant as was the case for the unweighted data. Indeed, we see

that regardless of how skilled labor is defined, the difference ρ − θ is never significantly different

from zero when the weighted labor data is used in the log—differenced version of the two—level CES

specification (1) thus confirming our findings using the unweighted data. Table A4 reveals that for

the specification (1) of the CES—nested—in—CD model there is again some weak evidence in favor

of capital—skill substitutability (as opposed to capital—skill complementarity) in that estimates of θ

are positive and sometimes significantly different from zero.

Finally, we note that in Table A3, the estimate of the parameter ρ is always positive and

significantly different from zero for three of the four skilled labor definitions using the weighted

data. Notice that using the weighted labor data, the log likelihood is maximized when skilled labor

is defined as those who have completed secondary education. For this definition of skilled labor, we

find that the estimate of ρ is significantly positive and that the null hypothesis of no capital skill

complementarity cannot be rejected. This evidence again favors the more general, two—level CES

specification over the more restricted CES—in—CD specification, with its assumption that ρ = 0.

Despite some differences, these results are qualitatively similar in many respects to those obtained

from the unweighted—labor dataset. In particular, two of our main findings, the absence of any

evidence for capital—skill complementarity, and the rejection of the more restrictive CES—in—CD

specification in favor of the general two—level specification, remain unchanged.

We have also tried to split the data to examine the sensitivity of our results to different sub-

samples of countries but to date, our estimates from such sample splits have been empirically

implausible. We think this is due to having a limited number of observations that can not ade-

quately capture variation in the curvature of our aggregate production functions.

5.5 Monte Carlo Experiments

Our main finding, that there appears to be little support for the capital—skill complementarity

hypothesis at the level of aggregate production functions, rests on the parameter estimates we

report in Tables 2—3 and A3—A4. A natural question concerns the reliability of the estimates we

have obtained using nonlinear estimation techniques for either the two—level or CES—nested—in—

CD specifications given our “small” samples. Indeed, Kumar and Gapinski (1974) and Thursby

(1980) report results from Monte Carlo experiments examining the small sample properties of

CES parameter estimates obtained using nonlinear and linear estimation procedures and find that
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all of the CES parameter estimates were reliable with the notable exception of the elasticity of

substitution parameter estimate! Since this estimate is the primary concern of our study, we felt it

necessary to undertake our own Monte Carlo experiments, which we describe below. We note that

Kumar and Gapinski and Thursby examined only the standard CES specification, not the two—level

specification that we examine, and they focused on linear and nonlinear estimation techniques that

differ from those used in this study. Furthermore, they used far fewer observations than we have

available in our panel dataset (e.g. Thursby used just 20 observations). For all of these reasons, a

new set of Monte Carlo experiments seems warranted.15

The focus of our Monte Carlo experiments is on the small—sample properties of the NLLS

estimators of the two—level CES parameters, ρ and θ. In principle, we could examine the economic

characteristics of the elasticity of substitution estimators of all of the nested CES specifications

suggested in the paper (using all the different combinations of aggregate production specifications

and proxies for skilled labor). However, this would be an arduous task as nonlinear estimation of

nested CES aggregate production specifications is particularly time—consuming. We have therefore

chosen to examine the most unrestricted nested CES specification (the two—level CES specification)

using as proxy for skilled labor, workers who have completed a post—secondary (college) education

S1. We examine this specification using both the unweighted— and weighted—labor data.

In particular, we consider the stochastic counterparts of specification (1) given by

logYit = logAi0 + λt+
1

ρ
log a[bKθ

it + (1− b)S1θit]ρ/θ + (1− a)N1ρit + εit, (12)

and

log
Yit
Yi,t−1

= λ+
1

ρ
log

a[bKθ
it + (1− b)S1θit]ρ/θ + (1− a)N1ρit

a[bKθ
i,t−1 + (1− b)S1θi,t−1]ρ/θ + (1− a)N1ρi,t−1

+ uit, (13)

where εit and uit are random disturbances with εit ∼ N(0,σ2ε) and uit ∼ N(0,σ2u). The above

stochastic production functions are used to generate data on output Y , employing our panel data

of 73 (49) countries over six 5—year—interval periods for given values of capital K, unweighted

(weighted) skilled labor with completed college S1, and unskilled labor, N1. We choose the elasticity

of substitution parameters ρ = 0.5 and θ = 0.3 to allow for capital—skill complementarity (i.e.

ρ − θ = 0.2 > 0). The other four parameters of the production functions were set as follows:

15To our knowledge, there is no prior work examining the small sample properties of estimates obtained from
nonlinear or linear estimation of the two—level CES specification that we consider in this paper. Thus our Monte
Carlo experiments are of independent interest beyond our application examining the capital—skill complementarity
hypothesis.

21



Table 4: Estimates of Monte Carlo Experiments for the Two—Level CES

Model Data Parameter Mean Std. Dev. Bias

Two—Level CES Unweighted ρ 0.51232 0.13605 0.01232
(NLLS no FE)(Eq.12) θ 0.40507 0.37007 0.10507

Two—Level CES Unweighted ρ 0.50180 0.02569 0.00180
(NLLS with FE)(Eq.13) θ 0.30102 0.03450 0.00102

Two—Level CES Weighted ρ 0.45938 0.17686 0.04062
(NLLS no FE)(Eq.12) θ 0.40648 0.39650 0.10648

Two—Level CES Weighted ρ 0.48029 0.05612 0.01971
(NLLS with FE)(Eq.13) θ 0.30858 0.05621 0.00858

Ai0 = 1, λ = 0.02, a = 0.4, b = 0.5; these values fall in the range of coefficient estimates we

obtained from our NLLS empirical exercises.

A critical consideration regarding the implementation of our simulation exercise is the choice

of the variance for the random disturbances. Large values assigned to σ2 would result in output

series from specifications (12) and (13) that are almost purely stochastic. In contrast, very small

values of σ2 would result in output series that are completely deterministic. The variances σ2ε and

σ2u were chosen according to the rule used in Kumar and Gapinski (1974) and Thursby (1980):

the variances were chosen to yield certain R2 values for the NLLS regressions. In particular, the

expedient rule used to obtain the variances is

σ2ε = var(log Y )(1−R2ε),
σ2u = var[log (Yt+1/Yt)](1−R2u),

where R2ε = 0.96, and R
2
u = 0.30. The values of R

2
ε and R

2
u were obtained from NLLS regressions.

Thus we chose σ2ε = 0.11676 and σ2u = 0.01548 (σ
2
ε = 0.11640 and σ2u = 0.01483 for the weighted—

labor data).

For each trial of the Monte Carlo experiment, 438 (365) observations on εit (uit) were generated
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using a random number generator. A total of 100 sets of 438 (365) of εit (uit) values were generated

in this fashion.16 Using these 100 disturbance sets we generated 100 sets of artificial output data

(Y ) using the actual data on capital, and skilled labor, and holding constant our parameter choices

for the CES function, ρ, θ, A0, λ, a, b. For the NLLS estimation employing these simulated data,

the true parameter values were used as initial guesses in the hope that they will minimize the

number of iterations required for convergence. Estimation of the models with fixed effects given

by equation (13) always produced parameter values that are economically feasible. In contrast,

estimation of the models without fixed effects given by equation (12) produced parameter values

that are implausible (i.e. ρ, θ > 1). For the estimates that have converged to implausible values,

we have taken boundary values — ρ, θ = 0.96 which implies σ ≈ 30 — and re—estimate the other
parameter conditional on these values.

Table 5 presents the sample mean, sample standard deviation and sample bias of the estimates

of ρ and θ obtained using the stochastic specifications (12) and (13) and both the unweighted and

weighted data. There are a number of points worth noting here. First, the sample means for the

ρ and θ estimates in both models and datasets are relatively close to their actual values and the

sample standard deviations and biases are rather small. Second, regardless of the dataset used, the

estimates from the two—level CES specification obtained using NLLS and corrected for fixed effects

have substantially lower sample standard deviation and bias than those from the specification

that is not corrected for fixed effects. In particular, when we use the unweighted dataset, the

sample standard deviation in the estimates of ρ is 0.02569 in specification (13) as compared to

0.13605 in (12) and the sample standard deviation in the estimates of θ is 0.03450 in (12) as

compared to 0.37007 in (13), which is more than ten times smaller. Third, ρ and θ estimates are

in general more biased when we use the weighted—labor data. This is expected since our sample

reduces substantially from 438 (365) to 294 (245) observations. Overall, these results suggest that

NLLS estimation of the two—level CES specification provides accurate estimates of the elasticity of

substitution parameters, ρ and θ, and therefore can be used successfully in testing the capital—skill

complementarity hypothesis.17

16For the weighted—labor data 100 sets of 294 (245) of εit (uit) values were generated.
17Histograms for the parameters ρ and θ obtained from the Monte Carlo experiments show densities that in general

do not deviate from the normal distribution. More formally, the Jarque—Bera test of normality shows that in six
out of eight distributions (four models, each with two elasticity parameters ρ and θ) normality can not be rejected.
The two distributions for which we reject normality are those of the parameter θ for the two—level CES (NLLS no
FE) using both the weighted and unweighted data. One explanation is that some of the θ estimates in these models
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6 Conclusions

The aim of this paper is to examine the cross—country evidence for capital—skilled labor complemen-

tarity using aggregate production function specifications and a time—series, cross—section panel of

countries. In particular, we address three empirical questions. First, what is the best specification

of the aggregate production technology for purposes of examining the capital—skill complementarity

hypothesis? Second, how is skilled labor measured? We consider four different possible classifica-

tions an examine which definition the data prefer. Finally, is there any cross—country evidence in

support of the capital—skill complementarity hypothesis? With regard to the first issue we find that

specification (1) is the preferred specification, and that the restricted, CES—nested—in—CD specifi-

cation, appears to be less supported by the data than the two—level CES form. Second, we find

that by the log—likelihood criterion, the preferred definition of skilled labor consists of those who

have completed college, a higher threshold for defining skilled labor than is typically used in the

literature. However, this finding does not hold up when the labor data are weighted using returns

to schooling. Finally, and perhaps most importantly, we do not find significant differences in the

elasticity parameters that would allow us to reject the null hypothesis of no capital—skill comple-

mentarity. A Monte Carlo exercise provides us with some confidence in the regression results that

support this main finding.

We conclude that, at the aggregate production function level, there is little evidence to sup-

port the capital—skill complementarity hypothesis and therefore no justification for modifying the

standard neoclassical aggregate production technology to account for this hypothesis in macro—

growth modeling. While it may be the case that capital—skill complementarities exist at a more

disaggregate level, for instance at the manufacturing level, or at the level of individual countries, at

the aggregate level of production function analysis and across countries, these complementarities

seem to disappear. An intriguing explanation for this finding is that the extent of capital—skill

complementarity (or substitutability) varies with a country’s stage of development and is therefore

subject to change over time, as Goldin and Katz (1998) have convincingly argued. If this hypothesis

is true, then, consistent with our findings, evidence in support of the capital—skill complementar-

ity hypothesis should be especially difficult to obtain using a time—series, cross section panel of

countries.

have converged to implausible values and, as mentioned above, these estimates were replaced by the boundary value
θ = 0.96.
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Appendix

The Data

The data used in this paper (unweighted and weighted) are available from the authors upon

request.

• Income (Y) [Source: PWT—5.6]

Cross—country real GDP per worker and real GDP per capita are in constant dollars (1985 inter-

national prices) using the Chain index as described by Summers and Heston (1991). These data

are from the Penn World Tables (PWT), Version 5.6 and are available on—line at:

http://datacentre.chass.utoronto.ca/pwt/index.html.

• Physical capital stocks (K) [Source: PWT—5.6]

Physical capital is constructed using the perpetual inventory approach with investment shares

data obtained from PWT—5.6. In particular, the physical capital stock is calculated by summing

investment from its earliest available year (1960 or earlier) to 1990 with the annual depreciation

rate fixed at 6 percent. The initial physical capital stock is determined by the initial investment

rate, divided by the depreciation rate plus the growth rate of investment during the subsequent ten

years. See Duffy and Papageorgiou (2000) for further details concerning this procedure.

• Skilled and Unskilled Labor (S, N) [Source: Barro and Lee (2000), and Lee (2001)]

We construct four alternative proxies for skilled and unskilled labor as the definition of skilled/unskilled

labor is arbitrary. These proxies are constructed using enrollment rates data from Barro and Lee

(2000) and multiplying these rates by the sized of the total labor force. Our four proxies for skilled

and unskilled labor are as follows:

Unweighted data

1. S1 is equal to the number of workers that have completed post—secondary education and N1

is equal to the rest of the workers in the labor force.

2. S2 is equal to the number of workers that have attained at least some post—secondary edu-

cation and, N2 is equal to the rest of the workers in the labor force.

3. S3 is equal to the number of workers that have completed secondary education, and N3 is

equal to the rest of the workers in the labor force.

4. S4 is equal to the number of workers that have attained at least some secondary education,

and N4 is equal to the rest of the workers in the labor force.
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Weighted data

Within a given skill class say, Si or Ni, i = 1,2,3 or 4 we weigh individuals by the length in years

of their schooling level times the return to schooling. In addition, the aggregate is constructed so

that it is measured in terms of the efficiency units of the lowest educational subcategory included

in the skill class. Lengths of educational attainments subgroups by country are from Lee (2001).

Returns to schooling by nation are taken from Bils and Klenow (2000), and were obtained following

the Mincerian approach which assumes that log—wages are linear in years of schooling.

An example: Let li,j be the length in years of educational level j in country i, Li,j the number

of workers with this schooling level, and φi is the Mincerian return in country i. For nation i, S3

and N3 are computed as follows:

S3(i) = Li,cs + φi li,sps Li,sps + φi li,cpsLi,cps,

N3(i) = Li,cp + φi li,ss Li,ss,

where cp, ss, cs, sps and cps denote completed primary, some secondary, completed secondary,

some post—secondary and completed post—secondary education, respectively.

The Barro and Lee (2000) data set is available on—line at: http://www2.cid.harvard.edu/ciddata

• Labor Force [Source: PWT—5.6]

The cross—country data set on the labor force is calculated from the PWT—5.6 series on GDP per

capita and GDP per worker. It represents the population between the ages of 15 and 65 (taken to

represent the labor force).
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Table A1: Mean Values of Unweighted—Data from the 73 Country Sample

Country Code GDP Capital Skilled Lab. Unskilled Lab.
(mill. US$) (mill. US$) (S1) (thous.) (N1) (thous.)

Algeria DZA 44620.1 97958.8 3951.9 24.6
Argentina ARG 150309.3 285059.0 9764.3 291.2
Australia AUS 173178.0 522017.9 608.1 5804.0
Austria AUT 71539.6 188862.3 38.9 3329.8
Bangladesh BGD 98086.8 42154.0 124.9 24255.5
Brazil BRA 406421.4 733594.1 756.8 40055.5
Belgium BEL 98489.2 259548.9 217.5 3642.6
Bolivia BOL 9241.7 17061.4 43.8 1660.3
Canada CAN 308801.9 758688.9 739.6 9960.6
Chile CHL 39315.5 85170.8 116.9 3550.6
Colombia COL 68509.0 108933.2 143.8 7764.8
Costa Rica CRI 7094.8 6146.6 25.2 702.4
Cyprus CYP 3233.0 8625.1 13.8 268.8
Denmark DEN 55921.8 160162.7 182.3 2404.7
Ecuador ECU 20081.0 41964.5 62.7 2302.4
El Salvador SLV 7877.6 3517.4 16.5 1366.9
Finland FIN 48897.2 172168.6 87.8 2256.6
France FRA 576919.9 1625109.1 494.5 22808.5
Germany DEU 677584.3 1444383.0 482.3 27216.6
Ghana GHA 9813.9 7368.2 14.4 4350.2
Greece GRC 49610.5 118409.6 164.3 3439.2
Guatemala GTM 14366.8 14185.8 14.6 1920.2
Haiti HTI 4739.6 2802.3 6.1 2383.0
Honduras HND 4736.3 6786.2 8.1 1051.3
Iceland ICE 2245.1 6219.7 3.3 105.4
India IND 631421.3 828804.9 2118.5 257681.1
Indonesia IDN 180966.6 259253.0 59.5 53720.7
Iran IRN 153674.3 226936.6 95.7 10894.0
Iraq IRQ 62576.6 79507.4 48.6 3250.8
Ireland IRL 21031.5 54008.1 39.9 1190.0
Israel ISR 27462.0 63439.3 95.1 1267.3
Italy ITA 513760.7 1453670.2 273.1 21598.0
Jamaica JAM 5086.1 14084.8 5.5 889.7
Japan JPN 1085463.9 3199481.3 4497.3 65976.1
Jordan JOR 6094.8 7796.0 11.6 547.8
Kenya KEN 12896.4 22662.3 18.5 6991.0

Note: The sources for these data are PWT—5.6 and Barro and Lee (2000). Country specific mean values presented
above have been rounded to the first decimal place.
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Table A1: Mean Values of Unweighted—Data from the 73 Country Sample, continued.

Country Code GDP Capital Skilled Lab. Unskilled Lab.
(mill. US$) (mill. US$) (S1) (thous.) (N1) (thous.)

Korea, Rep. KOR 123619.8 173122.2 651.0 13278.1
Malawi MWI 2970.0 2888.4 3.7 2685.4
Malaysia MYS 46709.4 88587.3 4973.3 4973.3
Mali MLI 3156.0 1892.7 3.6 2322.5
Mauritius MUS 3660.0 3999.2 3.0 485.5
Mexico MEX 325533.8 499518.5 409.2 19571.4
Mozambique MOZ 11780.6 2778.0 0.0 6403.1
Myanmar (Burma) MMR 16679.8 14309.7 58.3 14419.5
Netherlands NLD 145453.1 384517.7 210.9 5087.6
New Zealand NZL 31867.4 57557.5 96.5 1174.9
Norway NOR 44634.4 147087.0 61.2 1783.6
Pakistan PAK 90718.0 79640.2 302.0 23272.3
Panama PAN 5486.0 10919.8 24.7 614.8
Paraguay PRY 5844.9 7146.3 19.2 982.6
Peru PER 43241.4 85691.6 209.3 4845.3
Philippines PHI 74413.5 115076.7 1166.9 15781.4
Portugal PRT 44167.8 94405.4 44.3 3982.1
Senegal SEN 6137.7 4270.0 14.3 2486.4
Sierra Leone SLE 3471.8 315.328.1 3.8 1235.9
Singapore SGP 14973.3 36424.8 13.4 943.4
Spain ESP 257028.1 637275.6 250.8 12570.6
Sri Lanka LKA 23021.0 12767.7 22.0 5065.6
Sudan SDN 14658.3 20107.2 13.6 5998.2
Sweden SWE 99908.5 261627.0 242.2 3760.3
Switzerland CHE 87821.5 275816.1 162.7 2915.5
Tanzania TZA 8161.8 8599.8 72.3 8666.3
Thailand THA 98267.9 137663.4 424.3 21865.2
Tunisia TUN 14045.3 17003.8 17.9 1810.7
Turkey TUR 123388.5 238604.3 182.9 18819.1
Uganda UGA 6959.6 2171.8 5.6 5701.7
United Kingdom GRB 563966.7 1132350.1 1103.4 25574.0
United States USA 3307524.9 8438179.1 13905.4 88791.9
Uruguay URY 12456.0 23513.3 40.1 1094.7
Venezuela VEN 95991.3 205740.7 114.1 4396.6
Zaire ZAR 13408.9 6921.8 20.6 10594.6
Zambia ZMB 5199.2 21789.5 4.5 1875.8
Zimbabwe ZWE 8043.5 18997.5 20.0 2871.7

Note: The sources for these data are PWT—5.6 and Barro and Lee (2000). Country specific mean values presented
above have been rounded to the first decimal place.
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Estimation Results with Weighted—Labor Data

Table A2: Specification Search (weighted—labor data)

Model Specification Skilled Labor Specification 1 Specification 2
(Estimation Method) Definition Log L Log L

Compl. Coll 193.3 192.5
Two—Level CES Att. Coll 194.3 194.3
(NLLS with FE) Compl. Sec. 195.9 194.9

Att. Sec. 193.7 195.4

Compl. Coll 183.2 190.8
CES—in—CD Att. Coll 185.7 192.6
(NLLS with FE) Compl. Sec. 180.3 191.4

Att. Sec. 170.4 190.2
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Table A3: Two—Level CES Nonlinear Estimation (weighted—labor data)

Skilled Labor Parameter NLLS NLLS with FE

ρ 0.58146∗∗∗
(0.11091)

0.40482
(0.61130)

Completed θ 0.08585
(0.08352)

0.35461∗∗∗
(0.10306)

College ρ - θ 0.49561∗∗∗
(0.16003)

0.50211
(0.60796)

logL −57.3 193.3

ρ 0.47987∗∗∗
(0.11082)

0.36999∗∗∗
(0.09621)

Attained θ 0.47505
(0.33170)

−0.55621
(1.46714)

College ρ - θ 0.00481
(0.35710)

0.92621
(1.46458)

logL −50.9 194.3

ρ 0.26689∗∗∗
(10102)

0.45315∗∗∗
(0.09682)

Completed θ 1.13733∗∗∗
(0.31369)

0.84715∗∗
(0.41589)

Secondary ρ - θ −0.87045∗∗∗
(0.33146)

−0.39400
(0.43291)

logL −24.5 195.9

ρ 0.36132∗∗∗
(0.09018)

0.49659∗∗∗
(0.09164)

Attained θ 0.35623∗∗
(0.18284)

0.56249∗∗
(0.24232)

Secondary ρ - θ 0.00509
(0.21229)

0.06590
(0.24745)

logL −30.8 193.7

Obs. 294 245

Notes: Standard errors are given in parentheses and were recovered using standard approximation methods for testing

nonlinear functions of parameters. White’s heteroskedasticity correction was used. *** Significantly different from 0

at the 1% level. ** Significantly different from 0 at the 5% level. * Significantly different from 0 at the 10% level.
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Table A4: CES—Nested—in—CD Nonlinear Estimation (weighted—labor data)

Skilled Labor Parameter NLLS NLLS with FE

θ 0.46825
(0.30181)

0.20057
(0.57872)

Completed γ 0.68693∗∗∗
(0.17502)

0.39971∗∗∗
(0.03699)

College logL −71.6 183.2

θ 0.45075
(0.28610)

0.58865
(1.33690)

Attained γ 0.72299∗∗∗
(0.01680)

0.43746∗∗∗
(0.03825)

College logL −60.6 185.7

θ 1.10118∗∗∗
(0.28571)

0.94627∗∗∗
(0.35455)

Completed γ 0.78039∗∗∗
(0.01530)

0.59882∗∗∗
(0.03739)

Secondary logL −28.3 180.3

θ 1.11141∗∗∗
(0.26531)

0.53203∗∗
(0.22830)

Attained γ 0.82371∗∗∗
(0.01530)

0.71193∗∗∗
(0.03336)

Secondary logL −30.9 170.4

Obs. 294 245

Notes: Standard errors are given in parentheses and were recovered using standard approximation methods for testing

nonlinear functions of parameters. White’s heteroskedasticity correction was used. *** Significantly different from 0

at the 1% level. ** Significantly different from 0 at the 5% level. * Significantly different from 0 at the 10% level.
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