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ADVERSE SELECTION AND MANAGERIAL INCENTIVES

Javier M. López Cuñat

A B S T R A C T

We analyze managerial contracts (i.e. incentive schemes based on a linear combination
of profits and sales) under asymmetric information about costs. In the competitive setting with
ex ante symmetric information, standard strategic effects appear. Under adverse selection in both,
monopolistic and competitive settings, we show that, in order to decrease the manager’s expected
informational rents, the owner will optimally pay the manager to keep sales low or, on the
contrary, keep them high. Moreover, the interactions between the strategic and the informational
rent effects have a non-additive nature, implying non-standard results. Unlike the monopolistic
framework, we show that, in the competitive framework, the manager may become aggressive
under ex ante symmetric information than under adverse selection. Unlike the setting with ex
ante symmetric information, we show that, under adverse selection, the manager may become
more aggressive in the monopolistic framework than in the competitive one.

Key words: Managerial incentives, Adverse selection, Quantity competition.



1 Introduction

Managerial contracts (i.e., incentive schemes based on a linear combination
of pro�ts and sales) have been used in many theoretical analyses of relevant
issues regarding Industrial Organization. Under Cournot competition, Vick-
ers (1985), Fershtman and Judd (1987) and Sklivas (1987) show that the
owner of a �rm can obtain greater pro�ts if he distorts managerial incen-
tives away from pro�t maximization. Considering a mixed duopoly, Barros
(1995) proves that delegation through managerial contracts can improve wel-
fare. Faul��-Oller and Motta (1996) show that a manager might undertake
unpro�table takeovers when he decides on the production, under a manage-
rial contract, and can also make takeover decisions. Moreover, the approach
of managerial contracts is consistent with empirical evidence. The empiri-
cal analysis carried out by Murphy (1985), Jensen and Murphy (1990), and
Conyon (1997), emphasizes the widely observed fact that managerial com-
pensation is linked to both pro�ts and sales.

To the best of our knowledge, the current analyses of managerial contracts
consider only situations with complete information or with ex ante symmetric
information.1 In fact, in the standard settings that employ managerial con-
tracts, it is commonly assumed that managers know the actual values of the
relevant parameters (as costs and productivity parameters) after contracts
are signed. The aim of this paper is, therefore, to understand how results
on managerial contracts are a�ected by the presence of adverse selection in
situations where managers realize the actual values of the parameters before
contracts are signed.

In this paper, we analyze managerial contracts in several settings with dif-
ferent degrees of competition and asymmetry of information about costs. We
suppose a general continuous distribution for the marginal cost, and quantity
competition. It is assumed that, at the time of contracting a manager, the
owner of a �rm is ignorant of the actual value of the marginal cost, which is
observed by managers before making production decisions. We consider two
di�erent kinds of information structures. We assume that, in the setting with
ex ante symmetric information, the manager knows the marginal cost after
the contract is signed, and, in the setting under adverse selection, he knows
it before the contract is signed. We also consider two di�erent frameworks
that di�er in their levels of competition in the market. In the monopolistic
framework only one managerial �rm is assumed (i.e., a �rm with an owner
that proposes a contract to a manager). In the competitive framework, to

1Managerial incentives have also been formulated as direct mechanisms based on out-
puts in adverse selection contexts. See, for instance, Barros (1997) and Caillaud, Jullien,
and Picard (1995).
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simplify the analysis, we suppose a duopoly, formed by one managerial �rm
and one entrepreneurial �rm (i.e., a pro�t-maximizing �rm) with identical
and constant marginal costs.

Just like other complete information models or ex ante symmetric infor-
mation models that have been presented in the literature [see, for instance,
Fershtman and Judd (1987)], our model exhibits a strategic e�ect: A �rm
induces its manager to be more aggressive (i.e., increases the weight of sales
against that of pro�ts in the managerial contract) in order to push out the
manager's reaction function to increase the �rm's payo�. The present model,
however, shows the existence of an informational rent e�ect under adverse
selection.

We prove that, in the monopolistic adverse selection setting, the owner
makes the manager more aggressive in order to decrease the manager's ex-
pected informational rents if the market demand level (the intercept of the
inverse demand) is high enough. If it is not, the owner will pay the manager
to keep sales low, if the expected marginal cost is high enough and the vari-
ance of the marginal cost is low enough. This is a consequence of the degree
of aggressiveness that maximizes the manager's informational rent compared
with the optimal degree under ex ante symmetric information.

On the other hand, we show that, in the monopolistic adverse selec-
tion setting, the optimal aggressiveness level, which is maximal relative to
the marginal cost distribution, implies no incentives to make higher pro�ts.
However, competition pushes this aggressiveness level upwards and yields dif-
ferent results. First, in the competitive adverse selection setting, the owner
should increase the aggressiveness level as a consequence of both, the strate-
gic e�ect and the informational rent e�ect, when the market demand level
is high enough. Secondly, when the expected marginal cost is low enough or
high enough, the informational rent e�ect is very weak, relative to the strate-
gic e�ect, and the owner will induce the manager to be aggressive. Thirdly,
for intermediate values of the expected marginal cost, and if the demand
level is low enough, the owner will pay the manager to keep sales low if the
variance of marginal cost is su�ciently low.

Finally, we show that the interactions between the strategic and the in-
formational rent e�ects have a non-additive nature, implying non-standard
results. We �rst prove that, unlike the monopolistic framework, in the com-
petitive setting the manager may become more aggressive under ex ante sym-
metric information than under adverse selection, if the market demand level
is su�ciently high or when the expectation and the variance of the marginal
cost are su�ciently low. Next, we show that, unlike the setting with ex ante
symmetric information, under adverse selection the manager may become
more aggressive in the monopolistic framework than in the competitive one
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if the expected marginal cost is su�ciently low.
The rest of this paper is organized as follows. In Section 2 we analyze

the monopolistic framework under ex ante symmetric information and under
adverse selection. In Section 3 we study the competitive framework under
ex ante symmetric information and under adverse selection. In Section 4 we
compare the managers' aggressiveness levels obtained in previous sections.
Finally, our conclusions are presented in Section 5.

2 The monopolistic framework

In this section, we analyze managerial incentives when there is only one
�rm in the market. Demand is given by P = a � Q, where Q is the total
quantity and P is the price. We assume a constant marginal cost given by
c 2 [0; 1]. To guarantee a positive monopolistic output, we suppose a > 1.
The game that we consider in this section has three stages: At Stage 1, the
owner of �rm chooses the parameters � 2 R and h 2 R that determine the
contract T = �� + (1 � �)S � h proposed to the manager, where � and S
stand respectively for the pro�ts and sales of the �rm, and h is a constant.
This approach is consistent with the widely accepted fact that a manager's
compensation is linked to both pro�ts and sales.2 At Stage 2, the manager
either accepts or rejects the contract and, in the last case, he obtains his
reservation utility that is normalized to zero. Finally, at Stage 3, if the
manager has accepted the contract, he decides on the production and he is
paid in accordance with the contract.

In the act of contracting, the owner of the �rm does not know the actual
value of the marginal cost C = c. To guarantee that, at Stage 3, the manager
chooses a positive output, we assume � � a. The owner merely knows that
C is distributed with expectation E(C) = e and variance V ar(C) = v > 0.
Given E(C2) = d, since v = d � e2 > 0, we consider the parameter space
P = f(e; d) j 0 < e2 < d < e < 1g. Finally, we assume that, in the �nal stage,
the manager knows the actual value of c before deciding on the production.

Given a contract, it is easy to verify that the quantity, the owner's gross
pro�t, and the corresponding payo�s at Stage 3 of the game, are, respectively:

Q(c; �) =
1

2
(a� c�);

�(c; �) =
1

4
(a+ c(�� 2))(a� c�);

2See, for instance, the empirical analysis by Murphy (1985), Jensen and Murphy (1990)
and, more recently, by Conyon (1997)
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and

TM(c; �; h) =
1

4
(a� c�)2 � h;

U(c; �; h) = �(c; �)� TM(c; �; h) =
1

2
c(�� 1)(a� c�) + h:

For this monopolistic framework, we consider two di�erent classes of infor-
mation structures. In the ex ante symmetric information setting, we assume
that the manager knows the actual value of c after the contract is signed
and, in the adverse selection setting, we suppose that the manager knows
the actual value of c before the contract is signed. We will study the optimal
value of � in both settings.

Previously, let us consider the complete information setting (i.e., when c is
veri�able). Since the individual rationality constraint implies TM(c; �; h) �
0, the owner optimally sets TM(c; �; h) = 0 and, therefore, he extracts all the
manager's surplus. The optimal value of � must maximize �(c; �) for each
c. It is easy to prove that this optimal value is � = 1. This is not surprising,
since the principal (owner) and the agent (manager) are, both, risk neutral
and, in this setting, there is no hidden information. If there is no danger of
adverse selection or of moral hazard on the part of the principal, therefore,
the agency does not matter if the principal can make the agent a residual
claimant (T = � � h).3 This result can by easily extended to the ex ante
symmetric information setting.

2.1 Monopoly under ex ante symmetric information

Under ex ante symmetric information, the manager will accept the contract
only if his expected utility E[TM (c; �; h)] is greater than his reservation util-
ity. For any �, the owner will optimally set h so that E[TM (c; �; h)] = 0.
Thus, in this setting, the owner will maximize

E[�(c; �)] =
1

4
(a2 � 2ae + d(�� 2)�)

with respect to �.
It is easy to show that the previous function reaches the maximum value

when � is equal to �MSI = 1 and the optimal contract is pro�t-maximizing.
The intuition here is similar to that of the complete information setting.
Under ex ante symmetric information, the manager does not possess hidden

3See Katz (1991) for an analysis in a competitive setting with unobservable contracts.
In our monopoly setting, contract observability does not matter.
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information at the time of contracting and the owner can extract all the man-
ager's surplus by adjusting the value of h. This leads to a pro�t-maximizing
optimal contract. The conclusion changes under adverse selection.

2.2 Monopoly under adverse selection

In this setting, the manager will only accept the contract if TM(c; �; h) � 0
for any c 2 [0; 1]. Thus, the owner will solve the following program

8><
>:

max�;hE[U(c; �; h)]
s.t.
TM(c; �; h) � 0; 8c 2 [0; 1]:

(1)

Note that (1) is the reduced form of an adverse selection problem. Given
the contract (�; h), the previous function Q(�; �) is the only incentive com-
patible action pro�le that corresponds to the agent's utility function

VM(x; c;�; h) = �(P (x)x� cx) + (1� �)P (x)x� h =

= P (x)x� c�x� h;

where x and c are the action and the agent's type respectively. It is known
that, under some assumptions, an action pro�le is implementable if and only
if the action pro�le is monotonic in types [see, for instance, Guesnerie and
La�ont (1984)]. The assumptions include the Spence-Mirrlees condition,
which indicates that @xcVM has a constant sign. Moreover, the monotonic-
ity of an implementable action pro�le depends on that sign. In the present
monopolistic adverse selection setting, the sign depends on managerial con-
tracts, because @xcVM = ��, and, since VM is monotonic in c, the managers's
payo� TM is also monotonic in c. Therefore, � = 0 is a threshold for which
the manager obtains the constant rent a2=4 � h for any c. For � < 0, the
minimum of TM(c; �; h) with respect to c is reached at c = 0 with a minimal
rent equal to a2=4 � h. For � > 0, the minimal rent is (a � �)2=4 � h and
it is reached at c = 1. In consequence, it is optimal for the owner to set h
equal to

hM (�) =

(
a2=4 if � � 0;
(a� �)2=4 if 0 � � � a:

(2)

and, given the contract (�; h(�)), the c-manager's informational rent is

TM(c; �; hM(�)) =
1

4
(a� c�)2 � hM(�): (3)
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and program (1) is equivalent to maximize

E[U(c; �; hM(�))] = E[�(c; �)]� E[TM(c; �; hM(�))] = (4)

=
1

2
(�� 1)(ae� d�) + hM(�):

Expression (3) follows the standard properties of the agent's utility under
an incentive compatible and individually rational contract in adverse selec-
tion principal-agent models. Below the threshold (� < 0), the \worst" type
of manager is c = 0. He will receive no rent and the others will obtain rents
that are increasing in c. Over the threshold (� > 0), the \worst" type is c = 1
and rents are decreasing in c. If � = 0, the manager obtains no rent for any
c. This explains the properties of the optimal value of � in this monopolistic
setting under adverse selection. First, note that the owner's (expected) gross
pro�t is maximized at � = 1, which represents the pro�t-maximizing con-
tract under complete information or under ex ante symmetric information.
On the other hand, the manager behaves as a monopolist with the distorted
marginal cost c�, when � is non-negative, and his pro�t increases when c�
decreases. Under adverse selection, the owner will distort the manager's ag-
gressiveness taking into account the expected informational rent perceived
by the manager according to (4).

The �rst property is that it is not optimal for the owner to set � at
a negative value, as this would rank the manager's types in the opposite
direction to the manager's e�ciency (here the \worst" type corresponds to
the most e�cient). Speci�cally, since informational rents decrease in � when
it is negative (because in this case c� will come close to a) and the owner's
gross pro�t is maximized at � = 1, the owner's payo� increases with � when
� is negative.

The second property is related to the manager's aggressiveness, which
is inversely correlated to �. At �rst sight, it would seem that an aggressive
manager would obtain less informational rents than an unaggressive one since
the decision of the former depends less on cost considerations than that of the
latter. This argument, however, is mistaken. The informational rent function
(3) is concave and has one relative maximum on [0; a] (see Figure 1). The
reason is that the individual rationality constraints are less demanding when
� 2 [0; a] is close to 0 or a. This follows from the fact that the manager's
payo� TM(�) at Stage 3 corresponds to the optimal pro�t (minus a constant)
of a monopolist with a distorted marginal cost equal to c�. On the one hand,
if � approaches a, the distorted marginal cost increases and the optimal pro�t
decreases. On the other hand, if � approaches 0, the distorted marginal cost
goes to 0 and the optimal pro�t increases and becomes atter relative to
c. In both cases, it is cheaper for the owner to induce the acceptance of
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Figure 1: Informational rents in the monopoly under adverse selection for a = 2

and c = 0:5.

the contract. The value �� 2 [0; a] that maximizes informational rents is,
therefore, important to the analysis. In this setting it is �� = a=(1 + c) that
is increasing in a and decreasing in c. Therefore, for high market demand
levels (i.e., for a su�ciently high a), that value is greater than 1 for any c and
the owner will induce the manager to be more aggressive than in the ex ante
symmetric information setting: � = 1 is not optimal for the owner under
adverse selection because a slightly lower value implies not only a second-
order decrease in the owner's gross pro�ts, but also a �rst-order decrease
in the manager's informational rents. In markets with low demand levels,
�� may be lower than 1 for high realizations of the marginal cost. This
suggests that if the market demand level is su�ciently low, the expectation
of the marginal cost is high enough and its variance is low enough, the owner
may pay the manager to keep sales low. These assertions are stated in the
following proposition:

Proposition 1 In the monopoly under adverse selection (a > 1), the optimal
contract satis�es the following properties:

(1) The optimal value of � satis�es:

(a) �MAS = d�a(1�e)
2d�1

2 (0; a) if d > a(1� e) and d > ae
2a�1

.

(b) �MAS = 0 if d � a(1� e) and d > a(2e�1)
2(a�1)

.

(c) �MAS = a if d � ae
2a�1

and d < a(2e�1)
2(a�1)

.

(d) If d = ae
2a�1

and e � 1� 1
2a

then, indi�erently, the owner optimally

chooses �MAS = 0 or �MAS = a.

(2) If a � 2 then �MAS < 1.
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(3) In the case (1a), �MAS > 1 if and only if d < 1� a(1� e), when a < 2.

Proof: See Appendix.

Note that, when a � 1+ 1p
2
, the optimal value of � in the monopoly under

adverse selection becomes �MAS = d�a(1�e)
2d�1

2 (0; a) if d > a(1� e), otherwise

�MAS = 0. Figure 2 represents the relevant regions for �MAS, in the expectation{
variance space when a is equal to any value between 1+ 1p

2
and 2 (note that

d = v+ e2). It is obvious that the owner optimally pays the manager to keep

e

v

a=0 0<a<1

1<a<a

Figure 2: �MAS for 1 + 1p
2
� a < 2.

sales low, for intermediate market demand levels, only if the expectation
of the marginal cost is high enough and its variance is low enough. The
same conclusion holds for low market demand levels (a < 1 + 1p

2
). Figure 3

represents the relevant regions for 1 < a < 1 + 1p
2
.

e

v

a=0

a=a

0<a<1

1<a<a

Figure 3: �MAS for 1 < a < 1 + 1p
2
.
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3 The competitive framework

In this section we consider a competitive framework with two �rms in a ho-
mogeneous product market. In the managerial �rm (A), the output decision
is made by a manager, as in the previous section. To simplify the analysis,
we suppose that the other �rm (B) is an entrepreneurial �rm, i.e., a standard
pro�t-maximizing �rm. Both �rms have identical constant marginal costs.

The timing of the game is now as follows. At Stage 1, the owner of �rm
A chooses, as before, the contract T = ��+ (1��)S� h as proposed to the
manager and this is publicly announced. At Stage 2, the manager accepts
or rejects the contract. Finally, at Stage 3, if the manager has accepted the
contract, �rm B and the manager decide simultaneously on their respective
outputs. We assume that the owner always proposes a contract that the
manager will accept.

As in the previous section, we assume that, in the act of contracting, the
owner of �rm A is ignorant of the actual value of the marginal cost C = c.
We assume c 2 [0; 1], and demand is given by P (Q) = a � Q with a > 1.
As before, the owner of �rm A knows only that C is distributed such that
E(C) = e and E(C2) = d, with (e; d) 2 P. In the last stage, both the
manager and �rm B know the actual value of c before deciding on their
productions. To guarantee positive outputs for any c, in the third stage we
assume � 2 [2� a; (1 + a)=2]. Given a contract, it is easy to verify that the
quantities, pro�ts and payo�s in the third stage of the game are:

qA(c; �) =
1

3
(a+ c� 2c�);

qB(c; �) =
1

3
(a� 2c+ c�);

�A(c; �) =
1

9
(a� 2c+ c�)(a+ c� 2c�);

�B(�; c) =
1

9
(a� 2c+ c�)2;

TC(c; �; h) =
1

9
(a+ c� 2c�)2 � h;

UA(c; �; h) = �A(c; �)� TC(c; �; h) =
1

3
c(�� 1)(a+ c� 2c�) + h:

As in the previous section, we consider two di�erent classes of informa-
tion structures. In the ex ante symmetric information setting, the manager
realizes the actual value of c after the time of contracting, and in the adverse
selection setting, the manager knows the actual value of c before the contract
is signed.
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Under complete information (i.e., when c is veri�able), the owner extracts
all the manager's surplus by setting the value of h such that TC(c; �; h) = 0 for
any c and any �. The optimal value of � must, therefore, maximize �A(c; �)
for each c. It is easy to show that this optimal value is � = max(2�a; 5

4
� a

4c
),

which is always lower than 1. The intuition of this result agrees with the
work of Sklivas (1987), and Fershtman and Judd (1987). By inducing the
manager to be more aggressive (i.e., decreasing � with respect to 1), the
owner of �rm A pushes the manager's reaction function out at the last stage
of the game and, therefore, the output of �rm A increases and the output
of �rm B decreases. This strategic behavior leads to an increase in the net
pro�ts of �rm A. This result also holds in the setting with ex ante symmetric
information.

3.1 The competitive setting under ex ante symmetric

information

As before, under ex ante symmetric information, the owner of �rm A can
extract all the surplus in his relationship with the manager, if the owner
sets h such that E[TC(c; �; h)] = 0 for any �. The optimal contract must,
therefore, maximize

E[�A(c; �)] =
1

9
[a2 � ae(1 + �) + d(�2 + 5�� 2�2)]:

It easy to show that this function is strictly concave and has a unique maxi-
mum point at � = 5

4
� ae

4d
for any (e; d) 2 P. In the competitive setting under

ex ante symmetric information, therefore, the optimal value of � is

�CSI = max
�
2� a;

5

4
� ae

4d

�
;

which is always lower than 1. Note that, depending on the probability dis-
tribution of costs, this strategic e�ect may be so strong that �CSI becomes
equal to 2� a.

3.2 The competitive setting under adverse selection

Under adverse selection, the actual value of c is the manager's private in-
formation at the time of contracting. So, the manager will only accept the
contract if TC(c; �; h) � 0 holds for any c 2 [0; 1]. The owner will, thus,
solve the following program:8><

>:
max�;hE[UA(c; �; h)]
s.t.
TC(c; �; h) � 0; 8c 2 [0; 1]:

(5)

10



Program (5) is the reduced form of an adverse selection problem. Given
the contract (�; h), in this competitive setting, the function qA(�; �) can be
considered as the only incentive compatible action pro�le that corresponds
to the agent's utility function

VC(x; c;�; h) =

= �(P (x+ qB(c; �))x� cx) + (1� �)P (x+ qB(c; �))x� h =

= P (x+ qB(c; �))x� c�x� h;

where x and c are, respectively, the action and the manager's type, and
qB(c; �) is the equilibrium output of �rm B.

In this setting, the Spence-Mirrlees condition holds, since @xcVC = �2(2��
1)=3, and the monotonicity of both qA(�; �) and the manager's payo� TC de-
pends on the sign of � � 1=2. Therefore, under competition, the threshold
is � = 1=2. The intuition here is as follows: The threshold under which the
manager will obtain no rent cannot be � = 0 as it is in the monopolistic
framework. When the contract and the manager's reaction function at Stage
3 are independent of costs (� = 0), the manager obtains informational rents
because his equilibrium payo� and his output decision at Stage 3 depend
on costs via the reaction function of �rm B, which always depends on costs.
Only if � = 1=2, the manager's reaction function depends on cost in such a
way that, in the corresponding equilibrium, the manager's decision and his
payo� are independent of costs. When � = 1=2, the manager obtains the
constant rent a2=9�h. When � > 1=2, the function TC is decreasing in c and
its minimal value is (1 + a � 2�)2 � h, which is reached at c = 1. However,
when � < 1=2, the manager's payo� TC is increasing in c and its minimal
value is a2=9� h, which is reached at c = 0. For any � 2 [2� a; (1 + a)=2],
therefore, the owner optimally sets h = hC(�) where

hC(�) =

(
a2=9 if � � 1=2;

(1 + a� 2�)2=9 if 1=2 � �:
(6)

Note that if a > 3=2 then 1=2 < 2 � a and hC(�) = (1 + a � 2�)2=9 for
any � 2 [2 � a; (1 + a)=2]. When a � 3=2, the function hC(�) consists of
the two sides in expression (6). In this competitive framework, therefore, the
manager's informational rent is

TC(c; �; hC(�)) = (a+ c� 2c�)2 � hC(�): (7)

From (7), program (5) is equivalent to maximize, on � 2 [2�a; (1+a)=2],
the following function:

E[UA(c; �; hC(�))] = E[�A(c; �)]� E[TC(c; �; hC(�))] = (8)

=
1

3
(�� 1)(ae� d(2�� 1)) + hC(�):
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As in the case of the monopolistic framework, expression (7) follows the
standard properties of the agent's utility under an incentive compatible and
individually rational contract. But now the properties depend on � being
relative to a higher threshold (1/2 instead of 0).

In this competitive framework with a > 3=2, the optimal value of � is
always greater than, or equal to, the threshold of 1/2. The explanation for
this is similar to that for the monopolistic framework. A value of � that is
lower than 1/2 ranks the manager's types in the opposite direction to that
indicated by the manager's e�ciency, which implies that the manager obtains
too much informational rents relative to the owner's expected gross pro�t.
When a < 3=2, it is obvious that the optimal value of � is greater than 1/2,
since, in this case, we assume � 2 [2 � a; (1 + a)=2] to guarantee positive
outputs at Stage 3, and 2� a > 1=2.

The second property is that, as in the case of the monopolistic framework,
the optimal value of � may be higher or lower than 1 in this competitive
setting. Several explanations must now be added, due to the presence of
competition.

First, the previous section shows that, if the market demand level is su�-
ciently high, a monopolistic owner should make his manager more aggressive
to decrease the manager's informational rents. Moreover, in the competitive
framework under ex ante symmetric information, the owner strategically de-
creases � to obtain more pro�ts. In the competitive adverse selection setting,
therefore, the owner should decrease � as a consequence of both the strate-
gic e�ect and the informational rent e�ect, when the demand level is high
enough.

Secondly, when the expectation of the marginal cost is close to 0 or 1
(its variance will be close to 0 in these cases) the informational rent e�ect is
very weak relative to the strategic e�ect that leads to an aggressive manager.
This suggests that if the expected marginal cost is su�ciently close to 0 or
1, the owner should induce the manager to be aggressive even under adverse
selection.

Thirdly, for intermediate values of the expected marginal cost, and if the
market demand level is low enough, the situation resembles that of the mo-
nopolistic setting. The value of � that maximizes the expected informational
rent is now important in this analysis. As suggested by the monopolistic
framework, a low variance of the marginal cost may imply that the infor-
mational rent e�ect leads to increasing �. On the other hand, a low market
demand level implies that the strategic e�ect is insigni�cant. These argu-
ments suggest that the owner may pay the manager to keep sales low, if both
the market demand level and the variance of marginal cost are su�ciently
low, and if the value of the expected marginal cost is intermediate. The
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following proposition formalizes these ideas.

Proposition 2 In the competitive setting under adverse selection (a > 1),
the optimal contract satis�es the following properties:

(1) When 1 < a � 3=2:

(a) �CAS = 9d�4�a(4�3e)
12d�8

2
�
2� a; 1+a

2

�
if d > ae

2a�1
and e > 4(a�1)+(5�4a)d

a
.

(b) �CAS = 2� a if e � 4(a�1)+(5�4a)d
a

and d > ae�2(a�1)
2�a .

(c) �CAS = 1+a
2

if d � ae
2a�1

and d < ae�2(a�1)
2�a .

(d) If d = ae�2(a�1)
2�a and e � 4a�2

3�a , the owner of �rm A indi�erently

chooses �CAS = 2� a or �CAS = 1+a
2
.

(2) When a > 3=2: �CAS = 9d�4�a(4�3e)
12d�8

2
�
1=2; 1+a

2

�
if d > a(4�3e)=3 and

�CAS = 1=2 otherwise.

(3) When a � (4 +
p
6)=5: �CAS < 1.

(4) When 1 < a < (4 +
p
6)=5: In the case (1a), �CAS > 1 if and only if

d < 4
3
+ a

�
e� 4

3

�
.

Proof: See Appendix.

Note that, when (4 +
p
6)=5 � a � 3=2, the optimal contract satis�es

�CAS = 9d�4�a(4�3e)
12d�8

2
�
2� a; 1+a

2

�
if d > 4+a(e�4)

5�4a
and �CAS = 2� a otherwise.

Figure 4 represents the relevant regions for this case, in which we have �CAS <
1. This conclusion holds also when a > 3=2 (see Figure 5). This implies that,

e

v

a=2-a

2-a<a<1

Figure 4: �CAS for (4 +
p
6)=5 � a � 3=2.
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e

v

a=1/2

1/2<a<1

Figure 5: �CAS for a > 3=2.

for a market demand level that is su�ciently high, the owner of �rm A induces
the manager to be aggressive, as under ex ante symmetric information.

Nevertheless, if the market demand level is su�ciently low, the owner of
�rm A may optimally pay the manager to keep sales low. Figure 6 represents
the relevant regions for 1 < a < (4 +

p
6)=5. We observe that this happens

when the variance of the marginal cost is su�ciently low and its expectation
belongs to an intermediate region in [0; 1].

e

v

a=2-a

2-a<a<1

1<a<(1+a)/2

a=(1+a)/2

Figure 6: �CAS for 1 < a < (4 +
p
6)=5.

4 The comparison of settings

In this section we compare the optimal levels of the manager's aggressiveness,
which depends inversely on the value of �, regarding the level of competition
and the class of information structure considered. First, for the competitive
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framework, we compare the manager's aggressiveness under ex ante symmet-
ric information with the corresponding one under adverse selection. Secondly,
we consider the adverse selection setting and we compare his aggressiveness
in the monopolistic and the competitive frameworks.

Section 2 shows that in the monopolistic framework, the manager is more
aggressive under adverse selection than he is under ex ante symmetric infor-
mation (�MAS < 1 = �MSI) if the market demand level is high enough. This
conclusion does not hold in the competitive framework, since, on the one
hand, competition implies an optimal value of � that is higher than the
threshold 1/2 in the adverse selection setting, and on the other hand, under
ex ante symmetric information a high strategic e�ect may imply an optimal
value of � that is lower than the threshold 1/2. The following proposition,
therefore, shows that the interaction between the strategic e�ect and the
informational rent e�ect has a non-additive nature.

Proposition 3 Let �CSI and �CAS be, respectively, the optimal values of �
under ex ante symmetric information and under adverse selection in the
competitive framework. We then have:

(a) If 3=2 < a < 3 then �CSI
>
< �CAS , d >

< ae=3.

(b) If a � 3 then �CSI < �CAS.

Proof: See Appendix.

Part (b) of the previous proposition show that, for markets with su�-
ciently high demand levels, the manager is always more aggressive under ex
ante symmetric information than he is under adverse selection in the compet-
itive framework. From d = v+e2, the previous proposition shows that, in the
competitive framework with a moderate level of market demand, the man-
ager is more aggressive under ex ante symmetric information than he is in
under adverse selection only for su�ciently low expected costs and variances
(see Figure 7).

Previous sections have shown that, in the setting with ex ante symmetric
information, the manager is always more aggressive under competition than
he is under monopoly (�CSI < 1 = �MSI) due to a strategic e�ect. This
conclusion does not hold in the adverse selection setting. The reason is
the existence of a non-additive interaction between the strategic e�ect and
the informational rent e�ect. The following proposition shows that, in the
adverse selection setting, the manager is more (resp. less) aggressive under
competition than he is under monopoly, if and only if the expected cost is
higher (resp. lower) than 1� 1

2a
.
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Figure 7: Optimal values of � in the competitive framework with a = 2.

Proposition 4 Let �MAS and �CAS be, respectively, the optimal values of �
in the monopolistic and competitive frameworks under adverse selection with
a � 1 + 1p

2
. Then, it follows

�MAS
>
< �CAS , e >

< 1� 1

2a
:

Proof: See Appendix.

5 Conclusions

In this paper, we have analyzed managerial contracts in the presence of
monopoly or competition and assuming ex ante symmetric information or
adverse selection relative to the marginal cost. It is assumed that, at the time
of contracting a manager, the owner of a �rm is ignorant of the actual value
of the constant marginal cost. The marginal cost is observed by managers
before making production decisions. As empirical evidence con�rms that
managerial contracts are linked to both pro�ts and sales, it is assumed that
managerial compensation is a linear combination of these two factors.

We consider two di�erent classes of information structures. In the setting
with ex ante symmetric information, we assume that the manager realizes
the actual value of the marginal cost after the contract is signed and, in the
setting under adverse selection, that he knows this marginal cost before the
contract is signed. We also consider two frameworks that di�er in the compet-
itive level of the market. In the monopolistic framework, only one managerial
�rm is assumed (i.e., a �rm with an owner that proposes a contract to a man-
ager). In the competitive framework, to simplify the analysis, we suppose a
duopoly, formed by one managerial �rm and one entrepreneurial �rm (i.e.,
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pro�t-maximizing �rm) with identical constant marginal costs. Moreover,
we assume a linear inverse demand function and quantity competition, and
we consider a general continuous probabilistic distribution for the marginal
cost.

Just like several other models with complete information or ex ante sym-
metric information presented in the literature, the present model exhibits
the presence of strategic e�ects: A �rm makes its manager more aggressive
(i.e., increases the weight of sales against that of pro�ts in the managerial
contract) to push the manager's reaction function out since this increases
the �rm's net payo�. The present model, however, shows the existence of an
informational rent e�ect.

We prove that, in the monopolistic adverse selection setting, the owner
makes the manager more aggressive to decrease the manager's expected in-
formational rents when the market demand level is high enough. If it is not,
however, the owner will pay the manager to keep sales low if the expected
marginal cost is high enough and the variance of the marginal cost is low
enough. This is a consequence of the aggressiveness level that maximizes
the manager's informational rent compared to the optimal one under ex ante
symmetric information.

In the monopolistic adverse selection setting, the optimal aggressiveness
level, which is maximal, relative to the marginal cost distributions, implies no
incentives for pro�ts. Competition, however, pushes this aggressiveness level
upwards and several conclusions must be added. First, in the competitive
adverse selection setting, the owner should increase the aggressiveness level
as a consequence of both, the strategic e�ect and the informational rent
e�ect, when the market demand level is high enough. Secondly, when the
expectation of the marginal cost is low enough or high enough (its variance
will be close to zero in such cases) the informational rent e�ect is very weak
relative to the strategic e�ect, and the owner should induce the manager to
be aggressive even under adverse selection. Thirdly, for intermediate values
of the expected marginal cost and if the market demand level is low enough,
the situation resembles that of the monopolistic setting, and the owner will
pay the manager to keep sales low if the variance of the marginal cost is
su�ciently low.

Finally, we show that the interactions between the strategic and the in-
formational rent e�ects have a non-additive nature. We �rst prove that,
unlike the monopolistic framework, the manager may become more aggres-
sive in the competitive setting, under ex ante symmetric information, than
under adverse selection, if the market demand level is high enough or when
the expectation and the variance of the marginal cost are su�ciently low.
We then show that, unlike the setting with ex ante symmetric information,
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the manager may become more aggressive in the adverse selection setting
under monopoly than under competition, if the expected marginal cost is
su�ciently low.

A Proof of Proposition 1

For � � 0, consider U1(�) = E[�(c; �) � TM(c; �; hM(�))]. Simple calcula-
tions show that

U1(�) =
1

2
(�� 1)(ae� d�) +

a2

4
:

It follows that U1(�) is strictly concave with a maximum point at � = d+ae
2d

for any (e; d) 2 P. The maximum of U1(�) on (�1; 0] is, therefore, reached
at � = 0 with a value equal to U1(0) = a(a� 2e)=4.

For � 2 [0; a] consider U2(�) = E[�(c; �) � TM(c; �; hM(�))]. We now
have

U2(�) =
1

2
(�� 1)(ae� d�) +

1

4
(a� �)2:

Simple calculations show that

U 00
2 (�) =

1

2
� d;

U 0
2(�) = 0, � = ~� =

d� a(1� e)

2d� 1
:

Moreover, we have a � ~� = (2a�1)d�ae
2d�1

. As we assume a > 1, to obtain the
maximum of U2(�) given (e; d) 2 P we can divide the analysis into several

cases considering the functions d0(e) =
a(2e�1)
2(a�1)

, d1(e) = a(1� e) and d2(e) =
ae

2a�1
. Some cases will be impossible and some conditions will be superuous

for a � 1+ 1p
2
. Figures 8 and 9 represent, respectively, the relevant cases for

1 < a < 1 + 1p
2
and a � 1 + 1p

2
.

Case 1: d > d1(e), d > d2(e) (the last condition is superuous if a �
1+ 1p

2
). It follows U 00

2 (�) < 0 and ~� 2 (0; a). The maximum of U2(�) on [0; a]
is, therefore, reached at � = ~� and

U2(~�) =
d(2(a� 1)a+ d)� 2a(a + d� 1)e+ a2e2

8d� 4
:

Case 2: 1=2 < d � d1(e). We then have U 00
2 (�) < 0 and ~� � 0. Thus, the

maximum of U2(�) is reached at � = 0, with U2(0) = a(a� 2e)=4.
Case 3: 1=2 < d � d2(e) (impossible when a � 1 + 1p

2
). Here, U 00

2 (�) < 0

and a � ~� hold. Thus, the maximum of U2(�) is reached at � = a with
U2(a) = a(a� 1)(e� d)=2.
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Figure 8: Cases for Proposition 1 with a = 1:5.
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Figure 9: Cases for Proposition 1 with a = 2.

Case 4: d = 1=2. It follows U 00
2 (�) = 0 and U 0

2(�) = (1 + 2a(e � 1))=4.
Since d = d1(e) intersects d = d2(e) at d = 1=2, e = 1 � a

2a
, we can divide

this case into three occurrences.
(4.1) e < 1 � 1

2a
(this always holds if a � 1 + 1p

2
). Here, U 0

2(�) < 0 and

the maximum of U2(�) is reached at � = 0.
(4.2) e = 1 � 1

2a
(impossible if a � 1 + 1p

2
). Here, U2(�) is constantly

equal to (a� 1)2=4.
(4.3) e > 1 � 1

2a
(impossible if a � 1 + 1p

2
). Here, U 0

2(�) > 0 and the

maximum of U2(�) is reached at � = a.
Case 5: d2(e) � d < 1=2. It follows U 00

2 (�) > 0 and ~� � a and, in this
case, the maximum is reached at � = 0.

Case 6: d < d1(e), d < d2(e). Here, we have ~� 2 (0; a) and U 00
2 (�) >

0. The maximum is, therefore, reached at � = 0 or at � = a. Simple
computations show that U2(0)� U2(a) = a(a � 2d + 2ad� 2ae)=4, which is
positive if and only if d > d0(e). Since d = d0(e) intersects d = d1(e) (and
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d = d2(e)) at (e; d) with d = 1=2 and e = 1 � 1
2a
, and, moreover, the slope

of d = d0(e) is steeper than that of d = d2(e), we can divide this case into
three occurrences.

(6.1) d < d0(e) (impossible if a � 1 + 1p
2
). Here, the maximum of U2(�)

is reached at � = a.
(6.2) d = d0(e) (impossible if a � 1 + 1p

2
). Here, the maximum of U2(�)

is indi�erently reached at � = 0 or � = a.
(6.3) d > d0(e) (unique possibility if a � 1 + 1p

2
). Here, the maximum of

U2(�) is reached at � = 0.
Case 7: d1(e) � d < 1=2 (impossible if a � 1 + 1p

2
). Here, U 00

2 (�) > 0 and

~� � 0 hold. The maximum of U2(�) is reached at � = a in this case.
Since U1(0) = U2(0), the previous cases show that the optimal value of

�, for (e; d) 2 P, is given by part (1) of proposition 1.

Consider now the previous Case 1. It follows that 1 >
< �MAS if and only if

d >
< 1 � a(1 � e). If a � 2 the slope of d = 1 � a(1 � e) at e = 1 is a � 2

while the slope of d = e2 is 2. Therefore, a � 2 implies d > 1� a(1� e) at
any (e; d) 2 P and �MAS < 1. This proves part (2).

Finally, a < 2 implies that d = 1� e(1� e) intersects d = e2 and part (3)
holds. Q.E.D.

B Proof of Proposition 2

Part (1). Assume 1 < a � 3=2. It follows 1=2 � 2 � a and the owner's
expected payo� given by (8) is

B2(�) =
1

3
(�� 1)(ae� d(2�� 1)) +

1

9
(1 + a� 2�)2;

for � 2 [2� a; (1 + a)=2]. It follows

B00
2 (�) =

�4 (�2 + 3d)

9
;

and B0
2(�) = 0 if and only if � = �̂ where

�̂ =
9d� 4� a(4� 3e)

12d� 8
:

Moreover, we have �̂�(2�a) = 3(ae�4(a�1)�(5�4a)d)
4(3d�2)

and 1+a
2
��̂ = 3(d(2a�1)�ae)

4(3d�2)
.

To obtain the maximum of B2(�) in this case, we divide the analysis into
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several cases, considering the functions e1(d) =
4(a�1)+(5�4a)d

a
, d2(e) =

ae
2a�1

and d3(e) =
ae�2(a�1)

2�a . Some cases will be impossible and some conditions

will be superuous when a � (4 +
p
6)=5. Figures 10 and 11 represent,

respectively, the relevant cases for 1 < a < (4+
p
6)=5 and (4+

p
6)=5 � a �

3=2.
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Figure 10: Cases for Proposition 2 with a = 1:2.
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Figure 11: Cases for Proposition 2 with a = 1:4.

Case 1: d > d2(e) and e > e1(d) (the �rst condition is superuous if
(4+

p
6)=5 � a). Here, we have 2�a < �̂ < (1+a)=2 and B00

2 (�) < 0 because
d > 2=3. Therefore, the maximum of B2(�) is reached at � = �̂.

Case 2: 2=3 < d and e � e1(d). Now B00
2 (�) < 0 but �̂ � 2 � a. The

maximum is reached at � = 2� a.
Case 3: 2=3 < d � d2(e) (impossible if a � (4 +

p
6)=5). We have

B00
2 (�) < 0 and, since e > e1(d) holds in this case, it follows that �̂ � (1+a)=2.

The maximum of B2(�) is, therefore, reached at � = (1 + a)=2.
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Case 4: d = 2=3. In this case B2(�) is linear and B0
2(�) = (2+a(3e�4))=9,

which is positive if and only if e > 4
3
� 2

3a
. We divide this case into several

occurrences.
(4.1) e < 4

3
� 2

3a
(unique possibility if a � (4+

p
6)=5). This implies that

the maximum of B2(�) is reached at � = 2� a.
(4.2) e = 4

3
� 2

3a
(impossible if a � (4 +

p
6)=5). Here, the maximum is

reached at any value between 2� a and (1 + a)=2.
(4.3) e > 4

3
� 2

3a
(impossible if a � (4 +

p
6)=5). The maximum of B2(�)

is reached at � = (1 + a)=2.
Case 5: d2(e) � d < 2=3. Here, B00

2 (�) > 0 and �̂ � (1 + a)=2. The
maximum is reached at � = 2� a in this case.

Case 6: d < d2(e) and e < e1(d). We now have B00
2 (�) > 0 and 2�a < �̂ <

(1+a)=2. The maximum is � = 2�a or � = (1+a)=2. Simple computations
show that

B2(2� a)� B2(
1 + a

2
) =

1

2
(a� 1)(2d� 2 + a(2� d� e));

which is positive if and only if d > d3(e). On the other hand, the straight
lines d = d2(e), e = e1(d) and d = d3(e) intersect at e = 4

3
� 2

3a
, d = 2=3.

Moreover, the slope of e = e1(d) is higher than the slope of d = d3(e) that,
in turn, is higher than the slope of d = d2(e). Therefore, we can divide this
case into several occurrences.

(6.1) d < d3(e) (impossible if a � (4 +
p
6)=5). Here, the maximum of

B2(�) is reached at � = (1 + a)=2.
(6.2) d = d3(e) (impossible if a � (4 +

p
6)=5). Here, the maximum of

B2(�) is indi�erently reached at � = (1 + a)=2 or � = 2� a.
(6.3) d > d3(e) (unique possibility if a � (4+

p
6)=5). Here, the maximum

of B2(�) is reached at � = 2� a.
Case 7: d < 2=3 and e � e1(d) (impossible if a � (4 +

p
6)=5). We now

have B00
2 (�) > 0 and �̂ � 2 � a. It follows that the maximum is reached at

� = (1 + a)=2 in this case.
These cases prove part (1) of the proposition.
Part (2). Assume a > 3=2. It follows 2� a < 1=2 < 1+a

2
.

For � � 1=2 consider B1(�) = E[�A(c; �) � TC(c; �; h(�))]. With some
calculations, it follows:

B1(�) =
1

3
(�� 1)(ae� d(2�� 1)) +

a2

9
:

We have B00
1 (�) = �4d=3 < 0 and B0

1(�) = 0 if and only if � = 3
4
+ ae

4d
.

Therefore, the maximum of B1(�) on [2� a; 1=2] is reached at � = 1=2 with
a maximal value B1(1=2) = a(2a� 3e)=18.
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Figure 12: Cases for Proposition 2 with a = 1:7.

For 1=2 � � � (1 + a)=2 consider the function B2(�) de�ned in part (1),

but now for � 2 [1=2; (1 + a)=2]. In this case we have �̂ � 1=2 = 3d�a(4�3e)
4(3d�2)

and 1+a
2
� �̂ = 3(d(2a�1)�ae)

4(3d�2)
. To obtain the maximum of B2(�) we can consider

the following cases (see Figure 12) in which d2(e) =
ae

2a�1
, d4(e) = a(4�3e)=3

and, of course, 0 < e2 < d < e < 1.
Case 1: d > d4(e). Here, we have B00

2 (�) < 0 and 1=2 � �̂ < (1 + a)=2.
Thus, the maximum of B2(�) on [1=2; (1 + a)=2] is reached at � = �̂ with a
maximal value equal to

B2(�̂) =
d(8(a� 1)a+ 3d)� 2ae(4(a� 1) + 3d) + 3a2e2

24(3d� 2)
:

Case 2: 2=3 < d � d4(e). It follows B00
2 (�) < 0 and �̂ � 1=2. Therefore,

the maximum of B2(�) is reached at � = 1=2 with a value B2(1=2) = a(2a�
3e)=18.

Case 3: d = 2=3. In this case B2(�) is linear and B0
2(�) = (2+a(3e�4))=9.

Since 2=3 < e <
q
2=3 holds in this case, the previous expression is lower

than (2+(
p
6�4)a)=9 � 0. Therefore, B2(�) is decreasing, and the maximum

is reached at � = 1=2.
Case 4: d2(e) � d < 2=3. Here, U 00

2 (�) > 0 and �̂ � (1 + a)=2. This
implies that the maximum is reached at � = 1=2.

Case 5: d < d2(e). Here, we have B
00
2 (�) > 0 and 1=2 < �̂ < (1 + a)=2. It

follows that the maximum is reached at � = 1=2 or at � = (1+ a)=2. In this
case we have:

B2(1=2)�B2(
1 + a

2
) = a(�3d+ a(2 + 3d� 3e))=18;

which is positive if and only if �3d + a(2 + 3d� 3e) > 0. Since d > e2, this
expression is greater than �3e2 + a(2 + 3(e� 1)e) which, in turn, is greater

23



than 3(2� e)(1 � e)=2 > 0 because we assume a > 3=2. As a consequence,
the maximum of B2(�) on [1=2; (1 + a)=2] is reached at � = 1=2 in this case.

These cases show that, for any (e; d) 2 P, the maximal value of B2(�) on
[1=2; (1 + a)=2] is B2(�̂) if d > d4(e) and it is B2(1=2) if d � d4(e).

Since B1(1=2) = B2(1=2), the maximum of E[�A(c; �)�TC(c; �; h(�))] is
reached at � = �̂ if d > d4(e). It is reached at � = 1=2 if d � d4(e). This
proves part (2).

Part (3). To show this part we consider two cases:

Case 1: (4+
p
6)=5 � a � 3=2. From part (1), we have �CAS = 9d�4�a(4�3e)

12d�8
2

(2 � a; (1 + a)=2) if e > e1(d), and �CAS = 2 � a otherwise. If e � e1(d)
then �CAS = 2 � a < 1. If e > e1(d), we have �CAC < 1 if and only if
d > d5(e), where d5(e) = (4 + a(3e � 4))=3. The intersection of e = e1(d)
with d = d5(e) is e = 4

3
� 2

3a
and d = 2=3. Therefore, if there exists

(e; d) 2 P such that e > e1(d) and d � d5(e), we have e > 4
3
� 2

3a
�
q
2=3.

On the other hand, the expression e2 � d5(e) is greater than or equal to
(4(
p
6�1)�3(4+

p
6)e+15e2)=15 because we suppose a � (4+

p
6)=5. This

last function is convex with a minimal value at e = (4 +
p
6)=10 <

q
2=3.

It follows that, for e >
q
2=3, the last function is positive. In consequence,

if e > e1(d) and d � d5(e) hold then e2 > d5(e) � d which contradicts
(e; d) 2 P. Thus, e > e1(d) implies d > d5(e) and �CAC < 1.

Case 2: a > 3=2. From part (2), if d � d4(e) we have �CAS = 1=2. If
d > d4(e), we have �

C
AC < 1 if and only if d > d5(e). Since a > 3=2, it follows

e2 � d5(e) >
2
3
� 3e

2
+ e2 > 0. Therefore, d � d5(e) implies d < e2. In this

case, d > d5(e) holds for any (e; d) 2 P and, consequently, �CAS < 1.
This proves part (3).
Part (4). Assume 1 < a < (4 +

p
6)=5 and consider case 1 of part (1).

As in case 1 of part (3), we have �CAC > 1 if and only if d < d5(e), where
d5(e) = (4 + a(3e� 4))=3. Q.E.D.

C Proof of Proposition 3

Let �CSI and �
C
AS be the values described in Section 3. Note that �CSI =

5
4
� ae

4d

if d > ae
4a�3

and �CSI = 2 � a otherwise. On the other hand, 5
4
� ae

4d
> 1=2 if

and only if d > ae=3.
Part (a). Assume 3=2 < a < 3. We divide the proof into several cases.

Here, we have ae
4a�3

< ae
3
< a(4�3e)

3
.

Case 1: d > a(4 � 3e)=3. Here, we have �CAS = 9d�4�a(4�3e)
12d�8

and �CSI =
5
4
� ae

4d
. Therefore, �CSI > �CAS if and only if 3d2+ d(�3+ a(2� 3e))+ ae > 0.
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This expression is a function that decreases in e because d > 2=3 holds
for the case considered. Since e <

p
d, it follows that the expression is

greater than 3(d � 1)d + a(
p
d + 2d � 3d3=2) which, in turn, is higher than

3(
p
d � 3d3=2 + 2d2)=2 > 0 because a > 3=2. In consequence, we have

�CSI > �CAS in this case.
Case 2: ae=3 < d � a(4� 3e)=3. It follows �CSI =

5
4
� ae

4d
> �CAS = 1=2.

Case 3: d = ae=3. Here, �CSI =
5
4
� ae

4d
= �CAS = 1=2 holds.

Case 4: ae
4a�3

< d < ae=3. Now, it follows �CSI =
5
4
� ae

4d
< �CAS = 1=2.

Case 5: d � ae
4a�3

. As a > 3=2, we have �CSI = 2� a < �CAS = 1=2.
This proves Part (a).
Part (b). Suppose a � 3. In this case a(4 � 3e)=3 > 1 holds for any

(e; d) 2 P. Therefore, we always have �CAS = 1=2. On the other hand, it
follows that d < e � ae=3 and 5

4
� ae

4d
< 1=2. We consider two cases.

Case 1: d > ae
4a�e . It follows that �

C
SI =

5
4
� ae

4d
> �CAS = 1=2.

Case 2: d � ae
4a�e . We have �CSI = 2� a < �CAS = 1=2.

This proves part (b). Q.E.D.

D Proof of Proposition 4

Let �MAS and �CAS be the values de�ned in Propositions 1 and 2. We divide
the proof into several cases. Note that 1 + 1p

2
> 3=2.

Case 1: 1 + 1p
2
� a < 2. In this case, 1 >

< �MAS if and only if d >
< 1 �

a(1� e). However we always have �CAS < 1. We divide this case into several
occurrences.

(1.1) d > a(4�3e)=3 with d � 1�a(1�e). Here, we have �MAS � 1 > �CAS.
(1.2) d > a(4 � 3e)=3 with d > 1 � a(1 � e). We now have �MAS < 1

and �CAS < 1 with �MAS = d�a(1�e)
2d�1

and �CAS = 9d�4�a(4�3e)
12d�4

. Since d >

2=3 holds under (1.2), we have �MAS > �CAS if and only if �(d) > 0, where
�(d) = �4 + 9d � 6d2 + a(4 � 5e + d(6e � 4)). On the one hand, as the
intersection point between d = a(4� 3e)=3 and d = 1� a(1� e) is given by
e = 7

6
� 1

2a
and d = (3 + a)=6, (1.2) implies d > (3 + a)=6. On the other

hand, as the intersection point between d = a(4�3e)=3 and d = e is given by
d = e = 4a

3(1+a)
, we have e > 4a

3(1+a)
under (1.2). The function �(d) is concave

and, therefore, �(d) must be greater than the minimum between �((3+a)=6)
and �(1). The value �((3+a)=6) = �1� 5

6
(a�3)a+(a�2)ae is higher than

(a(3 + a) � 6)=6 > 0 because we are assuming 1 + 1p
2
� a < 2 and e < 1.

The value �(1) = ae � 1 is greater than 4a2

3+3a
� 1 > 0, because e > 4a

3(1+a)
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holds and a � 1 + 1p
2
. Therefore, �(d) > 0 holds under (1.2) and we have

�MAS > �CAS.
(1.3) a(1 � e) < d � a(4 � 3e)=3. We now have �CAS = 1=2 and �MAS =

d�a(1�e)
2d�1

. As (1.3) implies d > 1=2, it follows �MAS
>
< 1=2 = �CAS if and only

if e >
< 1� 1

2a
. To show that e = 1 � 1

2a
is feasible under (1.3) and does not

intersect the other occurrences, note �rst that the intersection point between
d = a(1� e) and d = e2 has e = (�a+pap4 + a)=2 2 (0; 1). Secondly, the
intersection point between d = a(4� 3e)=3 and d = e has e = 4a

3(1+a)
2 (0; 1).

Since we have (�a +p
a
p
4 + a)=2 < 1� 1

2a
< 4a

3(1+a)
, it follows that, under

(1.3), �MAS
>
< �CAS if and only if e >

< 1� 1
2a
.

(1.4) d � a(1� e). Here, �MAS = 0 < �CAS = 1=2 holds.
This proves the proposition for Case 1.
Case 2: 2 � a < 3. We divide the proof into several occurrences.
(2.1) d > a(4 � 3e)=3. Here, we have �MAS = d�a(1�e)

2d�1
< 1 and �CAS =

9d�4�a(4�3e)
12d�4

< 1. Since (2.1) implies d > 2=3, it follows that �MAS > �CAS if
and only if �(d) > 0, where �(d) = �4 + 9d� 6d2 + a(4 � 5e + d(6e � 4)).
The intersection between d = a(4 � 3e)=3 and d = e2 is a point (e; d)
with e = (�3a +

p
3
p
a
p
16 + 3a)=6. Thus, (2.1) implies d > (�3a +p

3
p
a
p
16 + 3a)2=36 � 2(7 � p

33)=3 2 (0; 1). The intersection between
d = a(4 � 3e)=3 and d = e is a point with e = 4a

3(1+a)
. Thus, (2.1) im-

plies e > 4a
3(1+a)

� 8=9. The function �(�) is concave and, under (2.1), it is

greater than the minimum between �(2(7�p33)=3) and �(1). The expres-
sion �(2(7�p33)=3) = (�542� 44a+69ae� 2

p
33(�47+ a(�4+6e)))=3 is

greater than 2(�813 + 26a � p
33(4a � 141))=9 > 0 because the expression

is increasing in e and e > 8=9. The expression �(1) = ae � 1 is higher than
�1 + 8a=9 > 0 because e > 8=9. This proves that �(d) > 0, under (2.1) and
we have �MAS > �CAS.

(2.2) a(1� e) < d � a(4� 3e)=3. Similarly to (1.3), we have �MAS
>
< �CAS

if and only if e >
< 1� 1

2a
.

(2.3) d � a(1� e). Here, �MAS = 0 < �CAS = 1=2 holds.
This proves the proposition for Case 2.
Case 3: a � 3. Now d < a(4 � 3e)=3 holds for any (e; d) 2 P and, in

consequence, �CAS = 1=2. We divide the proof into two occurrences.

(3.1) d > e(1� e). As (3.1) implies d > 1=2, it follows �MAS
>
< 1=2 = �CAS

if and only if e >
< 1 � 1

2a
. To show that e = 1 � 1

2a
is feasible under (3.1)

and does not intersect the other occurrences, note that the intersection point
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between d = a(1� e) and d = e2 has e = (�a+pap4 + a)=2 2 (0; 1). Since
we have (�a +p

a
p
4 + a)=2 < 1 � 1

2a
for any a � 3, it follows that, under

(3.1), �MAS
>
< �CAS if and only if e >

< 1� 1
2a
.

(3.2) d � a(1� e). Here, �MAS = 0 < �CAS = 1=2 holds.
This proves the proposition for Case 3, and consequently the three cases

together prove the original proposition. Q.E.D.
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