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Abstract 

The objective of this Ph.D. research was to evaluate rainfall-induced slope failure and 

potential instability in small catchment scale. For this, a tertiary sedimentary terrain in 

northeastern hills of Niihama city in Ehime prefecture of Japan was selected as study area. 

In 2004, this area suffered an extensive slope failure damage due to extreme typhoon 

rainfalls. To fulfill the objective, the research was carried out in three parts: i) seepage and 

slope stability modeling of rainfall-induced slope failures in topographic hollows, ii) 

deterministic slope failure hazard assessment in a catchment and its replication in 

neighborhood catchments, and iii) numerical analysis on influence of basic parameters of 

topography on hillslope instability in catchment scale. 

With rainfall infiltration, subsurface hydrology of hillslopes changes through 

saturated-unsaturated interactions. This leads to triggering of slope failure. The subsurface 

hydrologic response to rainfall and triggering mechanism in medium to steep slopes of 

topographic hollow are complex/dynamic phenomena as the topographic hollows undergo 

continuous morphological change through various processes (i.e., surface wash, soil creep, 

windthrow, surface ravel of soil and organic material, sloughing of material around the 

perimeter of the scar, and detrital deposits from established vegetation). The build up of 

porewater pressure and instability repeat cyclically in topographic hollows which is the 

main cause for complex/dynamic nature of slope failure triggering in topographic hollows. 

However, the research on subsurface hydrology and instability in topographic hollows is 

not getting much attention in recent landslide studies. In this regard, the first part of this 

research performs two-dimensional numerical modeling of slope failures in topographic 

hollows so as to investigate contribution of hollow hydrology in causing slope failure. For 

this, a small catchment, known as Higashifukubegawa of Niihama of tertiary sedimentary 

terrain, western Japan was selected. In this catchment, a total of seven slope failures 

occurred in seven topographic hollows during 2004 extreme typhoon rainfall events of 

various intensitues. Numerical modeling of seepage and slope stability was performed in 

hillslope profiles passing through the seven slope failure locations and topographic hollows 

in GeoStudio (2005). The results of numerical modeling were interpreted in terms of 

transient porewater pressure distribution and factors of safety within the predefined slip 

surfaces at various typhoon rainfall hours. The innovative element in the first part of this 

research was that a threshold relationship between topographic hollow area and maximum 

porewater pressure was established based on two-dimensional seepage analysis. This 
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relation is thought to be helpful in prediction of maximum porewater pressure in 

topographic hollows.  

The second part of this research highlights problems in current approaches of 

slope failure hazard assessment and replication in catchment scale, and then focuses on a 

methodology for preparation as well as replication of catchment-scale deterministic slope 

failure hazard model. For small areas, like a small catchment, hydrological and geo-

mechanical parameters of soil, required for deterministic slope failure hazard modeling, 

can be prepared. However, replication of deterministic hazard model from one catchment 

to other catchments is almost impossible since similar set of hydrological and geo-

mechanical parameters are also required in other catchments. To solve this problem, the 

second part of study couples deterministic and statistical regression methods. In result, the 

slope failure hazard maps were obtained in forty test catchments in the selected area 

through replication of deterministic model prepared in Higashifukubegawa which showed 

a moderate to good prediction accuracy with existing slope failures inventories of test 

catchments. The novelty of the second part of research is successful replication of the 

deterministic model through parameters-based regression modeling or without using geo-

mechanical and hydrological parameters. 

Hundreds of studies could be reviewed in literatures which have investigated the 

influence of parameters and boundary conditions affecting hydrological and geo-

mechanical processes occurring in soil through field/laboratory investigation and 

numerical modeling. However, influence of basic parameters of topography could be found 

only partially investigated/presented in a few of them. In this context, the third part of 

research thoroughly investigates hydrological and instability phenomena in GeoStudio 

(2005) platform in relation to variation in values of basic parameters of topography within 

their range of variation in Higashifukubegawa catchment. In result, porewater pressure and 

factor of safety were found varying regularly and with parallel trend. The change in 

porewater pressure and slope mass weight due to variation in values of basic parameters 

was used to interpret the change in the determined factors of safety. So, this part of 

research demonstrates how subsurface hydrology and hillslope instability change with 

change in values of basic parameters of topography under the same simulating conditions 

of hydrological and geo-mechanical parameters. 

Overall, how the hydrological (subsurface storm flow and water table dynamics) 

and geo-mechanical influence the slope failure occurrence or slope instability phenomena 

in less cohesive shallow soil-mantled hillslopes of topographic hollows and slope failure 
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hazard assessment in small scale catchments, can be understood from this thesis. The 

rainfall induced slope failures were evaluated realistically through hydro-geo-mechanical 

approach. 
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Chapter 1 
 

Introduction 
 

1.1 Background and research problem statement  

Consideration of saturated soil conditions in design of geotechnical structures is 

fundamental in soil mechanics as the designs are aimed at weakest soil strength. The 

pioneer studies in soil mechanics, like Terzaghi (1943), Skempton et al. (1960), Bishop 

(1955), Fredlund and Morgenstern (1977) etc. have tackled slope stability problems 

treating soil at saturated state. Also in most of the previous studies of shallow landslide, 

landslide initiation has been presented as to occur under only saturated state. The concept 

that soil slope can fail in unsaturated condition was highlighted in soil mechanics after 

Fredlund 1973. The studies before 1973 were, therefore, incomplete to describe slope 

stability, landslide triggering mechanism and spatial occurrence of landslide hazard. The 

unsaturated soil mechanics has been receiving sufficient acceptance worldwide after a first 

text book on unsaturated soils `Soil Mechanics for Unsaturated Soils` was published by 

DG Fredlund and H Rahardjo in 1993. Some studies, like Brand (1984), Fourie 1996 etc. 

have concluded that design and construction of saturated soil slopes can not be applied 

successfully for the slopes under unsaturated condition. In recent decades, extensive 

studies were performed through geomorphological, hydrological and geo-mechanical 

approaches relating rainfall, saturated/unsaturated soil properties, and subsurface 

hydrology so as to understand landslide triggering phenomena. But, the existing studies 

were case studies from different geographical locations of the world and they have 

suggested fairly different conclusions on the same problem of landslide triggering (Gofar 

et al. 2009).  

There exists complex dynamic interaction between climatic conditions and 

various parameters forming topography which govern two particular mechanisms 

occurring in soil: subsurface hydrological and geo-mechanical change. Several other 

mechanisms are associated these two mechanisms which must be treated as integrated 

mechanism. The main problem in existing studies is that they have treated each mechanism 

separately (Gofar et al. 2009). Majority of the methodologies were developed based on 

laboratory and field test. The methodologies have their own limitations in term of sample 

size and the target area. Furthermore, most of the methodologies involve numbers of 

parameters which are problematic to estimate accurately. Even with the use of exixting 
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software, it has not been possible to treat different mechanisms singly or in integrated form 

(Gofar et al. 2009). 

Global warming is continuously increasing in recent years and climatic conditions 

are changing worldwide. Change in climatic conditions cause variation in geomorphology 

and soil properties. This directly affects rainfall infiltration through soil. Estimating 

subsurface zone moisture storage change with rainfall infiltration is complex problem since 

variation in soil properties alters seepage path, and therefore groundwater level. Due to 

these reasons, to predict where and when a slope will fail or how big a slope failure will be 

has become more complex. On the other hand, subsurface mechanisms trying to cause 

failure in a slope may not be exactly same to that in other slope within the same area. 

Nature of failure might differ in the same location after many landslides had occurred in 

the past. The depth, length, and width of landslide have not yet been possible to predict 

through available numerical modeling programs. Therefore, previous studies on 

mechanism of landslide triggering employing historical record of landslide and rainfall are 

still considered to be insufficient to fully describe dynamic nature of landslide triggering. 

Mechanism of landslide triggering has still been an inadequately explored topic of research. 

In this context, some more studies are necessary with time to explore dynamic mechanism 

of landslide triggering.  

Landslides most commonly occur on unchanneled topography or topographic 

hollows as evidence of ongoing geomorphic development of valley heads. They mainly 

take place on uppermost part of hollows i.e., near slope crests. With repetition of landslides, 

there is sustaining growth of hillslope depression which, in turn, determines the persistent 

spacing of topographic hollows in drainage basins (Tsukamoto 1973, Matshushi 2006). 

The subsurface storm flow on steep soil-mantled hillslopes of topographic hollows is first 

order control on landslide initiation. Investigating dynamic subsurface storm flow in 

topographic hollows is much more complex. However, topographic hollows are poorly 

reflected in recent landslide research and hydrologic regime in topographic hollows has not 

been so well investigated except in some good studies.  

There has been a problem in catchment-scale shallow landslide hazard assessment 

as well as replication. In literature, this problem has been fairly acknowledged. The three 

methods: heuristic, statistical and deterministic have been used worldwide for landslide 

hazard assessment. However, in many past studies, hazard assessment has been done 

without considering appropriateness of method. Heuristic methods can be used for 

landslide hazard assessment, but replication of heuristic hazard models is almost 
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impossible as these are fully based on expert’s opinion on conditions of employed 

parameters, and therefore degree of hazard. Different from heuristic method, statistical 

methods are suitable for both landslide hazard assessment and replication. These are 

considered robust for hazard assessment mainly in larger areas because these need 

significant variation in geological and geomorphological parameters which is generally 

found in larger areas. But, for smaller areas, like catchments, geological and 

geomorphological conditions are fairly homogenous and accurate results on spatial 

prediction of landslide hazard may not be obtained by applying statistical methods. In such 

condition, landslide hazard analyses can be done with deterministic methods. Deterministic 

analyses are performed through geo-mechanical and hydrological parameters of soils 

determined from laboratory experiments on soil samples retrieved from field rather than 

geological and geo-morphological parameters. A detailed variation in geo-mechanical and 

hydrological parameters can be found and a large amount of data can be collected even 

from small catchments.  However, replication of deterministic models from one catchment 

to other catchments is problematic since exactly similar geo-mechanical and hydrological 

parameters also have to be prepared in other catchment which is much costly and difficult. 

Therefore, any of the methods described above can not be used with ease for both landslide 

hazard assessment and replication of landslide hazard model in small catchment scale. 

Knowledge on influence of parameters affecting failure or hillslope instability 

becomes primary for both slope stability and landslide hazard study. Influence of various 

hydrological (soil permeability, porosity) and geo-mechanical parameters (soil cohesion, 

root cohesion, and unit weight of soil) have been studied and well discussed in hundreds of 

past studies under various boundary conditions. However, the influence of basic 

parameters forming topography could be found only partially acknowledged in a few of 

them. Basic parameters of topography, such as slope inclination, slope length, and soil 

depth are proxy to describe subsurface porewater pressures and flow path dynamics or to 

characterize initial conditions for soil water storage prior to rainfall events. However, no 

earlier to recent study has presented detail investigation on influence of these parameters 

on hillslope subsurface hydrology and instability. 

 

1.2 Research objectives 

Understanding various problems, this Ph.D. research mainly focuses on subsurface 

hydrology and instability in topographic hollows, slope failure hazard assessment and 

replication in small catchments, and analysis of basic parameters of topography affecting 
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hillslope instability. The aim of this study is to evaluate rainfall-induced slope failure and 

potential instability during extreme rainfall under the influence of topographical, 

hydrological and geo-mechanical parameters. For this, extreme typhoon rainfall region of 

Shikoku Island of Japan was considered. Figure 1.1 shows the conceptual research flow of 

this study. 
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Figure 1.1 Research flow of this study 

 

 The objectives of this study can be given as below.   

Objective 1 

To explore triggering mechanism of rainfall-induced slope failures in topographic hollows. 

This objective is divided into several sub-objectives: 

(i) to understand geological, geo-morphological and climatic conditions on selected area 

which had favored slope failures in the past during extreme typhoon rainfall,  

(ii) to understand hydrological and geo-mechanical properties of soil in slope failure spots, 

(iii) to perform transient hydrological modeling along failed mass in topographic hollows 

so as to bridge different mechanisms favoring slope failure,   

(iv) to link topographic hollow parameters with dynamic subsurface hollow hydrology, and 

(v) to investigate variation of porewater pressure as well as factor of safety in various 

hours of typhoon rainfall to know the time of occurrence of slope failure.  
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Objective 2 

To present replication procedure for a slope failure hazard model in small catchments. In 

specific, it studies 

(i) to prepare a deterministic slope failure hazard model in a catchment based on the geo-

mechanical and hydrological properties of soils obtained from various field/laboratory 

experiments,  

(ii) to replicate the deterministic slope failure hazard model in other catchments without 

using geo-mechanical and hydrological properties, and  

(iii) to replicate the slope failure hazard model with high accuracy. 

 

Objective 3 

To evaluate effect of basic parameters of topography on hillslope instability. For simplicity, 

it can be divided into following.  

(i) To understand hydrologic response of shallow coarse-grained unsaturated soil slopes of 

a catchment to heavy rainfall, and 

(ii) to thoroughly investigate change in factor of safety and porewater pressure in hillslope 

profiles by varying values of basic parameters of hillslopes under same simulating 

conditions of hydrological and geo-mechanical parameters. 

 

1.3 Organization of thesis 

Including this introductory chapter about research problems and research objectives, this 

thesis contains seven more chapters. Chapter 2 presents a comprehensive review on 

shallow landslide triggering. It discusses past studies on rainfall threshold, positive 

porewater pressure, negative porewater pressure, and perched ground water table for 

shallow landslide initiation. This chapter also covers various landslide modeling programs 

and approaches in both local and regional scale. Brief information about geology, 

geomorphology, and climate of Shikoku Island, where study areas for this research were 

selected, is given in Chapter 3. Chapter 4 presents an overview of slope failures that 

occurred in four prefectures of Shikoku Island during extreme typhoon rainfalls of 2004.  

Chapter 5, 6 and 7 address objective 1, 2, and 3 respectively. These chapters are 

based on papers published and/or submitted to peer reviewed journals (introduction, study 

area, methodology, results, discussion, and conclusions). Numerical simulation using limit 

equilibrium and finite element methods for slope instability analyses and slope failure 
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hazard assessment are highlighted in these chapters. In detail, coupled hydrological-slope 

stability model [SEEP/W, SLOPE/W (GeoStudio 2005)] was applied to investigate 

triggering of slope failures within topographic hollows in a small catchment in Chapter 5. 

The contribution of hollow subsurface hydrology on instability was well studied and 

discussed through two-dimensional hydrological-slope stability modeling in this chapter. 

The detail about preparation of a deterministic slope failure hazard model in a catchment 

and its replication in neighborhood catchments coupling three models: dynamic 

hydrological model, infinite slope model, and statistical regression model is presented in 

Chapter 6. In Chapter 7, how hillslope subsurface hydrology and instability change with 

variation in values of basic parameters of topography was thoroughly investigated and 

presented.  

In Chapter 8, the major findings/conclusions of this thesis are summarized, 

together with limitations and recommendations for future research. 
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Chapter 2 
 

Literature review 
 

2.1 Introduction 

This Chapter provides a comprehensive review on literatures which are relevant to this 

research. It presents those significant case studies reported from various regions of the 

world which studied landslide triggering phenomena and landslide hazard assessment. 

Particular attention has been paid to various modeling programs and approaches used by 

past researchers for local- and regional-scale landslide modeling.  

 

2.2 Landslide triggering scenario 

Landslides are geomorphic processes that shape landscape evolution. In mountainous 

topographies, they represent the most important hazard. Various hydrological and geo-

mechanical parameters of soil play role in causing landslide. But, for initiation of landslide, 

triggering agent is necessary. Examples of triggering agents are geological events (seismic 

shaking due to volcanic eruption, earthquake), hydrological events (e.g., rainfall, snow 

melt or water level change in rivers or lakes at the foot of slopes), and human interventions 

(excessive loading and improper slope cutting). It is almost impossible to predict triggering 

events. The most common trigger is rainfall. Rainfall is important for occurrence of both 

shallow and deep-seated landslides. In the following, first the rainfall threshold for 

triggering landslide is described.  

 Rainfall threshold can be defined as the minimum amount of rainfall after crossing 

which landslide is sure to occur (Dahal 2008). Significance of defining rainfall threshold is 

that it can be used in early warning system (Clark 1987). Rainfall threshold for triggering 

landslide differs from one region to another based on hydro-climatological and geophysical 

properties, such as regional and local rainfall characteristics and patterns, lithology, slope 

morphometry, soil characteristics, lithology, morphology, climate, geological history, time, 

and change in vegetation pattern (Crosta 1998, Crozier 1999). Crozier and Preston (1999) 

observed that resistance to further triggering may occur after many movements had 

occurred. The Rainfall threshold can be broadly divided into two types: empirical or 

statistical and physical threshold.  
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Empirical rainfall threshold: Empirical or statistical methods are used to determine 

rainfall threshold when sufficient data on landslide occurrence and rainfall conditions are 

available (Thiebes 2011). Empirical thresholds are expressed as rainfall intensity and 

duration or cumulative and antecedent rainfall. These are defined as the line fitting 

minimum intensity of rainfall associated with the occurrence of landslide in various areas 

(Caine 1980). But according to Terlien (1998), the rainfall events that do not cause failure 

should also be noted. Therefore, minimum and maximum probability thresholds should be 

acquired. The rainfalls below the minimum probability threshold never trigger failure, but 

the rainfalls above maximum probability threshold always cause failure (Glade 1997, 

Glade 1998). Between minimum and maximum value of thresholds, failure may occur 

under certain circumstances. Caine (1980) is pioneer study in the field of empirical rainfall 

threshold determination. Rainfall threshold determined in this study is based on rainfall 

intensity and duration analyses. After Caine (1980), many researches were projected which 

defined rainfall threshold for triggering landslide (Jakob and Weatherly 2003, Gabet et al. 

2004, Matshushi 2006, Chang et al. 2007, Dahal and Hasegawa 2008, Frattini et al. 2009, 

Guzzetti et al. 2007, 2008).  

 Empirical threshold for initiation of landslide has been broadly discussed into three 

types: global, regional, and local thresholds by Guzzetti et al. 2007. Global threshold 

(Caine 1980, Innes 1983, Clarizia et al. 1996, Cannon and Gartner 2005, Guzzeti et al. 

2008) includes a general minimum level below which landslides do not occur. Local 

morphological, lithological and land use conditions and local or regional rainfall 

pattern/history are not considered while defining global threshold. Regional thresholds 

cover areas extending from a few to several thousand square kilometers of similar 

meteorological, climatic, and physiographic characteristics. These are potentially suitable 

to use in landslide warning systems based on quantitative spatial rainfall forecasts, 

estimates, or measurements (Guzzetti et al. 2007). Local thresholds are applicable to single 

landslides or to group of landslides in areas extending from a few to some hundreds of 

square kilometers. These consider local climatic unit and geomorphological setting. 

Regional and local thresholds can be well implemented in the area where they were 

developed, but cannot be easily extrapolated to adjacent regions (Crosta 1998). 

Giannecchini et al. 2012 defined the critical rainfall thresholds for the Middle Serchio 

River Valley and compared it with the local, regional and global curves proposed by 

various authors. The results of their analysis suggested that landslide activity initiation 

requires a higher amount of rainfall and greater intensity in their study area than elsewhere. 
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Antecedent rainfalls also play important role in determining empirical rainfall threshold 

(Johnson and Sitar 1990, Crozier 1999, Godt et al. 2006). Antecedent Daily Rainfall 

method to determine rainfall thresholds based on antecedent and daily rainfall was 

developed by Crozier and Eyles (1980). In this method, the influence of antecedent soil 

water is controlled by a decay factor obtained from discharge hydrographs.  Based on 

Crozier and Eyles (1980), several studies were performed and presented incorporating 

antecedent rainfall (e.g., Kim et al. 1992, Glade et al. 2000, Xiao-jun et al. 2009, Huang 

2013, Lee et al. 2014 etc.). Kim et al. 1992 concluded that the major parameters affecting 

empirical threshold differs from one region to another. Glade et al. 2000 presented the 

antecedent soil water status model to define rainfall threshold. Overall, empirical 

thresholds are obtained by analyzing distribution of landslides and rainfall patterns. 

However, these do not take underlying physical processes into account. Therefore, such 

thresholds are considered more suitable for predicting triggering shallow landslides and 

debris flow during short and intense rainfall.  

 

Physical rainfall threshold: When data on landslide occurrences and rainfall conditions 

are limited, rainfall thresholds are determined in deterministic approach, known as physical 

rainfall threshold. To determine such rainfall thresholds, underlying physical processes 

involved in triggering landslide are taken into account. The major underlying physical 

processes are the processes associated with subsurface hydrologic response to rainfall or 

porewater pressure and geo-mechanical parameters. The porewater pressure required for 

such rainfall threshold determination is either obtained from hydrological modeling or 

measured in field. Physical rainfall thresholds are considered to be very strong since these 

are based on physical laws of mass, energy, and momentum. Small areas are more suitable 

compared to the large areas for determination of physical rainfall threshold since a large 

amount of detailed data can be obtained from small areas. However, no uniformity in 

methodology can be found in past literature for calculation of porewater pressure in 

relation to rainfall events (Persson et al. 2007). The most common method is to compute 

subsurface hydrologic response to rainfall or porewater pressure required for slope 

instability which are then compared with observed porewater pressures and checked for 

accuracy (Thiebes 2011). The heterogeneity in topographical and geological conditions can 

generate areas of high porewater pressures (Montgomery et al. 1997). Physical rainfall 

threshold for triggering landslide can be obtained by combining hillslope subsurface 

hydrologic response to rainfall with geo-mechanical phenomena in soil. The coupled 
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hydrological-slope stability models consider both of these phenomena, as in the studies 

like Wilson and Wieczorek 1995, Crosta 1998, Terlien 1998 etc. Some studies, such as 

Dietrich et al. 1998, Wieczorek and Glade 2005, Guzzetti et al. 2008 and Brunetti et al. 

2010 have described physical threshold as critical rainfall. Other researches utilized 

various hydrological models to predict pore pressure in response to rainfall events (Reid 

1994, Crosta 1998, Ekanayake and Phillips 1999, Iverson 2000, Norbiato et al. 2008, Cole 

and Moore 2009, Frattini et al. 2009, Alvioli et al. 2014). Deep-seated landslides have 

complex subsurface hydrology compared to shallow landslides. These are more affected by 

rainfall of longer duration. Establishing simple statistical correlation between rainfall and 

deep-seated landslides can not realistically predict triggering of deep-seated landslides 

(Thiebes 2011). It is necessary to define physical thresholds including rainfall, water 

infiltration, percolation, slope morphology, bedrock structures. According to Ekanayake 

and Phillips 1999, these are possible through subsurface hydrological modeling.  

Even though, rainfall is considered as the most frequent and the most important 

factor of triggering of landslide, the change in subsurface zone moisture storage with 

infiltration is initiating landslide phenomena. The subsurface zone moisture storage change 

can be categorized into three types: loss of matric suction (directly by rainfall), increase in 

positive porewater pressure or groundwater table (from the bottom of soil colluvium or 

bedrock), and development of perched water table. In the following, studies incorporating 

these phenomena are reviewed.  

 

Loss of matric suction: In unsaturated shallow soil slopes, failure occurs directly by 

rainfall. This means as the rainwater infiltrates through unsaturated zone to reach bedrock 

or deep groundwater table, matric suction of unsaturated soil in the path of infiltrating 

water reduces. When there is sufficient loss of matric suction, failure occurs without 

increase in groundwater table or positive porewater pressure. Coarse grained unsaturated 

shallow soil slopes with slope inclination (β) greater than or equal to angle of shearing 

resistance of soil (ɸ) are considered to be more prone to failure as such slopes are stable 

only due to matric suction which fully disappears before saturation is achieved. Effect of 

suction on shallow landslide initiation has been studied in a large number of past 

researches (Kasim et al. 1998, Ng et al. 1999, Gasmo et al. 2000, Tsaparas et al. 2002, 

Rahardajo et al. 2007, Tsai 2010, Cascini et al. 2010, Rahardjo et al. 2013, Kassim et al. 

2012, Lee et al. 2014). These studies have incorporated how suction varies in unsaturated 

soil slope with rainfall characteristics/patterns, hydrological properties of soil, boundary 
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conditions etc. For example, Kasim et al. 1998 performed a numerical modeling in 

horizontal and inclined unsaturated soil layer to investigate the influence of hydrological 

properties of soil on steady-state suction distributions. This study concluded that ratio of 

rainfall flux and saturated soil permeability (q/ksat), and air-entry value of soil primarily 

control steady-state suction distributions (Gofar et al. 2009). Ng et al. 1999 performed 

more or less similar kind of study, but including intensity and duration of rainfall, 

impending layer and conditions of surface cover. Their study concluded that suction 

response is affected not only by ratio of rainfall flux and saturated soil permeability (q/ksat) 

but also by the ratio of saturated soil permeability and slope of soil water characteristics 

curve (ksat/mw), initial conditions and boundary conditions. Other studies (Brand 1984, 

Ayalew 1999, Tsaparas e al. 2002, Rahardjo et al. 2001, Roslan and Mohd 2005) have 

investigated influence of monthly, daily and hourly antecedent rainfall on suction 

distribution. Studies, like Tofani et al. 2005, Casagli et al. 2006, Muntohar and Liao 2010 

have investigated groundwater infiltration process through saturated/unsaturated soil and 

critical time for failure during extreme events. Kassim et al. 2012 modeled suction 

distribution in an unsaturated heterogeneous residual soil slope using GeoStudio. Rahardjo 

et al. 2013 observed the effects of flux boundary conditions on porewater pressure 

distribution in unsaturated soil slope. Despite these studies, the subsurface hydrological 

response to rainfall is still a mater of debate due to different and dynamic nature of rainfall 

in different topographies.   

 

Increase in positive porewater pressure: In case of gentle slopes with deep soil 

colluviums (generally >2 m), increase in positive porewater pressure or groundwater table 

occurs with rainfall infiltration. This reduces shear strength at potential slip surface 

whereby failure occurs. The role of positive porewater pressure in slope stability analysis 

can be reviewed in detail in basic past studies, like Terzaghi 1943, Skempton et al. 1960, 

Bishop 1955, Fredlund and Morgestern 1977. These studies treated stability analysis 

considering saturated state of soil. The approaches in these studies are basically for civil 

engineering design as man-made slopes are designed for the worst case scenario i.e., 

completely saturated soil condition. A number of studies have suggested that shallow 

failures are usually caused by the increased positive pore water pressure (Vaughan 1985, 

Johnson and Sitar 1990, Campbell 1975, Caine 1980, Reid et al. 1988, Wilson and 

Wieczorek 1995). Rainfall infiltration reduces shear strength at the slip surface by 

increasing both positive porewater pressure and soil weight resulting in failure. 
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Development of perched water table: As described in above paragraph, during landslide 

triggering, slip surface generally forms at the boundary of soil colluvium and underlain 

bedrock. However, in unsaturated hillslopes (generally heterogeneous), rainwater gets 

stored within the low-conductive soil layer above bedrock known as perched water table 

(Weyman 1973, Weiler et al. 2005). From perched water table, a subsurface flow moves 

laterally along the upper surface of this layer which helps in causing instability above 

bedrock or surfacial failure occurs (Dietrich et al. 2007, Lu and Godt 2008, Baum et al. 

2010). Lanni et al. 2012 estimated the time for development of perched water table. For 

this, they simulated vertical rain-water infiltration into unsaturated soil using the concept 

of drainable porosity (i.e., volume of store soil-water removed/added per unit area per unit 

decline/growth of water table level) given by Hilbert et al. 2005. Sometimes perched water 

table is connected to bedrock through fissures. The fissures supply water to bedrock and 

cause formation of potential slip surface between soil colluvium and bedrock (Van Asch et 

al. 1999, Spek et al. 2013). 

 

2.3 Modeling landslide occurrence 

Landslide modeling is basically done for three purposes, namely (i) back analysis of 

already failed slopes, (ii) understanding present stability status, and (iii) predicting future 

occurrence of landslides. Landslide modeling can be broadly divided into two categories 

which are local- and regional-scale modeling.  

 

2.3.1 Local-scale modeling 

It focuses on single landslide processes and the models are called local-scale models. 

Local-scale models are commonly used in stability analysis of geotechnical structures and 

natural slopes. Deterministic or physically based local models can be used for detailed 

investigation of failure processes, influence of triggering events, and assessment of 

remedial measures (e.g., road side slope stabilization). These are based on either of three 

methods: limit equilibrium, continuum modeling, and discontinum method (Thiebes 2011) 

which are described below.  

 Limit equilibrium method has a long tradition on slope stability analyses practice. 

Although attention has been paid to finite element-based software for numerical modeling 

of slope instability in recent studies, limit equilibrium method has still been popularly used 

and has been incorporated in various programs. To determine the forces that try to slide 

and resist the slope mass, limit equilibrium method includes a simple mathematical 
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framework and assesses stability of a slope by discretizing the slope into two-dimensional 

slices within an assumed slip surface. But, practice of using three-dimensional limit 

equilibrium approach has also been increasing in recent years. A number of existing 

methods are used to locate critical slip surfaces or to find lowest factor of safety, such as 

Bishop’s simplified method, Janbu’s method, Infinite slope method, Ordinary slice method, 

General slice method, Spencer’s method, and Morgenstern-Price method. However, there 

are many shortcomings of limit equilibrium method. For example, soil behaviour is not 

taken into account and complex processes can not be analyzed with a good accuracy (Baba 

et al. 2012). The forces involved in equilibrium are approximations of forces within the 

landslides. The computed factor of safety by discretizing the slope into two-dimensional 

slices is average or global one. Failure is supposed to occur when factor of safety<1.0. 

However, in reality, displacements may occur upto 1.15 value of factor of safety (Thiebes 

2011). Also no information is given about stress distributions in the slope mass and 

progressiveness of failure by limit equlilibrium method (Krahn 2003, Baba et al. 2012).  

 Slope stability models in relation to continuum modeling are the software or 

computer programs. These follow assumptions of either finite difference or finite element 

method. The common aspect in finite difference and finite element method is that entire 

slope profile is discretized into finite number of small elements or mesh. The purpose of 

constructing mesh is to compute stress and strain. Finite difference method yields 

numerical approximations of differential equations of equilibrium, strain-displacement 

relations or the stress-strain equations. Compared to limit equilibrium method, continuum 

modeling permits complex dynamic landslide analyses. Different from limit equilibrium 

method and continuum modeling, discontinum methods evaluates stability of a slope mass 

by considering it as a single distinct block. The factor of safety for each block is repeatedly 

computed so as to explore complex non-linear interaction between deformable elements. In 

the following, commonly used programs in slope stability analyses which follow the 

abovementioned three approaches are described.  

SEEP/W and SLOPE/W (GeoStudio 2005) represent coupled hydrological-slope 

stability model. SEEP/W is finite element method based program whereas SLOPE/W is 

limit equilibrium based program. Both of these programs have been used in this study and 

a more detailed review on these programs is presented in Chapter 5 and 7. SVslope is 

similar to SLOPE/W; however, it performs three-dimensional limit equilibrium analysis of 

slopes (Leong and Rahardjo 2012). In latest versions of this program, finite element tools 

have also been incorporated. Clara-W (Hungr 2001) performs both two- and three-
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dimensional limit equilibrium analyses. Various modes of failure such as rotational, non-

rotational, ellipsoids, wedges, compound surfaces can be modeled and analyzed. The 

problem configuration can be directly switched into three-dimensional window from two 

dimensional one during modeling. CHASM (Combined Hydrology and Stability Model) 

(Anderson and Lioyd 1991) is another example of coupled hydrological-slope stability 

model based on limit equilibrium method. It differs from SEEP/W and SLOPE/W in two 

ways. First it allows using vegetation and stabilization measures in slope stability 

assessment using Bishop’s method and Junbu’s method. Second a simple empirical-based 

run-out simulation can be performed in CHASM. Other examples of coupled hydrological-

slope stability modeling programs are HYSWASOR (Van Genuchten 1980), HILLFLOW 

(Bronstert 1994) or GWFLUCT (Terlien 1996), ASWSM (Crozier 1999) etc.  

 Plaxis is finite element-based software for analysis of deformation and stability of 

geotechnical structures in two and three dimensions. It can simulate 

unsaturated/unsaturated groundwater flow and instability. Static loads; dynamic loads due 

to earthquakes as well as non-linear, time dependent and anisotropic behaviors of 

soils/rocks can be assigned as input to this software. Use of Plaxis in landslide research can 

be found in several studies such as Comegna et al. 2004, Gotman 2007, Singh et al. 2013, 

and Chandrasekaran et al. 2013 etc.). The water level or porewater pressure required for 

stability analysis is directly specified as a phreatic line. Below the phreatic line, there is 

hydrostatic porewater pressure distribution. Strength reduction method along with various 

advance soil models are used in Plaxis. During analysis, the incremental displacements are 

taken as the indicators of the likely failure. FLAC (Fast Lagrangian Analysis of 

continuum) is two-dimensional explicit finite difference program. It can be used in the 

modeling of geo-material calculation and mechanical behavior geotechnical engineering 

(e.g., plastic deformation, fluid flow etc.) (Chugh and Stark 2006, He et al. 2008, Gessner 

2009, Shuguo et al. 2013). The algorithm used in FLAC solves the governing equation of 

mass, moment, and saturated flow. The FLAC model is prepared by discritizing the model 

domain into brick shaped zones which consists of tetrahedral subdomains. DAN was 

developed by Hungr 1995. It is versatile dynamic software for modeling whole mass 

movement. It has been widely used for dynamic run-out analysis of rapid landslide 

processes e.g., rock avalanches (Hungr and Evans 2004, Zhang et al. 2013). DAN follows 

Lagrangian solution of the equations of unsteady non-uniform flow in an open channel.  

GGU is computer aided design-based two-dimensional slope stability analysis 

program based on limit equilibrium assumptions. Bishop’s and Janbu’s methods are used 
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to compute factor of safety in this program. The geotechnical parameters determined from 

various laboratory experiments are major inputs. GGU is popularly used in German 

goetechincal engineering. The studies, like Villalobos et al. 2013, Preuth et al. 2010 have 

used this program in stability assessment of slopes. Galena is also two-dimensional limit 

equilibrium-based numerical software. It allows for predicting stability using Bishop’s 

method, Spencer-Wright method and Sarma method. This software was developed mainly 

for slope design in open-pit mines (Moon et al. 2013, Thiebes 2011). Hydrological 

modeling can not be performed in both GGU and Galena. Xslope (Ballaam 2001) assesses 

stability status based on Bishop’s or Morgenstern-Price method. Soil cohesion, angle of 

shearing resistance and unit weight of soil are main soil properties used in Xslope. 

Different from GGU and Galena, porewater pressure simulated in external finite element 

steady-state seepage model can be integrated in slope stability analysis in Xslope (Hubble 

et al. 2013).  

  

2.3.2 Regional-scale modeling 

Regional-scale modeling focuses on landslide processes on greater spatial extent and the 

models are known as regional-scale models. With development of powerful computers, 

and tools, like GIS, ILWIS, Remote sensing, the concept of regional modeling was 

emerged (or the use of local model has been started to predict landslide processes in larger 

areas). Regional modeling is performed to investigate landslide susceptibility, hazard and 

risk. According to Soeters and Van Westen (1996), regional landslide susceptibility and 

hazard analyses can be classified into four distinct approaches, namely heuristic, statistical, 

deterministic, and landslide inventory-based approaches.  

 In heuristic approach, geological and/or geotechnical experts use their knowledge 

and experience to determine relationship of landslide with the causal factors of landslide. 

Based on this relationship, certain weight values or ratings are assigned to each factor 

based on their relative importance and the slope failure hazard map is prepared in a 

regional scale (Pachauri et al. 1998, Dai et al. 2002, Dakau and Glade 2003). However, 

assigning the weight values or ratings to each parameter is very subjective (Regmi et al. 

2013). The results can vary significantly depending on the experts who prepare the map, 

knowledge on the study, and the processes present (Guzzetti et al. 2000, Ardizzone et al. 

2002).  

 Statistical approaches are the most common approaches used in regional landslide 

susceptibility and hazard assessment. Statistical models are also called white box models. 
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These require detailed identification and mapping of a set of independent causal factors 

(i.e., geologic and geomorphologic parameters). Then, a relationship between causal 

factors and slope failure location is established in the form of an empirical parametric 

function. This function is used for the prediction of future landslide by spatial interpolation. 

Some of the statistical analysis methods available in literature include multi-variate 

regression (Dai and Lee 2003), discriminant function modeling (Baeza and Corominas 

2001, Santacana et al. 2003, Guzzetti et al. 2005, Jamaludin et al. 2006, Dong et al. 2009, 

Baeza et al. 2010, He et al. 2012), Conditional analysis (Wu et al. 2004, Duman et al. 

2005), and logistic regression (Carrara et al. 1992, Ayalew and Yamagishi 2005). 

Deterministic approaches are called black box approaches. These are applicable 

only when climatic (precipitation), geological (rock types) as well as geomorphological 

(vegetation, aspect) conditions are fairly homogenous and landslide types are simple (or 

when statistical approaches are difficult to apply due to lack of heterogeneity in geological 

and geomorphological parameters). Due to such limitation, regional deterministic models 

are only suitable for simple landslide processes, such as shallow translational landslide or 

slope failure. Deterministic modeling is performed employing distributed hydrological 

model and infinite slope model. Distributed hydrological model simulates to compute soil 

moisture content above bedrock based on topographical flow routing. Infinite slope model 

uses computed soil moisture content and geotechnical parameters (cohesion, angle of 

shearing resistance, unit weight of soil etc.) determined in laboratory to ascertain factor of 

safety on a cell-by-cell basis, which can be displayed in a grid-based continuous raster map. 

The computed factor of safety is then ranged to create a slope failure hazard map, which 

can be used to provide the best quantitative information about slope instability or hazard in 

a small scale. Finally, the hazard map can be used directly in designing civil engineering 

structures or in quantitative risk analyses (Jia et al. 2012). The famous regional 

deterministic models are TOPMODEL (Beven and Kirkby 1979), SINMAP (Pack et al. 

1998), and SHALSTAB (Dietrich et al. 1998). Both deterministic and statistical 

approaches have been used in Chapter 6. In this chapter, the deterministic approach was 

coupled morphometrically with statistical approach to predict slope failure hazard index in 

small catchments and the approach is so called grey-box or semi-physical.  

In landslide inventory-based approach, geo-morphological mapping in field and the 

detailed analyses of landslide distribution is performed. In case of multi-temporal 

inventories, activity patterns are also analyzed. These form the basis for regional modeling 

of landslide hazard and risk. 
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2.4 Chapter summary 

In this chapter, past studies on landslide triggering and landslide modeling were briefly 

reviewed. First the theory on rainfall threshold for triggering landslide was established. 

Then, some significant studies on landslide initiation due to various phenomena, such as 

loss of matric suction, perched water table, and increase in ground water level with rainfall 

infiltration were presented. Various slope stability and hydrological-slope stability 

modeling programs for single landslide process were also briefly given. Finally, the 

common modeling approaches used worldwide for landslide hazard analyses in regional 

scale were described. This chapter is foundation for the work presented in this thesis.  
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Chapter 3 

 
Geology, geomorphology and climate of Shikoku Island 

 
3.1 Geology of Shikoku Island 

Among the four main Islands of Japan, Shikoku is the smallest Island. It has an area of 

18,000 km
2
. Geographically, it lies between Seto Inland Sea and the Pacific Ocean. More 

clearly, it is situated on the south of the Island of Honshu and east of the Island of Kyushu. 

In the middle part, Shikoku has a few plain areas along the costal lines and elevated peaks. 

On the contribution of the geological and morphological settings, landslide and flood 

related to typhoon rainfalls are common in Shikoku. The subduction zone in Shikoku area 

consists of accretionary complexes and metamorphic rocks which are parallel to the 

extending direction of the arcs. This zone is divided into five rock belts by tectonic 

structures (e.g., thrust faults). The rock zones on the side of Japan Sea are older whereas 

these become younger towards Pacific Ocean. The geology of Shikoku Island can be 

roughly divided into three major geological Belts: Ryoke Belt, Sambagawa-Chichibu Belt, 

and Shimanto Belt from north to south (Figure 3.1). These three Belts are bordered by two 

northerly dipping major faults, the Median Tectonic Line (MTL) and the Butsuzo Tectonic 

Line (BTL) from north to south respectively. When geological setting is considered in 

detail, Shikoku Island can be distinctly divided into five major geological Belts in east-

west direction which are Izumi Group (with Ryoke Belt), Sambagawa, Chichibu, Shimanto 

north , and Shimanto south (Figure 3.2) (Dahal 2008). Izumi Group and Sambagawa Belt, 

both lying on the northern part, are separated by Median Tectonic Line (MTL). Mikabu 

Tectonic Line (MiTL) separates Sambagawa and Chichibu Belt. Similarly, Butsuzo 

Tectonic Line (BTL) divides Chichibu and Shimanto-north groups whereas Shimanto-

north and Shimanto-south lying on southern part are separated by Aki-Sukumo Tectonic 

Line (ATL). The northern part of Izumi Group is called Ryoke belt. Besides, there exists a 

narrow discontinuous strip between Sambagawa and Chichibu Belt known as Mikabu Belt. 

It has a width of 5 – 6 km. All of these Belts are recognized as being susceptible to 

landslide occurrence except Ryoke Belt. In the following, each belt is described in detail.    

 

3.1.1 Ryoke Belt 

It is a high temperature-low pressure paired-metamorphic Belt. It sharply differs from the 

high pressure-low temperature type Sambagawa metamorphic Belt. Altogether 20 % to  
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Figure 3.1 Regional geological map of Shikoku Island 

 

 

 

Figure 3.2 Geological map of Shikoku Island in detail (after Dahal 2008) 
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30 % of Ryoke Belt area consists of metamorphic rocks (e.g., Pelitic rocks, Psammitic 

rocks and granitic plutons known as the Ryoke granites). The innermost area on the 

outermost part of the inner zone of south west Japan (Figure 3.2) is furnished by rocks of 

Ryoke Belt. In Shikoku Island, Ryoke Belt is composed of three main rock units, namely 

late cretaceous granitic rocks, late Cretaceous sedimentary rocks (Izumi Group), and 

Miocene volcanic rocks. The Cretaceous granite rocks are dominant in the north of Seto 

Inland Sea.     

 On the southern part of Ryoke Belt or on the north of MTL, there is a narrow Belt 

running east-west called the Izumi Group. It consists of thick piles of intercalated 

sandstones and shales together with a few thin beds of acidic tuff which are of late 

Cretaceous age. The northern wing of Izumi group lies over the rocks of Ryoke Belt 

whereas southern wing is in fault contact with Sambagawa Belt. The major portion of 

Izumi group is marine and it yields fossils shells such as Inoceramus (Hashimoto 1991). 

The northern wing of Izumi Group is composed of basal conglomerates. It contains pebbles 

of granite, quartz, porphyry, and mica schist which are similar to the rocks of Ryoke Belt. 

The study area in this research lies in Ryoke Belt.   

 

3.1.2 Sambagawa Belt 

As mentioned earlier, Sambagawa Belt consists of high pressure-low temperature type 

metamorphic rocks. It lies nearly in the central part of Shikoku Island (Figure 3.2). It is 

mainly furnished by crystalline schist which can be categorized into four types: basic schist 

(metabasites or greenstone including amphibolite, pillow lava), quartz schist (metacherts of 

various composition), politic schist, and psammitic schists (metamorphosed greywacke 

sandstone). The Shikoku Mountains mainly comprise of these rocks. Due to low 

temperature-high pressure condition, laminated folded rock strata are common in this Belt.  

 

3.1.3 Mikabu Belt 

It is a short and narrow Belt (5 - 6 km width). It lies along the boundary between 

Sambagawa and Chichibu Belts (i.e., distributed along Mikabu Tectonic Line). It consists 

of metamorphic product of basalt and gabbro which have volcanic origin. But the dominant 

rock type is metabasites or greenstone. Besides, Mikabu greenstones are also found in 

significant proportion in this Belt. Greenstone comprises chief green-colored minerals e.g., 

quartz, feldspar, pyroxene, amphibole, and epidote. Because of these green-colored 
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minerals, the rock outcrop in this Belt appears green throughout the terrain. Mikabu 

greenstone is also known as one of the most weathering prone rock unit of Shikoku Island.    

 

3.1.4 Chichibu Belt 

It lies on the south of the Sambagawa Belt and Mikabu Belt. It mainly consists of 

Carboniferous to Jurassic sedimentary and low-grade metamorphic rocks which are 

distinguished all through the east-west length of arcs. Chert, greenstone, mudstone, and 

conglomerate are the major rock types of this Belt. Moreover, this Belt consists of late 

Triassic to middle Jurassic mudstone, sandstone and chert (Dahal 2008). The 

characteristics feature of Chichibu Belt is that it contains imbricate structure with a number 

of thrusted sheets and lenticular masses. Also, the masses of limestone and greenstone can 

be found embedded as olistoliths in sheared mudstones or are bordered by faults. Some 

limestone masses have algal fossils and yield fusalinids indicating Permian age. The 

bivalves, gastropods and ammonites present in traces indicate Triassic age (Hashimoto 

1991).   

 

3.1.5 Shimanto Belt 

It is the southern most geological Belt of Shikoku Island. It occupies two southern 

peninsulas, Murote and Ashizuri. These protrude into the Pacific Ocean (Figure 3.2). The 

middle Miocene granitic and partially gabbroic rocks are sporadically distributed along the 

axes of these peninsulas. Based on distribution of lithologic and biostratigraphic 

assemblages, the Shimanto Belt has been subdivided into two distinct facies: Cretaceous 

(or northern) and Tertiary (or southern) Belts. The northern sub-Belt also consists of other 

two small Belts, a Lower to Middle Cretaceous unit in the south. The northern sub-Belt is 

composed of clastic sedimentary rocks which have characteristics feature of the absence of 

radiolarian chert. Abundant clastic sedimentary rocks and several regional-scale zones of 

intense deformation are found in upper cretaceous Shimanto Belt. 

 

3.2 Geomorphology 

Topographically, MTL divides Shikoku Island into a narrow northern sub-region (fronting 

on the Seto Inland Sea) and a wide southern region (facing Pacific Ocean). On the 

marginal area of Shikoku Island, plains, fans and delta deposits are found (Figure 3.3). The 

major towns of Shikoku i.e., Takamatsu, Matsuyama, Kochi, and Tokushima are situated 

on the main alluvial and deltaic plains. In the central and eastern part of Shikoku, Yoshino 
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River is major river system. The Tokushima plain consists of alluvial fan and alluvium as 

well as deltaic deposit of the Yoshino River. More than 80 % of the Shikoku Island is 

composed of steep upland terrain occupied by forest. The mountain areas are sparsely 

populated while the plain areas are densely populated. Mount Ishizuchi (1,982) is the 

highest peak of Shikoku. In addition to Mount Ishizuchi, Mount Tsurugi and Mount Kaifu 

are other famous mountain peaks. The colluvial deposits are found on most of the slopes of 

Shikoku Mountains. The steep mountains of tertiary sedimentary terrain have thin, loose 

and less cohesive residual colluviums. 

 

 

 

Figure 3.3 Regional geomorphological map of Shikoku Island (after Dahal 2008) 

 

3.3 Climatic condition 

Shikoku consists of humid subtropical climate. Such climate has warm summers and is 

constantly moist. Shikoku Island is characterized as a place of mild climate with heavy 

precipitation. The mean annual precipitation of Shikoku ranges between 1,000 m and 3,500 

mm. This value is nearly 20 % higher than the mean annual precipitation in the whole 

Japan [according to Bhandary 2003, a maximum mean value around 1,950 mm in 

Hokuriku (northern) region and a minimum around 950 mm in Hokkaido region was 

recorded]. Northern part of Shikoku has comparatively lower value of annual rainfall. But, 
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an annual rainfall range of 3,500 mm hit the southern Shikoku Mountain Range which is 

significantly high in the whole country. The main cause of extreme rainfall in the southern 

part of the Shikoku Range is orographic effect of Shikoku Mountain Range. In fact, the 

winds of the moisture-rich vapor from Pacific Ocean get intercepted to mountains and 

extreme rainfall occurs in the southern part. Because of this, the northern part of Shikoku 

lies in the shadow zone and, hence it has Mediterranean type of climate when the winds of 

Pacific Ocean side is deemed for causing rainfall. June to October is heavy rainfall season 

in Shikoku even though 30 % of the days in a year experience rain. The main causes 

behind rainfall in an order of importance in Shikoku Island are typhoons, low atmospheric 

pressures, seasonal rain fronts, and thunderstorms (Bhandary 2003). The seasonal rain 

fronts cause extreme rainfall exceeding an hourly value of as high as 100 mm in June. 

Similarly, typhoons are responsible for extreme rainfall from July to October. 

 

3.4 Chapter summary 

In this chapter, geological, geomorphological and climatic settings of Shikoku Island were 

described. Shikoku is the smallest Island among the four principal Islands of Japan. More 

than 80% area of this Island is occupied by steep, upland terrain. The mountains are 

younger towards Pacific Ocean. The hillslopes are almost covered by thick forests of 

subtropical broadleaved trees, such as Japanese cedars and Japanese bamboos. As 

described in earlier paragraph, the four major tectonic lines (Median Tectonic Line, 

Mikabu Tectonic Line, Butsuzo Tectonic Line, and Aki-sukumo Tectonic Line) cut 

through the central part of Shikoku Island which separate the geology of Shikoku Island 

into five major geological Belts, namely Sambagawa, Chichibu, Shimanto-north, 

Shimanto-south, and Ryoke Belt. Each of the Belts includes various types of rocks 

different from each other. Landslides have been found commonly occurring in Sambagawa, 

Chichibu, and Mikabu Belt. Mid climate with comparatively heavy rainfall is found in 

Shikoku Island. Knowledge on geological, geomorphological, and climatic conditions of 

the area helps to understand the physical environments, under which landslide triggering 

occurs. 
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Chapter 4 

 
  Outline of rainfall-induced landslides in Shikoku Island 

 
4.1 Typhoon events in Japan and Shikoku 

Typhoons are one of the strongest meteorological events on earth. In Japan, June, 

September and October are a frequent typhoon season. A total of 1468 typhoon events 

originated from the North Pacific Ocean between 1951 and 2005. Among them, 163 

typhoon events hit Japanese archipelago (Dahal 2008). Only in the year 2004, Japan was 

hit by ten typhoons. In fact, it was the maximum annual events of typhoon within last 55 

years (Figure 4.1). Usually, June to October is known to be typhoon season in Japan. The 

data prepared by Japan Meterological Agency between 1951 and 2005 shows that only a 

few number of typhoons occur in February whereas August has higher numbers of 

typhoons. But there were no typhoon records in months of January, February, March, and 

December in Japan. From Figure 4.2, it is clear that typhoons are abundant in months of 

August and  

 

 

 

 

Figure 4.1 Number of typhoon 

events that occurred in last 55 

years (source: Digital Typhoon, 

2006 and JMA, 2005, Dahal et al. 

2008d) 

 

 

 

 

 

Figure 4.2 Typhoon events in Pacific 

Ocean, Japan and Shikoku in last 55 

years (source: Digital Typhoon, 2006 

and JMA, 2005, Dahal et al. 2008d) 
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September in Shikoku Island, Japan and Pacific Ocean. As mentioned in Chapter 3, there 

are various sources of rainfall in Japan and Shikoku, but typhoons are the major sources for 

triggering of shallow and deep-seated landslides. 

 

4.2 Typhoon events of 2004 

The storm and flood caused by 2004 typhoons led to 227 deaths and a large number of 

missing cases in whole Japan. It was the higher record since 1984 (JMA, 2005). The 

courses of nine typhoons which attacked Shikoku Island are shown in Figure 4.3. Figure 

4.4 denotes isohyetal maps of most effective six typhoons in Shikoku. The storm eye 

position in the isohyetal maps of each typhoon events denotes the area of extreme rainfall. 

In such positions, there is maximum chance of triggering of slope failure. From the six 

isohyetal maps, it can be understood that the locations of the Shikoku Mountain Range 

were the most affected regions by extreme rainfalls. Typhoons 0423 and 0421 affected 

Ehime, Kochi, and Kagawa prefectures. Similarly, typhoons 0404, 0406, 0410, 0411, 0415, 

0416, and 0418 caused extreme damage in Kochi, Tokushima, and Ehime prefectures. This 

led to several hundreds of slope failures in central and southern Shikoku. The slope failure 

damage was comparatively less in northern Shikoku. The rainfall intensity was abnormally 

higher in 2004 than in previous events. Figure 4.5 demonstrates that the events of hourly 

rainfall exceeding 50 mm were the greatest in 2004 than in other years. Such abnormally 

high hourly rainfall intensity and higher number of slope failures support huge slope 

failure disasters in Shikoku Island during various typhoons of 2004.  

 

 

Figure 4.3 Paths of ten typhoons of the year 2004 passing through Japan (after Dahal 2008)  
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Figure 4.4 Showing Isohyetal map of most destructive six typhoons of the year 2004  

(Source: AMeDAS data, Dahal 2008) 

 

 

Figure 4.5 Showing maximum occurrences of typhoon-rainfall events of hourly rainfall 

intensity of more than 50 mm in Shikoku Island (after Dahal 2008) 
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4.3 Examples of typhoon rainfall-induced landslides in 2004  

Although six typhoons severely impacted Shikoku Island (Figure 4.5), none of the single 

typhoon was able to cause heavy rainfall in the entire Shikoku. Typhoons 0410, 0411, 

0415, 0416, and 0421 were aggressive in Tokushima, Kochi, and Ehime. Similarly, 

typhoons 0415, 0421, and 0423 were more damaging for Kagawa prefecture (Dahal 2008). 

The landslide occurrence scenario in Shikoku Island after the 2004 typhoon rainfall events 

is illustrated in Figure 4.6. This figure shows only the major or severely affected locations. 

Even a single location includes numerous failed spots as shown in Figure 4.7. In the 

following, some landslide events of 2004 which occurred near to human settlement and 

caused considerable economic loss are described.      

 

 

 

Figure 4.6 Showing landslide occurrences in Shikoku after 2004 (after Dahal 2008) 

 

4.3.1 Landslides in Tokushima prefecture 

The southern part of Shikoku received heavy rainfall (more than 2000 mm) due to typhoon 

0410 (Namtheun) in the period from late July to early August whereby a total of four huge 

landslides were triggered in Ooyochi, Kashu, Azue, and Shiroishi area of Kisawa village in 

Naka district. An extensive damage was also found in Kaminaka Town, near Kisawa. The 

data recorded by the Shikoku Electric Power co., Inc., in Kaminaka Town showed that the 

maximum hourly rainfall and maximum one day accumulation exceeding 120 mm and 
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1,317 mm respectively were the main causes behind extensive damage in Kaminaka. 

Japan’s previous record of highest daily precipitation was 1,114 mm which was obtained in 

Kito village (16 km southwest of Kisawa village) caused by Typhoon Fran on 11 

September of 1976 (Wang et al., 2005a, Hiura et al., 2004). The maximum daily rainfall 

accumulation recorded in Kaminaka village (1,317 mm) in 2004 broke the previous record.  

 

 

 

Figure 4.7 Showing small-scale slope failures in 2004 in forest area of northeast Shikoku   

 

Furthermore, typhoons 046, 0411, 0416, 0418, and 0423 also impacted Tokushima 

prefecture whereby small- to medium-scale landslides were triggered along national and 

express highways and in the Naka River watershed. Typhoons 0411, 0416, 0418, and 0423 

affected Kisawa and Kaminaka areas. A total of 550 mm rainfall was recorded in 

Kamikatsu during typhoon 0416. In the same way, 300 mm of daily rainfall was recorded 

in the southwestern part of Tokushima. Kisawa village is 17 km far in south of the Mt. 

Tsurugi (1,955 mm). It is furnished by various types of rocks such as Palaeozoic 

greenstone, Palaeozoic and Mesozoic pelite and greywacke, and serpentinite of the 

Mesozoic Kurosegawa terrain, as well as scarce limestone and chert. The upper sections of 

river valley situated in this village have steep slopes. Human settlements are found on the 

gentle slopes of old landslide mass. Cedar trees are the major green vegetations on recently 

failed areas. The exact time of failure for all of the landslides discussed above was not 

clear. The Ooyochi landslide was reported to occur between 20:00 hour and 23:00 hour of 
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1 August. But, the Azue landslide occurred nearly at the end of typhoon rainfall which was 

around 16:00 hour of 2 August.  

 

4.3.2 Landslides in Kagawa prefecture 

In 2004, the four typhoons i.e., typhoon 0415, 0416, 0421, and 0423 hit Kagawa prefecture. 

In fact, Kagawa prefecture is the most severely impacted prefecture of Shikoku Island. An 

hourly rainfall of 50 mm and one day rainfall accumulation of 200 mm caused numerous 

landslides and slope failures at various locations of Kagawa. Comparatively, a higher 

damage was found in highways and forest areas of Takamatsu city. Moriyuki and Monnyu 

were the most affected areas. Mineyama landslide at central Takamatsu and landslides that 

occurred at the base of the hills of Toyohama (Part of Kanonji City) are some examples of 

rainfall-triggered landslides in Kagawa.  

The heavy typhoon rainfall in the afternoon of 17 August in Toyohama and 

Onohara areas (west Kagawa) caused five deaths in spite of a few landslides and debris 

flows. The rainfall was started at 11:00 hour of 17 August with no antecedent rainfall 

events in previous days. Typhoon 0415 with maximum accumulation of 246 mm and 

maximum hourly rainfall of 54 mm caused extensive damage in the whole area. In case of 

typhoon 0421, 249 mm of maximum daily rainfall and 65 mm of maximum hourly rainfall 

were recorded responsible for triggering of landslides. Aerial photographs were taken in 

this area after typhoons 0421 and 0423 in this area. From these photographs, it was 

understood that typhoon 0423 was less significant relative to typhoons 0415 and 0421 for 

triggering of landslides in west Kagawa. Alternating sandstones and shales of Izumi Group 

are found in the hillslopes in western Kagawa. This is why all the streams have a huge pile 

of debris beginning from the base of hillslopes.   

Typhoon 0423 was effective in triggering landslides only in east Kagawa. During 

this typhoon event, an hourly rainfall of 125 mm was recorded in Maeyama whereas 

Yodayama received 107 mm/hr. As a result, many landslides and debris flows were created 

in the Shiratori, Moriyuki, Minamigawa, and Monnyu areas. Several landslides occurred 

also in the catchment of a small rivulet Tooritani at Moriyuki. A total of 674 mm of rainfall 

was recorded at Kusaka Pass during the same typhoon event. Likewise, Monnyu area 

experienced 495 mm of rain due to which many landslides were caused in Monnyu River 

and the reservoir area. At 15:00 hours of 20 October, a huge debirs flow occurred in the 

Monnyu River and this led to filling of the Monnyu reservoir by piles of sediments. 

Landslides occurred mainly in the weathering profile of Cretaceous granite and 
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granodiorite rocks in eastern Kagawa while in central Kagawa; landslides were found in 

the weathering profile of Cretaceous granite, meta-sandstone, and andesite.   

 

4.3.3 Landslides in Ehime prefecture 

Ehime prefecture suffered from typhoons 0415, 0416, 0418, 0421, and 0423. An hourly 

rainfall exceeding 50 mm and total rainfall of more than 400 mm were recorded in many 

rain gauge stations during these typhoon events. Particularly, rainfall due to typhoons 0415, 

0421, and 0423 triggered many slope failures at different locations in northeast Ehime. The 

hardest hit area was Niihama City (about 140,000 residents), where many debris flows near 

the hill bases killed 25 people and destroyed 40 billion yen worth of property (Bhandary 

and Yatabe 2005). In addition, greater than 1500 slope failures and debris flows occurred 

only in the northeastern forests of Niihama during various typhoon events in that year. 

Niihama is separated from Shikoku Mountain Range by MTL. Green schist, sandstone and 

shale are the major rock types found in this area. Green schists of the Sambagawa Belt are 

found in the southern part whereas sandstone and shale of the Izumi Group are found in the 

northern part of Niihama. Izumi Group is composed of decomposed sandstone, either stiff 

clay resulting from weathering of shale or less disintegrated rock mass. These rocks are 

very weak. This is why most of the part of Izumi Group suffered extensive failure during 

the disaster. The slope failure events in Ibukimachi (Uwajima City), Kawauchi (Touon 

City), and Shingumachi (Shikoku Chuo City) are other examples of typhoon rainfall-

induced slope failures in Ehime prefecture.   

 In the case of only typhoon 0415, a number of slope failures on the base of Shikoku 

Mountain at Niihama were triggered with 100 mm of continuous precipitation. Most of 

these failures were found on the sedimentary rocks of the Izumi Group. Similarly, during 

typhoon 0421, the failure started after forty hours of continuous rainfall (i.e., after time 

16:00 hours of 29 September). During this time, one landslide at the Takamatsu, 

Matsuyama Express Highway killed four residents below the slope (Dahal et al. 2008d). In 

case of typhoon 0423, the maximum one day rainfall of 217 mm was recorded which is 

considered to be the cause of soil slips initiation after 34 hours of continuous rainfall.  

 

4.3.4 Landslides in Kochi prefecture 

Altogether seven typhoons (044, 046, 0410, 0411, 0415, 0418, and 0423) hit Kochi 

prefecture in 2004. Typhoon 0415 greatly affected Reihoku District. Okawa and 

Uwezugawa villages of this prefecture were also seriously impacted. Many landslides were 
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triggered in the Yoshino River basin on 17-18 August. A number of landslides occurred 

along the roadside slopes too. During heavy rainfall of various intensities during these 

typhoons, 100 mm of hourly precipitation at time 16:00-18:00 hours of 17 August and 205 

mm of rainfall in 24 hours was recorded in the Komatsu rain gauge station. Similarly, a 

total of 518 mm rainfall was recorded during 01:00 to 18:00 hours with maximum rainfall 

intensity of 104 mm/hr. The total precipitation in three day continuous rainfall period was 

1000 mm. Because of these reasons, many landslides and debris flows were also triggered 

at 17:00-18:00 hours of 17 August. 

 

4.4 General features of landslides of 2004 

Based on the landslide classification system proposed by Varnes (1978), the failed masses 

in Shikoku after 2004 typhoon events were classified as slope failures which have 

following characteristic features.  

1. Various types of slope failures were identified such as transitional, rotational or a 

combination of both which is based on the shape of slip surface. But translational type 

was the most dominant type of failure (Dahal et al. 2006, Bhandary et al. 2013).  

2. The volume of failure ranged generally between a few tens to a few hundreds of cubic 

meters.  

3. Most of the failed masses had shallow depth of failure (less than 2 m).  

4. Some slope failures were noticed along the colluviums and intact bedrock contact. Also 

the bedrocks were well exposed in some locations after the failure.  

5.  The failed masses in Ehime, Kochi, and Tokushima prefectures were chiefly composed 

of thick colluviums and intensely fractured green politic schist whereas in Kagawa 

prefecture, decomposed plutonic and volcanic rocks was the main composition.  

6. A large number of failed masses in northeastern hills of Ehime were identified as 

translational slides. These were found on topographic hollows or zero-order basins and 

they start to flow in a first-order stream channel. The slip surface was found located 

between 0.3 m and 2 m between soil colluvium and decomposed bedrock. The initially 

failed mass in the upper section of some of the steep slopes was found completely 

utilized in transforming into the debris flows.  

7.  Most of the slope failures were found on gentle to steep mountain slopes with loose soil 

colluviums or residual deposits above the weathered sedimentary bedrock. 
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4.5 Chapter summary 

In Chapter 4, brief information about typhoons in Japan and Shikoku, typhoon rainfall-

induced landslides in various prefectures of Japan, and characteristics of landslides in 2004 

was given. Japan is one of the most prominent typhoon regions of the world where many 

landslides triggered by heavy typhoon rainfalls occur ever year. In 2004, ten typhoons hit 

Japan and six of them caused significant impact in Shikoku Island. Due to extreme 

typhoon rainfalls of various intensities in that year, a large number of landslides and debris 

flows were triggered. The number of landslides was much higher in forest area compared 

to near human settlements. Along with heavy rainfalls, presence of unstable colluvium, 

weathered rocks, steep slopes etc. were major cause of landslide triggering in 2004. Most 

of the slope failures were shallow with a depth of <2 m. Simple circular to translational 

type of failures were the most common types. However, the failure processes in various 

prefectures were significantly different due to separate typhoon events, bedrock geology, 

thickness of colluvium, and soil permeability. 
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Chapter 5 

 
Seepage and slope stability modeling of rainfall-induced slope failures in 

topographic hollows  

 

Abstract 

Topographic hollows contribute to the hillslope hydrology through collection of surface 

and subsurface groundwater flow into small area in the slope. This causes instability of the 

hillslopes in topographic hollows repeatedly. Despite extensive studies in the field of slope 

instability, hillslope hydrology in the topographic hollows has not been so exhaustively 

explored. In this regard, this study focuses on topographic hollows and their flow direction 

and flow accumulation characteristics, and highlights hillslope seepage so as to understand 

porewater pressure development phenomena in relation with slope failures in the 

topographic hollows. For this purpose, a small catchment in Niihama city of Shikoku 

Island in western Japan, with a record of seven slope failures triggered by a typhoon-

caused heavy rainfall of 19-20 October 2004 was selected. After an extensive field work 

and computation of hydro-mechanical parameters in unsaturated and saturated conditions 

through a series of laboratory experiments, seepage and slope stability modelings were 

done in GeoStudio (2005) using the precipitation data of 19-20 October 2004. The results 

of seepage modeling showed that the porewater pressure was rapid transient in silty sand, 

and that the maximum porewater pressure was measured in an area close to the base of 

topographic hollows, was found to be higher with bigger topographic hollows and vice 

versa. Besides, a threshold relationship between topographic hollow area and maximum 

porewater pressure proposed in this study indicates that a topographic hollow of 1000 sq. 

m area can develop 1.253 kPa maximum porewater pressure necessary for instability. 

 

Keywords: rainfall-induced slope failures, topographic hollows, seepage, slope instability 
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5.1 Introduction 

Shallow landslides or slope failures are a typical geological and hydro-geotechnical 

problem of mountainous terrains of tropical and sub-tropical regions of the world. 

Problems related to shallow landslides are ubiquitous. There are three general types of 

extrinsic factors responsible for triggering the shallow landslides, namely i) geological 

factors (i.e., earthquakes, volcanic eruptions, etc.), ii) hydrological factors (such as intense 

rainfalls, a storm waves, rapid snow melting, etc.), and iii) human interventions due to 

development activities (such as improper slope excavation and loading, rapid reservoir 

drawdown, blasting vibration, etc).When rainfall is an extrinsic factor, the type of landslide 

depends on intensity-duration of the rainfall events and soil permeability (Pasuto and 

Silvano 1998, Guzzetti et al. 2004, Matsushi and Matsukura 2007, Dahal and Hasegawa 

2008, Capparelli et al. 2009). For example, short and intense rainfall can trigger mostly 

shallow landslides and debris flows in relatively high permeability soils (such as granular 

soils) (Campbell 1975, Johnson and Sitar 1990), whereas moderate intensity rainfall 

distributed over a long period can initiate shallow as well as deep-seated landslides in 

relatively low permeability soils (such as clayey soils) (Cardinali et al. 2006).    

Various studies show that rainfall threshold for landsliding varies from one region 

to another based on hydro-climatological and geophysical properties, such as regional and 

local rainfall characteristics and patterns, slope morphometry, soil characteristics, lithology, 

micro-climate and geological history (Crosta 1998, Van Asch et al. 1999). It may also vary 

with time (Crozier 1999), such as due to seasonal change in vegetation (Wieczorek and 

Glade 2005). Statistical models are frequently used to estimate rainfall threshold for 

landsliding such as in Caine (1980), Kim et al. (1991), Glade et al. (2000), Sidle and 

Dhakal (2002), Dahal et al. (2008c), in which statistical analyses between landslide events 

and rainfall characteristics are carried out. However, a statistical modeling is possible only 

when there is a good number of data available in relation with landslide events and rainfall 

conditions. For a limited number of data, hydrological models are pertinent to investigate 

rainfall-induced shallow landslide triggering mechanism (Terlien 1998).  

Hydrological models have been widely applied to predict porewater pressure 

development due to rainfall infiltration (Brooks and Richards 1994, Ekanayake and 

Phillips 1999, Iverson 2000, Frattini et al. 2009). Generally, a coarse-grained soil slope 

fails in saturated condition because its high permeability leads to development of positive 

porewater pressure. In case of fine grained soils, however, there is no rapid development of 

positive porewater pressure owing to poor permeability. Failure of a fine-grained soil slope 
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in unsaturated state occurs rather because of decrease in shear strength of the soil due to 

loss of matric suction. Also, some studies suggest that shallow failures are due to increased 

positive porewater pressure, whereas reduction in matric suction leads to deep-seated 

failures (Corominas 2001, Guzzetti et al. 2004). To simulate both saturated and unsaturated 

failure mechanisms in the slope mass, hydrological models based on the topographical 

flow routing are in use. These yield simulated soil saturation above the impermeable 

bedrock which is usually used in slope stability modeling for accurate simulation of 

conceivable conditions. Few examples of hydrological slope stability models are 

TOPMODEL (Beven and Kirkby 1979), HYSWASOR (Van Genuchten 1980), CHASM 

(Anderson and Lioyd, 1991), HILLFLOW (Bronstert 1994) or GWFLUCT (Terlien 1996), 

SHALSTAB (Dietrich et al. 1998), SINMAP (Pack et al. 1998) and ASWSM (Crozier 

1999). The GeoStudio (2005) is another coupled hydrological slope stability model, in 

which SEEP/W and SLOPE/W plugins are used to simulate instability mechanism of 

slopes during extreme rainfalls. 

Shallow landslides are generally confined to steep slopes of topographic hollows 

(Hack and Goodlett 1960, Dietrich and Dunne 1978, Sidle et al. 1985, Reneau et al. 1990, 

Chen and Jan 2003, Miller and Burnett 2007), eventhough they may occur on planar slopes 

(May 2002). Topographic hollows consist of thick soil colluviums fed from immediate 

convex topography and have propensity to collect excess groundwater table during an 

extreme rainfall. However, they drain much slowly in comparison to ridges (Dunne 1978). 

This leads to rapid buildup of porewater pressure in the soil mantle of topographic hollow 

resulting in reduced shear strength (Montgomery and Dietrich 1994). Thus, topographic 

hollows are susceptible to slope mass movement as shallow rapid landslides. A hollow 

with high soil depth and wide area might experience repeated failures. Based on the way of 

development, topographic hollows are of two types namely type A and type B (Tsukamoto 

and Minematsu 1987). Type A is developed due to saturated interflow in the surface soil. 

A large number of spoon shaped hollows are formed with typical and distinct topography. 

Rapid weathering of bedrock materials and the short recurrence interval of surface soil 

slides are the characteristics features of this type of hollows. Topographic hollows in 

weathered granite areas and sedimentary areas are of this type in most parts of Japan 

(Tsukamoto and Minematsu 1987). Type B is developed due to saturated lateral flow or 

ground water outflow through highly fissured bedrocks. These are more common than type 

A. Between the A and B types, the dominant type is identified by the permeability of the 

weathered bedrock below soil colluviums. The possibility of failure during any given 
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period of hollow development depends on the soil depth, vegetation rooting strength, slope 

type, soil properties as well as stochastic processes triggering the slope failure (Sidle 1987). 

Once a failure occurs in a topographic hollow, the materials tend to flow from 

adjacent hillslopes and accumulate into the hollow. The materials accumulate through 

various processes such as surface wash, soil creep, windthrow, surface ravel of soil and 

organic material, sloughing of material around the perimeter of the scar and detrital 

deposits from established vegetation (Dietrich and Dunne 1978, Swanson and Fredriksen 

1982, Sidle et al. 1985). The process of accumulation continues till next slide occurs after 

certain interval. This is why topographic hollows are considered as fad and they soon fail 

(Dietrich et al. 1987). The liquefaction process on topographic hollows has been examined 

by Sassa (1986), who concludes that failure is enhanced by loading caused by sliding mass 

from the upper creeping and/or residual slope. Nevertheless, the slope failure mechanism 

with subsurface hydrology is still a topic of in-depth research. In this context, this research 

attempts to understand subsurface hydrology of topographic hollows in a tertiary 

sedimentary terrain, a part of Shikoku Island in western Japan.  

The main objective of this study is to investigate hydrological and mechanical 

phenomena in topographic hollows for triggering slope failures during an extreme rainfall 

event. For this, a small catchment known as Higashifukubegawa catchment in Niihama city 

of Shikoku in western Japan, which was severely damaged by a typhoon rainfall event of 

2004, was selected. Along with the main objective, the following are specific research 

objectives of this study. 

(i) Understand the change in negative and positive porewater pressure distribution in 

the slopes of sedimentary terrain during extreme rainfall 

(ii) Discover the role of hydrological parameters (i.e., soil permeability and porosity) 

within the topographic hollows for development of transient porewater pressure 

regime 

(iii) Investigate the relationship between hillslope seepage and topographic hollow area 

(iv) Understand the role of geotechnical properties of soil in slope failure 

(v) Understand the contribution of topographic hollows in hillslope instability   

 

5.2 Study area  

5.2.1 Location and geological outline 

The study area, as shown in Figure 5.1, is located in the northeastern part of Niihama City, 

in Ehime prefecture, Shikoku. Niihama city is one of the economically important cities in 
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the prefecture. It has many industries on the plain area. The selected catchment (Figure 

5.2) opens in north and has tentative oval shape. Geographically, it extends from (33 ﾟ 58’ 

12”) N to (33 ﾟ 58’ 27’’) N latitude, and (133 ﾟ 22’ 41’’) E to (133 ﾟ 22’ 59’’) E longitude. 

The spatial extent of the catchment is about 142,000 sq. m and the elevation ranges from 

42 m to 213 m from the mean sea level. The north-, northeast-, east-, and northwest-facing 

slopes are dominant in the catchment.  

Shikoku Island consists of three main geological units namely Ryoke, Sambagawa-

Chichibu and Shimanto belts from north to south. The Higashifukuwegawa catchment falls 

in Ryoke belt and consists of tertiary shale and sandstone of the Izumi group. The 

sandstone is heavily fractured and intercalated with shale beds. 

 

 

 

Figure 5.1 Location map of the study area 
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Figure 5.2 Higashifukubegawa catchment with topographic hollows, slope failures and 

slope profile lines (black points are the locations of measurement of soil thickness and soil 

thickness at each location is given in Appendix A) 

 

5.2.2 Typhoon rainfall and slope failures in 2004  

Typhoons are one of the strongest meteorological events on earth. These are formed as a 

result of strong interactions between high speed spinning clouds and Coriolis effect of the 

earth’s rotation. They follow certain path (e.g., straight, parabolic, northward track, etc.) 

and can cause strong winds, heavy rainfalls, river floods, storm surges, and high ocean 

waves. Typhoon rainfalls are highly intense in comparison to any other types of rainfall. 

But they persist for a certain period only and are region specific. A particular area can 

receive relatively a greater amount of rainfall, so the impacts are localized and temporal. In 

Japan, August and September are a frequent typhoon season.  
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In 2004, Japan suffered a massive economic loss due to extreme typhoon rainfall 

events of various intensities. Nine out of ten typhoons that hit the Japanese archipelago in 

2004 severely impacted Shikoku Island. Ehime prefecture suffered from typhoons 0415, 

0416, 0418, 0421, and 0423. Particularly, rainfall due to typhoons 0415, 0421 and 0423 

triggered many slope failures at different locations in northeast Ehime. The hardest hit area 

was Niihama City (about 140,000 residents), where many debris flows near the hill bases 

killed 25 people and destroyed 40 billion yen worth of property (Bhandary and Yatabe 

2005). In addition, greater than 1500 slope failures and debris flows occurred only in the 

northeastern forests of Niihama during various typhoon events in that year. In the study 

area, a total of seven slope failures indicated as A, B, C, D, E, F and G in Figure 5.2 

occurred during the heavy rainfall of 19-20 October 2004 caused by the typhoon 0423 

(Tokage). Slope failures A, B and D were found in east-facing slopes, whereas C was in 

southeast, E and F were in northeast, and G was in west-facing slopes. The slope failures 

were found in seven different topographic hollows, namely A’, B’, C’, D’, E’, F’ and G’ 

(Figure 5.2), recognized precisely in the topographical map based on flow direction and 

flow accumulation characteristics [Figure 5.3 (a, b)]. In this study, all these seven slope 

failures were considered for the seepage and instability analyses. 

 

5.3 Parameter preparation 

5.3.1 Field survey 

Field investigation was conducted to observe changes in site conditions 

(geotechnical/hydrological conditions) and topographical features 

(geological/geomorphological characteristics). The study area was visited in October, 

November, December, and April of 2011 and November of 2012 to observe change in 

vegetation and response of the catchment slopes during various rainfalls in these months. A 

detailed field investigation was carried out to measure length/breadth of slope failures, soil 

thickness and soil permeability. The soil thickness above weathered bedrock was measured 

by dynamic cone penetration test near the failed slopes (Figure 5.2). The permeability 

within the unsaturated zone was measured by Hasegawa in-situ permeability tests (Daitou 

Techno Green, 2009). Furthermore, soil sampling was done for soil classification and 

measurement of shear strength parameters in the laboratory. It was done at the mid of each 

slope failure scarps. To determine the field density, 100 cubic centimeter steel tubes were 

used to collect undisturbed soil samples.  
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Figure 5.3 (a) Flow direction map and (b) Flow accumulation map (showing topographic 

hollows A’, B’, and C’ recognized around slope failure A, B, and C based on flow 

direction and flow accumulation) Continue…. 
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Figure 5.3 (a) Flow direction map and (b) Flow accumulation map (showing topographic 

hollows D’, E’, and F’ delineated around slope failure D, E, and F based on flow direction 

and flow accumulation) Continue…. 
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Figure 5.3 (a) Flow direction map and (b) Flow accumulation map (showing topographic 

hollow G’ delineated around slope failure G based on flow direction and flow 

accumulation)  

 

5.3.2 Laboratory tests 

To obtain reliable information about the soil properties, a series of tests were performed. 

Firstly, basic laboratory tests were carried out (i.e., for unit weight, porosity, particle size 

distribution, etc.) and then the soils were classified based on Unified Soil Classification 

System (USCS). For this purpose, a wet sieve analysis was used for the coarser soil 

particles (>2 mm) and hydrometer test was used for the finer soil particles (<75μm). 

ASTM D422 and D4318 (ASTM, 1999a, b) standards were referred in the soil type 

classification. To determine frictional properties of the collected soil samples, direct shear 

tests were conducted. The specimens for direct shear test were prepared from the material 

finer than 2 mm. All the specimens were sheared in saturated drained conditions under 30 

kPa, 80kPa, and 100 kPa of normal pressures. 

 

5.3.3 Physical properties of slope materials 

Based on the results of laboratory investigation and after referring to USCS, the soils found 

in the study area were classified into three types: silty sand (SM), silty gravel (GM) and silt 

(M). Among which, silty sand (SM) was dominant. The particle size distribution curves are 

more or less similar for all sites (Figure 5.4). Soil permeability value was found to range 

between 10
-6

 and 10
-8

 m/s, as obtained from in-situ permeability tests. The hydro-
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mechanical parameters and geomorphological properties of seven failure sites are listed in 

Table 5.1. As stated above, soil cohesion and angle of internal friction were determined by 

direct shear tests while volumetric water content at saturation and unit weight were 

determined in the laboratory. All these parameters were used in the seepage and slope 

stability modeling as detailed out in sections 5.4.2 and 5.4.3. 

 

 

 

Figure 5.4 Grain size distributions of the soils from failed slopes 

 

 

Table 5.1 Results of field and laboratory investigations 

 

 

5.4 Numerical modeling 

5.4.1 Program selection 
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To understand seepage in soil layers and to investigate potentiality of failure during rainfall, 

coupled SEEP/W-SLOPE/W models (Krahn 2004a, b) have been increasingly used 

(Anderson et al. 2000, Rahardjo et al. 2007, Dahal et al. 2009, Lee et al. 2009, 

Schnellmann et al. 2010, Muntohar et al. 2010, Rahimi et al. 2010). SEEP/W is a finite 

element-based program in GeoStudio (2005) which simulates porewater pressure 

distribution in natural slopes. It uses a numerical discretization technique to solve Darcy’s 

equations for unsaturated and saturated flow conditions and runs the following water-flow 

governing equation in each time step to compute two-dimensional seepage. 

 

(5.1) 

     

Where kx is coefficient of permeability in x-direction; ky is coefficient of permeability in y-

direction; H is hydraulic head or total head; q is applied flux at the boundary; mw is slope of 

soil-water characteristics curve; and γw is unit weight of water. A more detail about 

equation (5.1) can be seen in Appendix B. 

On the other hand, SLOPE/W allows limit equilibrium analysis of soil slope. It 

uses various methods to compute factor of safety such as ordinary slice method, Bishop’s 

method, Janbu’s method, and Morgenstern-Price method. Also, within these methods, 

several soil strength models can be selected. Both deterministic and probabilistic 

parameters can be used to perform slope stability analysis. However, SLOPE/W lacks 

dynamic hydrological modeling of porewater pressure. Therefore, simulated seepage 

information is directly imported from SEEP/W. In this study, Morgenstern-Price method 

was used to compute factor of safety since it allows for various user-specified interslice 

force functions (such as constant, half-sine, clipped-sine, trapezoidal, and data-point 

specified) which the other methods do not provide. Modified Mohr-Coulomb soil strength 

model was used in the slope stability analysis to include variation in shear strength due to 

matric suction in unsaturated soil which is given below. 

  b
wawn uuuc  tan)('tan'    (5.2) 

Where τ is the shear strength of unsaturated soil; c' is the effective cohesion; (σn - uw) is the 

net normal stress; σn is the total normal stress; (ua-uw) is the matric suction; uw is the 

porewater pressure; ϕ' is the angle of shearing resistance; and ϕ
b 

is the angle expressing the 

rate of increase in shear strength relative to the matric suction. 
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5.4.2 Seepage modeling and results 

For coupled seepage and slope stability modeling, longitudinal profiles of all seven failed 

slopes were prepared through the direction of maximum subsurface flow (Figure 5.2) using 

a Digital Elevation Model (DEM) of the study area and soil thickness data based on 

topographical break in the slopes (Figure 5.5). All profile continuums were discretized into 

a mesh of fine square elements with 4 nodes and 9 integration orders. The numbers of 

nodes were 4056, 2019, 2124, 1309, 1938, 3366, and 2300, whereas the numbers of mesh 

elements were 3375, 1616, 1590, 974, 1290, 2800, and 1722 for slope profiles A, B, C, D, 

E, F, and G respectively. The dimensions of all mesh elements were the same with a side 

length of <0.2 m and unit thickness. The homogenous soil colluvium above the bed rock 

was considered to be single layered for the modeling. Infinite element option to the toe of 

models was avoided since the slope sections directly lead to Higashifukubegawa stream in 

the downstream.  

Soil water characteristics curves (SWCC) and soil permeability functions were 

portrayed as main input parameters. Soil water characteristics curve function was obtained 

from curves using similar grain size distribution function provided in GeoStudio (2005). 

Soil permeability function was estimated from SWCC using Fredlund and Xing (1994) 

criterion. This criterion removes the need to determine residual water content which is 

usually required for other predictive methods. The soil layers were considered isotropic 

(i.e., kx = ky). During the simulation, SWCC and soil permeability function were integrated 

with the field values of saturated water content and soil permeability. To avoid excessive 

high negative pore water pressure in the analysis, a limiting value of -20 kPa was applied 

as an initial condition. The initial water table was defined along the impervious bedrock. 

The day of failure in the study area was 20
th

 October, but it is difficult to describe the 

initial seepage condition in the slope prior to the rainfall events since most of the days of 

October had considerable rainfall and no data were available for pore water variation. So, 

the simulation was performed considering extreme rainfall of 19-20 October 2004 caused 

by the typhoon event 0423.   

The left vertical edge and the edge below the water table were assigned as a null 

flux boundary to prevent seepage contribution from upper slope sections and bedrock. The 

right vertical edge above water table was specified as null flux boundary with potential 

seepage face. The hourly rainfall record of 19-20 October of 2004, as the transient flux, 

was applied to the nodes on exposed sloping surface with potential seepage face as upper  
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Figure 5.5 Slope geometry of slope failure A, B, 

C, D, E, F, and G in Higashifukubegawa 

catchment. Red mark indicates location of 

measurement of maximum porewater pressure. 
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boundary condition. Potential seepage face was considered to avoid ponding option to the 

slope. Figure 5.6 shows a complete layout of the finite element model. The rate of 

evaporation was not considered in this study because negligible evapotranspiration occurs 

during typhoon rainfall (Gasmo et al. 2000, Tsaparas et al. 2002). After all, simulations 

were performed with rainfall record of 19-20 October of 2004[see in Appendix C]. To 

reproduce the complexity of rainfall event, the hourly rainfall data were discretized into 

283 time steps of 10 min length (total 47 hours 10 minutes). The maximum porewater 

pressure was also recorded in the lower elevation of topographic hollows along the slope 

profiles to investigate the relationship of hillslope hydrology with topographic hollow area.  

 

 

 

Figure 5.6 Finite element description of the model 

 

Figure 5.7 shows the results of seepage modeling. In all slope failure sites, very 

rapid porewater pressure response was observed with beginning of precipitation infiltration 

through the soil by decreasing the matric suction. The porewater pressure regime was 

transient which was due to soil thickness, soil permeability, porosity and potential seepage 

face on the slope. Initially, the porewater pressure was negative. With continued rainfall 

for long enough, the porewater pressure increased gradually. The slope sections were 

partially saturated before 18:00 hour rainfall (time step 103) of 19
th

 October and saturated 

condition was reached after 19:00 hour rainfall (time step 108). Between 20:00 hours of 

19
th

 October and 6:00 hours of 20 October, rainfall was insignificant. However, continuous  
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Figure 5.7 Porewater pressure variation in slip surface of seven slope failure sites A, B, C, 

D, E, F, and G. The low porewater pressure curves represent porewater pressure at nodes 

of higher elevation along slip surfaces as shown in H-Illustration. The optimized slip 

surfaces are shown in Figure 5.11 
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and very rapid rise in porewater pressure was observed at all nodes along slip surface 

during this period. The rainfall again increased from 8:00 hrs of 20
th

 October and the peak 

positive porewater pressure reached at 14:00 hour (time step 223) of the same day at 

majority of nodes.  

Figure 5.8 illustrates variation of topographic hollow area with its hydrological 

characteristics. From this figure, it is evident that bigger the area of topographic hollow, 

higher is the porewater pressure generation and vice versa. Using maximum porewater 

pressure data recorded in the area close to the base of topographic hollows, a threshold 

relationship between maximum porewater pressure and topographic hollow area was 

established (Figure 5.9). The threshold, exhibited by lower the boundary of the points 

representing maximum porewater pressure, can be expressed as follows.  

 

u = 5.2 × 10
-6

 × a
1.794         

  (5.3)
 

Where u is maximum porewater pressure in kPa and a is topographic hollow area in sq. m. 

Equation (5.3) has a coefficient of determination of 0.994. According to this threshold 

relation, for topographic hollows of area such as 1000 sq. m, the maximum porewater 

pressure of 1.253 kPa is necessary to cause instability. 

 

5.4.3 Slope stability modeling and results 

The two-dimensional seepage simulated in SEEP/W is directly linked to SLOPE/W for 

slope stability analysis. The exposed slip surface of slope failures defined by field visit and 

Google Earth Image interpretation was maintained constant throughout the entire typhoon 

event of 19-20 October 2004. The hydro-mechanical parameters to be used in SLOPE/W 

are already determined [Table 5.1]. The shear strength due to role of suction (ϕ
b
) was not 

determined in the laboratory. Instead, it was assumed to be 2/3 of ϕ'. Still the geo-

mechanical parameters are average which may vary from the actual field values. For 

example, the effective cohesion, effective angle of shearing resistance, and unit weight are 

relatively low due to presence of organic matter (dead and decaying plant roots) (Dahal et 

al. 2011). As mentioned above, the value of ϕ
b 

was assumed. As mentioned above, the 

value of ϕ
b 

was assumed. To compensate such uncertainties, it is necessary to perform 

sensitivity analysis in stability analysis. Sensitivity analysis examines the interrelationship 

of various parameters used in analysis and then calculates factor of safety based on 

changes in given parameters such as cohesion, friction angle, unit weight and shear 

strength contribution due to matric suction (ϕ
b
). Owing to this, the factor of   
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Figure 5.8 Variation of maximum porewater pressure with topographic hollow area 

 

 

 

Figure 5.9 Maximum porewater pressure – topographic hollow area threshold curve for 

slope failure in Higashifukubegawa of Niihama in western Japan 
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safety distribution via sensitivity analysis has been deemed in this study to compute the 

factor of safety distribution. For this, minimum and maximum values of cohesion, friction 

angle, unit weight were assigned as material properties in SLOPE/W environment. 

Morgenstern-Price (1965) method which satisfies both force and moment equilibrium was 

adopted with half-sine user specified interslice force function available in SLOPE/W to 

compute factor of safety. The entry and exit function was used to find the slip centre and 

the potential failure surface. A total of 2000 iterations were specified in each time step in 

limit equilibrium analysis. To reduce the basic equation of limit equilibrium method, the 

sliding mass was divided into 30 vertical slices. In the simulations, the fully specified slip 

surfaces were also optimized to obtain the most critical value.  

Results of slope stability modeling are shown in Figure 5.10. The results illustrate 

that factor of safety decreases with increase in precipitation under constant soil 

permeability and volumetric water content values. A sudden decrease in factor of safety 

was observed at some significant rainfall hours accordingly 8:00, 13:00, 19:00 hours of 

19
th

 October and 8:00, 11:00, 14:00, 18:00 hours of 20
th

 October. The corresponding time 

steps are 43, 73, 109 on 19
th

 October and 187, 205, 223, 247 on 20
th 

October. Immediately 

after each of these particular hours, the factor of safety began to recover till next significant 

rainfall hour was reached. At 14:00 hour of 20
th

 October (or time step 223), the factor of 

safety reduced to <1 in all seven sites (i.e., 0.994, 0.997, 0.998, 0.987, 0.996, 0.998 and 

0.993 for A, B, C, D, E, F, and G respectively) which was congruent and it is due to rise in 

groundwater table up to the crest of the slope. The optimized critical slip surfaces and 

respective factor of safety on the date of failure are exhibited in Figure 5.11. 

 

5.5 Discussion 

The problem of seepage and slope instability in topographic hollow is not a new but 

ambiguous topic. Although a number of studies have described seepage role in triggering 

rainfall-induced landslides (Casagli et al. 2006, Tofani et al. 2006, and Harris et al. 2012), 

they have not considered contribution of topographic hollow in slope instability 

mechanism. In this regard, this is the first study which has focused topographic hollows 

and explicitly presented the hydrological and mechanical phenomena in topographic 

hollows responsible for triggering of slope failure during heavy typhoon rainfall event.  

Topographic hollows enhance slope failure through both convergence of 

subsurface flow into small area in the slope and effect of slope gradient on slope stability 
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Figure 5.10 Factor of safety distribution in slope failure A, B, C, D, E, F, and G with 

rainfall of 19-20 October 2004. 
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Figure 5.11 Optimized slip surface after slope 

stability analysis in slope failure A, B, C, D, E, 

F, and G. Porewater pressure of 223 time step 

of seepage analysis was used in this stability 

analysis. Green dots indicate the centre of 

optimized slip surfaces. The full shape of the 

slip surfaces could not be shown since there 

was no finite element mesh below bedrock. 
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(Talebi et al. 2008a, Montgomery et al. 1997). A number of studies, similar to this study, 

have linked slope hydrology to instability mechanism in the topographic hollows (Sidle et 

al. 1987, Montgomery and Dietrich 1994, D`Odorico and Fagherazzi 2003, Talebi et al. 

2007). Some monitoring studies have discussed the response of soil in topographic hollow 

such as variation in subsurface runoff, porewater pressure and temperature during heavy 

rainstorm (Fannin and Jaakkola 1999, Uchida et al. 2003). Any hydrological and slope 

stability model without incorporating hollow or basin topography could not represent 

complexity of topography within the basin (Thorne et al. 1987). Furthermore, the 

contribution of topographic hollows on hillslope hydrology and slope instability can only 

be understood when hollows are recognized accurately. Considering this fact, in this study, 

seven topographic hollows (A’, B’, C’, D’, E’, F’, and G’) were identified in topographic 

map in Higashifukubegawa watershed based on flow direction and flow accumulation 

characteristics [Figure 5.2 and 5.3 (a, b)]. Hollow A’ is oval, B’ and D’ are rounded 

whereas C’, E’, F’ and G’ are nearly elliptical shaped. The maximum porewater pressures 

developed in the area closer to the base of topographic hollows were 9.15 kPa, 3.48 kPa, 

4.77 kPa, 3.30 kPa, 3.38 kPa, 7.49 kPa, 3.98 kPa for A’, B’, C’, D’, E’, F’, and G’ 

respectively. The bigger hollows produced higher porewater pressure since higher amount 

of subsurface flow is usually concentrated in bigger hollows and vice versa. A tentative 

equation of threshold relationship between maximum porewater pressure and topographic 

hollow area was established. Slope failure A, B, C, D, E, F, and G were identified on 

respective topographic hollows. All of these slope failures were triggered by extreme 

rainfall caused by typhoon 0423 in 19-20 October 2004. Therefore, the seepage and slope 

stability simulations were performed in seven slope failures employing Geostudio (2005) 

to understand hydrological and instability mechanism in triggering slope failure in 

topographic hollows.  

In seepage simulations, transient porewater pressure was noted at all nodes along 

potential slip surface during rainfall. Parched water table was started to develop after 10:00 

am of rainfall on 19
th

 October. The rainfall prior to major rainfall on 20
th

 October which 

started at 2:00 am on 19
th

 October continuously increased the transient porewater pressure 

and enhanced the failure phenomenon. The half-sine interslice force function was used in 

Morgenstern-Price method to compute factor of safety since it tends to concentrate the 

interslice shear forces towards the middle of the sliding mass and also diminishes the 

interslice shear in the crest and toe areas. The results of the slope stability analysis showed 

that factor of safety was minimum (FS <1) at all sites only after 14:00 pm (time step 223) 
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on 20
th

 October 2004 (i.e., after 38 hours of continuous rainfall). This implies that failure 

must have occurred between 14:00 pm and 16:00 pm on the same day. One landslide at 

Takamatsu-Matsuyama Express Highway in Niihama nearby the study area, which was 

triggered by the same typhoon event (typhoon 0423), was reported to occur after 10:00 am 

of 20
th

 October (i.e., after 34 hours of continuous rainfall) (Dahal 2009). It was 4 hours 

earlier than the failure time in Higashifukubegawa. The failure time in the study area 

estimated from the seepage and slope stability simulation revealed peak time of failure. 

The slope failure might have begun in earlier hour of rainfall as higher porewater pressure 

accumulation (Figure 5.7) also supports this assumption. Moreover, the maximum hourly 

rainfall and maximum accumulation were 50 mm and 320 mm respectively on the day of 

failure. The rainfall event with such maximum hourly rainfall intensity and maximum one 

day rainfall accumulation can cause slope failure in the hilly regions, is well understood 

(Caine1980, Larsen and Simon 1993, Guzzetti et a. 2004, Aleotti 2004, Dahal et al. 2006, 

Brunetti et al. 2010). In the simulations, the optimized slip surfaces were comparatively 

shorter than the actual field value which means that failure problem was started in the 

upper reach of scarp and the sliding mass also pushed down the slope materials of lower 

reach. From this research, it is well understood that the topographic hollows collect excess 

subsurface flow during extreme rainfall and are responsible for instability of hillslopes of 

sedimentary terrain. 

 

5.6 Conclusions 

Topographic hollows are responsible for slope failure during extreme rainfall which is also 

evident in the present study. The aim of this study was to investigate hydro-mechanical 

phenomena in topographic hollow for rainfall-induced slope failures during extreme 

typhoon rainfall event. For this, a typical small catchment in Niihama city of Shikoku in 

western Japan was selected. The study was preceded with accurate recognition of 

topographic hollows and identification of slope failures within them. Various 

field/laboratory experiments were conducted to obtain hydrological and mechanical 

properties of soil in the topographic hollows. With input of hydrological properties, slope 

geometry and slope profile of failed slopes, numerical simulations of seepage were 

performed in SEEP/W program using rainfall record of 19-20 October 2004. The finite 

element seepage model with simulated seepage is directly linked to SLOPE/W program. 

Slope stability simulations were carried out using seepage and geotechnical properties of 

soil. From this study, following conclusions were drawn.   
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1. Slope failure in topographic hollows occurs due to transient positive and negative 

porewater pressure development and it is observed in Higashifukubegawa catchment 

of Niihama.  

2. If silty sand is the predominant soil type in topographic hollow, the increment in 

porewater pressure is always rapid transient which results slope failure. 

3. From the numerical modeling, it is understood that slope gradient, rainfall, saturated 

permeability of soil, porosity, and initial porewater pressure as the main controlling 

factors for instability in topographic hollows.  

4. Maximum porewater pressure recorded in the lower elevation of topographic hollows 

indicates that bigger the size of topographic hollow, higher is the porewater pressure 

rise.  

5. In this study, a tentative threshold equation relating maximum porewater pressure 

generated in topographic hollows with topographic hollow area is proposed using 

only seven topographic hollows and slope failures. This is preliminary attempt and in 

next research, this kind of work will be replicated and checked in other area of 

similar geomorphological settings. 
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Chapter 6 

 
Deterministic slope failure hazard assessment in a model catchment and 

its replication in neighborhood terrain 

 

Abstract 

In this work, we prepare and replicate a deterministic slope failure hazard model in small-

scale catchments of tertiary sedimentary terrain of Niihama city in western Japan. It is 

generally difficult to replicate a deterministic model from one catchment to another due to 

lack of exactly similar geo-mechanical and hydrological parameters. To overcome this 

problem, discriminant function modeling was done amongst the deterministic slope failure 

hazard model and the DEM-based causal factors of slope failure, which yielded an 

empirical parametric relationship or a discriminant function equation. This parametric 

relationship was used to predict the slope failure hazard index in a total of forty target 

catchments in the study area. From ROC plots, the prediction rate between 0.719 – 0.814 

and 0.704 – 0.805 was obtained with inventories of September and October slope failures 

respectively. This means September slope failures were better predicted than October slope 

failures by approximately 1%. The results exhibit that prediction of slope failure hazard 

index is possible even in a small catchment scale in similar geophysical settings. Moreover, 

the replication of the deterministic model through discriminant function modeling was 

found to be successful with moderate to good accuracy without any use of geo-mechanical 

and hydrological parameters.      

 

Keywords: rainfall-induced slope failure, deterministic modeling, discriminant function 

modeling, small catchments of Niihama 
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6.1 Introduction 

Rainfall-induced shallow landslides or simply slope failures in topographic hollows 

generally occur due to rapid increase in porewater pressure during heavy rainfalls. The 

process of porewater pressure increase depends on a number of factors, e.g., topographic 

hollow area, soil type, soil depth, slope morphology, slope gradient, vegetation pattern, 

microclimate, lithology, geological history, rainfall pattern, etc. (Crosta 1998, Crozier 1999, 

Van Asch et al. 1999, D’Odorico and Fagherazzi 2003, Wieczorek and Glade 2005). 

Rainfall events are temporal and their impacts are localized, so they make slope failure 

process a stochastic phenomenon (Talebi et al. 2008a). It is often hard to remark when and 

where hillslopes fail and how widespread a potential slope failure event could be during a 

rainfall event (Godt et al. 2008). Moreover, rainfall-triggered slope failure is a recurring 

problem in the hillslopes of loose colluvium. So, the slope failure hazard analysis and its 

management in catchment scales has been a primary concern to geoscientists and 

geoengineers (Montgomery and Dietrich 1994, Guzzetti et al. 2005, Zolfaghari and Health 

2008, Hadmoko et al. 2010, Ching et al. 2011, Arnone et al. 2011, Ghimire 2011, Dahal et 

al. 2012, Segoni et al. 2012). Slope failure hazard maps in catchment scales can be used as 

a cost-effective tool for slope failure hazard mitigation planning and risk analysis. With the 

availability of advanced mapping tools, such as ILWIS, GIS, Remote sensing, etc., and 

high resolution digital topographical data, a number of methods have been developed 

mainly for spatial prediction of potential slope failures, which include heuristic methods, 

statistical methods, and deterministic methods (Soeters and van Westen 1996, Guzzetti et 

al. 2006).  

Heuristic methods (such as in Barredo et al. 2000, Dai et al. 2002, Saha et al. 2002, 

Pavel et al. 2008, Bijukchhen et al. 2012) are based on expert opinion. Therefore, these 

methods can not be easily replicated in other areas. In addition, these methods do not 

include the influence of geo-mechanics and porewater pressure, which are deemed 

necessary in deterministic methods (Jia et al. 2012). 

In statistical methods, a relationship between slope failure location and 

independent causal factors of the slope failure is established in the form of an empirical 

parametric function, which is then used to obtain a slope failure hazard map of the target 

catchment area (Carrara et al. 1999, Cannon et al. 2004, Bell 2007, Dahal et al. 2008a, 

Pradhan et al. 2010) and also to replicate the hazard index of one catchment to another 

with the similar set of parameters (Ghimire et al. 2011, Dahal et al. 2012, etc.). However, 
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like in heuristic methods, the statistical methods also do not incorporate the influence of 

geo-mechanical processes and hillslope hydrology. 

In the deterministic methods, on the other hand, the causal factors are expressed in 

algebraic terms to determine the factor of safety (Wu and Sidle 1995, Borga et al. 1998, 

Terlien et al. 1995, D’Odorico and Fagherazzi 2003, Salciarini et al. 2008, Godt et al. 2008, 

Harp et al. 2009). These approaches utilize a large amount of detailed geo-mechanical and 

hydrological parameters derived from field and/or laboratory experiments, and computer 

tool-based modeling. In most occasions, however, the geo-mechanical and hydrological 

parameters are not available for a large extent of target area (Aleotti and Chowdhury 1999, 

Wang et al. 2013). Therefore, application of a deterministic method in a larger area or its 

replication from one catchment to another through the same set of geo-mechanical and 

hydrological parameters is difficult due to limitations in the availability of these parameters.  

In this study, we employ deterministic hazard modeling technique to prepare a slope failure 

hazard map in a tertiary sedimentary terrain of Shikoku Region in west Japan that suffered 

a large number of slope failures and debris flows leading to heavy loss of life and property 

in 2004. The study area is relatively small, so the spatial variations in the causal factors, 

such as amount of precipitation, geology, vegetation, aspect, etc., are negligible, which 

leads to a situation that a less number of causal factors considered in the hazard analysis 

results in extremely low prediction rate. It is inevitable that such an area needs 

deterministic approach for the hazard analysis. So, the prime objective of this study is to 

prepare a deterministic slope failure hazard model for a catchment and replicate that to 

other catchments of the study area so as to generate slope failure hazard maps. For this, we 

selected a small catchment in the study area as the model site, which was severely 

damaged during the extreme typhoon rainfall events of 2004, and forty other catchments in 

the same terrain for replicating the hazard model. 

 

6.2 Study area 

The study area is situated on the northeastern hills of Niihama city in Ehime prefecture of 

Japan (Figure 6.1). In 2004, this area suffered an extensive slope failure damage due to 

extreme typhoon rainfalls of September and October. The total study area covers 30.5 sq. 

km with ground elevation ranging from 2.5 m to 285 m. It is surrounded by river flood 

plains in all directions except for the northeast corner where it faces the Seto Inland Sea. 

Two rivers in Niihama, Kawahigashi and Kawanishi, divide the study area hills into two 

main regions; Kita-yama and Nishi-no-yama. The study area is well-forested with short- 
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Figure 6.1 a Location map of the study area and b geological outline of Shikoku Island 

(modified after Bhandary et al. 2013) 
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height evergreen and deciduous plants such as Japanese red pine (Pinus deniflora), 

camphor (Cinanamomum camphora), and Japanese oak (Quercus serrata and Quercus 

variabilis), Baby rosa (Rosa multiflora), and China root (Smilax china). The upper section 

of the hillslopes consists of loose, and thin, colluvial soil over impervious bedrock, which 

is subjected to frequent slope failures. The bases of slopes have debris flow deposits. Also, 

densely populated residence areas are found close to the hill bases.  

The geology of Shikoku region is characterized by three distinct units, namely 

Ryoke Belt, Sambagawa-Chichibu Belt, and Shimanto Belt. Two northerly dipping major 

faults, the Median Tectonic Line (MTL) on north and the Butsuzo Tectonic Line (BTL) on 

south, separate the three geological units (Hashimoto 1991, Dahal et al. 2011). The 

selected study area falls in the Ryoke Belt and it consists of tertiary shales and sandstones 

of the late Cretaceous age often known as Izumi group. Typical feature of this geological 

formation is that piles of intercalated sandstone and shale run in east-west direction.  

Japan often experiences heavy rainfalls during periods of extreme climate such as 

typhoon. Usually, June to October is known to be typhoon season in Japan. In 2004, a 

series of nine typhoons hit Shikoku Island causing extreme typhoon rainfalls of various 

intensities, which resulted in a massive loss of life and property. Typhoon 0423 and 0421 

severely impacted Ehime, Kochi, and Kagawa prefectures in the region. Niihama city 

(about 140,000 residents) in Ehime prefecture was the hardest hit area where many debris 

flows near the hill bases caused 25 deaths and 40 billion yen worth property damage 

(Bhandary and Yatabe 2005). A total of 424 slope failures in September and 1396 slope 

failures in October were identified to have occurred in the selected area (Figure 6.2). A 

higher number of slope failures was found in the Kita-yama area than the Nishi-no-yama 

area. It was later understood that the maximum hourly rainfall exceeding 50 mm and 

maximum one day rainfall exceeding 300 mm were the main causes of slope failures 

(Dahal et al. 2006, Bhandary et al. 2013). Altogether 41 catchments were delineated in the 

topographical map (Figure 6.2) in the study area. The catchments were selected on the 

basis of abundance of both September and October slope failures. Figure 6.3 shows the 

selected catchments in detail (indicated by MC and W1-W40; here, MC is the model 

catchment and others are the test catchments). In this study, both September and October 

slope failures were utilized separately to assess the prediction accuracy of slope failure 

hazard maps in the selected test catchments. 
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Figure 6.2 Showing distribution of September and October slope failures of 2004 in 

selected catchments of Niihama 
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Figure 6.3 The selected model and test catchments in detail  
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6.3 Methodology 

The research framework of this study is illustrated in Figure 6.4. Higashifukubegawa 

catchment indicated by MC in Figure 6.3 was used for the deterministic slope failure 

hazard assessment. For this, basic geo-mechanical and hydrological properties of soil, 

obtained from various sources, were utilized. Both hydrological and stability models were 

considered in hazard assessment. Hydrological modeling was done at a hillslope scale. 

From the sub-surface hydrology of individual hillslope profiles, the catchment scale 

hydrology was derived. The result obtained from the hydrological modeling was then used 

in stability modeling in pixel basis for the entire model catchment so as to obtain a 

deterministic slope failure hazard model. The deterministic model thus obtained was then 

replicated to the test catchments through statistical regression modeling using DEM-

derived parameters. The following subsections describe the details of the methods and 

materials used in the analysis. 

 

 

 

Figure 6.4 Research flow in this study 
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6.3.1 Model catchment 

Higashifukubegawa catchment has tentative oval shape (Figure 6.5). It has spatial 

extension of 142,000 sq.m and the elevation varies from 42 m to 213 m from mean sea 

level. The catchment is characterized by steep slopes with shallow colluvium. The slope 

varies between 0 and 60.57° with mean value of 32.37°. Almost 2/3 of the catchment has 

slope between 20°and 40°. A detailed slope failure inventory of the catchment was 

prepared through field checks, Google Earth Image interpretation and inventories of 

September and October slope failures of 2004. After this, there are no inventories of 

September and October slope failures for model catchment. The detailed slope failure 

inventory contains seven slope failures (Figure 6.5) each lying on separate topographic 

hollows or zero order basins. 
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Figure 6.5 Higashifukubegawa catchment with detailed slope failure inventory (showing 

slope failures within topographic hollows) 

 

6.3.2 Geo-mechanical and hydrological data collection 

Field visits were made in October, November, December, and April of 2011 and 

November of 2012 in the model catchment to observe the response of catchment slopes 

during various rainfall events in these months. To obtain detailed in-situ/laboratory data, 

the model catchment was divided into 25 sq. m blocks. The total number of blocks is 261 

(Figure 6.6). The in-situ tests such as dynamic cone penetration test to measure the soil 

thickness above weathered bedrock and Hasegawa in-situ permeability test (Daitou Techno 

Green, 2009) to measure soil permeability within the unsaturated zone were conducted in  
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Figure 6.6 Division of model catchment into 25 sq. m blocks (the hollow boxes represent 

bedrock which were excluded from the study) 

 

each square block. These tests revealed that soil thickness varied from 0.1 m to 1.91 m and 

soil permeability from 10
-5

 m/s to 10
-8

 m/s in the model catchment. At least one soil 

sampling was done at each block to determine the basic geo-mechanical properties of soil 

and to classify the soil type. Mohr-Coulomb parameters of soil strength (C', ɸ') were 

determined from direct shear test results. Root cohesion (C'r) was estimated from the 

findings of Neupane (2005) and information provided by Sidle (1991) for similar types of 

plants in this study. Also the laboratory tests for saturated unit weight (γsat), bulk unit 

weight (γt), porosity or volumetric water content (n), and particle size distribution of soil 

were conducted following the specifications of ASTM. Based on the results of particle size 

distribution (after referring to USCS and ASTM standards), the soils were classified into 

five major soil domains namely SM (fine), SM (coarse), SM (medium), GM, and M [SM is 

silty sand, GM is silty gravel, and M is silt]. The determined geo-mechanical/hydrological 

data and soil type for each square block is presented Appendix D. The extreme values of 

geo-mechanical and hydrological properties in five major soil domains are given in Table 

6.1. Based on soil domains, the model area was partitioned into five zones (Figure 6.7) for 

deterministic slope failure hazard modeling (see in section 6.3.5).  

 

6.3.3 Model selection 

The reliability of a hazard map depends not only on quality/amount of the incorporated 

data and working scale but also on appropriate methodology (Baeza and Corominas 2001).  
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Note: The saturation depth (h) and soil depth (z) data are not included in this table. The 

spatial distribution of these two properties will be prepared in raster format for the whole 

model area (see in section 6.3.5) 
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Figure 6.7 Major soil domains in model catchment after soil classification  

 

The models should be chosen also with climatic realization. For this study, we chose 

SEEP/W (GeoStudio 2005) as a hydrological modeling tool and considered infinite slopes 

for the stability modeling. Likewise, we used a discriminant function model (multivariate 

regression model) for the replication purpose. These models have been acknowledged 

worldwide in recent landslide research such as Gasmo et al. 2000, Acharya et al. 2006, 

Godt et al. 2008, Lee et al. 2008, Trandafir et al. 2008, Eeckhaut et al. 2009, Cascini et al. 

2010, Tarolli et al. 2011, Ghosh et al. 2012, Harris et al. 2012, Jagielko et al. 2012, etc. 

SEEP/W (GeoStudio 2005) hydrological model is firstly used in slope failure hazard 

assessment in this study. The following sub-sections briefly describe the models. 

 

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX

C'  (kN/m
2
) 0.31 10.76 1.62 14.11 0.31 12.50 4.49 10.85 9.48 12.50

ɸ ' (°) 23.91 43.59 20.92 40.59 22.15 44.59 21.91 33.14 24.33 34.64

C' r  (kN/m
2
) 1.92 4.79 0.00 4.79 1.50 4.48 1.92 4.31 1.40 3.35

γ t  (kN/m
3
) 10.58 15.04 11.74 16.74 9.58 14.07 14.44 15.07 11.59 13.94

γ sat  (kN/m
3
) 15.43 18.90 16.33 19.90 15.33 17.39 16.79 17.19 17.43 18.29

n 0.48 0.51 0.45 0.55 0.45 0.52 0.42 0.47 0.41 0.51

k (m/s) 6.12 × 10
-8

2.66 × 10
-5

7.18 × 10
-8

4.67 × 10
-5

8.01 ×10
-8

3.69 × 10
-5

7.78 × 10
-8

1.48 × 10
-5

6.16 × 10
-8

2.17 × 10
-5

Soil properties SM (coarse) GM (medium) M

Major soil domains

Table 6.1 Geo-mechanical and hydrological properties of soil domains

SM (fine) SM (medium
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6.3.3.1 Hydrological model 

As also stated earlier, rainfall is temporal stochastic phenomenon. Amount of rainfall 

varies with time (Ng and Shi 1998), and with time varying infiltration, the porewater 

pressure rises/falls above impervious bedrock. This rise/fall (transient behavior) of 

porewater pressure often controls hillslope instability (Reid and Iverson 1992). But, it is 

difficult to estimate transient porewater pressure information required to stability analysis 

of hillslopes (Harp et al. 2009). SEEP/W (GeoStudio 2005) solves this problem. It is a 

finite element mesh model of non-linearized Richard’s equation. Richard’s equation 

explains both saturated and unsaturated Darcian flows through soil layers. Richards’s 

equation to compute 2-dimensional seepage in SEEP/W has the following form.  

 

  (6.1) 

 

 

Where kx is coefficient of permeability in x-direction; ky is coefficient of permeability in y-

direction; H is hydraulic head or total head; q is applied flux at the boundary; m
2

w is slope 

of soil-water characteristics curve; and γw is unit weight of water. With these inputs, this 

study uses SEEP/W to compute transient porewater pressure distribution in hillslopes. The 

computed seepage is then used in infinite slope stability model. 

 

6.3.3.2 Infinite slope stability model  

The hillslopes with loose soil colluviums can be recognized as infinite slopes when the soil 

thickness is limited compared to slope length and width, slope gradient is constant 

throughout the length, and underlying ground water flow is parallel to the ground surface 

(Taylor 1948). In such slopes, the failure mass is analyzed as a movement of single block 

of soil neglecting head and toe portions (Arnone et al. 2011). Infinite slopes are easily 

destabilized due to rapid rise in positive porewater pressure or loss of soil suction during 

rainfall (Iverson et al. 1997).The slope mass fails typically at or near the contact between 

the soil colluvium and impervious bedrock. Generally, the nature of failure is translational. 

The shear strength acting along the slip surface is given by Mohr-Coulomb criterion 

(Terzaghi and peck 1967). 
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Where τ is shear strength of unsaturated soil; C' is effective cohesion (kN/m
2
); (σn - uw) is 

net normal stress; σn is total normal stress (kN/m
2
); uw is porewater pressure (kN/m

2
); and 

ɸ' is angle of shearing resistance (°). During failure, shear stress (T) exceeds shear strength 

(τ). The ratio F =τ/T is called factor of safety. For an infinite slope, factor of safety can be 

expressed as below (Hammond et al. 1992).  

 

 

(6.3) 

 

 

Where C'r is effective root strength; β is slope inclination (°); γsat (kN/m
3
) is saturated unit 

weight of soil; γt (kN/m
3
) is bulk unit weight of soil; h is vertical saturation depth (m); and 

D is vertical soil depth (m) (as expressed in section 6.3.3.1; h is estimated from 

hydrological modeling). The effect of surcharge is neglected in the study. The derivation of 

equation (6.3) is presented in Appendix E. When factor of safety is greater than 1, the 

hillslope is stable and when it is equal to 1, the slope mass is in verge of failure (limit 

equilibrium state). An infinitesimally perturbation can result sliding. Equation (6.3) can be 

expressed in simplified form as follows:  

 

  (6.4) 

 

 

In which 

 

 

; 

 

The Mohr-coulomb strength parameters (i.e., C', ɸ') computed in laboratory and 

root strength (C'r) may vary from the actual field values. So, these include some degree of 

uncertainty. The erroneous strength parameters either should not be used (van Westen and 

Terlien 1996) or the factor of safety computed by using such parameters should be checked 

for error. Various methods exist in the literature about analyzing propagation of error 

(Ward et al. 1981, Hammond et al. 1992, Terlien 1996, Burrough and McDonnell 1998). 
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Calculating expected value and variance of factor of safety and incorporating these into 

stability analysis to compute z-score is one of the reliable methods (Dahal et al. 2008b). 

Based on these, equation 6.4 is converted in following linear form.  

 

  (6.5) 

   

 

Where 

 

; 

 

 

 

In this study, the expected value and variance of factor of safety, and z-score are 

ascertained by using following equations (Ward et al. 1981, Ross 2004).  

 

  (6.6) 

 

  (6.7) 

  

 

  (6.8) 

 

 

Where, E[.] is expected value; V[.] is variance, Z is z-score. The expected values and 

variance of Mohr-Coulomb strength parameters are computed based on their nature of 

distribution (see in section 6.3.5). E[FS] is average value of factor of safety. V[FS] gives 

total propagation of error due to variation of C', C'r , and tanɸ'. z-score is equivalent to 

corrected factor of safety score or factor of safety score after adjusting error. It is 

considered as susceptibility/hazard score (Guzzetti et al. 2005, Dahal et al. 2008b). In this 

study, failure probability score is computed from z-score which is then implemented into 

ILWIS 3.8.1 to prepare slope failure probability map. Thus, with availability of geo-

mechanical (C', C'r, ɸ', γsat, γt), hydrological (h), and geometric properties (β), the 

  tan211 rCCFS




cossin

1
1

B
 BB

BA

sin

cos
2 

  ][tan][][ 211   ECECEFSE r

][tan][][][
2

2

2

1

2

1   VCVCVFSV r

)(

)(1

FSV

FSE
Z






 

 70 

evaluation of hillslope instability or slope failure hazard is possible which is carried out in 

this study. 

 

6.3.3.3 Discriminant function model 

Discriminant function model is used to determine the relationship between outcome or 

dependent variable (e.g., slope failure) and independent or predictor variables (causal 

factors of slope failure) (Nagarajan et al. 2002, Carrara et al. 2003, Ghosh et al. 2012, 

Jagielko et al. 2012). This model is required when there are multiple (i.e., >2) categories of 

dependent variables (e.g., types of failures). The model determines multiple combinations 

of employed independent variables (which are the discriminant functions) and selects the 

most significant combination (it is the combination that best discriminates categories of 

dependent variables) (Baeza et al. 2010, Dong et al. 2009). For example, if there are m 

categories of dependent variables, the possible combination of independent variables or 

discriminant functions will be m-1. Finally, the selected combination of variables is 

included in the discriminant function equation. Discriminant function equation is a linear 

combination of weighted independent variables as given below.  

 

 

DFs = bo + b1 × X1 + b2 × X2 + b3 × X3 + …..bn × Xn                  (6.9) 

 

Where DFs is discriminant function score; bo is coefficient that maximizes the variability 

between categories of dependent variables; bn is discriminant weight value or discriminant 

coefficient. The negative/positive sign of discriminant weight values determine the 

contribution of employed independent variables to discriminante categories of dependent 

variables (or these determine significance of independent variables to cause instability); Xn 

is the most significant combination of independent variables (slope failure causal factors). 

The goodness of fit of discriminant function model is tested with Wilk’s lambda test 

(Jamaludin et al. 2006, He et al. 2012, Baeza et al. 2010, Ghosh et al. 2012). Wilk’s 

Lambda score measures the discriminating potential of a combination of parameters. 

Smaller the value of Wilk’s Lambda, higher is the discriminating capability. Hence, small 

value of Wilk’s Lambda (<1) is always preferred in discriminant function analysis. In 

Wilk’s Lambda test, if the significance of chi-square value is less than 0.05, the 

combination of parameters is significant and the discriminant function model can be 

accepted (Baeza et al. 2001, Ghosh 2012). In this study, different low and high hazard 
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classes of deterministic slope failure hazard model were used as categories of dependent 

variables and slope failure causal factors (DEM-based parameters) as independent 

variables in discriminant function modeling. 

 

6.3.4 Seepage modeling  

Seepage modeling was performed in SEEP/W (GeoStudio 2005) to obtain porewater 

pressure information required to slope stability analysis in model catchment. For this, 55 

slope profiles were drawn in the model area parallel to the direction of maximum 

subsurface flow. Their locations are represented by slope profile lines in Figure 6.8. The 

profile geometry of these lines was prepared using DEM (5 m resolution) of the study area 

and soil thickness data considering topographical break in slope (Figure 6.9). All the 

profile continuums were discretized into a mesh of fine squares with 4 nodes and 9 

integration order. The dimension of all the elements were same with a side length of <0.2 

m and unit thickness. Soil water characteristics curve (SWCC) and soil permeability were 

two major input parameters required to seepage simulation of each profile unit. For this, 

mean values of volumetric water content (porosity) and soil permeability of all the square 

blocks lying below slope profile were computed for each slope profile. The computed 

mean values were integrated with SWCC and soil permeability functions available in 

SEEP/W library. SEEP/W is highly sensitive to initial ground water table condition. To  
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Figure 6.8 Showing 55 slope profile lines constructed in entire model catchment 
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Figure 6.9 Examples of geometrical configurations of slope profiles from Figure 6.8 

(showing profile 1, 2, 3, 4, 5, and 6) 

 

prevent unnecessary negative porewater pressure regime, a limiting value of -20 kPa 

suction was applied as initial condition. The initial ground water table was defined along 

the boundary between soil colluvium and bedrock. Boundary conditions control porewater 

pressure distribution along profile length. A null flux boundary condition was applied on 

the left vertical edge, right vertical edge, and along bedrock (Figure 6.10). The phreatic 

line itself acts as upper boundary along exposed sloping face. Potential seepage face was 

considered on right vertical edge and along exposed sloping face so as to avoid ponding to 

the slope.  
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Figure 6.10 Boundary conditions applied to finite element mesh model 

 

Almost all the days of October had considerable rainfall and slope failure occurred 

on 20
th

 October. But no data were available for porewater pressure variation which could 

describe the initial seepage condition in the slopes prior to the rainfall events. So, the initial 

seepage conditions were neglected and the simulation was preceded with precipitation data 

of 19-20 October of 2004. The two day hourly rainfall data were discretized into 283 time 

steps of 10 min length and applied onto the exposed face of profiles from upward at equal 

pressure head and elevation condition. Transient pore water pressure lines (transient pore 

water pressure distributions) were developed at each time step. The ground water tables at 

succeeding time steps had higher depths compared to preceding ones along each profile 

length due to accumulation of rainfall above the bedrock. The peak hourly rainfall intensity 

was at 12:00 hour of 20
th

 October 2004. The eyewitness for exact time of failure was 

lacking on 20
th

 October. But, peak porewater pressure reached two hours after peak rainfall 

hour (i.e., at 14:00 rainfall hour) on 20
th

 October in all simulations. This implies that the 

slope failure in model catchment might have begun at 14:00 hours of rainfall on 20
th

 

October (i.e., 38 hours of continuous rainfall of 19-20 October). Owing to this, the ground 

water table developed at 14:00 hours of rainfall on 20
th

 October 2004 was decided to 

implement in limit equilibrium analysis. The vertical depth of saturation was recorded at 

various points along each slope profile in the selected ground water table. With these data, 

a point map of saturation depths was prepared. 
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6.3.5 Deterministic slope failure hazard modeling 

The geo-mechanical and hydrological properties (Table 6.1) of hillslope materials were 

parameterized in ILWIS 3.8.1 platform. The point map of soil depth (prepared in field) and 

saturation depth (prepared from seepage modeling) covering entire model area were 

digitized. The spatial correlation of both data was investigated. Spatial correlation provides 

semivariogram model about the spatial behavior of soil properties (Jorge 2009). Rotational 

Quadratic semivariogram model was best fitted by both digital soil depth and saturation 

depth data [Figure 6.11 (a, b, c)], and this model yielded values of nugget, sill and range 

for each data type. These three parameters were inputs to Kriging interpolation along with 

 

 
 

 
 

Figure 6.11 Rotational quadratic semi-variogram models to estimate spatial distribution of 

(a) soil depth, and (b) saturation depth in model catchment. Nugget, sill and range were the 

fit parameters for both models which is illustrated in (c) 

 

 respective soil spatial properties. With ordinary Kriging interpolation method, the 

randomly distributed point values of soil depth and saturation depth are converted into 

regularly distributed grid values. To prepare saturated unit weight and bulk unit weight 

map, firstly the average value of these properties (Table 6.1) were computed for each zone 

of model area, and then converted into raster image using ILWIS functions. To prepare 
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expected and variance maps of strength parameters (C', C'r, ɸ'), the uniform distribution of 

these properties was assumed in the entire model area. For uniformly distributed data, the 

expected values and variance are computed using following relationships.   

 

                      (6.10) 

   

 

  (6.11) 

 

Where a and b are minimum and maximum values of strength parameters. These values 

were employed to compute expected values and variances of strength parameters for each 

zone outside ILWIS. The computed expected values and variances were then imported into 

ILWIS and converted into generalized continuous raster form. Slope gradient map was 

obtained from DEM of the model catchment. All these maps were used for deterministic 

slope failure hazard modeling. 

To obtain a robust deterministic slope failure hazard model, a complete parametric 

analysis was performed by varying shear strength parameters (C', C'r, ɸ'). Expected map 

and variance map of factor of safety were prepared on a cell-by-cell basis (5 m resolution) 

using equation 6.6 and 6.7. These maps were directly implemented in z-score computation 

(equation 6.8). z-score herein is slope failure hazard score. The area under standardized 

normal weights of z-score between F=1 and Z = -∞ gives failure probability. If it is the 

case with large voluminous data, as in present study, the commercially available 

spreadsheet software can be utilized to calculate probability from z-score (Dahal et al. 

2008b). In this study, z-score was exported to Microsoft Excel and NORMSDIST function 

was employed to compute probability. This process of calculation of failure probability is 

in accordance with Terlien (1996) and van Westen and Terlien (1996). The probability 

value computed in excel was imported into ILWIS and rasterized to prepare slope failure 

probability map. This map was validated with the detailed slope failure inventory of the 

model catchment. The hazard classes were determined by visual inspection of distribution 

of pixels with higher values of probability from ROC prediction rate. Generally, high 

hazard classes consists of pixels with high probability values (greatest number of pixels 

where slope failures occurred) and the low hazard classes cover the regions of low 

probability values (fewest number of slope failure pixels). Finally, the zonation map was 

once again crosschecked with the detailed slope failure inventory for spatial agreement. 
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6.3.6 Replication of deterministic model and accuracy check 

After confirming a good predictive success rate from validation, the results of deterministic 

slope failure hazard model were applied to forty selected test catchments of the study area. 

For this, firstly discriminant function modeling was carried out amongst the deterministic 

model and causal factors of slope failure and discriminant function equation was obtained 

for the model catchment. Using this equation and using the same set of seven DEM-based 

slope failure causal parameters, the slope failure hazard index maps were obtained in test 

catchments. These maps were compared separately with prevailing slope failure 

inventories of 2004 September and October to check their prediction accuracy. 

 

6.4 Results 

6.4.1 Deterministic modeling 

Figure 6.12 shows the slope failure probability map obtained after performing full 

parametric modeling of shear strength parameters. To validate this map against detailed 

slope failure inventory, ROC curve (AUROC) method (Zweig and Campbell 1993) was 

used. It determines predictive capability of a model (Yesilnacar and Topal 2005, Van Den 

Eeckhaut et al. 2006). ROC makes a diagnosis for spatial agreement of prevailing slope 

failures with failure probability score. The variables to ROC curve analysis in SPSS are 

binary (0-1) map of slope failure inventory and failure probability score. Based on degree  
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Figure 6.12 Slope failure probability map 
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of spatial matching between these two variables, ROC curve method determines area under 

the ROC curve (AUROC). This area is the measure of robustness of model to predict 

future slope failures. The AUROC value of the model catchment based on its detailed 

slope failure inventory was 0.82 (Figure 6.13). The ROC curve also suggests that about 

68% of the slope failure numbers were concentrated in areas showing upper 20% of the 

failure probability index. These reasonably verify a good ability of model to predict future 

slope failures.  

 

 

 

Figure 6.13 Area under ROC curve estimated from Higashifukubegawa catchment after 

deterministic slope failure hazard modeling 

 

Based on ROC prediction rate and coverage of higher percentage of slope failure in 

higher value of probability, the slope failure probability map was classified into four 

hazard classes: Stable (S, <30 % probability value), Metastable (MS, 30 % – 50 % 

probability value), Quasistable (QS, 50 % – 70 % probability value), and Unstable (U, 

70 % - 100 % probability value) (Figure 6.14) which is from low to high hazard level. The 

classes were assigned the colors green, yellow, blue, and red respectively. This is 

deterministic slope failure hazard model in Higashifukubegawa catchment. Finally, the 

zonation map was crossed with raster map of detailed slope failure inventory. The result 

(Figure 6.15) shows that a total of 92.6 % of the slope failures were found to occur in U 

class which is very promising. Also, only a few pixels of slope failures were located in QS 
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and MS classes (which are 1.90 % and 5.60 % of the total slope failures respectively). 

There was no slope failure pixel in S class. 

 

Slope failureSlope failure

 

 

Figure 6.14 Slope failure hazard zonation map of Higashifukubegawa catchment 

 

 

 

Figure 6.15 Slope failure distribution in hazard classes of deterministic model 

 

6.4.2 Discriminant function modeling 

As mentioned earlier, the categories of dependent variables and independent variables are 

required to obtain discriminant function equation. Here, the four hazard classes of 

deterministic model: S, MS, QS, and U were used as categories of dependent variables. A 

failure probability number: 1, 2, 3, and 4 was assigned to the classes from low to high 
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hazard class. Similarly, a set of seven significant and easily available topographical and 

hydro-geological parameters, namely slope, relief, plan curvature, profile curvature, 

wetness index, flow accumulation, and drainage density were selected as independent 

variables in model catchment. All of these parameters were derived from DEM (5 m 

resolution). With inputs of abovementioned dependent and independent variables, 

discriminant function modeling was performed in SPSS platform employing ENTER 

method. The results of discriminant function modeling are presented in Table 6.2, 6.3 and 

6.4.  

 

 

 

 

 

 

 

The discriminant function model produced three combinations of casual parameters 

of slope failure or discriminant functions (Table 6.2) which was 1 less than number of 

hazard classes of deterministic model. All the three combinations of parameters were 

found significant since significance of chi-square value was less than 0.05 in all 

combinations (Table 6.3). However, the lowest Wilk’s Lambda score (0.734) and 

significance level (0.00) of the first combination enable us to confirm that first 
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combination is the most significant among the three (i.e., it most discriminates the hazard 

classes of deterministic model or the group means are significantly different for this 

combination). Based on these results, the first combination of parameters or discriminant 

function is included in the discriminant function equation which is given below.  

 

 

DFs = - 3.711 + 0.101 × Slope – 0.0000178 × Relief - 0.014 × Plan curvature - 0.755 × 

Profile curvature + 0.067 × Wetness index – 0.0003190 × Flow accumulation + 7.565 × 

Drainage density      (6.12) 

 

Where DFs is discriminant function score. The factors in this equation are discriminant 

weight values of parameters or magnitude of parametric contribution to slope instability. 

The discriminant function represents magnitude of parametric contribution to slope 

instability.The discriminating potential of the employed independent slope failure causal 

parameters to the hazard classes can be understood from Standardized Canonical 

Discriminant Function Coefficients listed in Table 6.4. 

 

6.4.3 Replication and validation 

To apply the results from discriminant function modeling, the same set of seven DEM-

derived slope failure causal parameter maps were prepared in all the test catchments. The 

discriminant weight values of parameters of the model catchment were applied to 

corresponding parameters of the test catchments and discriminant function equation was 

portrayed to compute discriminant function score or slope failure hazard index. Figure 6.16 

shows resulting slope failure hazard index maps of two typical test catchments W20 and 

W30. The slope failure hazard score was more or less similar in all forty catchments. To 

check prediction accuracy, the resulting hazard maps were crossed with existing 

inventories of September and October slope failures of 2004 and ROC curves were plotted. 

The area under ROC curve gives prediction rate. Figure 6.17 exhibits prediction rate 

obtained with hazard index maps of catchments W20 and W30. The prediction rate with 

respect to September and October slope failures in forty test catchments is summarized in 

Table 6.5. From this table, it is understood that the prediction rate was higher with the 

inventory of September slope failure in twenty-two test catchments (W1, W3, W4, W5, 

W9, W10, W12, W16, W17, W18, W19, W20, W21, W22, W25, W26, W28, W29, W32, 

W36, W37, and W38) whereas in remaining test catchments, the prediction rate was higher  
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Figure 6.16 Slope failure hazard index maps of catchments W20 and W30 after applying 

discriminant function weight values of each parameters from Higashifukubegawa 

catchment (HI: Hazard Index) 
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Figure 6.17 Area under ROC curve estimated for slope failure hazard index of catchments 

W20 and W30 after replication of deterministic model  

 

October slope failure September slope failure October slope failure September slope failure

W1 0.704 0.743 W21 0.805 0.802

W2 0.732 0.726 W22 0.798 0.784

W3 0.731 0.752 W23 0.733 0.746

W4 0.727 0.740 W24 0.763 0.807

W5 0.762 0.789 W25 0.743 0.730

W6 0.751 0.734 W26 0.763 0.784

W7 0.754 0.736 W27 0.734 0.743

W8 0.794 0.759 W28 0.741 0.789

W9 0.790 0.814 W29 0.790 0.752

W10 0.760 0.814 W30 0.803 0.794

W11 0.788 0.741 W31 0.800 0.796

W12 0.761 0.768 W32 0.783 0.799

W13 0.755 0.719 W33 0.727 0.765

W14 0.788 0.760 W34 0.738 0.773

W15 0.773 0.783 W35 0.744 0.763

W16 0.772 0.788 W36 0.735 0.721

W17 0.791 0.772 W37 0.743 0.735

W18 0.741 0.753 W38 0.725 0.747

W19 0.776 0.780 W39 0.783 0.735

W20 0.750 0.757 W40 0.805 0.770

Prediction rate Prediction rate
Catchment ID Catchment ID

Table 6.5 ROC prediction rates for test catchments

 

 

with the inventory of October slope failure. In overall, the prediction rates from 0.719 to 

0.814 and 0.704 to 0.805 were noted with the inventories of September and October slope 

failures respectively from Table 6.5. This implies that the prediction of September slope 

failure was better than October slope failure by approximately 1%. However, a moderate to 

good prediction accuracy was obtained with both inventories for spatial agreement. 
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6.5 Discussion  

In this study, deterministic slope failure hazard analysis was carried out in 

Higashifukubegawa catchment. But this kind of analysis can not be conducted in all other 

test catchments since it is very difficult to obtain detailed geo-mechanical and hydrological 

properties of soils required to the analysis. Therefore, it is necessary to explore for 

replication methodology which incorporates deterministic model and can predict slope 

failure hazard in catchments of similar geological and geomorphological settings. In this 

study, we have presented and examined replication process of deterministic slope failure 

hazard model in numerous catchments of the selected study area. The deterministic model 

prepared in Higashifukubegawa catchment included area under ROC as 0.82 which is a 

good success rate. The results of deterministic model from Higashifukubegawa were then 

replicated through discriminant function modeling using DEM-based parameters. In this 

research, it is assumed that the underlying physical processes associated with hillslope 

failures would be same in similar geological/geomorphological settings and index 

properties of soil do not vary significantly. Under such conditions, hillslopes fail in a 

similar way or under the same combination of parameters. 

The discriminant function modeling performed between deterministic model and a 

set of seven DEM-based parameters (i.e., slope, relief, plan curvature, profile curvature, 

wetness index, flow accumulation, and drainage density) in the model catchment resulted 

in a significant combination of parameters or discriminant function with Wilk’s lambda 

(0.705), Chi-square value (1932.105), and significance level of Chi-square value (0.000). 

As a result, the model characteristics were transferred into an empirical parametric 

relationship known as discriminant function equation. This relationship was applied to 

forty test catchments of the study area with the same set of DEM-based parameters and 

slope failure hazard index maps were obtained. In results, the prediction accuracies were 

found varying over a wide range, from moderate to good with both inventories. In few 

catchments, the accuracy was in the same range of model accuracy rate (0.82). From this, it 

is well understood that if replication of deterministic model was carried out employing 

parameters-based multivariate regression modeling, the prediction accuracy can be 

significantly increased. Replication of slope failure hazard, as in present study, can be 

reviewed in a very few catchment-scale studies like Ghimire 2011 and Dahal et al. 2012 

with similar reasonable performance. However, this study has firstly indicated the 

possibility of replication of deterministic slope failure hazard model although research on 

deterministic shallow landslide hazard assessment or physically based modeling of shallow 



 

 84 

landslides has been practiced worldwide since last few decades (Montgomery and Dietrich 

1994, Borga et al. 1998, Moon et al. 2004, Rosso et al. 2006, Meisina and Scarabelli 2007, 

Dahal et al. 2008b, Salciarini et al. 2008, Godt et al. 2008, Sorbino et al. 2010). The 

parametric relation obtained in Higashifukubegawa catchment can be used to predict slope 

failure hazard conditions in any other areas with similar geological/geomorphological 

characteristics if DEM-based parameters were available. Further, the replication of 

deterministic model could be performed with higher accuracy if enough considerations 

were given to the quality of geo-mechanical and hydrological parameters in model 

catchments as well as quality of DEM-based parameters. 

 

6.6 Conclusions 

From this work, we conclude with the following statements. 

i) We are successful in connecting hillslope-scale (local-scale) sub-surface hydrology to 

catchment-scale (landscape-scale) sub-surface hydrology. 

ii) We understood that geo-mechanical and hydrological properties of the hillslope 

materials are the key controlling factors of slope failure hazard in tertiary sedimentary 

terrain in Shikoku Region of Japan.  

iii) We have obtained 0.719 – 0.814 and 0.704 – 0.805 prediction accuracy rate for the 

spatial prediction of slope failures compared to the 2004 September and October slope 

failure inventories respectively. This reasonably validates the model and replication 

process.   

iv) We have been successful in replicating the model through parameters-based 

multivariate modeling for the purpose of predicting slope failure hazard index without 

using geo-mechanical and hydrological parameters.  

v) Finally, the work in this study indicates that the replication process used here to predict 

slope failure hazard condition in small catchment scale has a wide applicability in any 

other areas of the similar geological and geomorphological characteristics. 
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Chapter 7 

 
Numerical analyses on influence of basic parameters of topography on 

hillslope instability in a small catchment 

 

Abstract 

This study was attempted to identify the influence of three basic parameters constituting 

topography (slope inclination, soil depth, and slope length) on hillslope instability in a 

small catchment, known as Higashifukubegawa of Shikoku Island, Japan. The typhoon 

rainfall of 19-20 October, 2004 was significant in causing a total seven slope failures in the 

catchment since other rainfall events of various intensities in the same year did not cause 

failure. To understand the influence of three basic parameters, numerical modeling of 

seepage and slope stability was performed in slope profiles prepared from slope failure 

data of the catchment in GeoStudio (2005). The change in porewater pressure distribution 

and slope mass weight due to variation in values of basic parameters across their 

reasonable range was used to interpret the change in factors of safety. This study 

demonstrates how hillslope instability changes with basic parameters of topography under 

the same simulating conditions of hydrological and geo-mechanical parameters.  

 

Keywords: unsaturated hillslopes, instability, numerical modeling, subsurface 

hydrological response to rainfall, factor of safety 
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7.1 Introduction 

Hillslopes are fundamental units of a catchment. They have complex subsurface hydrology. 

Shallow landslide or slope failure is common form of hillslope instability (Talebi et al. 

2007). The problems resulting from hillslope instability are worldwide (van Schalkwyk 

and Thomas 1991, Claessens et al. 2007, Dahal et al. 2008c, Godt et al. 2008, Giannecchini 

et al. 2012). Medium to steep hillslopes of catchments, particularly in tropical and 

subtropical regions experiencing heavy rainfall, fail time and again. It has been generally 

understood that failure occurs due to increase in positive porewater pressure. But, 

catchment slopes with well drained soil types can become unstable even under partially 

saturated soil conditions. Hillslope instability may present a considerable constraint on 

downslope engineering structures, such as roads, drainage systems etc. In larger areas, it 

may result in major ecological and environmental problems (Sidle and Ochiai 2006, Talebi 

et al. 2008b, Hsu et al. 2010). Therefore, it is necessary to fully understand the phenomena 

associated with hillslope instability for slope land management in mountainous area.  

The major phenomena that affect hillslope instability are the phenomena related to 

complex subsurface hydrological change. The hillslope subsurface hydrology depends on 

rainfall infiltration through soil. There are two types of parameters that affect rainfall 

infiltration: internal parameters and external parameters. Hydrological properties of soils, 

such as moisture retention characteristics and soil permeability are internal parameters 

whereas climatic conditions, like rainfall intensity and duration, rainfall pattern, and 

evapotranspiration rate are external parameters. Both internal and external parameters 

affecting rainfall infiltration are controlled by topography. Therefore, topography is major 

controlling factor of all kinds of hillslope instability problems. A topographical unit 

constitutes slope inclination, slope shape, slope length, slope width, and soil depth 

(Dietrich et al.1987, Iida 1999, Dietrich et al. 2008a, Talebi et al. 2008, Cha and Kim 

2011), and therefore these can be considered as topographic parameters. 

Influence of topography on hillslope instability through subsurface hydrology has 

been widely acknowledged in a large number of earlier to recent slope failure studies, such 

as Montgomery and Dietrich 1994, Wu and Sidle 1995, Burton and Bathurst 1998, Pack et 

al. 1998, Borga et al. 2002, Dahal et al. 2008, Salciarini et al. 2008, Harp et al. 2009 etc. 

However, in these studies, only slope inclination has been reported as important parameter 

from view point of slope stability. Some theoretical studies (e.g., Griffiths et al. 2011, Cha 

and Kim 2011) have investigated the influence of slope inclination and soil depth on 

stability analysis of infinite slopes. The deficits in these studies are: (i) infinite slope 
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analysis is not sufficient to completely represent the real conditions of hillslopes, and (ii) 

slope transient porewater pressure behavior in response to rainfall and its influence on 

hillslope instability can not be understood from these studies. Many other researches 

(Troch et al. 2002, Dhakal and Sidle 2003, Hilbert et al. 2004, 2007; Talebi et al. 2007, 

2008) have shown that despite slope inclination and soil depth, the geometric parameters of 

hillslopes (plan shapes and profile curvatures) also have significant impact on subsurface 

flow response and instability of complex hillslopes. For example, Talebi et al. 2008b used 

Hillslope Storage Bossinesq hydrological model (Boussinesq1877, Troch et al. 2003) 

coupling one-dimensional Richard’s equation  and infinite slope stability model to evaluate 

the influence of nine characteristic hillslope types with three different profile curvatures 

(concave, straight, convex) and three different plan shapes (convergent, parallel, divergent) 

on slope instability. Three-dimensional modeling program of dynamic hydrology and 

stability, like Integrated Hydrological Stability Model (InH-SM) (VanderKwaak 1999) and 

GEOtop-FS (Rigon et al. 2006) have also been used to simulate hillslope hydrologic 

response and stability in some studies (Loague et al. 2005, Simoni et al. 2008). But, high 

degree of simplification and preciseness in parameters is required for such sophisticated 

models which is difficult to manage in most occasions. To account slope instability due to 

parameters of topography in simple types of slopes (generally planar), either the 

assumptions of these models should be reduced or simplified two-dimensional modeling 

on seepage and slope stability can be performed. Influence of slope length on slope 

instability has not been clearly presented in any previous study.  

Only three parameters: slope inclination, soil depth and slope length can be 

considered as basic parameters of topography as these determine the initial soil subsurface 

zone moisture storage and instability prior to rainfall. The other parameters, like plan 

shapes, profile curvatures, and slope width lie entirely within the three parameters along 

slope profile and display their role on instability depending on local conditions of the three 

parameters. Unless and until the influence of basic parameters is well explored, the 

mechanism of hillslope instability can not be fully understood. The main problem in 

abovementioned studies is that they are case studies reported either from different 

geographical locations or based on field/laboratory investigation or performed in various 

modeling programs. They have treated underlying mechanisms differently and suggested 

different conclusions on triggering of slope failure. In this context, this study attempts to 

evaluate the influence of three basic parameters on hillslope instability. The main objective 

of this study is to fully demonstrate influence of the three basic parameters of topography 
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on unsaturated zone moisture storage change and sliding tendency of slope mass during 

rainfall. For this, a small catchment known as Higashifukubegawa in tertiary sedimentary 

terrain of Shikoku Island of Japan was selected. 

 

7.2 Study area  

Higashifukubegawa catchment, as shown in Figure 7.1, is located in the northeastern part 

of Niihama City, in Ehime prefecture of Shikoku Island, western Japan. Geographically, it 

extends from (33 ﾟ 58’ 12”) N to (33 ﾟ 58’ 27’’) N latitude, and (133 ﾟ 22’ 41’’) E to 

(133 ﾟ 22’ 59’’) E longitude. There are many reasons behind selection of this catchment for 

this study. For example, the catchment is very small (142,000 sq. m) and elevation ranges 

from 42 m to 213 m from the mean sea level. Same types of green vegetations (short-

height evergreen and deciduous plants) are found in the catchment. Geology is uniform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Location map of study area 
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Tertiary shale and sandstone of the Izumi group entirely cover the catchment. The main 

reason of selection is that moderate to steep slopes of this catchment consist of coarse-

grained, less cohesive and loose shallow soil colluviums where subsurface storm flow is 

dominant flow mechanism. Hillslopes with such soils exhibit unsaturated percolation and 

rapid response of porewater pressure increase during heavy rainfall. Higashifukubegawa 

catchment experienced extreme typhoon rainfalls of various intensities in 2004 which 

caused a total of seven slope failures (Figure 7.2). Based on field checks and Google Earth 

Image interpretation, the boundaries of slope failures were delineated. All the slope failures 

were affirmed in topographic hollows; between 120.60 m and 196.00 m elevations. In this 

study, various parameters of seven slope failures of Higashifukubegawa were considered in 

slope instability evaluation.   

 

242. 5

170. 0

97. 5

25. 0

0 0.1 km

Elevation (m)

m

slope 

failure

stream

A

B

C

D

E

F

G

242. 5

170. 0

97. 5

25. 0

0 0.1 km

Elevation (m)

m

slope 

failure

stream

A

B

C

D

E

F

G

 

 

Figure 7.2 Higashifukubegawa catchment with 2004 typhoon rainfall-induced slope 

failures A, B, C, D, E, F and G 

 

7.3 Parameter exploration 

Field visits were made to Higashifukubegawa catchment in October, November, December, 

and April of 2011 and November of 2012. A detailed field investigation was carried out to 

measure length/breadth of slope failures, soil thickness and soil permeability. The soil 

thickness above weathered bedrock was measured by dynamic cone penetration test near 

the failed slopes. The permeability within the unsaturated zone was measured by 

Hasegawa in-situ permeability tests (Daitou Techno Green, 2009). Soil samples were 
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collected at the mid of each slope failure spots and examined in laboratory for Mohr-

Coulomb parameters of shear strength as well as physical properties of soil. Direct shear 

tests were conducted to determine Mohr-Coulomb parameters of strength (C’, ɸ’). The 

laboratory tests for unit weight (γ), porosity or volumetric water content (n), and particle 

size distribution of soil were conducted following specifications of ASTM (ASTM 1999 a, 

b). Based on the results of laboratory investigation and after referring to USCS, three 

groups of soils were identified: silty sand (SM), silty gravel (GM) and silt (M). But, silty 

sand (SM) was prevalent. These soils were derived from weathering of underlying bedrock 

composed of tertiary sandstone and shale. Various hydrological, geo-mechanical and 

topographic parameters of the seven slope failures obtained as a result of field visits, 

field/laboratory investigations are summarized in Table 7.1. From this table, the variability 

in values of parameters among seven slope failures was well recognized. Including this 

variability, the value range of parameters was prepared which is presented in Table 7.2. 

Employing the recognized values range of parameters, hillslope profiles were constructed 

(see in section 7.4.2), and then hydrological and slope stability modeling were performed 

in these slope profiles (see in section 7.4.3 and 7.4.4).  

 

Table 7.1 Hydro-mechanical properties of soil and characteristics of slope failure 

 

 

Table 7.2 Parameters exploration within the range over which they were varied in 

Higashifukubegawa catchment 

 

Note: *These values are mean values 

and, therefore factor of safety via 

sensitivity computation was 

performed during slope stability 

modeling (after this, slope failure 

length (L) is referred as slope length) 
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7.4 Numerical modeling 

7.4.1 Program selection 

In this study, SEEP/W and SLOPE/W plug-ins of GeoStudio (2005) were employed to 

examine hillslope instability. SEEP/W is commonly used program to explore subsurface 

hydrologic response of hillslopes to rainfall (Tofani et al. 2005, Rahardjo et al. 2007, Dahal 

et al. 2009, Zhan et al. 2013). The 2-dimentional Richard’s equation is coded in this 

program to predict porewater pressure which is given below.  

 

 

    

Where kx is coefficient of permeability in x-direction; ky is coefficient of permeability in y-

direction; H is hydraulic head or total head; q is applied flux at the boundary; mw is slope of 

soil-water characteristics curve; and γw is unit weight of water. Richards’s equation 

considers vertical redistribution of infiltrated rainfall (Iverson 2000). To solve Richards’s 

equation, SEEP/W accepts soil water characteristics curve (SWCC) function and soil 

permeability curve (SPC) function of exponential form, and then realistically models to 

predict porewater pressure distribution both in saturated and unsaturated state of soil in 

finite element method framework.  

SLOPE/W computes factor of safety using limit equilibrium approach. It allows use 

of geo-mechanical parameters and porewater pressure profiles from SEEP/W and 

realistically models to predict instability condition of hillslopes. For this, Morgenstern-

Price method was selected within SLOPE/W in this study. In the Morgenstern-Price 

method, Modified-Coulomb shear strength criterion was employed to include both 

saturated and unsaturated shear strength variation in soil. 

 

7.4.2 Hillslope profile construction 

The model should be simple so that the influence of parameters on slope instability can be 

easily recognized. Also it should be field representative so that the conclusions can be 

applied to the natural slopes (Milledge et al. 2012). Understanding these, a hillslope profile 

with slope length, L; slope inclination, ϴ; and soil depth, D; was defined as presented in 

Figure 7.3. The upslope and downslope topography have significant effect on stability of 

natural slopes. To capture the contribution of upslope and downslope topography, 10 m 

slope length was provided on upslope and downslope of the slope profile. Then, slope 

length, slope inclination, and soil depth were varied (Figure 7.3) across the range over 
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which they were varied in Higashifukubegawa catchment (Table 7.2) and a total of 240 

slope profiles were constructed. A homogenous, isotropic and single layer of sandy silt 

colluvium was considered in all the slope profiles. 

 

 

 

 

 

 

Figure 7.3 Typical hillslope 

profile (a total of 240 

models were constructed 

from this profile by varying 

slope inclination, soil depth, 

and slope length) 

 

 

 

 

 

7.4.3 Seepage modeling 

As mentioned in earlier section, SEEP/W requires finite element mesh model to perform 

seepage modeling. So, all the slope profiles were discritized into finite element mesh of 

fine parallelogram elements with 4 nodes and 9 integration orders. The sides of all mesh 

elements have the same length of 0.1 m and unit thickness. Boundary conditions are very 

important in seepage modeling since they control development of porewater pressure. 

Boundary conditions were defined as depicted in Figure 7.4. The left and right vertical 

faces of the model have null flux boundary. The bottom inclined face also has null flux 

boundary. But, the top exposed sloping face has rainfall intensity as a flux boundary. 

Potential seepage face was provided on the top exposed sloping face and right vertical face 

so that the excess water could drain away from the slope. Considering potential seepage 

face does not allow building up porewater pressure greater than 0 kPa when rainfall flux is 

greater than soil permeability. This simulates real field condition where excess rainwater at 

the ground surface is removed from the slope as runoff (Gasmo et al. 2000). 

Seepage modeling was performed under same hydrological conditions in all the 

slope profiles. Two soil properties, namely volumetric water content or SWCC function 

and SPC function of silty sand were assigned as the major input to the finite element model. 



 

 93 

SWCC function was used from GeoStudio library whereas SPC function was predicted 

from SWCC using Fredlund and Xing (1994) criterion. This criterion eliminates the 

necessity to determine residual water content which is usually required for other predictive 

methods. The following representative values of hydrological parameters were selected 

from Table 7.2: porosity as n = 0.46 and soil permeability as k = 9.0×10
-8

 m/s. During 

simulation, the SWCC function and SPC function were integrated with the selected values 

of porosity and soil permeability.  

 

 

 

 

 

Figure 7.4 A complete layout of 

two dimensional finite element 

mesh model after applying 

boundary conditions 

 

 

 

 

 

Hillslopes with highly permeable soils (e.g., sand, silty sand, sandy silt, silty clay 

etc.) develop high matric suction during dry season or when there is no rainfall. Such 

slopes rather fail in unsaturated condition due to loss of matric suction during heavy 

rainfall (Lu et al. 2008). In such soil slopes, the stability evaluation incorporating saturated 

flow or positive porewater pressure is meaningless (Lu and Godt 2008, de Compass et al. 

1991). Only transient analysis can explore unsaturated moisture content in such soil slopes 

(Lu et al. 2008) required to stability analysis. For this reason, seepage modeling was 

decided to perform in transient condition in this study. After setting up all necessary 

conditions, seepage modeling was started applying hourly rainfall record of 19-20 October 

of 2004 (Figure 7.5) as a flux boundary in upper exposed sloping face of the finite element 

model. To reproduce the complexity of rainfall event, the hourly rainfall data were 

discretized into 283 time steps of 10 min length (total 47 hours 10 minutes). Transient 

seepage modeling predicts water tables equal to the number of time steps of rainfall flux. 

After seepage modeling, the porewater pressure profiles were recorded at the middle of 
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each slope (Figure 7.6) to interpret the role of porewater pressure on instability (see in 

section 7.5). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 Hourly typhoon rainfall data of 19-20 October 2004 in the study area catchment 

 

 

 

Figure 7.6 The porewater pressure profiles were measured at the middle of slope along 

dotted blue line after seepage modeling. Node numbers were assigned in increasing order 

from bottom to top along dotted blue line 

 

 

7.4.4 Slope stability modeling 
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Slope stability modeling was performed in all slope profiles under the same conditions of 

hydrological and geo-mechanical parameters. Porewater pressure information was directly 

linked from SEEP/W. Slope inclination and soil depth were input from each hillslope 

profiles (Figure 7.2). A representative value of cohesion as C = 1 kN/m
2
, angle of shearing 

resistance as ɸ = 34° and unit weight of soil as γ = 16.92 kN/m
3
 were selected from Table 

7.2. However, geo-mechanical parameters obtained from laboratory tests may vary from 

the actual field values as the laboratory tests were performed on the limited soil samples 

retrieved from field. To compensate variability in geo-mechanical parameters, slope 

stability modeling via sensitivity analysis was performed in this study. Sensitivity analysis 

examines the interrelationship of various parameters used in analysis, and then calculates 

factor of safety based on changes in given parameters. In sensitivity analysis, minimum 

and maximum values of cohesion, friction angle, unit weight, and ϕ
b
 (ϕ

b
 was assumed to be 

2/3 of ϕ’) were assigned as material properties in SLOPE/W environment. The exact 

location of triggering of hillslopes can not be predicted (von Ruette et al. 2013). The 

possible slip surface location, in this study, was defined by specifying range type entry and 

exit function. During rainfall, the factor of safety greatly reduces or the triggering of slope 

failure normally occurs either at the time of maximum rainfall intensity or after some hours 

of it no matter the geo-mechanical conditions of site. For this reason, porewater pressure 

developed at 14 pm of 20
th

 October, 2004 (i.e., 223 time step of seepage modeling) which 

was two hours after the maximum hourly rainfall intensity (45 mm/hr at 12 pm on 20
th

 

October, 2004) was implemented in slope stability modeling. To determine the optimized 

factors of safety along the hillslopes during slope stability modeling, Morgenstern-Price 

(1965) method was used.  

 

7.5 Results  

7.5.1 Influence of slope inclination 

Figure 7.7 (a) and (b) present porewater pressure distribution results with respect to various 

slope inclinations where soil depth is held constant. The slope profiles have undergone 

change in matric suction rather than positive porewater pressure. Matric suction is likely to 

completely vanish in all slope profiles with rainfall infiltration. Matric suction has 

disappeared quickly at bottom nodes of the slope profiles. The range of variation of matric 

suction is higher in lower slope inclinations compared to higher slope inclinations. Also the 

maximum value of matric suction is observed decreasing with increase in slope inclination 

for a given soil depth. The porewater profiles reveal that both the reduction in propagation 
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of matric suction and its maximum value are positively correlated with slope inclination. 

Matric suction propagation in unsaturated soil slope is related with rate of rainfall 

infiltration. However, rate of infiltration is influenced by slope inclination for the same 

rainfall flux. So, the cause of decrease in propagation of matric suction and its maximum 

value in Figure 7.7 (a) and (b) is that the rainfall flux infiltrated into slope decreases by 

cosine of the slope inclination (Zhan et al. 2013). The excess rainwater flows quickly down 

the slope as surface runoff or overland flow occurs. The studies, like Gofar et al. 2009, 

L’Heureux 2005 have presented similar effect of slope inclination on porewater pressure 

distribution.  

 

 

Figure 7.7 Examples of porewater pressure distribution with variation in slope inclination 

for (a) 0.6 m soil depth in 20 m slope profile, and (b) 1.2 m soil depth in 30 m slope profile 

after seepage modeling (the porewater pressure profiles were recorded at the middle of 

slope) 

 

Figure 7.8 (a) and (b) show the variation in factors of safety with slope inclination 

after slope stability modeling. It can be seen from these figures that the factors of safety are 

maximum at the lowest slope inclination and these are decreasing exponentially with 

increase in slope inclination for all the values of soil depths. The trend in decrease in the 

factor of safety with increase in slope inclination is found sharper for relatively deep soil 

colluviums compared to shallow colluviums. For example, in Figure 7.8 (a), the factor of 

safety values at 20° and 25° for 0.3 m soil depth equal to 2.886 and 2.323 (a difference of 

0.563, about 19.50 %), but the value of the same status drops to 2.288 and 1.825 (a 

difference of 0.463, about 20.20 %) for 0.6 m soil depth, and 2.102 and 1.665 (a difference 

of 0.437, about 20.78 %) for 0.9 m soil depth. It should be noted that the factor of safety is 

less than 1 after 38° for 1.8 m soil depth which implies that the hillslopes with soil depth 

greater than 1.8 m are prone to failure after 38°. Figure 7.8 (a) and (b) look similar, but the 
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factors of safety at consecutive points differ after decimal point. The results in Figure 7.8 

(a) and (b) are consistent with those of some recent studies, such as Gofar et al. 2009, Cha 

and Kim 2011 and Zhan et al. 2013.  

 

 

Figure 7.8 Typical examples of factor of safety distribution with variation in slope 

inclination at various constant soil depths in (a) 20 m slope profile, and (b) 30 m slope 

profile after slope stability modeling 

 

On the other hand, with increase in slope inclination, the sliding component of the 

slope mass increases by sine of the slope inclination (or the resisting component of slope 

mass decreases by cosine of the slope inclination). This reduces static control on stability 

of slope mass whereby chance of sliding increases. Therefore, the decreasing trends in 

factor of safety (or increasing slope instability) with slope inclination in Figure 7.8 (a) and 

(b) can be attributed to two prime reasons: (i) gentler slope inclinations induce higher 

matric suction or porewater pressure, and (ii) steeper slope inclinations induce greater 

downslide force. The results indicate that instability of unsaturated soil slope is affected 

not only by mobilizing force of slope mass but also by matric suction. 

 

7.5.2 Influence of soil depth  

The variation in porewater pressure with respect to different soil depths is demonstrated in 

Figure 7.9 (a) and (b). In these figures, it can be seen that matric suction is decreasing in all 

soil depth colluviums with rainfall infiltration. But, the range of variation of matric suction 

is increasing with soil depth. Similarly, the value of matric suction at each node is noted 

increasing (or loss of matric suction at each node is noted decreasing) with increase in soil 

depth from 0.3 m to 1.2 m which implies that the seeping water is in course of reaching 

bottom of soil depth or it has just reached these depths within prescribed time (Garg et al. 

2010). From 1.2 m to 2.4 m soil depth, the value of matric suction at corresponding nodes 
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is gradually decreasing (or the value of matric suction at corresponding nodes is 

increasing) which is due to marginal increase in volumetric water content with increase in 

soil depth. However, matric suction profiles are highly deepening from 1.2 m to 2.4 m for 

the same rainfall flux which points, in overall, less loss of matric suction at the deep soil 

colluviums. In shallow soil depths, matric suction may increase, decrease or remain 

constant (Travis et al. 2010) and similar interpretation for matric suction distribution can 

be understood in a couple of studies (Fredlund 1987, Tsaparas et al. 2002, Zhan and Ng 

2004, Lee et al. 2009, Kassim et al. 2012). In case of much deeper soil colluviums (i.e., >2 

m), however, the positive porewater pressure always increases with increase in soil depth 

and the relationship between porewater pressure increase and soil depth is linear (Fredlund 

and Rahardjo 1993). 

 

 

Figure 7.9 Examples of influence of soil depth on porewater pressure distribution for (a) 

20° in 20 m slope profile, and (b) 30° in 30 m slope profile after seepage modeling (the 

porewater pressure profiles were recorded at the middle of slope) 

 

In Figure 7.10 (a) and (b), the variations in factors of safety are clear with increase 

in soil depth at various constant slope inclinations. Increasing the soil depth from 0.3 m to 

0.6 m in Figure 7.10 (a), factors of safety are significantly decreasing. From 0.6 m to 0.9 m, 

the trend in their decrement is gentle and for soil depth greater than 0.9 m, the factors of 

safety are insignificantly varying for all slope inclinations. The slowly decreasing factors 

of safety from 0.9 m to 1.8 m soil depths are consistent with less loss of matric suction or 

highly deepening matric suction profiles along same depths in Figure 7.9 (a) and (b). Also, 

the rate of decrease in the factor of safety with soil depth is observed faster with increase in 

slope inclination. As shown in Figure 7.10 (a) the factor of safety at 0.3 m and 0.6 m soil 

depth for 20° are 2.886 and 2.288 (a difference of 0.598, about 20.07 %), but the factors of 

safety under the same conditions for 25° and 30° are respectively 2.323 and 1.825 (a 
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difference of 0.498, about 21.43 %), and 1.996 and 1.511 (a difference of 0.449, about 

22.90 %). With increase in soil depth, the slip surface deepens and the determined factors 

of safety are lower. The factor of safety has been observed to be less than 1 after 0.9 m for 

40°. It indicates possibility of failure for slip surfaces deeper than 0.9 m. Effect of soil 

depth on slope instability has been fairly investigated in some significant studies (Dietrich 

et al. 2008, Griffiths et al. 2011) which have presented similar decreasing trends of factors 

of safety with soil depth as in Figure 7.10 (a) and (b). 

 

 

Figure 7.10 Typical examples of influence of soil depth on computed factors of safety at 

various constant slope inclinations in (a) 20 m slope profile, and (b) 30 m slope profile 

after slope stability modeling  

 

Hence, there are two perspectives for decrease in the factor of safety (or increase in 

slope instability) with increase in soil depth in Figure 7.10 (a) and (b) as in the case of 

slope inclination. The first perspective is deepening of slip surface with increase in soil 

depth. This results in increased slope mass which, in turn, increases downward sliding 

component of force. The second perspective is increase in soil moisture content as thicker 

soil colluviums provide more space for storing water (or increase in marginal volumetric 

water content of soil with increase in soil depth). The increased moisture content due to 

addition of rainwater not only decreases shear strength at the slip surface by reducing 

matric suction but also increases the soil weight. Both phenomena enhance instability. 

 

7.5.3 Influence of slope length  

The porewater pressure distributions with respect to variation in slope length for various 

constant slope inclinations and 0.6 m soil depth are shown in Figure 7.11 (a) and (b). In 

these figures, there is no considerable change in matric suction distribution with increase in 

slope length. It means slope length does have no significant influence on matric suction 
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distribution. As the slope length increases, the chance for rainfall infiltration increases and 

more water enters into soil (Huang et al. 2013, Puigdefábregas et al. 1998). This brings 

change only in the quantity of surface runoff (De Bryan and Poesen 1989, Giesen et al. 

2011). According to Aryal et al. 2005, hillslopes travel time for subsurface flow increases 

with increase in slope length, but the rate of infiltration does not change. The matric 

suction distribution in the hillslope is rather controlled by soil depth and slope inclination 

which is already mentioned in previous sections of result.  

 

 

Figure 7.11 Examples of variation in porewater pressure with slope lengths at constant 

condition of (a) 20° and 0.6 m soil depth in 20 m slope profile, and (b) 30° and 1.2 m soil 

depth in 30 m slope profile (the porewater pressure profiles were recorded at the middle of 

slope) 

 

The impact of slope length on factors of safety is illustrated in Figure 7.12 (a) and 

(b). In these figures, factors of safety are decreasing with increase in slope length at 

various constant slope inclinations and 0.6 m soil depths. Along short slope lengths, like 

from 15 m to 20 m, the decreasing trend in factor of safety can be easily noted. But, along 

relatively longer slope lengths; such as between 20 m and 40 m, the decreasing trend seems 

as it has almost diminished. Factors of safety between 20 m and 40 m slope lengths are 

varying in second and third decimal places. In short slope lengths, the slip surface does not 

pass parallel to the ground surface. Instead, it involves cutting at the top and bottom of the 

slope which results in higher factors of safety. But, in case of long slope lengths, the slip 

surface passes or failure mechanism occurs parallel to the ground surface and factor of 

safety gets lower (Griffiths et al. 2012). Factors of safety values are found below 1 for all 

slope lengths for 40° in Figure 7.12 (b). So, there is only one reason behind decrease in 

factors of safety (or increase in slope instability) with increase in slope length in Figure 
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7.12 (a) and (b): as the slope length increases, the mass of slope materials on sliding 

surface increases which results in increase in the downslide force and instability. 

 

 

Figure 7.12 Examples of variation of factor of safety with slope length at various constant 

slope inclinations of (a) 0.6 m soil depth in 20 m slope profile, and (b) 1.2 m soil depth in 

30 m slope profile 

 

7.6 Discussion 

Although hillslope instability occurs everywhere in mountainous areas, its nature is 

different as the subsurface hydrological and geo-mechanical phenomena vary over a short 

distance across different landscapes. Hence, hillslope instability is still not well understood 

topic of research and existing literatures are insufficient to describe its complex nature. In 

this study, hillslope instability was explicitly evaluated considering unsaturated soil slopes 

of Higashifukubegawa catchment in Shikoku Island of Japan under extreme rainfalls. The 

instability was observed through variation in porewater pressure response and factors of 

safety in slope profiles constructed by varying three basic parameters forming topography: 

slope inclination, soil depth and slope length across their explored range (Table 7.2) from 

seven slope failures of Higashifukubegawa. Finally, necessary explanations were provided 

for the role of resulting porewater pressure and mobilizing force of slope mass due to 

variation in values of employed parameters on determined factors of safety. There are 

some rationales which the present study follows. There are also some limitations. These 

should be explained here. 

Influence of slope inclination on rainfall infiltration is an ambiguous topic: 

rainwater infiltration increases or decreases with increase in slope inclination (Fox et al. 

1997). The raindrop impact breakdowns and compacts the thin surface layer into a hard 

crust or surface seal. The surface seal acts against rainwater infiltration. Therefore, with 

increase in surface sealing, rainwater infiltration decreases (West et al. 1992). But, the 
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development of surface seal is less in steeper slopes because of higher impact angle of the 

falling raindrops and the greater erosion rate. Rills may also form on the slope surface 

along with surface seal. The rate of formation of rills increases with increase in slope 

inclination (Poesen 1984). Luk et al. 1993 identified that the rate of infiltration increases 

with increase in slope inclination for shorter storms. But, in case of longer storms, the 

rainwater infiltration decreases with increase in slope inclination. For this, their 

justification was that during shorter storms, the development of surface seal is faster on 

gentle slopes while during longer storms, surface seal is completely formed at all the slope 

inclinations. SEEP/W does not take surface seal and rills into account and rainfall 

infiltration decreases normally with increase in slope inclination along slope profiles. 

Hence, unsaturated percolation, rapid response of porewater pressure increase, and 

overland flow of excess water from slope profile surface are the total hydrological 

processes that take place during seepage modeling in SEEP/W carried out in this study. 

Also there has been a good argument for last two to three decades about what 

drives porewater pressure response which causes slope instability, such as lateral 

redistribution of water (Montgomery and Dietrich 1994, Montgomery et al. 2002, Milledge 

et al. 2012), vertical infiltration (Iverson 2000, 2004) or combination of both types 

(D’Odorico and Fagherazzi, 2003). The transient seepage modeling performed in this study 

is an example where porewater pressure increase is driven by vertical infiltration of 

rainwater. The transient seepage modeling was performed in deterministic approach (i.e., 

with defined soil permeability and porosity). In silty sand, rainflux quickly reaches the 

bottom of soil colluvium. Therefore, transient seepage modeling performed here gives 

exact range of expected change in porewater pressure. For example, matric suction varies 

between -1.82 kPa and -10.647 kPa in 1.2 m depth of silty sand at 30° under extreme 

rainfalls. 

The porewater pressure profiles presented in result sections were subsurface 

hydrologic response of slope profiles to 223 time step rainflux. The value of applied 

rainflux/10 minute (q) at 223 time step was 1.62 × 10
-6

 m/s (i.e., 1/6
th

 of 9.72× 10
-6 

m/s or 

35 mm/hr at 14 pm of 20
th

  October, 2004) which is much greater than employed value of 

soil permeability (i.e., k as 9 × 10
-8

 m/s) in seepage modeling. Under such condition in 

coarse-grained shallow colluvial slopes, the infiltration front quickly meets underlying 

impervious bedrock and vertical flow of rainwater decreases. This phenomenon suppresses 

positive porewater pressure increase (McNamara et al. 2005, Rahardjo et al. 2005, Lanni et 

al. 2012). Instead, the porewater pressure and soil permeability increase based on the 
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relationship between matric suction head and unsaturated soil permeability. This is why 

matric suction was dominant or positive porewater pressure increase was insignificant in 

porewater pressure profiles at present study. 

Griffiths et al. 2011, in stability analysis of an infinite slope, presented that factor 

of safety decreases, reaches a minimum and then increases with increase in slope 

inclination. They gave the term critical slope inclination at which minimum factor of safety 

was obtained and its value was 65° in their study. Their explanation for increase in the 

value of factor of safety after critical slope inclination was that the length of the potential 

failure surface available to resist sliding increases at a faster rate compared to down-slope 

component of the slope mass trying to cause sliding. However, instability process in 

natural hillslopes does not fully follow this trend. In natural slopes, instability always 

increases with increase in slope inclination and on steep slopes of greater than 65°, 

instability rarely occurs as there is no enough soil for sliding. In this study, factors of safety 

were found decreasing (or increasing instability) across full range of explored values of 

slope inclination of Higashifukubegawa catchment. In much deeper soil colluviums (i.e., 

>2 m), soil properties may change and rate of infiltration may not be effectively observed. 

So, localized failures may occur. On gentle hillslopes with deep soil colluviums, failure is 

attracted to crest whereas on relatively steeper hillslopes, toe failure is favored. Such types 

of instabilities were not noted at present study particularly due to limitation in employed 

value range of soil depth. The variations in factors of safety were regular with variation in 

values of all the three employed parameters across their permissible range. The parallel 

trend in porewater pressure and factor of safety distributions was due to coarse-grained 

nature of soil. Small grid size was used in finite element mesh since larger grids induce 

error in determination of factor of safety.  

Hillslope is a three-dimensional morphological unit of topography. The three-

dimensional geometry of a hillslope in a catchment can be represented by slope inclination, 

soil depth, slope length, slope width, profile curvatures [concave (hollow), convex (nose) 

and straight (side slopes) contours], and plan shapes (convergent, parallel, divergent) 

(Dietrich et al. 1987, Talebi et al. 2008a). The two-dimensional analyses of seepage and 

slope stability [GeoStudio (2005)] applied in this study might have slightly underestimated 

porewater pressure and overestimated factors of safety. However, these should not be 

significant since basic parameters of topography (slope inclination, soil depth and slope 

length) were captured in slope profiles and major controlling parameters of hillslope 

hydrologic response (soil permeability and porosity) were incorporated in dynamic 
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hydrological modeling in SEEP/W. Thus, two-dimensional seepage and slope stability 

analyses applied in this study is appropriate to investigate instability in a catchment with 

small-scale hillslope instability problems. 

 

7.7 Conclusions  

From this study, following conclusions were drawn.  

(i) Slope instability increases with increase in slope inclination, soil depth and slope length 

with remarkable decreasing trend in factor of safety in Higashifukubegawa catchment. The 

failure process in hillslopes of other catchments in mountainous terrain should follow this 

trend.  

 

(ii) Factors of safety were found exponentially decreasing with increase in slope inclination 

whereas the decrement was firstly exponential and then gentle (or nearly parallel) with soil 

depth and slope length across their permissible value range.  

 

(iii) Slope inclination and soil depth impart significant impact on unsaturated zone 

moisture storage and sliding tendency of slope mass. Therefore, instability is controlled 

twofold by these two parameters.  

 

(iv) The unsaturated zone moisture content does not considerably change with change in 

slope length, and only the changed sliding force of slope mass governs slope instability in 

case of slope length. Therefore, insignificant variation in unsaturated zone moisture 

content in relation to slope length can be neglected on stability analysis of catchment 

slopes.   

 

(v) Among slope inclination, soil depth and slope length, the influence of a single 

parameter or combination of one with other two can be potential for predicting failure. 

Therefore, it is essential to properly consider these parameters in hillslope stability analysis.  

 

(vi) How hillslope instability changes in relation to change in values of basic parameters of 

topography under same simulating conditions has been well studied and documented in 

this study. The comprehensive analyses performed in this study are believed to enhance the 

understanding on mechanism of extreme rainfall-induced instability or slope failure in 
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coarse-grained, shallow and unsaturated soil slopes of small catchments in mountainous 

terrain. 
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Chapter 8  

 
Summary, conclusions, and limitations/recommendations 

This chapter is based on summary of work and major results presented in Chapter 5, 6, 

and 7. Some limitations associated with methodology are also included together with 

recommendation.  

 

Summary and Conclusions 

The aim of this research was to evaluate rainfall-induced slope failures and potential 

instability during heavy rainfall in small catchment scale. For this, two-dimensional 

numerical modeling at hillslope scale and coupled deterministic-statistical modeling at 

landscape scale were performed in this study. The study was started with investigating 

triggering mechanism of slope failures in Higashifukbegawa catchment, Niihama of 

western Japan where the slope failures were induced by 2004 extreme typhoon-rainfalls. 

Seepage and slope stability modeling was performed in slope profiles passing through 

failure locations within the topographic hollows in Higashifukubegawa catchment, a part 

of tertiary sedimentary terrain in Niihama City of Shikoku Island. SEEP/W and SLOPE/W 

programs of GeoStudio (2005) can efficiently take the hydro-mechanical properties of soil 

into account from finite element mesh profile for numerical modeling. Hydrological and 

geo-mechanical processes associated with triggering of slope failures were analyzed and 

discussed in this part of research. After this, deterministic modeling was performed 

covering entire Higashifukubegawa catchment (landscape-scale analysis) employing 

infinite slope model and dynamic hydrological model. Parameter maps of hydrological and 

geo-mechanical properties of soil obtained from field/laboratory experiments were input to 

these models. A robust deterministic model was obtained as a result of deterministic slope 

failure hazard assessment. This model was then replicated into neighborhood test 

catchments of Higashifukubegeawa coupling it with discriminant function model through 

DEM-based morphometric parameters. In the last part of research, a parametric study in 

hillslope scale was performed numerically focusing on influence of basic parameters of 

topography on hillslope instability. The conclusions of this research are the following.  

 

(i) Saturated-unsaturated interactions in soil slopes during heavy rainfall lead to fluctuation 

in subsurface zone moisture content which is one the major causes of triggering slope 

failure in topographic hollows.  



 

 107 

 

(ii) One important dimension of this research is that it has related maximum porewater 

pressure with topographic hollow area through an empirical parametric equation so as to 

predict porewater pressure and potential instability in topographic hollows. The research 

emphasizes that topographic hollow size governs porewater pressure generation and it 

should be duly considered in the analysis of hillslope instability problems.  

 

(iii) Major controlling parameters for hillslope instability have been outlined which were 

slope gradient, rainfall, saturated permeability of soil, porosity, and initial porewater 

pressure. These parameters directly affect/control rainfall infiltration through soil. Higher 

the rate of infiltration, higher is the soil moisture content or porewater pressure. When soil 

moisture content is much high, the slope mass fails regardless of the values of geotechnical 

parameters.  

 

(iv) Hillslope subsurface hydrology was successfully linked to catchment subsurface 

hydrology (landscape-scale subsurface hydrology) which was then used for slope failure 

hazard assessment. By using SEEP/W, it was first done in this study. 

 

(v) Realizing problems in existing methods of slope failure hazard assessment and 

replication in catchment-scale, the second part of this research utilized grey box approach 

[coupled deterministic-statistical method] to prepare and replicate a deterministic slope 

failure hazard model. The replicated hazard maps in neighborhood catchments of model 

catchment showed moderate to good prediction accuracy with existing inventories of 2004 

slope failures. This reasonably validates the deterministic model and replication process 

presented in this study.    

 

(vi) Even the variation in basic parameters of hillslope profiles significantly alters 

underlying hydro-mechanical mechanisms and instability which may eventually lead to 

slope failure. 

 

(vii) The slope failure during extreme typhoon rainfalls can be realistically evaluated 

coupling hydro-geo-mechanical and statistical approaches.  
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Limitations and recommendations 

(i) Evapotranspiration rate from the ground surface is a function of vegetation cover, soil 

moisture, and sunlight hour. But, it was neglected at present research. 

 

(ii) Bedrock cracks play an important role on porewater pressure dynamics by acting as 

impedance for the downslope drainage of perched water. Influence of bedrock has been 

well studied in past studies of field and numerical investigation. This research has not 

considered drainage through bedrock in the analyses. 

 

(iii) Antecedent rainfall affects slope stability by reducing soil suction and increasing 

transient porewater pressure. Most of the days of September and October had considerable 

antecedent rainfall. The antecedent rainfalls prior to major rainfall event (19-20 October 

2004) were not considered in any of the analyses in this study. 

 

(iv) There are some important aspects in porewater pressure profiles presented in Chapter 

5 which should be explained here. The trend in porewater pressure increase seems as it has 

converged or reached maximum before 7 am on 10/20 although it should reach peak only 

at 14 pm on 10/20 (i.e., at exactly at maximum hourly rainfall intensity, 45 mm/hr) or after 

some hours of maximum hourly rainfall intensity. In reality, the porewater pressure has not 

exactly converged. If it is closely observed, the increasing trend in porewater pressure from 

7 am to 14 pm on 10/20 can be recognized and the porewater pressure has reached 

maximum only at 14 pm on 10/20 (i.e., at the 38th hour of two day continuous rainfall). 

However, the increasing trend in porewater pressure from 7 am to 14 pm on 10/20 is gentle 

or not sharp/significant compared to decrease in the factors of safety. Before performing 

seepage modeling, it was expected that there should be significant/sharp increase in 

porewater pressure with rainfall infiltration between 7 am and 14 pm on 10/20. Hundreds 

of trials were done in each slope profiles to get the expected porewater pressure increase 

by altering field values of hydrological parameters, such as hydraulic conductivity, 

volumetric water content across a reasonable range for silty sand. However, better results 

could not be obtained than presented in [i.e., Figure 7 (a, b, c, d, e, f, g)]. So, significant 

decrease in factors of safety was obtained between 7 am and 14 pm on 10/20. But, 

significant/sharp increase in porewater was not received during the same rainfall hours. 

From this, it is remarked that the significant decrease in factor of safety after 7 am on 

10/20 is not mainly due to porewater pressure change but due to other parameters, such as 
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slope inclination, geo-mechanical parameters, soil depth etc. The next reason may be 

limitation of two-dimensional hydrological modeling program [SEEP/W plug-in of 

Geostudio (2005)] because the porewater pressure distribution was slightly overestimated 

between 7 am and 14 pm on 10/20. So, it is also recommended to use the other 

hydrological modeling programs for such kind of analysis and crosscheck the results.  

 

(v) Although the two-dimensional seepage and slope stability modeling implemented in 

this study is considered appropriate to address simple instability problems in topographic 

hollows, it may not be sufficient. It is because a topographic hollow is a three-dimensional 

morphological unit, and seepage and slope stability mechanisms occurring on it must be 

three dimensional. The three dimensional geometry of a topographic hollow can be 

represented by hillslopes with slope shape [concave (hollow), convex (nose) and straight 

(side slopes) contours], slope inclination and slope profile (profile length, profile width, 

soil depth) (Dietrich et al. 1987). The present study has not considered plan shape and 

profile curvature in modeling. Apart from principle parameters of topography (slope 

inclination, soil depth, and slope length), plan shape and profile curvatures also 

significantly contribute to the subsurface hydrology of topographic hollow. Convex shape 

contributes water to concave and plane shape. Instability can occur in both concave and 

plane shape (Dietrich et al. 1987, May et al. 2002, Sidle et al. 1985, Thorne et al. 1987).  

Therefore, these parameters should also be incorporated in hydrological/slope stability 

modeling so to more realistically predict instability mechanism.  
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Appendix A 
Soil thickness at each location in Figure 5.2 after field measurement 

 
1 Coordinate (y, x) Soil depth (cm)

2   350367.96,  3760255.60 38.5

3   350330.65,  3760234.00 83.0

4   350330.13,  3760200.73 54.0

5  350320.54,  3760178.72 77.0

6  350301.53,  3760145.72 191.0

7   350359.07,  3760277.92 74.0

8   350358.90,  3760266.83 142.0

9   350339.89,  3760233.86 34.0

10   350366.91,  3760189.06 115.0

11    350350.53,  3760322.42 37.0

12    350303.99,  3760300.98 73.0

13    350462.46,  3760387.21 45.0

14    350442.75,  3760309.88 74.0

15    350405.27,  3760277.19 50.0

16    350423.22,  3760243.63 25.0

17   350451.64,  3760287.55 80.0

18    350469.59,  3760253.99 104.0

19    350459.30,  3760187.60 67.0

20    350431.94,  3760210.22 25.0

21    350413.46,  3760210.51 52.0

22   350443.28,  3760343.14 72.5

23   350440.30,  3760154.62 0.0

24    350458.43,  3760132.15 106.5

25    350514.21,  3760153.46 110.0

26   350531.99,  3760108.81 60.0

27    350513.34,  3760098.01 0.0

28   350532.17,  3760119.90 0.0

29   350458.08,  3760109.97 0.0

30    350515.09,  3760208.90 90.0

31    350487.72,  3760231.52 118.0

32    350543.33,  3760241.73 96.0

33    350506.90,  3760275.59 42.0

34    350479.36,  3760287.11 105.0

35    350369.54,  3760355.40 55.0

36   350341.82,  3760355.84 78.0

37    350305.22,  3760378.60 74.0

38    350248.90,  3760324.03 70.0

39    350606.43,  3760140.91 174.0

40   350489.65,  3760353.50 44.0

41   350489.47,  3760342.41 95.0

42   350369.01,  3760322.13 23.0

43   350599.29,  3760274.13 78.0

44   350412.23,  3760132.88 23.0  
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45  350596.49,  3760096.70 46.0

46   350578.36,  3760119.17 82.0

47   350559.88,  3760119.46 93.0

48   350457.55,  3760076.71 56.0

49   350447.79,  3760043.58 30.0

50   350429.83,  3760077.14 102.0

51   350373.87,  3760044.75 69.0

52  350318.44,  3760045.63 20.0

53  350300.66,  3760090.28 10.0

54  350507.95,  3760342.12 0.0

55  350617.07,  3760229.48 0.0

56  350356.09,  3760089.40 0.0

57 350388.42, 3760380.61 162.5

58 350369.74, 3760368.70 121.5

59 350361.05, 3760403.23 92.0

60 350360.56, 3760372.18 55.0

61 350331.28, 3760273.92 38.0

62 350322.62, 3760310.66 102.0

63 350313.54, 3760320.79 52.0

64 350286.10, 3760338.97 92.0

65 350266.75, 3760283.81 54.0

66 350257.37, 3760275.09 81.0

67 350230.09, 3760303.25 59.0

68 350183.07, 3760251.86 17.0

69 350210.49, 3760232.57 84.0

70 350246.95, 3760200.93 145.0

71 350283.58, 3760179.28 91.0

72 350329.14, 3760138.63 134.0  
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Appendix-B 
Derivation of two-dimensional Richard’s equation for rainwater infiltration through 

saturated/unsaturated soil 

 

The rainfall-induced slope failure in saturated and unsaturated soils is directly connected 

with characteristics of water flow, porewater pressure distribution and shearing strength of 

soils (Rahardjo et al. 2005). Rainfall infiltration through both saturated and unsaturated 

soils follow the same physical laws such as law of motion, law of mass conservation, and 

Darcy’s law. Also the partial differential flow equation is formulated in similar way for 

both cases. Still the water flow through saturated and unsaturated soils differs in two ways. 

(1) Matric suction does not exist in saturated soils. The water retaining capacity of soil is 

more or less constant for a soil. But in unsaturated soils, matric suction alters the capacity 

to retain water [Soil water characteristics curve (SWCC) defines the relationship of matric 

suction with water content].  

(2) The hydraulic conductivity of saturated soils is always constant. However, it increases 

with increase in the loss of matric suction in unsaturated soils.  

The governing second order differential equation for flow through saturated and 

unsaturated soils is given by following relation. 

 

 (B-i) 

 

In which, H is the total hydraulic head and is defined by  

   

(B-ii) 

 

Where z is the elevation measured from mean sea level; uw is the pore water pressure, x 

and y are the Cartesian coordinates in x and y direction respectively, kx is hydraulic 

conductivity in x direction, ky is hydraulic conductivity in y direction, ρw is density of 

water; q is applied boundary flux, θw is volumetric water content; g is acceleration due to 

gravity, ua is the pore air pressure and it is taken as atmospheric pressure, and t is time. 

Equation (B-i) is a water-mass balance equation. This equation implies that the rate of 

change of flows of water in the x-direction and y-direction plus an external applied flux is 

equal to the rate of change of the volumetric water content with respect to time.  

The amount of water stored in soil depends on matric suction and moisture 

retention characteristics of the soil structure. Figure (B-a) is water retention characteristics 

curves or soil water characteristics curves (SWCC). The slope of the curves represents the 

water retention characteristics of the soils. The water retention characteristics denote the 

rate of change of water absorbed or released by the soil due to change in the porewater 

pressure with rainfall infiltraion. The total amount of water stored or the volumetric water 

content is equal to the soil porosity at 100 % saturation. A complete SWCC is shown in 

Figure (B-b). The drying curve denotes a continuous release of water from soil with 

increase in matric suction. The wetting curve denotes a continuous absorption of water by 

soil particles with decrease in matric suction. In SWCC, three distinct stages in soil 

desaturation can be recognized namely I, II, and III [Figure (B-a)]. Typical SWCC function 

used in seepage modeling in this research is shown in Figure (B-c) 
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Figure (B-a) Soil water characteristics curve (GeoStudio 2005) (In this figure, 

AEV is air-entry value and Ɵr is residual water content.  
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Figure (B-b) A complete soil water characteristics curve  
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Figure (B-c) SWCC function used in seepage modeling. 

 

The hydraulic conductivity of unsaturated soils depends on the water content of 

the soil. It is because of the heterogeneous distribution of water content in the soil mass 

(Ng and Shi 1998, Rahardjo et al. 2005). It is assumed that water flows along a web of 

interconnected but continuous conduits and with absorption of water in soil, the size and 

number of conduits increases thereby increasing the ability to conduct water through the 

soil. Therefore, hydraulic conductivity is a function of matric suction (or porewater 

pressure). Figure (B-d) shows variation of hydraulic conductivity with matric suction for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (B-d) Hydraulic conductivity vs matric suction graph (log-log plot) 

for silty sand (GeoStudio2005) used in this research 
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silty sand. From this figure, it can be understood that the hydraulic conductivity decreases 

with increase in matric suction for unsaturated soils.  

 

For an isotropic unsaturated soil element, the constitutive equation for the water 

phase is given below.   

 (B-iii) 

 

 

Where ma and mw are the coefficient of volume change with respect to air and water 

respectively. During transient phenomenon, ma and mw are constant for a certain time step. 

ma is nearly equal to mv at saturated conditions. Also the total stress (σ) in the soil mass and 

the pore air pressure (ua) remain constant during transient phenomenon. This implies that 

(σ - ua) does not affect change in volumetric water content. If no hysteresis between drying 

and wetting paths in the SWCC [(Figure (B-a)], the change in porewater pressure can be 

linked to change in volumetric water content by following relationship.  

  

 (B-iv) 

 

Rearranging equation (B-ii) we get,  

  (B-v) 

 

Substituting equation (B-v) into equation (B-iv) we get, 

  (B-vi) 

 

Substituting equation (B-vi) into equation (B-i), we get 

  

  (B-vii) 

 

 

Elevation (z) is constant and the derivative of z with respect to t becomes zero. The 

equation (B-vii) with remaining terms is given below.  

 

 (B-vii) 

 

 

Equation (B-vii) is Richard’s equation in two dimensions for saturated and unsaturated 

flow through soil.  

 

Notes: 

(1) For homogenous and isotropic condition, kx = ky = k and Q = 0.   

(2) Under steady state condition, the flux entering the elemental volume is equal to the flux 

leaving the elemental volume all the time. Then, the right hand side of equation (A-vii) 

disappears and equation (B-vii) reduces to following form.  
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Appendix C 
Hourly typhoon rainfall data of 19-20 October 2004 in Niihama of Shikoku Island, Japan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0:00 0.0

1:00 1.0

2:00 2.0

3:00 3.0

4:00 5.0

5:00 4.0

6:00 3.0

7:00 4.0

8:00 0.0

9:00 1.0

10:00 6.0

11:00 8.0

12:00 7.0

13:00 0.0

14:00 1.0

15:00 3.0

16:00 6.0

17:00 9.0

18:00 7.0

19:00 1.0

20:00 1.0

21:00 1.0

22:00 0.0

23:00 5.0

0:00 1.0
1:00 4.0
2:00 0.0
3:00 2.0
4:00 5.0
5:00 13.0
6:00 13.0
7:00 11.0
8:00 19.0
9:00 20.0

10:00 27.0
11:00 45.0
12:00 43.0
13:00 35.0
14:00 22.0
15:00 26.0
16:00 15.0
17:00 14.0
18:00 2.0
19:00 1.0
20:00 0.0
21:00 2.0
22:00 0.0
23:00 0.0

One day rainfall

accumulation (mm)Date
2

0
/1

0
/2

0
0

4

3
9

8
.0

1
9

/1
0

/2
0

0
4

7
8

.0

Rainfall hour Rainfall amount (mm)
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Appendix D 
(i) Hydrological and geo-mechanical properties of soil at each location in Figure 5.2 

(Appendix A) after field and laboratory investigation  

 
1 Coordinate (y, x) Soil type C (kN/m

2
)  ɸ  (°) γ t (kN/m

3
) γ sat (kN/m

3
) n k (m/s) C r (kN/m

2
) Soil depth (cm)

2    350367.96,  3760255.60 SM fine        7.49 27.42 13.25 17.39 0.493 0.000025 0.00 38.5

3   350330.65,  3760234.00 SM coarse      6.46 36.86 12.41 17.08 0.532 0.000016 0.00 83.0

4   350330.13,  3760200.73 SM medium      4.09 34.55 12.23 16.84 0.559 0.000017 0.00 54.0

5  350320.54,  3760178.72 SM medium      5.11 40.39 12.99 16.93 0.560 0.000014 0.00 77.0

6   350301.53,  3760145.72 SM fine        4.92 31.04 10.71 15.57 0.642 0.000006 1.90 191.0

7   350359.07,  3760277.92 SM fine        1.57 30.37 13.72 16.99 0.547 0.000004 0.00 74.0

8   350358.90,  3760266.83 SM fine        5.22 31.00 15.00 17.62 0.504 0.000008 0.00 142.0

9   350339.89,  3760233.86 SM medium      4.52 39.58 12.02 15.74 0.622 0.000037 0.00 34.0

10   350366.91,  3760189.06 SM fine        3.30 28.12 11.11 15.66 0.628 0.000012 0.00 115.0

11    350350.53,  3760322.42 SM medium      2.19 31.83 10.74 15.33 0.653 0.000027 1.90 37.0

12    350303.99,  3760300.98 SM medium      0.90 42.59 12.20 16.33 0.559 0.000032 1.90 73.0

13    350462.46,  3760387.21 SM medium      3.30 39.85 13.49 16.52 0.550 0.000031 4.80 45.0

14    350442.75,  3760309.88 SM fine        8.21 37.87 11.95 16.23 0.576 0.000004 1.90 74.0

15    350405.27,  3760277.19 SM medium      7.96 37.28 11.33 15.67 0.602 0.00005 0.00 50.0

16    350423.22,  3760243.63 SM medium      7.73 39.20 15.04 17.59 0.484 0.000026 1.90 25.0

17   350451.64,  3760287.55 SM medium      13.37 32.78 12.74 16.86 0.548 0.000018 0.00 80.0

18   350469.59,  3760253.99 SM medium      14.11 27.89 13.88 16.71 0.551 0.000019 0.00 104.0

19   350459.30,  3760187.60 SM medium      8.32 30.54 13.42 16.35 0.548 0.000029 3.40 67.0

20   350431.94,  3760210.22 SM coarse      6.29 39.56 10.58 15.40 0.619 0.000039 1.90 25.0

21   350413.46,  3760210.51 SM medium      7.73 34.64 12.81 16.45 0.549 0.000019 1.90 52.0

22   350443.28,  3760343.14 SM coarse      0.31 40.41 11.82 15.54 0.623 0.000046 1.90 72.5

23   350440.30,  3760154.62 Bed rock       0.00 0.00 0.00 0.00 0.000 0 0.00 0.0

24   350458.43,  3760132.15 SM coarse      1.27 37.69 11.59 15.43 0.644 0.000021 4.30 106.5

25    350514.21,  3760153.46 SM medium      12.50 30.33 15.06 17.25 0.520 0.000015 1.90 110.0

26   350531.99,  3760108.81 SM fine        10.76 23.91 13.01 16.10 0.592 0.000046 4.30 60.0

27    350513.34,  3760098.01 Bed rock       0.00 0.00 0.00 0.00 0.000 0 0.00 0.0

28   350532.17,  3760119.90 Bed rock       0.00 0.00 0.00 0.00 0.000 0 0.00 0.0

29   350458.08,  3760109.97 Bed rock       0.00 0.00 0.00 0.00 0.000 0 0.00 0.0

30    350515.09,  3760208.90 SM medium      4.49 33.14 16.74 18.90 0.397 0.000016 1.90 90.0  
31    350487.72,  3760231.52 SM coarse      4.49 24.70 14.44 16.83 0.540 0.000026 1.90 118.0

32    350543.33,  3760241.73 GM medium      10.85 21.92 15.07 17.19 0.521 0.000027 0.00 96.0

33    350506.90,  3760275.59 SM medium      0.85 33.06 13.71 16.79 0.548 0.000026 3.40 42.0

34    350479.36,  3760287.11 SM fine        2.37 31.45 12.98 16.37 0.591 0.000008 1.90 105.0

35    350369.54,  3760355.40 SM fine        0.85 31.04 14.57 16.52 0.565 0.000008 1.90 55.0

36   350341.82,  3760355.84 SM fine        4.87 29.10 14.25 17.30 0.525 0.000013 1.90 78.0

37    350305.22,  3760378.60 SM fine        1.48 28.50 11.94 15.88 0.610 0.000011 1.90 74.0

38    350248.90,  3760324.03 SM fine        5.33 27.20 13.55 17.06 0.540 0.000013 1.90 70.0

39    350606.43,  3760140.91 M              9.48 24.33 13.94 16.29 0.576 0.000016 4.80 174.0

40   350489.65,  3760353.50 SM medium      5.11 40.39 12.99 16.93 0.560 0.000014 4.30 44.0

41    350489.47,  3760342.41 SM coarse      1.27 37.69 11.59 15.43 0.644 0.000021 4.80 95.0

42   350369.01,  3760322.13 SM medium      0.90 42.59 12.20 16.33 0.559 0.000032 0.00 23.0

43   350599.29,  3760274.13 SM medium      7.73 34.64 12.81 16.45 0.549 0.000019 1.90 78.0

44   350412.23,  3760132.88 SM medium      0.90 42.59 12.20 16.33 0.559 0.000032 3.40 23.0

45  350596.49,  3760096.70 SM coarse      1.27 37.69 11.59 15.43 0.644 0.000021 4.30 46.0

46   350578.36,  3760119.17 SM coarse      1.27 35.69 11.59 15.43 0.644 0.000021 3.40 82.0

47    350559.88,  3760119.46 SM coarse      1.27 37.69 11.59 15.43 0.644 0.000021 4.30 93.0

48   350457.55,  3760076.71 SM coarse      1.27 37.69 11.59 15.43 0.644 0.000021 4.80 56.0

49    350447.79,  3760043.58 SM coarse      1.27 37.69 11.59 15.43 0.644 0.000021 4.80 30.0

50    350429.83,  3760077.14 SM coarse      1.27 37.69 11.59 15.43 0.644 0.000021 4.80 102.0

51    350373.87,  3760044.75 SM coarse      1.27 37.69 11.59 15.43 0.644 0.000021 4.80 69.0

52   350318.44,  3760045.63 SM medium      7.73 34.64 12.81 16.45 0.549 0.000019 4.30 20.0

53   350300.66,  3760090.28 SM coarse      0.31 40.41 11.82 15.54 0.623 0.000046 4.80 10.0

54   350507.95,  3760342.12 SM coarse      0.31 40.41 11.82 15.54 0.623 0.000046 4.30 0.0

55    350617.07,  3760229.48 SM coarse      0.31 40.41 11.82 15.54 0.623 0.000046 4.30 0.0

56    350356.09,  3760089.40 SM coarse      0.31 40.41 11.82 15.54 0.623 0.000046 4.80 0.0

57   350388.42, 3760380.61 None None None None None None None None 162.5

58 350369.74, 3760368.70 None None None None None None None None 121.5

59 350361.05, 3760403.23 None None None None None None None None 92.0

60 350360.56, 3760372.18 None None None None None None None None 55.0  
61 350331.28, 3760273.92 None None None None None None None None 38.0

62 350322.62, 3760310.66 None None None None None None None None 102.0

63 350313.54, 3760320.79 None None None None None None None None 52.0

64 350286.10, 3760338.97 None None None None None None None None 92.0

65 350266.75, 3760283.81 None None None None None None None None 54.0

66 350257.37, 3760275.09 None None None None None None None None 81.0

67 350230.09, 3760303.25 None None None None None None None None 59.0

68 350183.07, 3760251.86 None None None None None None None None 17.0

69 350210.49, 3760232.57 None None None None None None None None 84.0

70 350246.95, 3760200.93 None None None None None None None None 145.0

71 350283.58, 3760179.28 None None None None None None None None 91.0

72 350329.14, 3760138.63 None None None None None None None None 134.0  
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(ii) Hydrological and geo-mechanical properties of soil at various points shown in Figure 

5.2 (Appendix A) were fitted into 25  25 sq. m blocks based on nearness of block to the 

points for deterministic slope failure hazard modeling 

 

 

Block No C (kN/m
2
)  ɸ  (°) γ t (kN/m

3
) γ sat (kN/m

3
) n k (m/s) C r Soil type

1 7.73 34.64 12.81 16.45 0.549 0.0000190 4.31 SM medium

2 7.73 34.64 12.81 16.45 0.549 0.0000190 4.31 SM medium

3 7.73 34.64 12.81 16.45 0.549 0.0000190 4.31 SM medium

4 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

5 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

6 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

7 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

8 0.31 34.64 12.20 16.63 0.548 0.0000320 1.92 SM coarse

9 0.31 34.64 12.20 16.63 0.548 0.0000320 1.92 SM coarse

10 7.73 34.64 12.81 16.45 0.549 0.0000320 4.31 SM coarse

11 7.73 34.64 12.81 16.45 0.549 0.0000190 4.31 SM medium

12 7.73 34.64 12.81 16.45 0.549 0.0000210 4.31 SM medium

13 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

14 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

15 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

16 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

17 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

18 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

19 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

20 6.46 27.42 10.71 15.70 0.628 0.0000060 1.92 SM fine

21 3.30 27.42 10.71 15.70 0.628 0.0000060 1.92 SM fine

22 3.30 40.39 12.20 15.70 0.628 0.0000320 1.92 SM coarse

23 3.30 40.39 12.20 16.63 0.548 0.0000320 1.92 SM coarse

24 3.30 34.64 12.20 16.63 0.548 0.0000460 1.92 SM coarse

25 0.31 40.41 11.82 15.54 0.623 0.0000460 4.79 SM coarse

26 0.31 40.41 11.82 15.54 0.623 0.0000460 4.79 SM coarse

27 0.31 40.41 11.82 15.54 0.623 0.0000460 4.79 SM coarse

28 0.31 40.41 11.82 15.54 0.623 0.0000460 4.79 SM coarse

29 0.31 37.69 11.82 15.54 0.623 0.0000460 4.79 SM coarse

30 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

31 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

32 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

33 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

34 10.76 23.91 13.01 16.10 0.592 0.0000210 4.31 SM coarse

35 10.76 23.91 13.01 16.10 0.592 0.0000210 4.31 SM coarse

36 1.27 37.69 11.59 15.43 0.592 0.0000210 4.31 SM coarse

37 1.27 37.69 11.59 15.43 0.644 0.0000210 4.31 SM coarse

38 1.27 37.69 11.59 15.43 0.644 0.0000210 4.31 SM coarse

39 6.46 27.42 10.71 15.57 0.628 0.0000060 1.92 SM fine

40 6.46 27.42 10.71 16.93 0.628 0.0000060 1.92 SM fine

41 6.46 36.86 15.07 16.83 0.619 0.0000270 3.35 SM coarse

42 3.30 40.39 15.07 16.83 0.819 0.0000270 3.35 SM coarse

43 0.31 40.41 15.07 16.83 0.619 0.0000270 3.35 SM coarse

44 0.31 40.41 11.82 15.54 0.623 0.0000460 4.79 SM coarse

45 0.31 40.41 11.82 15.54 0.623 0.0000460 4.79 SM coarse

46 0.31 40.41 11.82 15.54 0.623 0.0000460 4.79 SM coarse

47 0.31 40.41 11.82 15.54 0.623 0.0000460 4.79 SM coarse

48 0.31 40.41 11.82 15.54 0.623 0.0000460 4.79 SM coarse
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49 0.90 37.69 11.59 16.33 0.644 0.0000460 4.79 SM coarse

50 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM fine

52 10.76 37.69 11.59 15.43 0.644 0.0000210 4.79 SM fine

54 10.76 23.91 11.59 16.40 0.592 0.0000460 4.31 SM fine

55 1.27 37.69 13.01 15.43 0.644 0.0000210 4.31 SM coarse

56 1.27 37.69 11.59 15.43 0.644 0.0000210 4.31 SM coarse

57 1.27 37.69 11.59 15.43 0.644 0.0000210 4.31 SM coarse

58 1.27 37.69 11.59 15.43 0.644 0.0000210 4.31 SM coarse

59 1.57 42.59 12.23 16.93 0.644 0.0000080 1.92 SM fine

60 1.57 42.59 10.58 16.93 0.559 0.0000080 1.92 SM fine

61 6.41 36.86 10.58 16.93 0.559 0.0000080 1.92 SM fine

62 6.41 32.86 15.07 16.83 0.619 0.0000270 3.35 SM coarse

63 4.92 40.39 15.07 16.83 0.619 0.0000270 3.35 SM coarse

64 4.92 31.01 10.79 15.57 0.842 0.0000060 1.92 SM fine

65 4.92 31.01 10.79 15.57 0.642 0.0000060 1.92 SM fine

66 0.31 24.70 13.42 18.90 0.530 0.0000160 1.92 SM medium

67 0.31 24.70 13.42 18.90 0.530 0.0000160 1.92 SM medium

68 0.90 42.59 13.42 16.33 0.559 0.0000320 3.35 SM medium

69 0.90 42.59 12.20 16.33 0.559 0.0000320 3.35 SM medium

70 1.27 37.69 11.59 15.43 0.644 0.0000210 4.31 SM coarse

71 1.27 37.69 11.59 15.43 0.644 0.0000210 4.31 SM coarse

72 1.27 30.33 11.59 17.25 0.644 0.0000210 1.92 SM coarse

74 10.76 30.33 11.59 16.10 0.592 0.0000210 4.31 SM fine

75 1.27 37.69 11.59 15.43 0.644 0.0000210 4.31 SM coarse

76 9.48 24.33 11.59 16.29 0.644 0.0000210 4.79 M

77 9.48 24.33 13.94 16.29 0.576 0.0000160 4.79 M

78 9.48 24.33 13.94 16.29 0.576 0.0000160 4.79 M

79 1.57 42.59 12.23 15.74 0.532 0.0000080 1.92 SM medium

80 1.57 42.59 12.23 15.74 0.559 0.0000080 1.92 SM medium

81 1.57 42.59 12.23 15.74 0.559 0.0000080 1.92 SM medium

82 5.22 27.42 15.04 16.86 0.484 0.0000260 1.92 SM fine

83 5.22 27.42 15.04 16.93 0.484 0.0000260 1.92 SM medium

84 4.92 31.04 10.71 15.57 0.642 0.0000060 1.92 SM fine

85 4.92 31.04 10.71 15.57 0.642 0.0000060 1.92 SM fine

86 6.20 28.12 13.42 18.90 0.530 0.0000160 1.92 SM medium

87 6.20 24.70 13.42 18.90 0.530 0.0000160 1.92 SM medium

88 6.20 24.70 13.42 18.90 0.548 0.0000160 3.35 SM medium

89 0.90 30.54 12.20 16.30 0.548 0.0000320 3.35 SM medium

91 1.27 37.69 11.59 15.43 0.644 0.0000210 4.31 SM coarse

92 12.50 30.33 15.06 17.25 0.520 0.0000150 1.92 SM coarse

93 12.50 30.33 15.06 17.25 0.520 0.0000150 1.92 SM medium

94 12.50 30.33 15.06 17.25 0.520 0.0000150 1.92 SM medium

95 12.50 34.64 14.11 15.43 0.644 0.0000210 4.31 SM medium

96 9.48 24.33 13.94 16.29 0.576 0.0000160 4.79 M

97 9.48 24.33 13.94 16.29 0.576 0.0000160 4.79 M

98 9.48 24.33 13.94 16.29 0.576 0.0000160 4.79 SM coarse

99 1.57 31.83 13.72 17.08 0.532 0.0000250 4.31 SM medium

100 1.57 31.83 13.72 17.08 0.532 0.0000250 4.31 SM medium

101 1.57 39.85 15.00 17.39 0.493 0.0000180 1.92 SM medium

102 5.22 39.85 15.00 16.86 0.484 0.0000260 3.35 SM medium

103 5.22 27.42 15.04 16.86 0.484 0.0000260 3.35 SM medium

104 5.11 27.42 15.04 16.86 0.560 0.0000260 1.92 SM medium

105 5.11 40.39 12.99 16.93 0.628 0.0000140 0.00 SM medium

106 5.11 40.39 12.99 15.66 0.560 0.0000120 1.92 SM medium

107 3.30 28.12 11.11 15.66 0.628 0.0000120 0.00 SM fine

108 3.30 28.12 11.11 18.90 0.530 0.0000120 1.92 SM fine

109 6.20 30.54 12.81 16.45 0.549 0.0000160 1.92 SM fine

110 8.32 30.54 13.42 16.35 0.548 0.0000290 1.92 SM medium
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111 8.32 30.54 13.42 16.35 0.548 0.0000290 3.35 SM medium

112 4.49 30.54 13.42 16.35 0.548 0.0000290 3.35 SM medium

113 12.50 30.33 15.06 18.90 0.520 0.0000150 1.92 SM medium

114 12.50 34.64 11.82 15.43 0.644 0.0000210 4.31 SM medium

115 0.31 34.64 11.82 15.43 0.644 0.0000210 4.31 SM medium

116 0.31 34.64 11.82 15.43 0.644 0.0000210 4.31 SM medium

117 0.31 34.74 11.82 15.43 0.576 0.0000160 1.92 SM medium

118 0.90 31.83 13.72 15.54 0.644 0.0000040 4.79 SM medium

119 1.57 42.59 13.72 17.39 0.644 0.0000250 4.79 SM medium

120 1.57 39.85 15.00 17.39 0.493 0.0000180 1.92 SM fine

121 1.57 39.85 15.00 17.39 0.493 0.0000180 1.92 SM fine

122 5.22 27.42 15.00 16.86 0.484 0.0000190 1.92 SM medium

123 5.22 34.55 12.23 16.86 0.484 0.0000170 4.31 SM medium

124 4.09 34.55 12.23 16.84 0.559 0.0000170 0.00 SM medium

125 4.09 28.12 12.23 16.84 0.559 0.0000170 1.92 SM medium

126 3.30 28.12 11.11 15.66 0.628 0.0000120 1.92 SM medium

127 3.30 34.64 12.81 16.45 0.549 0.0000190 1.92 SM medium

128 7.73 34.64 10.58 16.45 0.549 0.0000190 1.92 SM coarse

129 6.29 39.56 12.81 15.40 0.619 0.0000390 1.92 SM coarse

130 8.32 35.44 13.42 16.35 0.548 0.0000290 3.35 SM medium

131 4.49 33.14 16.74 18.90 0.397 0.0000160 3.35 SM medium

132 4.49 33.14 16.74 18.90 0.397 0.0000160 1.92 SM medium

133 4.49 33.14 11.82 15.43 0.397 0.0000210 4.31 SM medium

134 0.31 34.64 11.82 15.43 0.644 0.0000210 4.31 SM medium

135 0.31 34.64 11.82 15.40 0.644 0.0000460 4.31 SM coarse

136 0.31 40.41 11.82 15.40 0.644 0.0000460 1.92 SM coarse

137 0.90 42.59 12.20 15.54 0.644 0.0000040 4.79 SM coarse

138 0.90 42.59 12.20 15.54 0.644 0.0000040 4.79 SM coarse

139 4.87 39.85 15.00 17.39 0.644 0.0000180 1.92 SM coarse

140 4.87 39.85 10.74 17.39 0.653 0.0000040 1.92 SM coarse

141 0.90 42.59 11.95 15.74 0.576 0.0000040 4.79 SM coarse

142 0.90 42.59 11.95 16.23 0.559 0.0000040 4.79 SM coarse

143 6.46 36.86 12.41 17.08 0.532 0.0000160 0.00 SM coarse

144 4.52 39.58 12.02 15.74 0.622 0.0000370 0.00 SM medium

145 4.52 39.58 12.02 15.74 0.622 0.0000370 3.35 SM medium

146 7.73 34.64 15.04 17.69 0.484 0.0000190 3.35 SM medium

147 7.73 39.20 15.04 17.59 0.484 0.0000260 1.92 SM medium

148 7.73 34.64 15.04 15.40 0.619 0.0000390 1.92 SM medium

149 4.49 24.70 14.44 16.83 0.540 0.0000260 1.92 SM coarse

150 4.49 24.70 15.07 16.83 0.540 0.0000260 1.92 SM coarse

151 4.49 22.15 15.07 16.83 0.521 0.0000160 1.92 SM coarse

152 10.85 21.92 15.07 17.19 0.521 0.0000270 0.00 GM medium

153 10.85 21.92 15.07 17.19 0.521 0.0000270 4.31 GM medium

154 0.31 40.41 11.82 15.54 0.623 0.0000460 4.31 SM coarse

155 0.31 40.41 11.82 15.54 0.623 0.0000460 4.31 SM coarse

156 0.90 42.59 12.20 15.54 0.644 0.0000040 4.79 SM coarse

157 4.84 42.59 12.20 15.54 0.559 0.0000040 4.79 SM coarse

158 4.84 31.04 10.74 15.33 0.559 0.0000320 1.92 SM coarse

159 4.84 31.04 10.74 15.33 0.559 0.0000320 1.92 SM coarse

160 4.84 42.59 10.74 16.25 0.540 0.0000320 4.79 SM coarse

161 0.90 42.59 11.95 16.23 0.576 0.0000040 4.79 SM coarse

162 6.46 40.03 11.95 16.23 0.576 0.0000040 4.79 SM coarse

163 5.22 36.86 13.25 7.62 0.504 0.0000080 1.92 SM medium

164 7.49 27.42 13.25 17.32 0.493 0.0000250 0.00 SM fine

165 7.49 27.42 11.23 17.39 0.493 0.0000250 1.92 SM fine

166 7.73 39.20 15.04 17.59 0.484 0.0000260 1.92 SM medium

167 7.73 36.25 15.04 17.59 0.484 0.0000260 1.92 SM medium

168 14.11 27.89 13.88 16.71 0.551 0.0000190 0.00 SM medium

169 14.11 27.89 14.44 16.71 0.540 0.0000190 3.35 SM medium

170 10.85 21.92 14.44 16.79 0.540 0.0000190 3.35 SM medium

171 10.85 21.92 15.07 17.19 0.521 0.0000270 1.92 SM medium

172 10.85 34.64 12.81 16.45 0.549 0.0000190 1.92 SM medium



 

 147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

173 7.73 34.64 12.81 16.45 0.549 0.0000190 1.92 SM medium

174 4.87 29.55 13.42 15.33 0.550 0.0000060 1.92 SM coarse

175 4.87 29.55 14.25 15.33 0.559 0.0000060 1.92 SM coarse

176 4.87 31.04 14.25 15.33 0.559 0.0000320 1.92 SM medium

177 4.87 31.04 10.74 15.33 0.559 0.0000320 1.92 SM medium

178 0.90 42.59 10.74 16.33 0.559 0.0000320 4.79 SM fine

179 0.90 42.59 12.20 16.33 0.576 0.0000320 4.79 SM fine

180 1.57 30.37 13.72 16.99 0.547 0.0000040 1.92 SM fine

181 1.57 30.37 11.33 16.99 0.084 0.0000080 0.00 SM fine

182 7.96 37.28 11.33 15.67 0.602 0.0000500 0.00 SM medium

183 7.96 37.28 11.33 15.67 0.602 0.0000180 1.92 SM medium

184 13.37 32.78 12.74 16.86 0.548 0.0000080 0.00 SM medium

185 2.37 31.45 12.98 16.37 0.591 0.0000080 1.92 SM medium

186 0.85 33.06 13.71 16.37 0.591 0.0000260 3.35 SM fine

187 0.85 33.06 13.71 16.79 0.548 0.0000260 3.35 SM medium

188 0.85 34.64 13.71 16.79 0.549 0.0000190 1.92 SM medium

189 7.73 34.64 12.81 16.45 0.549 0.0000190 1.92 SM medium

190 7.73 34.64 12.81 16.45 0.549 0.0000080 1.92 SM medium

191 4.87 29.10 14.25 15.74 0.550 0.0000080 1.92 SM medium

192 4.87 29.10 14.25 15.74 0.550 0.0000080 1.92 SM medium

193 4.87 29.10 14.25 15.74 0.550 0.0000320 1.92 SM medium

194 0.90 42.59 12.20 16.33 0.559 0.0000320 1.92 SM medium

195 0.90 42.59 12.20 16.33 0.652 0.0000040 1.92 SM medium

196 2.19 31.83 10.74 15.33 0.559 0.0000040 1.92 SM medium

197 0.90 42.59 12.20 16.33 0.559 0.0000140 4.31 SM medium

198 0.31 39.85 12.20 16.93 0.484 0.0000040 4.31 SM medium

199 0.31 37.87 11.95 16.23 0.484 0.0000040 4.31 SM fine

200 8.21 37.87 11.95 16.23 0.576 0.0000040 1.92 SM fine

201 8.21 32.78 12.98 16.23 0.548 0.0000040 1.92 SM fine

202 13.37 31.45 11.95 16.37 0.591 0.0000080 1.92 SM medium

203 13.37 33.06 13.71 16.79 0.548 0.0000080 1.92 SM medium

204 13.37 34.64 13.71 15.54 0.548 0.0000260 1.92 SM medium

205 4.87 27.20 13.55 17.06 0.540 0.0000130 1.92 SM fine

206 5.33 27.20 13.55 17.06 0.540 0.0000130 1.92 SM fine

207 5.33 29.20 13.55 17.06 0.540 0.0000130 1.92 SM fine

208 5.33 28.50 14.25 15.74 0.550 0.0000320 1.92 SM medium

209 0.90 42.59 12.20 17.30 0.559 0.0000320 1.92 SM medium

210 2.19 31.83 10.74 15.33 0.653 0.0000270 1.92 SM medium

211 0.90 42.59 12.20 16.33 0.559 0.0000320 0.00 SM medium

212 0.90 42.59 12.20 16.93 0.559 0.0000140 4.31 SM medium

213 0.31 39.85 12.20 16.93 0.484 0.0000140 4.31 SM medium

214 0.31 40.41 11.82 15.54 0.623 0.0000460 1.92 SM coarse

215 1.27 37.69 11.59 15.43 0.644 0.0000210 1.92 SM coarse

216 1.27 37.69 11.59 15.43 0.644 0.0000210 4.79 SM coarse

217 0.31 40.41 11.82 15.54 0.623 0.0000460 4.31 SM coarse

218 0.31 40.41 11.82 15.54 0.623 0.0000460 4.31 SM coarse

219 5.33 27.20 13.55 17.06 0.540 0.0000130 1.92 SM fine

220 5.33 27.20 13.55 17.06 0.540 0.0000130 1.92 SM fine

221 1.48 28.50 11.94 15.88 0.610 0.0000130 1.92 SM fine

222 4.87 29.10 11.94 15.88 0.610 0.0000110 1.92 SM fine

223 4.87 31.04 14.25 17.30 0.530 0.0000110 1.92 SM fine

224 0.85 31.04 14.57 16.52 0.565 0.0000130 1.92 SM fine

225 0.31 31.04 14.57 16.52 0.565 0.0000080 1.92 SM fine

226 0.31 40.41 11.82 15.54 0.623 0.0000460 1.92 SM coarse

227 0.31 40.41 11.82 15.54 0.623 0.0000460 1.92 SM coarse

228 5.11 40.41 12.99 15.54 0.560 0.0000140 4.31 SM coarse

229 5.11 40.39 12.99 16.93 0.644 0.0000210 4.31 SM medium

230 0.31 40.41 11.82 15.54 0.623 0.0000460 4.31 SM coarse

231 1.48 28.50 11.94 15.88 0.610 0.0000110 1.92 SM fine

232 1.48 28.50 11.94 15.88 0.610 0.0000110 1.92 SM fine

233 4.87 29.10 14.25 16.52 0.530 0.0000130 1.92 SM fine

234 4.87 27.20 14.57 16.52 0.365 0.0000080 1.92 SM medium
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235 0.85 31.04 14.57 15.54 0.540 0.0000130 1.92 SM medium

236 3.30 32.04 13.55 15.54 0.525 0.0000080 4.79 SM coarse

237 3.30 39.85 13.49 16.52 0.550 0.0000310 4.79 SM medium

238 3.30 39.85 13.49 16.52 0.550 0.0000310 4.79 SM medium

239 3.30 39.85 12.99 16.52 0.623 0.0000180 4.31 SM coarse

240 3.30 37.69 11.82 15.54 0.623 0.0000180 4.31 SM coarse

241 1.48 27.20 11.94 15.88 0.565 0.0000090 1.92 SM medium

242 1.48 27.20 11.82 16.52 0.565 0.0000090 1.92 SM medium

243 1.48 27.20 11.82 16.52 0.565 0.0000130 1.92 SM medium

244 0.90 27.20 13.55 15.54 0.525 0.0000130 1.92 SM coarse

245 0.90 28.50 14.25 15.54 0.525 0.0000130 1.92 SM coarse

246 0.90 29.10 14.25 15.54 0.550 0.0000130 1.92 SM medium

247 3.30 29.10 13.49 15.54 0.550 0.0000080 1.92 SM medium

248 3.30 34.50 13.49 15.54 0.623 0.0000310 1.92 SM medium

249 1.42 27.20 11.82 16.52 0.565 0.0000460 1.92 SM medium

250 5.33 27.20 13.55 16.52 0.565 0.0000090 4.79 SM coarse

251 5.33 27.20 13.55 15.54 0.525 0.0000130 4.79 SM coarse

252 0.90 29.10 13.55 15.54 0.525 0.0000130 4.79 SM coarse

253 0.90 29.10 14.25 15.54 0.540 0.0000080 1.92 SM medium

254 0.90 27.20 14.25 15.54 0.540 0.0000080 4.13 SM medium

255 0.90 27.20 14.25 15.54 0.540 0.0000080 1.92 SM medium

256 5.33 28.50 13.49 16.79 0.623 0.0000310 4.79 SM medium

257 5.33 28.50 13.49 16.79 0.623 0.0000310 4.79 SM medium

258 5.33 28.50 13.49 17.08 0.623 0.0000160 1.92 SM coarse

259 0.90 27.20 14.25 15.54 0.540 0.0000080 1.92 SM medium

260 0.90 28.50 14.25 15.54 0.540 0.0000160 1.92 SM medium

261 4.87 28.50 15.07 15.54 0.540 0.0000160 3.35 SM coarse

258 5.33 28.50 13.49 17.08 0.623 0.0000160 1.92 SM coarse

259 0.90 27.20 14.25 15.54 0.540 0.0000080 1.92 SM medium

260 0.90 28.50 14.25 15.54 0.540 0.0000160 1.92 SM medium

261 4.87 28.50 15.07 15.54 0.540 0.0000160 3.35 SM coarse
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Appendix-E 
Derivation of infinite slope stability model for stability analysis of 

saturated/unsaturated soil slopes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 

ass

um

ptio

ns of infinite slope stability model (Skepmton and Delory1959, Hammond et al. 1992) are 

given below.  

1. Ground surface and subsurface water run parallel to bedrock.  

2. Failure plane is parallel bedrock or translational.  

3. Depth of failure is very less compared to the length of slope. 

4. Slope is constant throughout the length. 

5. End conditions of the slopes are neglected.  

6. The slopes can be easily destabilized by widespread areas of positive pore water 

pressure. 

Figure (E-a) the schematic diagram of Infinite slope stability model. In fact, this is a 

finite slope. But it is made infinite by removing the end conditions and it fulfils all other 

assumptions of infinite slope stability model which are listed above. The infinite slope 

stability model is formulated based on law of static friction for a rigid block on an inclined 

plane and forces are resolved into normal and sliding components. Let us consider a small 

soil element IJKL in the infinite slope as shown in Figure (E-b). In Figure (E-b), C' is 

effective soil cohesion, C'r is effective root strength; β is slope inclination (°); γsat (kN/m
3
) 

is saturated unit weight of soil; γt (kN/m
3
) is bulk unit weight of soil; h is vertical saturation 

depth (m); and D is vertical soil depth (m). When factor of safety is greater than 1, the 

hillslope is stable and when it is equal to 1, the slope mass is in verge of failure (limit 

equilibrium state). Let us consider a small soil element IJKL in infinite slope.  
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Figure (C-a) Infinite slope stability model 
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Saturated zone 

Suppose A1 is area of soil element in saturated zone; b is width of soil element; A11 is the 

base area occupied by weight of soil element; Ww is weight of water; WSat is saturated unit 

weight; mw is mass of water; g is acceleration due to gravity; Vw is volume of water; VSat is 

saturated volume of soil; N1 is normal force; T1 is driving force; σn1 is normal stress; and 

Tn1 is shear stress.  

Then,  
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Figure (E-b) Showing considered forces in soil element IJKL 
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Net effective stress in saturated zone is given by 

 

 (E-i) 

 

 

 

Net tangential stress in saturated zone is given by 

 

  

(E-ii) 

 

 

Unsaturated zone 

Suppose A2 is area of soil element in unsaturated zone; A11 is the base area occupied by 

weight of soil element; Wt is bulk unit weight; Vt is bulk volume; N2 is normal force; T2 is 

driving force; σn2 is normal stress; and Tn2 is shear stress. 

 

The area of soil element in unsaturated zone is given area of parallelogram as below 

 

 

 

The base area on which weight of soil element in unsaturated zone (Wt ) acts  is given by  
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Net effective stress in unsaturated zone is given by 

 

    (E-iii) 

 

 

Net tangential stress in unsaturated zone is given by 

      (E-iv) 

 

 

From equation (E-i) and (E-iii), net effective stress is given by 

 

         (E-v) 

 

 

 

Net resisting stress or shear strength is given by Mohr-Coulomb Criteria 

         

  (E-vii) 

 

 

 

Including root cohesion, net resisting stress or shear strength is given by  

 (E-viii) 

 

 

From equation (E-ii) and (E-iv), total tangential or driving stress is given by 

 

 (E-ix) 

 

 

Using equation (E-vii) and (E-ix), factor of safety (FS) can be expressed as 

 

  (E-x) 

 

 

 

Equation (E-x) represents infinite slope stability model (Skepmton and Delory 1959 and 

Hammond et al. 1992) used in Chapter 6. Surcharge has not been included in the model 

equation in this chapter.  
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