A NONPARAMETRIC TEST FOR SERIAL INDEPENDENCE OF REGRESSION ERRORS

Miguel A. Delgado and Juan Mora

WP-AD 99-28

Correspondence to J. Mora: University of Alicante. Departamento de Fundamentos del Análisis Económcio. Ctra. San Vte. del Raspeig, s/n. 03071 Alicante, Spain. Tel.: 965903400 Ext: 3258. E-mail: juan@merlin.fae.ua.es

Editor: Instituto Valenciano de Investigaciones Económicas, s.a.
First Edition Diciembre 1999
Depósito Legal: V-5424-1999

IVIE working papers offer in advance the results of economic research under way in order to encourage a discussion process before sending them to scientific journals for their final publication.

[^0]
A NONPARAMETRIC TEST FOR SERIAL INDEPENDENCE OF REGRESSION ERRORS

Miguel A. Delgado and Juan Mora

ABSTRACT

A test for serial independence of regression errors is proposed that is consistent in the direction of serial dependence alternatives of first order. The test statistic is a function of a Hoeffding-Blum-Kiefer-Rosenblatt type of empirical process, based on residuals. The resultant statistic converges, surprisingly, to the same limiting distribution as the corresponding statistic based on true errors.

KEYWORDS: Empirical process based on residuals; Hoeffding-Blum-KieferRosenblatt statistic; Serial independence test.

1. PRELIMINARIES AND STATEMENT OF THE PROBLEM

Consider a strictly stationary discrete time process $\left\{U_{i}, i \geq 1\right\}$. Let $F(\cdot)$ be the distribution function of $\left(U_{i}, U_{i+1}\right)^{\prime}$ and $F_{1}(\cdot)$ the marginal distribution function of U_{i}. Define $S(u)=F(u)-F_{1}\left(u_{1}\right) F_{1}\left(u_{2}\right)$, for $u=\left(u_{1}, u_{2}\right)^{\prime} \in \mathbb{R}^{2}$. Given observations $\left\{U_{i}\right\}_{i=1}^{n+1}$, Skaug \& Tjøstheim (1993), Delgado (1996) and Hong (1998), among others, have proposed to test

$$
\begin{gathered}
H_{0}:\left\{U_{i}, i \geq 1\right\} \text { are independently distributed, } \\
H_{1}: S(u) \neq 0, \text { for some } u \in \mathbb{R}^{2}
\end{gathered}
$$

using statistics which are functionals of $n^{1 / 2} S_{n}(\cdot)$, where $S_{n}(\cdot)$ is the Hoeffding-Blum-Kiefer-Rosenblatt process (Delgado, 1999), defined by

$$
S_{n}(u)=F_{n}(u)-F_{n 1}\left(u_{1}\right) F_{n 1}\left(u_{2}\right),
$$

where $F_{n}(u)=n^{-1} \sum_{i=1}^{n} 1\left(U_{i} \leq u_{1}\right) 1\left(U_{i+1} \leq u_{2}\right), 1(\cdot)$ is the indicator function and $F_{1 n}(\cdot)$ is the univariate empirical distribution function based on $\left\{U_{i}\right\}_{i=1}^{n+1}$. A popular test statistic for H_{0} which is based on $n^{1 / 2} S_{n}(\cdot)$ is the Cramér-von Mises statistic

$$
C_{n}=n^{-1} \sum_{i=1}^{n}\left\{n^{1 / 2} S_{n}\left(U_{i}, U_{i+1}\right)\right\}^{2}
$$

Hoeffding (1948) and Blum, Kiefer \& Rosenblatt (1961) proposed this type of statistic for testing independence between two samples, and tabulated its limiting distribution under the null hypothesis. Skaug \& Tjøstheim (1993) showed that, if $F(\cdot)$ is continuous, C_{n} and the statistic of Blum et al. (1961) have the same limiting distribution. Delgado (1996) showed that this is not the case when higherorder dependence alternatives are considered. Other functionals of $n^{1 / 2} S_{n}(\cdot)$ could
be used, e.g. based on the supremum distance, as in the case of KolmogorovSmirnov statistics.

Suppose now that $\left\{U_{i}, i \geq 1\right\}$ are unobservable errors in the linear regression model $Y_{i}=X_{i}^{\prime} \beta_{0}+U_{i}$, where X_{i} are fixed regressors and β_{0} is a k-dimensional vector of unknown parameters. In this case, we propose to test H_{0} as before, replacing the unobservable errors U_{i} by residuals $\hat{U}_{n i}=Y_{i}-X_{i}^{\prime} \hat{\beta}_{n}$, where $\hat{\beta}_{n}$ is a suitable estimate of β_{0}. Thus, $S(u)$ is estimated by

$$
\hat{S}_{n}(u)=\hat{F}_{n}(u)-\hat{F}_{n 1}\left(u_{1}\right) \hat{F}_{n 1}\left(u_{2}\right),
$$

where $\hat{F}_{n}(\cdot)$ and $\hat{F}_{n 1}(\cdot)$ are defined as $F_{n}(\cdot)$ and $F_{n 1}(\cdot)$, but replacing U_{i} by $\hat{U}_{n i}$. Functionals of $n^{1 / 2} \hat{S}_{n}(\cdot)$ can be used as test statistics, e.g. the Cramér-von Mises statistic

$$
\hat{C}_{n}=n^{-1} \sum_{i=1}^{n}\left\{n^{1 / 2} \hat{S}_{n}\left(\hat{U}_{n i}, \hat{U}_{n, i+1}\right)\right\}^{2}
$$

In view of the existing results on empirical processes depending on parameter estimates, see e.g. Durbin (1973) for a discussion of this problem in the context of goodness-of-fit tests, we would expect a different asymptotic behaviour for $n^{1 / 2} S_{n}(\cdot)$ and $n^{1 / 2} \hat{S}_{n}(\cdot)$. Surprisingly, we prove in $\S 2$ that $n^{1 / 2} S_{n}(\cdot)$ and $n^{1 / 2} \hat{S}_{n}(\cdot)$ have the same limiting distribution, and hence \hat{C}_{n} can be used to test H_{0} in the same way as C_{n}. The results of a Monte Carlo experiment are reported in $\S 3$. Proofs are confined to an Appendix.

2. ASYMPTOTIC PROPERTIES

The following assumptions must hold under both H_{0} and H_{1}.

Assumption 1: $Y_{i}=X_{i}^{\prime} \beta_{0}+U_{i}$, and $\left\{U_{i}, i \geq 1\right\}$ is a strictly stationary discrete time process.

Assumption 2: $\sum_{i=1}^{n} X_{i} X_{i}^{\prime}$ is a non-random and non-singular matrix such that

$$
\max _{1 \leq i \leq n} X_{i}^{\prime}\left(\sum_{i=1}^{n} X_{i} X_{i}^{\prime}\right)^{-1} X_{i}=o(1) .
$$

Assumption 3: The distribution function of $\left(U_{i}, U_{i+1}\right)^{\prime}$ has a density function with marginal density function $f_{1}(\cdot)$ uniformly continuous and such that $f_{1}(x)>0$ for all $x \in \mathbb{R}$.

Assumption 4: $\hat{\beta}_{n}$ is an estimator of β_{0} such that

$$
\left(\sum_{i=1}^{n} X_{i} X_{i}^{\prime}\right)^{1 / 2}\left(\hat{\beta}_{n}-\beta_{0}\right)=O_{p}(1)
$$

Assumption 2 is typical when studying asymptotic properties of statistics in this context; this assumption does not rule out trending regressors. Under Assumption 3, which is necessary to ensure that empirical processes based on residuals behave properly (Koul, 1992, pp. 36-9), the marginal distribution function is strictly increasing. If Assumption 2 holds, Assumption 4 is satisfied by most estimates, such as ordinary least squares.

The following theorem establishes the asymptotic equivalence between $\hat{S}_{n}(\cdot)$ and $S_{n}(\cdot)$.

THEOREM 1: If Assumptions 1-4 hold, then
(a) under $H_{0}, \sup _{u \in \mathbb{R}^{2}}\left|\hat{S}_{n}(u)-S_{n}(u)\right|=o_{p}\left(n^{-1 / 2}\right)$,
(b) under H_{1}, if $\left\{U_{i}, i \geq 1\right\}$ is ergodic, then $\sup _{u \in \mathbb{R}^{2}}\left|\hat{S}_{n}(u)-S_{n}(u)\right|=o_{p}(1)$.

It follows from Theorem 1, see the proof of the Corollary in the Appendix, that, under $H_{0}, n^{1 / 2} \hat{S}_{n}(\cdot)$ and $n^{1 / 2} S_{n}(\cdot)$ converge weakly to the same process, which is, as Skaug \& Tjøstheim (1993) prove, a Gaussian process, $S_{\infty}(\cdot)$ say, with $E\left\{S_{\infty}(u)\right\}=$ 0 and $\operatorname{cov}\left\{S_{\infty}(u), S_{\infty}(v)\right\}=\prod_{j=1}^{2}\left[\min \left\{F_{1}\left(u_{j}\right), F_{1}\left(v_{j}\right)\right\}-F_{1}\left(u_{j}\right) F_{1}\left(v_{j}\right)\right]$; and, under $H_{1}, \hat{S}_{n}(\cdot)$ and $S_{n}(\cdot)$ converge in probability to $S(\cdot)$. These results are exploited in the following corollary, which justifies asymptotic inferences based on \hat{C}_{n}.

COROLLARY: If Assumptions 1-4 hold, then
(a) under H_{0}, \hat{C}_{n} converges in distribution to $C_{\infty}=\int_{\mathbb{R}^{2}} S_{\infty}(u)^{2} d F(u)$,
(b) under H_{1}, if $\left\{U_{i}, i \geq 1\right\}$ is ergodic, then, for all $c<\infty, \lim _{n \rightarrow \infty} \operatorname{pr}\left\{\hat{C}_{n}>c\right\}=$ 1.

The distribution of C_{∞} does not depend on $F(\cdot)$ and has been tabulated by Blum et al. (1961). The Corollary states that, asymptotically, the test can be performed using \hat{C}_{n} and critical values from the distribution of C_{∞}, i.e. in the same way as if we used C_{n}. This result may seem surprising at first sight because, in goodness-of-fit tests, the statistic computed with errors and the statistic computed with residuals have different asymptotic distributions; see e.g. Koul (1992, pp. 178-86). When testing goodness of fit, replacing the true parameter value by an estimator introduces a non-negligible random term in the empirical distribution function, and this affects the limiting distribution of the test statistic. When testing independence, replacing β_{0} by $\hat{\beta}_{n}$ introduces random terms in the joint empirical distribution function and in the two marginal empirical distribution functions, but these random terms cancel out asymptotically when we consider
the Hoeffding-Blum-Kiefer-Rosenblatt process.
In a nonlinear regression model $Y_{i}=m\left(X_{i}, \beta_{0}\right)+U_{i}$, where $m(\cdot)$ is a known function, continuously differentiable in a neighbourhood of β_{0}, the equivalence result we establish is also expected to hold if we assume, instead of Assumptions 2 and 4, that the estimator $\hat{\beta}_{n}$ is such that $\max _{1 \leq i \leq n}\left\{\dot{m}\left(X_{i}, \bar{\beta}_{n}\right)^{\prime} R_{n}\left(\bar{\beta}_{n}\right)^{-1} \dot{m}\left(X_{i}, \bar{\beta}_{n}\right)\right\}=$ $o_{p}(1)$ and $R_{n}\left(\bar{\beta}_{n}\right)^{1 / 2}\left(\hat{\beta}_{n}-\beta_{0}\right)=O_{p}(1)$, for any $\bar{\beta}_{n}$ such that $\left\|\bar{\beta}_{n}-\beta_{0}\right\| \leq\left\|\hat{\beta}_{n}-\beta_{0}\right\|$, where $\dot{m}(x, \beta)=\partial m(x, \beta) / \partial \beta$ and $R_{n}(\beta)=\sum_{i=1}^{n} \dot{m}\left(X_{i}, \beta\right) \dot{m}\left(X_{i}, \beta\right)^{\prime}$. However, the reasoning which we use to prove Theorem 1 does not apply directly in the nonlinear case because it is based on results derived in Koul (1992, Ch.3), where only linear models are considered.

3. SIMULATIONS

In order to study how the replacement of errors by residuals affects the finite sample behaviour of the test statistic, we carried out some Monte Carlo experiments with programs written in GAUSS. We generated $n+1$ observations from a linear regression model with $X_{i}=(1, i)^{\prime}, \beta_{0}=(1,1)^{\prime}$ and errors U_{i} satisfying a first-order autoregressive model $U_{i}=\rho U_{i-1}+\varepsilon_{i}$, where ε_{i} are independent identically distributed $N(0,1)$ variables; hence H_{0} is true if and only if $\rho=0$. We used least squares residuals to compute the test statistic \hat{C}_{n}. In Table 1, we report the proportion of rejections of H_{0} in 5000 Monte Carlo samples for different parameter values ρ, significance levels α and sample sizes n. The critical values we used, 0.04694 for $\alpha=0.1,0.0584$ for $\alpha=0.05$ and 0.08685 for $\alpha=0.01$, were obtained from Table II in Blum et al. (1961).

TABLE 1: Proportion of rejections of $H_{0}: \rho=0$ from sets of 5000
Monte Carlo samples, using the statistics C_{n} and \hat{C}_{n}.

n	ρ	$\alpha=0.10$	$\alpha=0.05$		$\alpha=0.01$		
		C_{n}	\hat{C}_{n}	C_{n}	\hat{C}_{n}	C_{n}	\hat{C}_{n}
	-0.6	0.975	0.978	0.954	0.961	0.882	0.897
	-0.4	0.753	0.771	0.650	0.676	0.424	0.454
50	-0.2	0.289	0.317	0.189	0.213	0.070	0.079
	0	0.111	0.110	0.059	0.056	0.015	0.014
	0.2	0.397	0.332	0.278	0.234	0.116	0.093
	0.4	0.829	0.776	0.746	0.685	0.534	0.453
	0.6	0.981	0.964	0.966	0.943	0.908	0.860
		C_{n}	\hat{C}_{n}	C_{n}	\hat{C}_{n}	C_{n}	\hat{C}_{n}
	-0.6	1.000	1.000	1.000	1.000	1.000	1.000
	-0.4	1.000	1.000	1.000	1.000	0.999	0.999
250	-0.2	0.868	0.878	0.786	0.799	0.581	0.597
	0	0.105	0.105	0.057	0.057	0.011	0.010
	0.2	0.893	0.880	0.829	0.811	0.637	0.610
	0.4	1.000	1.000	1.000	1.000	0.999	0.999
	0.6	1.000	1.000	1.000	1.000	1.000	1.000

We observe that C_{n} and \hat{C}_{n} yield very similar results. Moreover, the empirical level of the test is fairly close to the theoretical level and the power is reasonably high. To study the power of the test in other contexts, we performed some other Monte Carlo experiments with the same characteristics as those described in Skaug \& Tjøstheim (1993, § 4.4). The results of these experiments are not reported here; we obtained the same results as Skaug \& Tjøstheim (1993), both when using errors and when using residuals.

APPENDIX

Proofs

Detailed proofs are available from the authors on request. Hereafter, the interval $[0,1]$ is denoted by $I, I^{2} \equiv I \times I, \mathbb{D}\left(I^{2}\right)$ is the set of all real functions on I^{2} which are 'continuous from above with limits from below' as in Neuhaus (1971), $\mathbb{C}\left(I^{2}\right)$ is the set of all real continuous functions on $I^{2}, ~ ' \Rightarrow$ ' denotes weak convergence, $t=\left(t_{1}, t_{2}\right)^{\prime}$ is a generic element in $I^{2}, j=1,2$ and $i=1, \ldots, n$, unless otherwise stated. The proofs of Theorem 1 and the Corollary will be derived from the following proposition.

PROPOSITION A1: Let $\left\{\left(Y_{1 i}, X_{1 i}^{\prime}, Y_{2 i}, X_{2 i}^{\prime}\right)^{\prime}\right\}_{i=1}^{n}$ be observations from an $\mathbb{R} \times$ $\mathbb{R}^{p_{1}} \times \mathbb{R} \times \mathbb{R}^{p_{2}}$-valued variable such that the following linear regression models hold: $Y_{j i}=X_{j i}^{\prime} \beta_{j 0}+U_{j i}$, where $\left\{\left(U_{1 i}, U_{2 i}\right)^{\prime}, i \geq 1\right\}$ is a strictly stationary sequence of random vectors. We assume that both regression models satisfy Assumption 2, that we have estimators $\hat{\beta}_{n j}$ satisfying Assumption 4 and that the distribution function of $\left(U_{1 i}, U_{2 i}\right)^{\prime}$ has a density function with marginal density functions uniformly continuous and positive in \mathbb{R}. Let $H(\cdot)$ be the distribution function of $\left(U_{1 i}, U_{2 i}\right)^{\prime}$ and $H_{j}(\cdot)$ its marginal distribution functions. Define $P_{n}(t)=n^{1 / 2}\left(n^{-1} \sum_{i=1}^{n}\left[\prod_{j=1}^{2} 1\left\{H_{i}\left(U_{j i}\right) \leq t_{j}\right\}\right]-n^{-2} \prod_{j=1}^{2}\left[\sum_{i=1}^{n} 1\left\{H_{i}\left(U_{j i}\right) \leq t_{j}\right\}\right]\right)$ and $\hat{P}_{n}(t)$ in the same way as $P_{n}(t)$, but replacing errors $U_{j i}$ by residuals $\hat{U}_{n j i}=$ $Y_{j i}-X_{j i}^{\prime} \hat{\beta}_{n j}$.
(a) If $\left\{\left(U_{1 i}, U_{2 i}\right)^{\prime}, i \geq 1\right\}$ is an ergodic sequence, then $\sup _{t \in I^{2}}\left|\hat{P}_{n}(t)-P_{n}(t)\right|=$ $o_{p}\left(n^{1 / 2}\right)$. Moreover, $n^{-1 / 2} \hat{P}_{n}(\cdot)$ converges in probability to $L(t)=G(t)-t_{1} t_{2}$, where $G(t)=H\left\{H_{1}^{-1}\left(t_{1}\right), H_{2}^{-1}\left(t_{2}\right)\right\}$.
(b) If $\left\{\left(U_{1 i}, U_{2 i}\right)^{\prime}, i \geq 1\right\}$ is an m-dependent sequence for $m \in \mathbb{N} \cup\{0\}$
(Billingsley 1968, p. 167), and $H(u)=H_{1}\left(u_{1}\right) H_{2}\left(u_{2}\right)$ for all $u=\left(u_{1}, u_{2}\right)^{\prime} \in \mathbb{R}^{2}$, then $\sup _{t \in I^{2}}\left|\hat{P}_{n}(t)-P_{n}(t)\right|=o_{p}(1)$. Moreover, $\hat{P}_{n}(\cdot) \Rightarrow P^{(m)}(\cdot)$, where $P^{(m)}(\cdot)$ is a Gaussian process in $\mathbb{D}\left(I^{2}\right)$ with zero mean and

$$
\begin{gathered}
\operatorname{cov}\left\{P^{(m)}(s), P^{(m)}(t)\right\}=\prod_{j=1}^{2}\left\{\min \left(s_{j}, t_{j}\right)-s_{j} t_{j}\right\}+ \\
\sum_{k=1}^{m} E\left(\prod_{j=1}^{2}\left[1\left\{H_{j}\left(U_{j 1}\right) \leq s_{j}\right\}-s_{j}\right]\left[1\left\{H_{j}\left(U_{j, k+1}\right) \leq t_{j}\right\}-t_{j}\right]\right)+ \\
\sum_{k=1}^{m} E\left(\prod_{j=1}^{2}\left[1\left\{H_{j}\left(U_{j, k+1}\right) \leq s_{j}\right\}-s_{j}\right]\left[1\left\{H_{j}\left(U_{j 1}\right) \leq t_{j}\right\}-t_{j}\right]\right),
\end{gathered}
$$

where the last two terms on the right-hand side appear only if $m>0$.
(c) Let $D: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and $Q_{n}(\cdot), Q(\cdot)$ processes in $\mathbb{D}\left(I^{2}\right)$ such that $\operatorname{pr}\left\{Q(\cdot) \in \mathbb{C}\left(I^{2}\right)\right\}=1$. If $\left\{\left(U_{1 i}, U_{2 i}\right)^{\prime}, i \geq 1\right\}$ is an ergodic sequence, then the random variable $n^{-1} \sum_{i=1}^{n} D\left[Q_{n}\left\{H_{1}\left(\hat{U}_{n 1 i}\right), H_{2}\left(\hat{U}_{n 2 i}\right)\right\}\right]$ converges in distribution to $\int_{I^{2}} D\{Q(t)\} d G(t)$.

Proof:
(a) Define $W_{n}(t)=n^{-1 / 2} \sum_{i=1}^{n}\left[1\left\{H_{1}\left(U_{1 i}\right) \leq t_{1}\right\} 1\left\{H_{2}\left(U_{2 i}\right) \leq t_{2}\right\}-G(t)\right]$, $W_{j n}\left(t_{j}\right)=n^{-1 / 2} \sum_{i=1}^{n}\left[1\left\{H_{j}\left(U_{j i}\right) \leq t_{j}\right\}-t_{j}\right]$ and $\hat{W}_{n}(t), \hat{W}_{j n}(t)$ in the same way as $W_{n}(t), W_{j n}(t)$, but replacing $U_{j i}$ by $\hat{U}_{n j i}$. Then

$$
\begin{align*}
& \hat{P}_{n}(t)=\hat{W}_{n}(t)-t_{2} \hat{W}_{1 n}\left(t_{1}\right)-t_{1} \hat{W}_{2 n}\left(t_{2}\right)-n^{-1 / 2} \hat{W}_{1 n}\left(t_{1}\right) \hat{W}_{2 n}\left(t_{2}\right)+n^{1 / 2} L(t), \tag{A1}\\
& P_{n}(t)=W_{n}(t)-t_{2} W_{1 n}\left(t_{1}\right)-t_{1} W_{2 n}\left(t_{2}\right)-n^{-1 / 2} W_{1 n}\left(t_{1}\right) W_{2 n}\left(t_{2}\right)+n^{1 / 2} L(t) . \tag{A2}
\end{align*}
$$

Define $g_{j}\left(t_{j}\right)=h_{j}\left\{H_{j}^{-1}\left(t_{j}\right)\right\}, \hat{t}_{j n i}=H_{j}\left\{H_{j}^{-1}\left(t_{j}\right)+X_{j i}^{\prime}\left(\hat{\beta}_{n j}-\beta_{j 0}\right)\right\}$ and $\hat{t}_{n i}=$ $H\left\{H_{1}^{-1}\left(t_{1}\right)+X_{1 i}^{\prime}\left(\hat{\beta}_{n 1}-\beta_{10}\right), H_{2}^{-1}\left(t_{2}\right)+X_{2 i}^{\prime}\left(\hat{\beta}_{n 2}-\beta_{20}\right)\right\}$. As $H_{j}(\cdot)$ is a one-toone mapping, $1\left\{H_{j}\left(\hat{U}_{n j i}\right) \leq t_{j}\right\}=1\left\{H_{j}\left(U_{j i}\right) \leq \hat{t}_{j n i}\right\}$. Hence, if we define

$$
\begin{aligned}
& E_{j n}\left(t_{j}\right)=n^{-1 / 2} \sum_{i=1}^{n}\left[1\left\{H_{j}\left(U_{j i}\right) \leq \hat{t}_{j n i}\right\}-\hat{t}_{j n i}-1\left\{H_{j}\left(U_{j i}\right) \leq t_{j}\right\}+t_{j}\right] \\
& Z_{j n}\left(t_{j}\right)=n^{-1 / 2} \sum_{i=1}^{n}\left(\hat{t}_{j n i}-t_{j}\right)-n^{-1 / 2} g_{j}\left(t_{j}\right) \sum_{i=1}^{n} X_{j i}^{\prime}\left(\hat{\beta}_{n j}-\beta_{j 0}\right), \\
& B_{j n}\left(t_{j}\right)=n^{-1 / 2} g_{j}\left(t_{j}\right) \sum_{i=1}^{n} X_{j i}^{\prime}\left(\hat{\beta}_{n j}-\beta_{j 0}\right), \\
& E_{n}(t)=n^{-1 / 2} \sum_{i=1}^{n}\left(\prod_{j=1}^{2}\left[1\left\{H_{j}\left(U_{j i}\right) \leq \hat{t}_{j n i}\right\}\right]-\hat{t}_{n i}-\prod_{j=1}^{2}\left[1\left\{H_{j}\left(U_{j i}\right) \leq t_{j}\right\}\right]+\right.
\end{aligned}
$$ $G(t))$,

$$
Z_{n}(t)=n^{-1 / 2} \sum_{i=1}^{n}\left\{\hat{t}_{n i}-G(t)\right\}-t_{2} B_{1 n}\left(t_{1}\right)-t_{1} B_{2 n}\left(t_{2}\right),
$$

then it is easily proved that

$$
\begin{gather*}
\hat{W}_{j n}\left(t_{j}\right)=E_{j n}\left(t_{j}\right)+Z_{j n}\left(t_{j}\right)+B_{j n}\left(t_{j}\right)+W_{j n}\left(t_{j}\right), \tag{A3}\\
\hat{W}_{n}(t)=E_{n}(t)+Z_{n}(t)+t_{1} B_{2 n}\left(t_{2}\right)+t_{2} B_{1 n}\left(t_{1}\right)+W_{n}(t) . \tag{A4}
\end{gather*}
$$

With our assumptions, and using similar arguments as in Koul (1992, pp. 2839), it may be proved that $\sup _{t \in I}\left|Z_{j n}(t)\right|=o_{p}(1), \sup _{t \in I^{2}}\left|n^{-1 / 2} Z_{n}(t)\right|=o_{p}(1)$, $\sup _{t \in I}\left|n^{-1 / 2} E_{j n}(t)\right|=o_{p}(1), \sup _{t \in I^{2}}\left|n^{-1 / 2} E_{n}(t)\right|=o_{p}(1), \sup _{t \in I}\left|B_{j n}(t)\right|=O_{p}(1)$, $\sup _{t \in I}\left|n^{-1 / 2} W_{j n}(t)\right|=o_{p}(1)$. In view of (A1)-(A4), all these results imply that $\sup _{t \in I^{2}} n^{-1 / 2}\left|\hat{P}_{n}(t)-P_{n}(t)\right|=o_{p}(1)$. On the other hand, $n^{-1 / 2} P_{n}(t)-L(t)=$ $n^{-1} \sum_{i=1}^{n}\left[\prod_{j=1}^{2} 1\left\{H_{j}\left(U_{j i}\right) \leq t_{j}\right\}-G(t)\right]-n^{-1 / 2}\left\{t_{2} W_{1 n}\left(t_{1}\right)+t_{1} W_{2 n}\left(t_{2}\right)+\right.$ $\left.n^{-1 / 2} W_{1 n}\left(t_{1}\right) W_{2 n}\left(t_{2}\right)\right\}$. If we use the Glivenko-Cantelli Theorem in Stute \& Schumann (1980) and Theorem 4.1 in Billingsley (1968, p. 25), it follows that $n^{-1 / 2} \hat{P}_{n}(t)$ converges in probability to $L(t)$.
(b) With these assumptions, $\sup _{t \in I}\left|Z_{j n}(t)\right|=o_{p}(1), \sup _{t \in I^{2}}\left|Z_{n}(t)\right|=o_{p}(1)$, $\sup _{t \in I}\left|E_{j n}(t)\right|=o_{p}(1), \sup _{t \in I^{2}}\left|E_{n}(t)\right|=o_{p}(1), \sup _{t \in I}\left|B_{j n}(t)\right|=O_{p}(1)$, $\sup _{t \in I}\left|W_{j n}(t)\right|=O_{p}(1)$. Thus from (A1)-(A4) it follows that $\sup _{t \in I^{2}}\left|\hat{P}_{n}(t)-P_{n}(t)\right|=o_{p}(1)$. Moreover, write $V_{n}(t)=W_{n}(t)-t_{2} W_{1 n}\left(t_{1}\right)-$ $t_{1} W_{2 n}\left(t_{2}\right)$. From (A2) it follows that $P_{n}(t)=V_{n}(t)-n^{-1 / 2} W_{1 n}\left(t_{1}\right) W_{2 n}\left(t_{2}\right)$; if we use Theorem 4 in Csörgö (1979), $V_{n}(\cdot) \Rightarrow P^{(m)}(\cdot)$ and hence $P_{n}(\cdot) \Rightarrow P^{(m)}(\cdot)$.
(c) Write $\hat{G}_{n}(t)=n^{-1} \sum_{i=1}^{n} \prod_{j=1}^{2}\left[1\left\{H_{j}\left(\hat{U}_{n j i}\right) \leq t_{j}\right\}\right]$, and define $G_{n}(t)$ in the same way as $\hat{G}_{n}(t)$ but replacing residuals by errors. We must prove that

$$
\begin{equation*}
\int_{I^{2}} D\left\{Q_{n}(t)\right\} d \hat{G}_{n}(t)-\int_{I^{2}} D\{Q(t)\} d G(t)=o_{p}(1) \tag{A5}
\end{equation*}
$$

From (A4) we obtain that $\hat{G}_{n}(t)-G_{n}(t)=n^{-1 / 2}\left\{\hat{W}_{n}(t)-W_{n}(t)\right\}=n^{-1 / 2}\left\{E_{n}(t)+\right.$ $\left.Z_{n}(t)+t_{1} B_{2 n}\left(t_{2}\right)+t_{2} B_{1 n}\left(t_{1}\right)\right\}$. Hence, $\sup _{t \in I^{2}}\left|\hat{G}_{n}(t)-G_{n}(t)\right|=o_{p}(1)$, and (A5) may be proved from this result using the Skorohod embedding theorem.

Proof of Theorem 1: Apply Proposition A1 with $A_{1 i}=A_{i}, A_{2 i}=A_{i+1}$ for $A=Y, X, U$. Under H_{0}, all conditions in part (b) of Proposition A1 hold with $m=1$, and, except for terms which are uniformly $o_{p}(1), \hat{P}_{n}(\cdot), P_{n}(\cdot), H(\cdot), H_{1}(\cdot)$, $H_{2}(\cdot)$ become, respectively, $n^{1 / 2} \hat{S}_{n}^{*}(\cdot), n^{1 / 2} S_{n}^{*}(\cdot), F(\cdot), F_{1}(\cdot), F_{1}(\cdot)$, where $\hat{S}_{n}^{*}(t)=$ $\hat{S}_{n}\left\{F_{1}^{-1}\left(t_{1}\right), F_{1}^{-1}\left(t_{2}\right)\right\}$ and $S_{n}^{*}(t)=S_{n}\left\{F_{1}^{-1}\left(t_{1}\right), F_{1}^{-1}\left(t_{2}\right)\right\}$.

Proof of the Corollary: Under H_{0}, apply part (b) of Proposition A1 to deduce that $n^{1 / 2} \hat{S}_{n}^{*}(\cdot) \Rightarrow S_{\infty}^{*}(\cdot)$, where $S_{\infty}^{*}(t)=S_{\infty}\left\{F_{1}^{-1}\left(t_{1}\right), F_{1}^{-1}\left(t_{2}\right)\right\}$; then use part (c) of Proposition A1. Under H_{1}, apply part (a) of Proposition A1 and then use part (c) to derive that $n^{-1} \hat{C}_{n}$ converges in probability to $\Delta=\int_{\mathbb{R}^{2}}\left\{F\left(u_{1}, u_{2}\right)-\right.$ $\left.F_{1}\left(u_{1}\right) F_{2}\left(u_{2}\right)\right\}^{2} d F\left(u_{1}, u_{2}\right)$. As H_{1} is true and $F(\cdot)$ is continuous, then $\Delta>0$ (Blum et al. 1961, p. 490).

REFERENCES

BILLINGSLEY, P. (1968). Convergence of Probability Measures. New York: Wiley.

BLUM, J. R., KIEFER, J. \& ROSENBLATT, M. (1961). Distribution free tests of independence based on the sample distribution function. Ann. Math. Statist. 32, 485-98.

CSÖRGÖ, M. (1979). Strong approximations of the Hoeffding, Blum, Kiefer, Rosenblatt multivariate empirical process. J. Mult. Anal. 9, 84-100.

DELGADO, M. A. (1996). Testing serial independence using the sample distribution function. J. Time Ser. Anal. 17, 271-86.

DELGADO, M. A. (1999). Hoeffding-Blum-Kiefer-Rosenblatt process. In Encyclopedia of Statistical Sciences Update, Vol.3, Eds. S. Kotz, C. B. Read \& D.L. Banks, pp. 326-8. New York: Wiley.

DURBIN, J. (1973). Weak convergence of the sample distribution function when parameters are estimated. Ann. Statist. 1, 279-90.

HOEFFDING, W. (1948). A nonparametric test of independence. Ann. Math. Statist. 26, 189-211.

HONG, Y. (1998). Testing for pairwise serial independence via the empirical distribution function. J. R. Statist. Soc. B 60, 429-53.

KOUL, H. (1992). Weighted Empiricals and Linear Models. IMS Lecture Notes 21. Hayward, CA: Institute of Mathematical Statistics.

NEUHAUS, G. (1971). On weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Statist. 42, 1985-95.

SKAUG, H. J. \& TJØSTHEIM, D. (1993). A nonparametric test of serial independence based on the empirical distribution function. Biometrika 80, 591-602.

STUTE, W. \& SCHUMANN, G. (1980). A general Glivenko-Cantelli theorem for stationary sequences of random observations. Scand. J. Statist. 7, 102-4.

[^0]: * This research was partially supported by Spanish Dirección General de Enseñanza Superior and Instituto Valenciano de Investigaciones Económicas. We thank the referees and an associate editor for helpful comments.
 ** Miguel A. Delgado: University Carlos III (Madrid), Juan Mora: University of Alicante.

