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Abstract

This paper formulates the problem of real-time estimation of traffic state in freeway networks by means of particle filtering
framework. A particle filter (PF) is developed based on a recently proposed speed-extended cell-transmission model of freeway
traffic. The freeway is considered as a network of components representing different freeway stretches called segments. The
evolution of the traffic in a segment is modelled as a dynamic stochastic system, influenced by states of neighbour segments.
Measurements are received only at boundaries between some segments and averaged within possibly irregular time intervals.
This limits the measurement update in the PF to only these time instants when a new measurement arrives, with possibly many
state updates in between consecutive measurement updates. The PF performance is validated and evaluated using synthetic
and real traffic data from a Belgian freeway. An Unscented Kalman filter is also presented. A comparison of the particle filter
with the Unscented Kalman filter is performed with respect to accuracy and complexity.
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1 Motivation

Traffic state estimation and prediction is of paramount
importance for on-line road traffic management, effi-
ciency and safety. Vehicular traffic is characterised with
highly nonlinear behaviour (Helbing, 2002), with many
interactions between vehicles, and high complexity
which makes this problem challenging. This behaviour
can be described by macroscopic models (Hoogendoorn
and Bovy, 2001; Kotsialos et al., 2002; Helbing, 2002)
that are suitable for real-time problems in view the
fact that they represent the average traffic behaviour in
terms of aggregated variables (flow, density and speed
at different locations). Most papers dealing with recur-
sive traffic state estimation apply the Extended Kalman
filter (EKF) to such macroscopic models. For example
(Wang and Papageorgiou, 2005) proposes an EKF to es-
timate the unknown parameters and states of a stochas-
tic version of the macroscopic freeway traffic flow model
METANET (Papageorgiou and Blosseville, 1989) of
freeway traffic. These estimators have all the advantages
and disadvantages of the EKF technique: presumably
computationally cheap, but relying on a linearisation
of the state and measurement models which can cause
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filter divergence. A powerful and scalable approach has
recently been developed, known under different names
such as particle filters (PFs) (Doucet et al., 2001; Ristic
et al., 2004; Chen, 2003) and bootstrap method (Gordon
et al., 1993). All information about the states of interest
can be obtained from the conditional distribution of the
state given the past observations and the dynamics of
the system. It approximates the posterior density func-
tion of the state by an empirical histogram obtained
from samples generated by a Monte Carlo simulation.
Particle filtering allows to cope with uncertainties and
nonlinearities of different kinds, nonGaussian noises
and hence is suitable for the traffic estimation problem.

In the present paper we formulate the traffic estimation
problem within this Bayesian framework and develop a
particle filter for freeway traffic flow estimation. This is
an extension and generalisation of the results reported in
(Mihaylova and Boel, 2004). The structure of the PF fits
well to the compositional traffic networks, and it allows
for parallelisation for different segments.

In (Sun et al., 2003) a solution to highway traffic es-
timation is proposed by a sequential Monte Carlo al-
gorithm, the so-called mixture Kalman filtering. First-
order traffic models represent the network, i.e. only the
traffic density is modelled, distinguishing between the
free-flow mode and congestion mode. In contrast to (Sun
et al., 2003), the traffic in the present paper is described
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Fig. 1. Freeway segments and measurement points. Qi is the
average number of vehicles crossing the boundary between
segments i and i + 1, Ni and vi are respectively the average
number of vehicles and speed within segment i.

by a second-order macroscopic model, and we develop a
particle filter that estimates both the traffic density and
speed. The traffic is described by the recently developed
model (Boel and Mihaylova, 2006) that is an extension to
the cell-transmission model (Daganzo, 1994). The free-
way network is modelled as a sequence of segments (Fig.
1). Sensors are available only at some boundaries be-
tween segments. Technological limitations (such as lim-
ited bandwidth of communication channels) force one
to average these measurements over regular or irregular
time intervals before they are transmitted to the centre
where the Bayesian update of the conditional densities
is carried out (for all segments concurrently).

We investigate the PF performance with respect to
accuracy and complexity and we compare it with an-
other method suitable for traffic flow estimation, the
Unscented Kalman filter (UKF) (Julier and Uhlmann,
2004; Wan and van der Merwe, 2001). The UKF is a
derivative-free estimation method, that has proven to
outperform the EKF. The UKF can be viewed as a
method to approximate the first two moments of the
state: the mean and covariance. Unlike the EKF, the
UKF does not require calculation of Jacobians and
Hessians. Deterministic sampling approach is used to
calculate the mean and covariance, by the so-called
sigma points. Compared with the EKF’s first-order
accuracy, the estimation accuracy of the UKF is to
the third order (Taylor series expansion) for any non-
linearity. The EKF requires calculation of derivatives
for all traffic segments which for the traffic problem
with interconnected components is quite complicated.
Moreover, divergence problems are not excluded. The
UKF is much easier to implement and more accurate.
However, the UKF often encounters the ill-conditioned
problem of the covariance matrix in practice (though
theoretically it is positive semi-definite). Methods for
enhancing the numerical properties of the UKF (e.g. as
based on singular-value decomposition) can overcome
these numerical instabilities (Chen, 2003).

The added values and innovative aspects of this paper
as compared to previous investigations include:

1. A general stochastic macroscopic traffic flow model
is presented together with measurement equations, suit-
able for a PF real-time estimation and prediction.

2. We demonstrate that PF can be efficiently and eas-
ily implemented for large compositional models and
sparse measurements, received synchronously or asyn-
chronously at intervals, bigger than the state-update
sample time. The developed approach is general and
applicable to freeway networks with different topologies.

3. We compare the PF performance with respect to an
UKF. We show that the PF estimates are more accu-
rate than those of the UKF, nevertheless the PF is more
computationally expensive.

The outline of the paper is as follows. Section 2 presents
a stochastic macroscopic traffic model for freeway
stretches and a model for real-time traffic measure-
ments. Bayesian formulation of the traffic estimation
problem is given in Section 3. A PF framework for traffic
state estimation is developed in Section 4 which takes
advantage of the compositional traffic model. Section
5 describes the UKF for traffic estimation that is com-
pared with the developed PF. The PF performance is
evaluated in Section 6. Conclusions and future research
issues are highlighted in Section 7.

2 Freeway Traffic Flow Model

2.1 Compositional Macroscopic Traffic Model

Traffic states are estimated consecutively at discrete
time instants t1, t2, . . . , tk, . . ., possibly asynchronously,
based on all the incoming information up to the current
time transmitted by sensors to the filter. The overall
state vector xk = (xT

1,k, xT
2,k, . . . , xT

n,k)T at time tk con-
sists of local state vectors xi,k = (Ni,k, vi,k)T , where
Ni,k, [veh], is the number of vehicles counted in segment
i ∈ I = {1, 2, . . . n}, and vi,k, [km/h], is their average
speed. The traffic state evolution is described by the
system of equations

x1,k+1 = f1(Qin
k , vin

k ,x1,k, x2,k,η1,k), (1)
xi,k+1 = fi(xi−1,k, xi,k, xi+1,k, ηi,k), (2)

xn,k+1 = fn(xn−1,k,xn,k, Qout
k , vout

k , ηn,k), (3)

where fi is specified by the traffic model, Qin
k is the

number of vehicles entering segment 1 during the inter-
val ∆tk = tk+1 − tk with average speed vin

k , Qout
k is the

outflow leaving a ‘fictitious’ segment n + 1, with an av-
erage speed vout

k . ηk is a disturbance vector, reflecting
random fluctuations and the effect of modelling errors in
the state evolution. Note that Qin

k , vin
k , and Qout

k , vout
k

are respectively, inflow and outflow boundary variables.
They are not traffic states and are not estimated. They
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are supplied by the traffic detectors. Hence, a chain of in-
terconnected segments is considered, together with their
boundary conditions.

In this paper the general state-space description (1)-
(3) takes a particular form of the recently developed
compositional stochastic macroscopic traffic model
(Boel and Mihaylova, 2006). This speed-extended cell-
transmission model describes the complex traffic be-
haviour with forward and backward propagation of traf-
fic perturbations and is suitable for large networks and
for distributed processing. The forward and backward
traffic perturbations were characterised by (Daganzo,
1994) through deterministic sending and receiving func-
tions where piecewise affine representations are used.
In (Boel and Mihaylova, 2004; Boel and Mihaylova,
2006) speed-dependent random sending and receiving
functions are introduced that represent also the evolu-
tion of the average speed in each segment. The model is
given in concise form as Algorithm 1.

The sending function Si,k for each segment i, having
length Li, is calculated by (4). Si,k represents the vehi-
cles that “intend to leave” segment i within ∆tk. The re-
ceiving function Ri,k (6). expresses the maximum num-
ber of vehicles that are allowed to enter segment i+1. In
(6) Nmax

i+1,k characterises the maximum number of vehi-
cles that can simultaneously be present in segment i+1
in ∆tk. Nmax

i+1,k depends on the available space, Li+1 time
the number of lanes `i+1,k, in segment i + 1, on the av-
erage length A` of vehicles, the average speed vi+1,k and
the time distance td between two vehicles (in order to
allow safe driving).

The evolution of Ni,k+1 is governed by the principle of
conservation of vehicles (9). The traffic density ρi,k+1,
[veh/km/lane], is given by (10). The anticipated density
ρantic

i,k+1 is then obtained as a weighed average between the
density of segment i and segment i + 1, (11). This cor-
responds to the drivers’ tendency usually to look ahead
when they change their speed. The average vehicle speed
vi,k+1 is a function of the ‘intermediate’ speed vinterm

i,k+1 ,
calculated in step 5 of Algorithm 1, and of the equilib-
rium speed satisfying a speed-density relation ve(ρantic

i,k+1)
(Kotsialos et al., 2002).

Design traffic parameters are: the free-flow speed vfree,
the critical density ρcrit (density below which the inter-
actions between vehicles will be negligible), the density
in jam, ρjam, above which the vehicles do not move,
and the minimum vehicle speed vmin, the parameters
α ∈ (0, 1], 0 < βI < βII , a threshold density value
ρthreshold. Other details for the model can be found in
(Boel and Mihaylova, 2004; Boel and Mihaylova, 2006)
where this extended cell-transmission model has been
validated both against the well established METANET
model (Papageorgiou and Blosseville, 1989; Kotsialos
et al., 2002), and over real traffic data.

Algorithm 1. The compositional traffic model.

1. Forward wave : for i = 1, 2, . . . , n

Si,k = max
(
Ni,k

vi,k.∆tk

Li
+ ηSi,k, Ni,k

vmin.∆tk
Li

)
(4)

and set Qi,k = Si,k. (5)

2. Backward wave : for i = n, n− 1, . . . , 1

Ri,k = Nmax
i+1,k −Ni+1,k + Qi+1,k, (6)

where Nmax
i+1,k = (Li+1`i+1,k)/(A` + vi+1,ktd).

if Si,k < Ri,k, Qi,k = Si,k, (7)

else Qi,k = Ri,k, vi,k = Qi,kLi/(Ni,k∆tk), (8)

3. Update the number of vehicles inside segments,

for i = 1, 2, . . . , n

Ni,k+1 = Ni,k + Qi−1,k −Qi,k, (9)

4. Update the density, for i = 1, 2, . . . , n

ρi,k+1 = Ni,k+1/(Li`i,k+1), (10)

ρantic
i,k+1 = αρi,k+1 + (1− α)ρi+1,k+1. (11)

5. Update of the speed, for i = 1, 2, . . . , n

vinterm
i,k+1 =

{
vi−1,kQi−1,k+vi,k(Ni,k−Qi,k)

Ni,k+1
, for Ni,k+1 6= 0,

vf , otherwise,

vinterm
i,k+1 = max(vinterm

i,k+1 , vmin),

vi,k+1 = βk+1v
interm
i,k+1 + (1− βk+1)v

e(ρantic
i,k+1) + ηvi,k+1,

where

βk+1 =

{
βI , if |ρantic

i+1,k+1 − ρantic
i,k+1| ≥ ρthreshold,

βII otherwise.

2.2 Measurement Model

Sensors (magnetic loops, video cameras, radar detectors)
are located at boundaries between some segments. Usu-
ally, measurements are collected at the entrance and at
the exit of the considered stretch of the road, at the on-
ramps and off-ramps, etc.

Let us consider m sensors along the stretch. Traffic
states are measured at discrete time instants. The over-
all measurement vector zs = (zT

1,s, z
T
2,s, . . . , z

T
m,s)

T

at time ts consists of local measurement vectors
zj,s = (Qj,s, vj,s)T , where j ∈ J = {1, 2, . . . , m}. Qj,s

is the noisy measurement of the number of vehicles
crossing the boundaries between the corresponding
segment i and segment i + 1 during the time interval
∆ts = ts+1 − ts, and vj,s is the measured mean speed
of these vehicles. The intervals ∆ts are typically several
times longer than the intervals ∆tk between q succes-
sive state update steps, i.e. ∆ts = q∆tk. Given the
measurement equation

zs = h(xs, ξs), (12)

the distribution p(x0) of the initial state vector x0, the
state update model (1)-(3) with noises η, ξ, the traffic
estimation problem can be formulated within Bayesian
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framework. We consider the following particular form
for equation (12)

zj,s =

(
Q̄j,s

v̄j,s

)
+ξj,s, (13)

where Q̄j,s is the sum of the number of vehicles (cal-
culated by the state model) crossing the boundary
between segments i and i + 1 within the interval ∆ts,
and v̄j,s is their average speed. Although Gaussian dis-
tributions of the noise vector ξj,s = (ξQj ,s, ξvj ,s)T in
(13) has been used previously in the literature (Wang
and Papageorgiou, 2005), we propose a more realistic
noise model. This is another advantage of the PF: the
knowledge of the noise distributions can be utilised for
a better state tracking. Based on statistical analysis of
different sets of traffic data we found that there are two
kinds of measurement errors in the counted vehicles
by the video cameras: errors due to false detections,
ξQfalse

j
,s, and errors due to missed vehicles, ξQmissed

j
,s.

Hence, the measurement error in the observation equa-
tion (12) resp. (13) is of the form

ξj,s = Qerr
j,s = Qfalse

j,s −Qmissed
j,s , (14)

where the number of the vehicles that a detector j missed
is denoted by Qmissed

j,s , and the number of the false de-
tections by Qfalse

j,s . Analysis of data from video cameras
has shown that Qfalse

j,s and Qmissed
j,s can both be con-

sidered independent Poisson random variables with pa-
rameters λ1 and λ2. Based on our analysis we estimate
λ1 + λ2 = 2, λ1 = 4/3, λ2 = 2/3. Then the PDF of the
measurement noise ξQi,s is a convolution of the form

p(Qerr
j,s = νerr

i,s ) =
∞∑

νmissed
i,s

=0

λ
(νerr

i,s +νmissed
i,s )

1 e−λ1

(νerr
i,s + νmissed

i,s )!
.
λ

νmissed
i,s

2 e−λ2

νmissed
i,s !

. (15)

Eq. (15) represents the PF likelihood function of the
observations over the counted number of vehicles. We
assume that the speed noises ξvj ,s are Gaussian. Under
the assumption that the vehicle counts are statistically
independent from the speed measurements, the entire
likelihood p(zs|xs) given the state xs is the product of
the likelihood of the measured counts with the likelihood
of the measured speeds.

3 Bayesian Estimation of Traffic Flows

Bayesian estimation evaluates the posterior probability
density function (PDF) p(xk|Zk) of the state vector xk

up to time instant tk given a set Zk = {z1, ..., zk} of
sensor measurements available at time tk. Within the
recursive Bayesian framework (Ristic et al., 2004), the

conditional density function p(xk|Zk−1) of the state xk

given a set of measurements Zk−1 is recursively updated
according to

p(xk|Zk−1)=
∫

Rnx

p(xk|xk−1)p(xk−1|Zk−1)dxk−1, (16)

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (17)

where p(zk|Zk−1) is a normalising constant. Therefore,
the recursive update of p(xk|Zk) is proportional to

p(xk|Zk) ∝ p(zk|xk)p(xk|Zk−1). (18)

The state prediction step (16) and the measurement up-
date step (17) use respectively the conditional density
functions p(zk|xk) and p(xk|xk−1) that are defined by
the model from Section 2.1.

4 Particle Filtering for Freeway Traffic

Evaluating (16)-(18) is computationally very expensive.
The particle filter technique (Gordon et al., 1993; Doucet
et al., 2001) provides an approximate solution to (16)-
(18) by a discrete-time recursive update of the posterior
PDF p(xk|Zk) of the state given the measurements The
particle filter approximates p(xk|Zk) by the empirical
histogram corresponding to a collection of M particles
(samples) {x(l)

k }M
l=1. To each particle l a weight w

(l)
k is

assigned at time tk (the sum of these weights must be
normalised to 1). The weight and the value of all parti-
cles together define a histogram that approximates the
conditional density function of the state vector xk. After
the arrival of a new observation vector zs, the particle
filter updates the weights according to (18). The cloud
of particles evolves with time and depending on the ob-
servations, so that the particles represent with sufficient
accuracy the true PDF of the state (Doucet et al., 2001).
A resampling procedure introduces variety in the parti-
cles, by eliminating the particles with small weights and
by replicating particles with larger weights.

The traffic estimation problem has particularities distin-
guishing it from other estimation problems: i) the lim-
ited amount of available data from traffic detectors. The
number of traffic variables to be estimated is much larger
than the number of the traffic variables that are directly
observed, and this “interpolation” is an essential con-
tribution to the freeway traffic estimation task. ii) the
state estimates are highly dependent on the inflow Qin,
vin and random Qout, vout boundary variables.

The likelihood function p(zk|xk) is calculated from (13)
only when a measurement arrives, using the predicted
state values and the known measurement noise density
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Algorithm 2. A Particle Filter for Traffic Estimation.

I. Initialisation: k = 0

For l = 1, . . . , M, generate samples {x(l)
0 } from

the initial distribution p(x0) and

initial weights w
(l)
0 = 1/M.

End For

II. For k = 1, 2, . . . ,

(1) Prediction step:

For l = 1, . . . , M, sample x
(l)
k ∼ p(xk|x(l)

k−1)

according to (4)-(11) for segments between

two boundaries where measurements arrive

End For

(2) Measurement processing step (only for tk ≡ ts,

on boundaries between the segments where

measurements are available) compute the weights

For l = 1, . . . , M

w
(l)
s = w

(l)
s−1p(zs|x(l)

s ),

End For

where the likelihood p(zs|x(l)
s )

is calculated by the model (13)

from section 2.2.

For l = 1, . . . , M

Normalise the weights: ŵ
(l)
s = w

(l)
s /

∑M
l=1 w

(l)
s .

End For

(3) Output: x̂s =
∑M

l=1 ŵ
(l)
s x

(l)
s ,

(4) Selection step (resampling) only for tk ≡ ts:

Multiply/ Suppress samples x
(l)
s with high/ low

importance weights ŵ
(l)
s , in order to obtain M

random samples approximately distributed accor-

ding to p(x
(l)
s |Zs), e.g. by residual resampling.

* For l = 1, . . . , M, set w
(l)
s = ŵ

(l)
s = 1/M, End For

(5) k ← k + 1 and return to step (1).

function p(ξs). The cloud of weighted particles repre-
senting the posterior conditional PDF, is used to map
integrals to discrete sums: p(xk|Zk) is approximated by

p̂(xk|Zk) ≈
M∑

l=1

w̃
(l)
k δ(xk − x

(l)
k ), (19)

where δ is the delta-Dirac function and w̃
(l)
k are the

normalised weights of the posterior conditional PDF.
New weights are calculated putting more weight on
particles that are important according to the posterior
probability density function (19). The random sam-
ples {x(l)

k , l = 1, 2, . . . , M} are drawn from p(xk|Zk).

It is often impossible to sample from the posterior
density function p(xk|Zk). However, this difficulty is
circumvented by making use of the importance sam-
pling from a known proposal distribution π(xk|Zk).
The transition prior is the most popular choice of the
proposal distribution (Wan and van der Merwe, 2001):
π(xk|Zk) = p(xk|xk−1), which in our solution to the
traffic problem is the traffic state model. Algorithm 2
presents the PF developed in this paper.

5 An Unscented Kalman Filter for Traffic Flow
Estimation

Other algorithms for approximating the posterior state
PDF have been introduced. The Unscented Kalman fil-
ter (UKF) relies on the unscented transformation (Julier
and Uhlmann, 2004; Wan and van der Merwe, 2001), a
method for calculating the statistics of a random vari-
able which undergoes a nonlinear transformation. Con-
sider propagating a random variable x (with dimension
nx) through a nonlinear transformation y = f(x) . As-
sume that x has mean x̂ and covariance matrix P . To
calculate the statistics of y, a matrix X of 2.nx+1 sigma
points Xi is formed. These sigma points are propagated
through the time update. To compute the measurement
update step, we propagate these sigma points through
the measurement function h and we get transformed
points Zi,k/k−1 that form the matrix Zk/k−1. Similarly
to the Kalman filter, the Kalman gain K, the state esti-
mate x̂ and the corresponding covariance matrix P are
updated by (20)-(22). The UKF equations are given as
Algorithm 3. We implemented the UKF using an aug-
mented state vector concatenating the original state and
the noise variables: xa

k = (xT
k , ηT

k , ξT
k )T (Wan and van

der Merwe, 2001). The corresponding matrix with sigma
points is X a = ((X x)T , (X η)T , (X ξ)T )T . Unlike the
PF, the sigma points of the UKF are deterministically
chosen so that they exhibit certain properties, e.g. have
a given mean and covariance. The UKF is formulated
for Gaussian distributions of the noises, whereas the PF
has the advantage to work with arbitrary distributions.

6 Particle Filter Performance Evaluation

6.1 Investigations with Synthetic Data
The PF performance is evaluated versus the UKF over
of freeway stretch of 4 [km] consisting of eight segments,
having periods of congestion. The data are generated
by the compositional model (Boel and Mihaylova, 2006)
with independent measurement noises for different runs
and with different initial state conditions. The conges-
tion is due to variations in the inflow Qin

k and outflow
Qout

k (shown in Fig. 2) within the period 1.12 h - 1.7 h
and due to the fall in the speed vout

k within the inter-
val 2.4 h-2.65 h. The measurements are generated, by
adding measurement noises to the counted number of
vehicles Qi,k and to the speed vi,k for segments 1 and 8.
These measurements are used in the filters also as inflow/
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Algorithm 3. Unscented Kalman Filter Equations.

I. Initialise with:

x̂0 = E[x0], P 0 = E[(x0 − x̂0)(x0 − x̂0)
T ],x̂a

0 = E[xa
0 ],

P a
0 = E[(xa

0 − x̂a
0)(xa

0 − x̂a
0)T ] = diag{P 0, P η, P ξ}

For k = 1, 2, . . . ,

II. Calculate sigma points :

X a
k−1 = [x̂a

k−1, x̂a
k−1 + γ

√
P a

k−1, x̂a
k−1 − γ

√
P a

k−1],

where
√

P a
k−1 is a Cholesky factor, γ =

√
nx + λ,

λ = α2(nx + κ)− nx, 1 ≤ α ≤ 1e− 4, κ = 3− nx

III. Time update :

X x
k/k−1 = f(X x

k−1, X η
k−1),

x̂k/k−1 =

2nx∑
i=0

W
(m)
i X x

i,k/k−1,

P k/k−1 =

2nx∑
i=0

W
(c)
i [X x

i,k/k−1 − x̂k/k−1][X x
i,k/k−1 − x̂k/k−1]

T ,

Zk/k−1 = h(X x
k/k−1, X ξ

k−1),

ẑk/k−1 =

2nx∑
i=0

W
(m)
i Zi,k/k−1,

IV. Measurement update equations:

P zkzk =

2nx∑
i=0

W
(c)
i [Zi,k/k−1 − ẑk/k−1][Zi,k/k−1 − ẑk/k−1]

T ,

P xkzk =

2nx∑
i=0

W
(c)
i [X x

i,k/k−1 − x̂k/k−1][Zi,k/k−1 − ẑk/k−1]
T ,

Kk = P xkzkP−1
zkzk

, (20)

x̂k/k = x̂k/k−1 + Kk(zk − ẑk/k−1), (21)

P k/k = P k/k−1 −KkP zkzkKT
k , (22)

where the weights are: W
(m)
0 = λ/(nx + λ),

W
(c)
0 = λ/(nx + λ) + (1− α2 + β),

W
(m)
i = W

(c)
i = 1/2(nx + λ), i = 1, . . . , 2nx.

outflow boundary conditions (for the state model). The
augmented state vector is xk = (xT

1,k,xT
2,k, . . . , xT

8,k)T ,
i.e. i = 1, 2, . . . , 8, and the measurement vector zs =
(zT

1,s,z
T
8,s)

T . The per minute aggregated measurements
are supplied to the PF and UKF as would be the case
with real data. The state prediction is performed also at
each intermediate state update time step. We are esti-
mating the states of all segments between two measure-
ments as one augmented state vector.
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Fig. 2. Boundary conditions: 1 - in, 2 - out

The filters’ performance is evaluated by Root mean

square errors (RMSEs) ε(x̂i,k) = [ 1r
∑r

i=1(εi,k)T (εi,k)]1/2,
for the state errors, εi,k = xi,k − x̂i,k, over r indepen-
dent Monte Carlo runs, with respect to density, speed
and flow. The initial particles for the PF are randomly
generated by adding Gaussian noise to the actual states.
Table 4 gives the parameters of the state model. The
evolution of the flow and speed in time (for one realisa-
tion) are given in Figures 3 and 4. We see the backward
wave on the evolution of the speed and flow in time.
The flow-density and the speed-flow diagrams have the
typical bell-shaped forms. The filter performance is
evaluated for r = 100 independent Monte Carlo runs.
RMSEs calculated with M = 200 for segments 1, 5, and
8 are presented in Fig. 5.
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Fig. 3. Diagrams based on the PF and UKF estimated states
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Fig. 4. Diagrams based on the PF and UKF estimated states

We see the influence of the backward wave on these RM-
SEs. We observe that the RMSE values in segment 1
are smaller than their values in the intermediate seg-
ment 5 (it is also due to the fact that there are no sensor
data in this segment). According to these results the PF
estimates are more accurate than the UKF estimates.
However, the PF complexity is more computationally
expensive than the UKF. The complexity of the PF is
proportional to the the number of particles, times the
dimension of the overall state vector, M.nx, whilst the
complexity of the UKF is proportional to the number
2.nx + 1 of sigma points. Note that nx is equal to the
number of segments n times the number of states 2 in
a segment. We calculated the ratio between the PF and
UKF computational time and it is: 2.8 (with M = 100
particles), 5.45 (with M = 200), 15 (with M = 500).

The PF more accurate performance compared to the
UKF performance can be explained with the fact that
the PF approximates the state PDF function, whereas
the UKF propagates only the first two moments.

We have also a case with 12.5 km road length (25 seg-
ments) where we used the PF with 350 particles and we
obtained accuracy comparable to the accuracy with 4
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kilometers (with 200 particles). In general, the number
of necessary particles is increasing with the increased
number of states for reaching a certain accuracy, but not
very much. It is difficult to characterise in general the PF
accuracy and complexity because they highly depend on
the road structure and the traffic conditions.

Table 4. Parameters of the traffic model in the PF

vfree = 120 [km/h] , vmin = 7.4 [km/h]

ρcrit = 20.89 [veh/km/lane] , ρjam = 180 [veh/km]

α = 0.65 , βk+1 =

{
0.25, if |ρantic

i+1,k+1 − ρi,k+1| ≥ 2,

0.75, otherwise.

∆ti = 10 [sec], td = 2 [sec] , Li = 0.5 [km], i = 1, ..., 8,

M = 200 particles, td = 2 [sec], A` = 0.01 [km], `i = 3

cov{ηSi,k} = (0.03Ni,kvi,k∆tk/Li)
2 [veh]2

cov{ηQi} = 12 [veh]2, cov{ηvi} = 3.52 [km/h]2

cov{ξQi} = 12 [veh]2, cov{ξvi} = 52 [km/h]2
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Fig. 5. PF and UKF RMSEs of the density (for all lanes)
[veh/km], speed [km/h] and flow [veh/h] of segments 1, 5
and 8 (with M = 200 for the PF)

6.2 Application of the Particle Filter to Traffic Data
from E17 Freeway in Belgium

The PF performance has also been evaluated with real
data, over a stretch of E17 (between CLOF and CLOA
on Fig. 6) freeway between the cities of Ghent and
Antwerp, subject to frequent congestions. Measure-
ment data are available from video cameras installed
at location CLOA, CLOB, CLOD, CLOE, and CLOF,
including the total number of vehicles that cross the
sensor location during each one minute interval, and the
average speed of these vehicles during that one minute
interval. We tested the PF and UKF using data mea-
sured from September, 2001 from 6.4 [h] a.m. till 10.6
[h] a.m. . This period includes heavy congestions.

 
 
 

TRAVEL DIRECTION 

Fig. 6. Schematic representation of the segmentation of the
E17 case study freeway. The labels CLOF to CLO1 indicate
the locations of the traffic measurement cameras. The verti-
cal arrows indicate the location of the used measurements.

Table 5. Model parameters

vfree = 120 [km/h], vmin = 7.4 [km/h]

βk+1 =

{
0.3, if |ρantic

i+1,k+1 − ρi,k+1| ≥ 2,

0.7, otherwise.

L1 = L2 = L3 = 0.6 [km], L4 = L5 = 0.5 [km]

∆ti = 10 [sec], td = 1.5 [sec], A` = 0.01 [km]

ρcrit = 20.89 [veh/km/lane], ρjam = 180 [veh/km]

M = 100 particles, α = 0.65

Gaussian noises ηSi,k , ηvi,k with covariances:

cov{ηSi,k} = (0.035Ni,kvi,k∆tk/Li)
2 [veh]2

cov{ηQi} = 12 [veh]2, cov{ηvi} = 3.52 [km/h]2,

cov{ξQi} = 12 [veh]2, cov{ξvi} = 52 [km/h]2
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Fig. 7. Diagrams based on the PF and UKF estimated states
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7 8 9 10
0

50

100

150

200

250

ρ,
 [v

eh
/k

m
]

7 8 9 10
0

20

40

60

80

100

v 3, [
km

/h
]

7 8 9 10
0

2000

4000

6000

Q
, [

ve
h/

h]

Fig. 9. UKF estimated states (solid line) versus measured
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The data are available from two sensors installed at from
CLOF and CLOA (Fig. 6). The link CLOF to CLOA
contains an off-ramp towards and an on-ramp from a
parking lot, but we assume that the flow of vehicles us-
ing this parking lot is negligible so that the conserva-
tion equation (9) remains valid in the state prediction
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step. The parameters of the models and of the filters are
given in Table 5. The filters generate estimates of the
state of each segment in a link, and also of the speed and
density (and hence also of the flow) at each boundary
between segments. Figure 7 presents flow-density dia-
grams plotted based on the estimates. The bell-shaped
diagram shows nicely that the estimated states indeed
have properties as one can expect for traffic data. These
estimates of the density, speed, and flow at the bound-
aries are compared with the measured data in the inter-
mediate segment boundary CLOD (Figs. 8 and 9).

7 Conclusions and Open Issues
This paper formulates the freeway traffic flow estimation
within Bayesian recursive framework. A particle filter
is developed using traffic and observation models with
aggregated variables. The traffic is modelled by a re-
cently developed stochastic compositional traffic model
with interconnected states of neighbour segments. The
PF and UKF performance is investigated and validated
by simulated data and by real traffic data from a Bel-
gian freeway. Both the results with simulated and real
traffic data confirm that the PF provides accurate track-
ing performance, better than the UKF. Both the PF
and the UKF are suitable methods for real-time traf-
fic estimation, and both are easy to implement because
of the fact that they do not require linearisation. The
estimation approach presented is straightforward, gen-
eral, easily executable to freeway and urban networks,
with different topologies, with any number of sensors,
with regularly or irregularly received data in space and
in time. Both methods are suitable for distributed real-
isation and parts of them – for parallel computations.

Both the PF and UKF can be used for on-line traffic con-
trol strategies, e.g. within the model predictive control
framework (Sun et al., 2003; Hegyi, 2004). One could
interpret the results of this paper as follows. Particle fil-
tering can successfully estimate and predict the state of
all segments of a road link using only observations on
the inflow and the outflow of the link. This suggests that
it will be possible to obtain efficient filters in large net-
works if a few intermediate measurements of the flow are
available, and moreover it suggests that these filters for
a large network will be nicely decomposable.
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