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1 Introduction

Price may be the most important criterion in the purchase of a house from a set of

suitable ones. Yet who would be prevented by a di¤erence of a few bucks from selecting

a house in a much more desirable neighbourhood? Arguably, very few people would

be so uncompromising as to ignore a signi�cant improvement in one dimension because

of a small loss in the most important dimension. When modelling boundedly rational

behaviour, the rigid application of simple �rules of thumb� (such as �buy the cheapest

house among the acceptable ones�) may look even less realistic than the trade-o¤s of

textbook utility maximisation. In other words, it seems reasonable to expect that criteria

that detect signi�cant di¤erences between the alternatives under consideration should

over-ride criteria that do not.

Considerations of this kind have led several researchers (e.g. Tversky [22], Rubinstein

[20], Leland [9]) to build models of preference based on the application of numerical criteria

where small di¤erences in the values of criteria are ignored.1 Such introspectively plausible

decision procedures can explain observed �anomalies�, while at the same time preserving

a convincing �exibility. Of course a number of �basic criteria�could be aggregated into

a single, more complex criterion, to which our opening observations would nevertheless

still apply: if the house buyer constructs an index which trades o¤ price and location,

that index constitutes a new criterion, for which it may be unwise not to ignore small

di¤erences in favour, say, of house size. And so on.2 A fully rational decision maker

would be able to pack together all possible trade-o¤s in a single criterion. However, in a

more realistic model of decision making, there is a limit to the number of simultaneous

trade-o¤s the decision maker is able to carry out. Thus, it seems more plausible to expect

the decision maker to rely on a whole list of �slack�criteria.

In this paper we develop these ideas by focussing on a classical decision model: Tver-

sky�s [22] lexicographic semiorder, in which preference is generated by the sequential ap-

1A di¤erence being small is often interpreted as �similarity�.
2As another example, in Manzini and Mariotti [14] we have proposed a multi-criterion model of choice

over time in which the �rst criterion is the exponentially discounted value, which trades o¤ the time and

size of of a monetary reward.
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plication of numerical criteria, by declaring an alternative x better than an alternative

y if the �rst criterion that distinguishes between x and y ranks x higher than y by an

amount exceeding a �xed threshold. Like all models mentioned so far, this is a model

of preference, or binary choice. Our �rst contribution is to propose an extension of the

model to general choice functions, which select an alternative from sets larger than the

binary ones.

Tversky himself considered lexicographic semiorders appealing but restrictive as a

model of preference.3 In fact, this judgement is shown to be somewhat pessimistic. Even

when the decision maker is endowed with very rudimental discriminatory abilities (being

only able to classify criteria values in �good�, �neutral�and �bad�, where just �good�and

�bad�are rankable), the model can account for a surprisingly rich variety of behaviours.

The proposed choice model of lexicographic semiorders turns out to be closely con-

nected with another, much more general-looking, notion of boundedly rational choice,

namely �sequentially rationalisable choice�(introduced in Manzini and Mariotti [15]): an

arbitrary number of arbitrary asymmetric binary relations (�rationales�) is applied se-

quentially to single out an alternative. On any �nite domain,4 bar the restriction that the

rationales should be acyclic, the two models have exactly the same reach: they restrict

choice data in identical ways (�rst half of theorem 1).

However, the clause �on any �nite domain�is key. When this clause is relaxed even

marginally, by allowing a countably in�nite number of �nite choice sets, the equivalence

breaks down: even the use of only two rationales may produce behaviours that cannot be

generated by any number of semiorders and any number of discriminations (second half

of theorem 1).

Next, we characterise choice by lexicographic semiorder in terms of a new contraction

consistency condition (Reducibility), at the same time providing an algorithm to construct

the semiorders (theorem 2).

As a bonus, for the case of �nite domains, this result automatically also yields a char-

acterisation of acyclic sequentially rationalisable choice. On the same domain, this leads

directly to a relaxation of Reducibility which characterises standard sequential rationalis-

3See Section 3.
4A �nite number of �nite sets.
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ability, and to an algorithm to construct the rationales (theorem 4). These results are of

independent interest, since the characterisation of sequential rationalisability has proved

to be a hard problem which we left open in [15]. Our results in this respect complement

and build on some recent advances by Apesteguia and Ballester [1], who were the �rst

to draw attention to the restriction of sequential rationalisability to acyclic rationales. In

the Appendix we work out one of their examples of sequentially rationalisable choices to

construct the rationales with our algorithm. Our work can also be seen as an extension

of the approach in Mandler, Manzini and Mariotti [13]: we discuss this relation in the

concluding section.

2 Lexicographic semiorders: preferences and choice

Fix a nonempty set X. A semiorder (Luce [11]) is an irre�exive5 relation P on X which

satis�es two additional properties:

1. (x; y) ; (w; z) 2 P imply (x;w) 2 P or (y; z) 2 P ;

2. (x; y) 2 P and (y; z) 2 P imply (x;w) 2 P or (w; z) 2 P .

Given the irre�exivity of P , each of (1) or (2) imply that P is also transitive.6 So

a semiorder is a very special type of strict partial order. The interest of semiorders is

that they can be interpreted as a simple threshold model of (partial) rankings: on �nite

domains, P is a semiorder if and only if there exists a real valued function f on X and

a number � � 0 such that (x; y) 2 P if and only if f (x) > f (y) + �. Here f (x) is the

�value�of the alternative x and � is the amount by which the value of one alternative x

must exceed the value of another alternative y for x to be declared superior to y. The

fact that � is �xed makes this a very parsimonious model of binary preferences.7

Tversky [22] essentially proposed a lexicographic procedure to make binary compar-

isons between alternatives in a set X, which extends the use of semiorders. There exists
5Irre�exivity: for all x 2 X, (x; x) =2 P .
6Transitivity: for all x; y; z 2 X, (x; y) 2 P , (y; z) 2 P ) (x; z) 2 P .
7In an interval order (Fishburn [6]), characterised by condition 1 alone, the threshold � is allowed to

vary with the alternatives being compared, being a function � : X ! R+. This makes for a much richer

structure. See e.g. Fishburn [7].
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an ordered sequence f = (f1; :::; fn) of real valued functions on X and a � > 0 such

that x is declared better than y i¤, for the �rst i for which jfi (x)� fi (y) j > �, we have

fi (x) > fi (y)+�. The idea is that the decision maker compares alternatives along several

dimensions. As in our opening example, dimensions are ranked in order of importance,

and a later dimension is only considered if all previous dimensions failed to discriminate

between the two alternatives under consideration. In other words, the decision maker ex-

amines the dimensions lexicographically: as soon as a dimension i is found for which one

alternative x is superior to another alternative y by an amount exceeding the threshold �,

x is declared better than y. When such an i is found, no dimension j that comes later in

the order has any bearing, no matter the size of the di¤erences between the alternatives

in these subsequent dimensions.8 Given f and �, this procedure can be used to generate

a revealed preference relation �(f;�) on pairs of alternatives.9

Suppose now that the decision maker wants to apply the procedure to produce a

selection out of choice sets S larger than the binary ones. There are several ways to do

so, some of which are however problematic. One could for example start from the binary

revealed preference relation and use either of the following two plausible methods:

- the choice from S is the set of the maximal elements of �(f;�)
- the choice from S is the top cycle (or the uncovered set) of �(f;�) restricted to each

S.10

Unfortunately, the preference relation �(f;�) may be cyclic - this �anomalous�feature

was indeed the very point of Tversky introducing the procedure. So the �rst method

above may not be well-de�ned if a nonempty-valued choice function is desired. The

8That � is chosen to be the same for all fi is not a relevant issue, since even if we had di¤erent �i,

the fi and �i can always be rescaled so as to choose �i = 1.
9Rubinstein [20] proposes a related but distinct procedure. This procedure has recently been studied

experimentally by Binmore, Voorhoeve and Wallace [2].
10More precisely, let P jS denote the restriction to S of a complete asymmetric binary relation P

de�ned on X. (Completeness: for all x; y 2 X either (x; y) 2 P or (y; x) 2 P . Asymmetry: for all

x; y 2 X, (x; y) 2 P ) (y; x) =2 P ). Let (P jS)t denote the transitive closure of P jS. The top cycle of

P in S is the set of maximal elements of (P jS)t in S. De�ne the covering relation C (P; S) of P in S

by: (x; y) 2 C (P; S) i¤ x; y 2 S and either (x; y) 2 P or there exists z 2 S such that (x; z) 2 P and

(z; y) 2 P . The uncovered set of P in S is the set of maximal elements of C (P; S) in S.
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second method above borrows the ideas of authors such as Ehlers and Sprumont [5] and

Lombardi [10], who use weaker notions of maximization to produce choices out of non-

standard preferences formed of asymmetric and complete binary relations (tournaments).

These methods would for example select the entire set S = fx1; x2; :::; xng whenever

x1 �(f;�) x2 �(f;�) ::: �(f;�) xn �(f;�) x1.

Here we pursue a di¤erent natural way of extending and abstracting Tversky�s idea.

The method we suggest is, on the one hand, more in line with the procedural (as opposed

to maximising) nature of Tversky�s approach; and, on the other hand, it can produce

a unique selection even from the awkward cycles discussed above. The reason for these

two features is that the method, unlike the others suggested, preserves and uses the

information on the order in which the dimensions are considered.

We impose no arbitrary uniform bound on the number of dimensions that the decision

maker is allowed to consider. Nevertheless, we insist that the procedure always halts in a

�nite number of steps in any choice situation.

Our proposed procedure works via a process of sequential elimination. Formally, let

� be a domain of choice sets, where each S in � is a nonempty subset of X. A choice

function on � is a function c : � ! X such that c (S) 2 S for all S 2 �. A choice set S

which has the form S = fxg for some x 2 X will be called trivial. A collection C � � of

choice sets is trivial if each S 2 � is trivial.

An ordered sequence f = (fi)i2I , where I is either an interval of numbers f1; :::; ng or

the entire set of natural numbers N, together with a � > 0 is a lexicographic semiorder

on X, denoted (f1; f2; :::; �) = (fi; �)i2I . We abuse terminology and call each fi directly

a semiorder although strictly speaking fi is a numerical representation of it.

Given a choice set S � X and a lexicographic semiorder (fi; �)i2I , de�ne inductively

the following �survivor sets�Mi(S), for all i > 0:

M0(S) = S

Mi(S) = fs 2Mi�1 (S) jfi (s) + � � fi (s0) 8s0 2Mi�1 (S)g

This sequence of sets captures the procedure the decision maker follows in order to arrive

at a �nal selection from the choice set S: at every round i he looks for alternatives in
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the current survivor set Mi�1 (S) which are judged �worse�than some other alternative

in Mi�1 (S) according to the Tversky procedure described before. He discards all such

inferior alternatives (if any), generating the next survivor set Mi (S), and so on.

De�nition 1 A choice function c is a choice by lexicographic semiorder (cles) i¤

there exists a lexicographic semiorder (fi; �)i2I such that, for all S 2 �, there is a j 2 I

for which fc (S)g =Mj (S) =Mk (S) for all k � j.

In this case we say that (fi; �)i2I induces c.

That is, for a cles c, the iterative elimination procedure described before stops on any

choice set S after a �nite number of steps, yielding precisely the alternative that c picks

in S. Note that, in spite of this property of ��nite termination�, there might not exist any

�xed j that works for all S. When this happens, which means that I can be chosen to be

�nite, we say that c is a choice by �nite lexicographic semiorder.

Basic Semiorders

A semiorder fi is basic if it ranges only in f�1; 0; 1g and � = 1. A lexicographic

semiorder (fi; �)i2I is basic if each fi is basic. So, with a basic lexicographic semiorder

the decision maker has only a very limited power of discrimination. Essentially, on each

dimension he can only perform a rough classi�cation of alternatives into �good�ones (those

x for which fi (x) = 1), �bad�ones (fi (x) = �1), and �neutral ones�(fi (x) = 0): a good

alternative �beats�a bad one (on the given dimension), and a neutral alternative neither

beats a bad one nor is beaten by a good one.

A basic lexicographic semiorder can be denoted simply as f = (fi)i2I . To emphasise

that the survivor sets Mi (S) are obtained from the basic lexicographic semiorder f we

write them as M f
i (S).

Example: Let X = fx; y; zg and let � = ffx; yg ; fy; zg ; fz; xg ; Xg. Let c (fx; yg) =

c (X) = x, c (fy; zg) = y and c (fx; zg) = z. This is a choice function by basic lexi-

cographic semiorder. To see this, let f1 (x) = 0, f1 (y) = 1, f1 (z) = �1, f2 (x) = 1,

f2 (y) = �1, f2 (z) = 0, f3 (x) = �1, f3 (y) = 1, f3 (z) = 1. Observe how di¤erent

(unique) choices from X can be obtained by permuting the order of the fi.
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3 Sequential rationalisability

Tversky thought that the model of binary choice by lexicographic semiorder, while useful

to explain the anomaly of cyclical preferences, had a narrow scope otherwise. He writes:

" ... despite its intuitive appeal, it is based on a noncompensatory principle

that is likely to be too restrictive in many contexts." ([22], p. 40).

Following this logic, one might conjecture that the version with basic semiorders, with

its minimal concession to discriminatory powers, is even more restrictive. We study this

issue.

In order to pinpoint the restrictions on behavior implied by the cles model, we begin by

recalling a de�nition from Manzini and Mariotti [15]. For a generic binary relation B and

a set S � X, denote by max (S;B) the set of B�maximal elements in S, max (S;B) =

fx : x 2 S and (y; x) =2 B for all y 2 Sg.

De�nition 2 A choice function c is sequentially rationalisable whenever there exists

an ordered list P1; :::; PK of asymmetric relations, with Pi � X � X for i = 1:::K, such

that, de�ning recursively

M�
0 (S) = S

M�
i (S) = max

�
M�
i�1 (S) ;Pi

�
, i = 1; :::; K

we have

fc (S)g =M�
K (S) for all S 2 P (X)

In that case we say that (P1; :::; PK) sequentially rationalise c. Each Pi is a rationale.

Two specialisation of sequential rationalisability are:

De�nition 3 (Manzini and Mariotti [15]) A choice function is a Rational Shortlist

Method (RSM) i¤ it is sequentially rationalisable with two rationales.

De�nition 4 (Apesteguia and Ballester [1]) A choice function is acyclic sequentially

rationalisable i¤ it is sequentially rationalisable by rationales that are acyclic.
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Both acyclic and standard sequential rationalisability constitute at �rst sight a much

more general model than cles, because the rationales are not required to have any thresh-

old structure and can thus apparently accommodate more sophisticated discriminations.

But in fact, for arbitrary �nite domains, the behaviours that can be generated by the

lexicographic semiorder model and those that can be generated by the acyclic sequential

rationalisability model are just the same. And, we need to look no further than basic

semiorders to yield this equivalence.

On the other side of the coin, the restriction to �nite domains is not merely a conve-

nience for the inductive argument used in the proof, but it is necessary for the equivalence

to hold. When the restriction is relaxed even marginally (by retaining the �niteness of

each choice set but allowing for a countable number of choice sets), the model of acyclic

sequential rationalisability suddenly appears far more general than the lexicographic semi-

order model: even only two acyclic rationales su¢ ce to produce behaviours that cannot be

induced by any basic lexicographic semiorder. And increasing the discriminatory ability

of the decision maker is to no avail: the �basic�restriction is inessential for this result.

Theorem 1 (i) Let X be �nite. Then a choice function c is acyclic sequentially ratio-

nalisable if and only if it is induced by a basic lexicographic semiorder.

(ii) Let X be at least countably in�nite. Then there exist Rational Shortlist Methods

on some � which are not choices by lexicographic semiorder.

Proof. (i) A semiorder is an acyclic rationale, so it su¢ ces to prove the �only if�part of

the statement. Given acyclic rationales (P1; :::; PK), recall the de�nition 2 of survivor sets

M�
i (S). We will show that, for any domain�, there exists a a basic lexicographic semiorder

f = (fi)i2I such that, for all S 2 �, there is a j 2 I such thatM�
K(S) =M

f
j (S) =M

f
k (S)

for all k � j. This proves the assertion in the statement.

The proof is by induction on the sum of the cardinalities of the sets S in �, which

we denote by n (�) =
X

S2�
jSj. If n (�) = 1 the claim is obviously true. Take now

n (�) > 1. W.l.o.g. assume P1 to be nonempty on some S 2 � (otherwise just exclude P1
and renumber the remaining Pi). By the acyclicity of P1 there exist S 2 � and x; y 2 S

such that (x; y) 2 P1 and (y; z) =2 P1 for all z 2
[

S2�
S with y; z 2 T for some T 2 � (in

words, y is P1�dominated in some choice set and it does not P1�dominate any element

9



which appears together with y in any choice set). Fix those x and y, and de�ne

�0 = fS : fx; yg * S 2 �g [ fS : S = Tn fyg for some T 2 � s.t. fx; yg � Tg

Because a T as in the right-hand member of the union above exists by construction,

n (�0) < n (�). So by the inductive hypothesis there exists a basic lexicographic semiorder

f = (fi)i2I such that, for all S 2 �0, there is a j 2 I such thatM�
K(S) =M

f
j (S) =M

f
k (S)

for all k � j. Now consider the basic lexicographic semiorder g = (gi)i2I0 de�ned by

gi = fi�1 for all i > 1

g1 (x) = 1, g1 (y) = �1 and g1 (z) = 0 for all z 6= x; y

Thus, for all S 2 � such that fx; yg � S, M g
1 (S) = Sn fyg 2 �0 and consequently

M�
K(Sn fyg) =M

g
j+1 (S) =M

g
k (S) for all k � j +1 (this follows by the second line of the

displayed de�nition of g and the fact that M�
K(Sn fyg) =M

f
j (Sn fyg) =M

f
k (Sn fyg) for

all k � j). Moreover, clearly for all S 2 � such that fx; yg � S, M�
K (S) =M

�
K (Sn fyg).

Therefore, for all S 2 �, M�
K (S) =M

�
K (Sn fyg) =M

g
j+1 (S) =M

g
k (S) for all k � j + 1.

(ii) Let X = f1; 2:::g, let � be the collection of �nite subsets of X, and let c be

uniquely de�ned as the RSM rationalised by the following two acyclic rationales P1 and

P2:

P1 = f(i; i+ 1) : i 2 Xg

and

P2 = f(j; i) : j > i+ 1g

We show that c is not induced by any lexicographic semiorder. By contradiction,

suppose that (f�; �)�2I is a lexicographic semiorder which induces c. Let i; j 2 X be such

that f1 (j) > f1 (i) + �. Such an i and j exists w.l.o.g., possibly by renumbering the f�

so that f1 is the �rst f� for which f1 (k0) > f1 (k) + � for some k; k0 2 X. Also, note that

i 6= 1 since the application of the rationales yields c (f1; 2; ::; lg) = 1 for all l 2 X. It must

be j = i� 1 (that is, i is eliminated by i� 1 in the �rst step in any set that contains both

of them). Otherwise suppose �rst that j > i. Then c (fi; i+ 1; i+ 2; :::; jg) = i would be

contradicted by i =2M1 (fi; i+ 1; i+ 2; ::; jg). Alternatively, suppose that j < i�1. Then

c (fj; ig) = i would be contradicted by i =2M1 (fj; ig).

10



Thus, f1 (i� 1) > f1 (i)+�. Since c (fi� 1; i+ 1g) = i+1, it must be that, letting n be

the �rst � for whichM� (fi� 1; i+ 1g) 6= fi� 1; i+ 1g, we have fn (i+ 1) > fn (i� 1)+�.

Applying this fact to S = fi� 1; i; i+ 1g, we have that either (if n = 1)M1 (S) = fi+ 1g,

or (if n > 1) c (S) = c (M1 (S)) = c (fi� 1; i+ 1g) = i + 1. In both cases we have a

contradiction with c (S) = i� 1.

Apesteguia and Ballester [1] de�ne a simple rationale P as a relation of the type

P = f(x; y)g for some x and y in X. That is, a simple rationale relates only one pair

of alternatives. Our notion of �basic� refers instead to the number of discriminations

the decision maker is able to make, rather than to the number of pairs ranked by the

relation (which may be high). In fact, reasonably e¢ cient (that is, short) lists of simple

semiorders that induce a cles will �pack�together several comparisons in each semiorder

(so that they will not be simple rationales). It is of course possible to express a simple

rationale P = f(x; y)g as a basic semiorder (though not vice-versa), by setting f (x) = 1,

f (y) = �1 and f (z) = 0 for all other z (in which case the �rst half of theorem 1 could also

be derived, in the case of � being the domain of all nonempty subsets of X, from theorem

3.1 of [1]). However, using simple rationales instead of basic semiorders may necessitate

an unrealistically large number of semiorders in a cles. There is no upper bound to

the number of simple rationales needed to express a basic semiorder. For example, the

rationale P = f(x; y) : y 2 Xn fxgg, for a �xed x, is a single basic semiorder for any n,

which is nevertheless decomposed into (n� 1) distinct simple rationales. In this example,

where an agent simply considers that x is better than any other alternative, suppose

n = 1000. It seems more natural to describe the agent�s behaviour by expressing directly

(via a semiorder) the agent�s discrimination between x and anything else, rather than

imagining that he proceeds lexicographically via 1000 steps to recognise that x is better,

as a representation by simple rationales would require.

In this perspective, the second half of theorem 1 also proves that, like in our case, the

domain restriction jXj <1 of theorem 3.1 of [1] is necessary.
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4 Revealed preference axioms

We now explore directly the restrictions on observable choice data that the procedure we

have proposed implies. The following property will be crucial:

Reducibility: Let C � � be any non-trivial collection of choice sets. Then there exist

x; y 2 X, with x; y 2 S for some S 2 C, such that, for all T 2 C:

(Tn fyg) 2 C; x 2 T ) c (T ) = c (Tn fyg)

A choice function which satis�es Reducibility is called reducible.

Reducibility refers to the following type of behaviour: you simply ignore steak tartare

in any restaurant which also o¤ers pizza (though you may or may not choose pizza). Here,

pizza is a negative signal about the kitchen�s sophistication, so that you are induced to

ignore sophisticated items on the menu, even if you may end up not choosing the signal

item itself.11 More abstractly, given a collection of choice sets C, say that x makes y

C�ine¤ective if x and y belong to some set in the collection, and whenever this happens,

removing y from S has no e¤ect on the �nal choice from S (so that, in particular y is

never chosen if x is available). If x makes y C�ine¤ective, then y has no relevance for the

purposes of choice whenever x is available. Reducibility requires that the C�ine¤ectiveness

relation is nonempty.

One way of satisfying Reducibility is the existence of a �best� alternative. If c is

a choice function that maximizes an ordinary strict preference relation, an alternative

which is chosen from an S in C trivially makes C�ine¤ective any alternative which is not

chosen from S. Therefore c is reducible in this standard case.

Reducibility relaxes the standard requirement that all rejected alternatives need to

be made C-ine¤ective on all C (via the single preference relation) by the �best�(chosen)
11In this example pizza plays a symmetric role that of frog legs in the celebrated example by Luce and

Rai¤a [12] (a decision maker chooses steak when frog legs are on the menu and chicken when they are

not). In Luce and Rai¤a�s example, frog legs are a positive signal about the quality of the restaurant,

so that the decision maker is induced by the presence of frog legs on the menu to choose a high quality

item, even if not frog legs themselves.

12



alternative, and it does so in two ways. First, some rejected alternatives, for some C, may

not be made C-ine¤ective. And, second, an alternative may be made ine¤ective by some

other alternative which is itself not chosen. In other words, Reducibility requires just a

bare skeleton of preference to survive.

An example of a reducible non-standard choice function is the three-cycle of choice:

X = fx; y; zg, c (X) = x, c (fx; yg) = x, c (fy; zg) = y, c (fx; zg) = z. Here y makes

z C�ine¤ective when either X or fy; zg are in C, and Reducibility is satis�ed vacuously

otherwise. Observe that the choice from the grand set does not make either y or z

C�ine¤ective for C coinciding with the full domain.

On the contrary, the reader can check that the choice function c in the proof of

the second half of theorem 1 (where c is sequentially rationalisable but not cles) is not

reducible. An even simpler example of a non-reducible c is given by X = fx; y; zg,

c (fx; yg) = c (fx; zg) = x, c (fx; y; zg) = y. Letting C = ffx; yg ; fx; zg ; Xg we have

c (X) 6= c (Xn fyg), c (X) 6= c (Xn fzg) so that no alternative makes y or z C�ine¤ective.

And the choices from binary sets show that no alternative makes x C�ine¤ective.

Below we establish that Reducibility captures all the observable implications of the

lexicographic semiorder procedure, and that basic lexicographic semiorders cover exactly

the same ground as general lexicographic semiorders. This is true on domains larger than

the subsets of a �nite set, and therefore also on domains for which the equivalence between

the sequential rationalisability and the lexicographic semiorder model fails.

Theorem 2 Let X be countable. Let c be a choice function de�ned on the domain � of

all �nite subsets of X. Then following statements are equivalent:

(i) c is induced by a lexicographic semiorder;

(ii) c is reducible;

(iii) c is induced by a basic lexicographic semiorder.

Proof. (i) ) (ii). Let c be induced by the lexicographic semiorder (fi; �)i2I , and let

C � � be any non-trivial collection of choice sets. Let

j = min fi :Mi (S) 6= S for some S 2 Cg
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(j is well-de�ned because of the single valuedness of c).12

Let T 2 C be such thatMj (T ) 6= T . Fix x,y 2 T such that fj (x) > fj (y)+�. For any

S 2 C either fx; yg * S, in which case Reducibility holds vacuously; or fx; yg � S. In

this latter case (which holds at least for S = T ), for any z 2 S, if fj (y) > fj (z) + � then

also fj (x) > fj (z) + �. Therefore Mj (S) =Mj (Sn fyg), implying c (S) = c (Sn fyg).

(ii) ) (iii). Let c be a reducible choice function on �. We �rst provide an algorithm

to construct a simple lexicographic semiorder for any choice function, then show that this

semiorder induces c.

The algorithm proceeds by recursively de�ning a sequence of collections fCigi2I and

an associated sequence of pairs fxi; yigi2I , where I is either an interval f0; 1; :::; ng or the

set of natural numbers. Let C0 = �, and let x0; y0 2 X be any two alternatives such that,

for all S 2 C0, x0; y0 2 S ) c (S) = c (Sn fy0g) (alternatives such as x0 and y0 exist by

Reducibility, and Sn fy0g 2 � by assumption). For 0 < i de�ne recursively xi; yi 2 X as

any two alternatives such that (xi; yi) 6= (xj; yj) for all j < i, and

for all S 2
\

j<i
Cj: xi; yi 2 S ) c (S) = c (Sn fyig)

and

Ci =
\

j<i
Cjn fS 2 \j<iCj : fxi; yig � Sg

For all i, let fi (xi) = 1, fi (yi) = �1, fi (z) = 0 for all z 2 Xn fxi; yig, and � = 1.

Note that, for any i, unless S 2 Ci+1 ) jSj = 1 (i.e. unless Ci+1 is a trivial collection), it

is true by Reducibility that Ci 6= Ci+1. Therefore S 2
\

i2I
Ci ) jSj = 1.

This de�nes a basic lexicographic semiorder f = (fi)i2I . As we show below, f induces

c. Recall the de�nition of the survivor sets Mi (S).

Fix S 2 �. Suppose by induction that c (S) 2 Mi (S). It must be that Mi (S) 2

Ci. Otherwise, there would exist k � i such that fk (xk) = 1, fk (yk) = �1 and

fxk; ykg �Mi (S) 2 Ck, contradicting the de�nition of Mi (S). If also Mi (S) 2 Ci+1, then

fxi+1; yi+1g *Mi (S) and so we have immediately c (S) 2Mi+1 (S). IfMi (S) =2 Ci+1, then

(since Mi (S) 2 Ci) it must be because fxi+1; yi+1g � S. It cannot be yi+1 = c (S) since,
12For choice correspondences one would change the quali�er that not all S in C are singletons with that

that not all of them are such that c (S) = S.
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by construction of the sequence fxi; yigi2I , c (S) = c (Sn fy1g) = ::: = c (Sn fy1; ::; yi+1g).

Therefore c (S) 2Mi+1 (S).

We now show that for all s 2 Sn fc (S)g there exists a k such that s =2 Mk (S).

If not, let
\

i2I
Mi (S) = T , and let s 2 T . The de�nition of T implies that, for all

i 2 I, fxi; yig * T (otherwise xi; yi 2 Mi (S), which is impossible by construction since

fi (xi) = 1 and fi (yi) = �1). Therefore T 2
\

i2I
Ci. But this is a contradiction with

c (S) 6= s 2 T and c (S) 2 T , since, as observed before, T 2
\

i2I
Ci implies jT j = 1.

(iii) ) (i). Trivial.

While this is in general a characterisation of choice by lexicographic semiorder and not

of sequentially rationalisable choice, the results can naturally be used, together with the

�rst half of theorem 1, to provide a characterization of acyclic sequential rationalisability

for the special case of a �nite X:

Theorem 3 Let X be �nite and let � be the set of all nonempty subsets of X. Then a

choice function on � is acyclic sequentially rationalisable if and only if it is reducible.

Finally, we study the following question: on a �nite domain, what types of behaviour

can be explained by the sequential rationalisability model but not by the lexicographic

semiorder model? To this aim we introduce a weakening of Reducibility:

Weak reducibility: Let C � � be any non-trivial collection of choice sets. Then there

exists a collection of pairs fxi; yigi=1;2;:::, with xi; yi 2 S for some S 2 C for all i, such that

for all T 2 C:

Tn
[
i:xi2T

fyig 2 C ) c (T ) = c

 
Tn

[
i:xi2T

fyig
!

A choice function that satis�es Weak reducibility is called weakly reducible.

The only di¤erence between Reducibility andWeak reducibility is that in the latter the

existence of a pair (x; y) has been replaced by the existence of a collection fxi; yigi=1;2;:::
of pairs. In other words, compared to a reducible choice function, a choice function

which is only weakly reducible is such that some alternatives which are not individually
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C�ine¤ective (the removal of any one of those alternatives does a¤ect choice) may nev-

ertheless be �collectively�C�ine¤ective (their collective removal from a choice set has no

relevance for choice).

We show that the choice functions which are sequentially rationalisable but not cles

are exactly those which are only weakly reducible but not reducible.

Theorem 4 Let X be �nite and let � be the set of all nonempty subsets of X. Then a

choice function on � is sequentially rationalisable if and only if it is weakly reducible.

Proof. Necessity. Let c be sequentially rationalisable with rationales P1; :::; PK , and let

C � � be a non-trivial collection of sets. Let

j = min fi :M�
i (S) 6= S for some S 2 Cg

Let A = f(x; y) : x; y 2 S for some S 2 C and (x; y) 2 Pjg. A is nonempty by the de�ni-

tion of j. Enumerate the pairs in A to obtain fxi; yigi=1;:::;n. It follows straightforwardly

that M�
K (S) = M

�
K

�
Sn
S
i:xi2S fyig

�
for all S 2 C. The sequential rationalisability of c

thus implies that c (S) = c
�
Sn
S
i:xi2S fyig

�
.

Su¢ ciency. Let c be weakly reducible. We construct the rationales explicitly.13 Let

C0 = �, and de�ne recursively

Pi = f(xji; yji)gj=1;:::;n(i) , where fxji; yjigj=1;:::;n(i) is any collection of pairs such that

c (S) = c

0@Sn [
j:xji2S

fyjig

1A 8S 2 Ci�1;

Ci =
�
S 2 Ci�1 : S =M�

i�1 (T ) for some T 2 Ci�1
	

Let K = max fi : Pi 6= ?g. The Pi are well-de�ned for all i = 1; :::K by Weak re-

ducibility. We show that P1; :::; PK sequentially rationalize c.

Let x = c (S). Whenever S 2 Ci�1 for some i, it cannot be (y; x) = Pi, since c (S) 6=

c (Sn (fxg [ A)) for any A � X, contradicting the de�nition of Pi. This implies that

x 2M�
i (S) for all i.

Let y 2 Sn fc (S)g. Suppose by contradiction that y 2 M�
K (S). This means that

M�
K (S) 2 CK , so CK is non-trivial. Therefore by Weak reducibility there exists a collection
13The algorithm provided below is relatively manageable to execute. We show how in the Appendix.

16



fxjK+1; yjK+1gj=1;:::;n(K+1) such that

c (T ) = c

0@Tn [
j:xjK+12T

�
y
jK+1

	1A 8T 2 CK

But then PK+1 6= ?, contradicting the de�nition of K.

Theorems 3 and 4 are interesting in themselves, as Manzini and Mariotti [15] left the

characterization of sequential rationalisability as an open problem.

Apesteguia and Ballester [1] have pioneered much progress, and provided key insights,

on solving that problem. Their Two-Stage Consistency and Strong Two-Stage Consistency

conditions are expressed in terms of the existence of a choice correspondence , satisfying

certain �partial rationality�properties, which permits to decompose any choice c (S) into

two stages, via the formula c (S) = c ( (S)). Reducibility and Weak reducibility are

contraction conditions that usefully complement the characterisations in [1], highlighting

di¤erent aspects of the structure of sequential rationalisability.14 Nevertheless, while these

results settle the question for the �nite case, the question of characterisation of sequential

rationalisability on domains other than the �nite ones remains open.

The countability restriction appearing in theorem 2 is really a product of our insis-

tence that the decision maker is con�ned to using a realistic number of dimensions. The

techniques we have used in this paper permit relatively easy generalisations of both the

model of cles and the proof of theorem 2 to more abstract settings. We could replace the

index set I of (a subset of) natural numbers with any well-ordered15 set (I;�). In this

way, the de�nition of survivor sets could be modi�ed using trans�nite induction (analo-

gously to what was done in Mandler, Manzini and Mariotti [13]), and the de�nition of

cles would be automatically extended (only noticing that now j might not be �nite). The

proof would then go through, with obvious adaptations, to the uncountably in�nite case.

14In earlier versions of their paper, [1] study a number of di¤erent characterising properties which

highlight yet di¤erent aspects of sequential rationalisability.
15A set I is well-ordered by � if � is a linear order (a complete, transitive, and antisymmetric relation)

on I such that every nonempty subset of I has a least element inf I such that inf I � i for all i 2 I.
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5 Concluding remarks

We have focussed especially on the most minimalist version of the model, which attributes

to the decision maker very weak powers of discrimination (basic lexicographic semiorders).

On �nite domains this version is very powerful, being coextensive with a natural restriction

of the seemingly far more general sequentially rationalisable choice model of Manzini and

Mariotti [15]. On larger domains sequential rationalisability, even in a stripped down

version, has an edge over both basic and general lexicographic semiorders.

Our Reducibility and Weak reducibility conditions delimit exactly the restrictions on

choice behaviour that our main theory and the related ones imply. We have not sought

to defend these conditions as a priori compelling properties of bounded rationality. The

appeal of the theory comes from its psychological basis, its tractability and its testability.

Our aim was simply to work out the observable implication of the theory, in the spirit

of the �revealed preference approach�(see Caplin [3], Gul and Pesendorfer [8], Rubinstein

and Salant [21] for methodological discussions of this issue). Reducibility is an easily

interpretable and operationally workable concept (as demonstrated by our workouts),

and as such we believe it ful�lls this role. Our approach is thus in the same spirit as a

recent body of work which seeks to characterise models of boundedly rational choice in

terms of direct axioms on choice behaviour (e.g. Cherepanov, Feddersen and Sandroni [4],

Masatlioglu and Ok [16] and [17], Masatlioglu and Nakajima [18], Masatlioglu Nakajima

and Ozbay [19], Tyson [23], beside those already discussed).

The present work is also related to the �checklist�model of choice in Mandler, Manzini

and Mariotti [13]. In that model, a decision maker goes through an ordered checklist

of properties, at each step eliminating the alternatives that do not have the speci�ed

property. A choice by basic lexicographic semiorder could be interpreted as a weakening

of a choice by checklist, in which the membership of a property is allowed to have three

values instead of only two. Because (on �nite domains) choosing by checklist is equivalent

to maximising a utility function (as shown in Mandler, Manzini and Mariotti [13]), choices

by lexicographic semiorder can also be seen as a versatile but minimal departure from the

standard model of rational choice.
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6 Appendix

It is instructive to see how the algorithm to construct the rationales of theorem 4 works.

We use an example provided by Apesteguia and Ballester [1]. The grand set of alternatives

is X = f�; �; ; �; "; 'g. The inverse image of the choice function (i.e. the collection of

sets from which each alternative is chosen) is given below:

c�1 (�) =

8>>>>>><>>>>>>:

f�; �; �; ; "g ;

f�; �; ; "g ; f�; �; �; g ; f�; �; �; "g ; f�; �; ; "g ;

f�; �; �g ; f�; �; "g ; f�; �; g ; f�; �; "g ; f�; ; "g ;

f�; �g ; f�; "g ; f�; �g

9>>>>>>=>>>>>>;

c�1 (�) =

8>>>>>><>>>>>>:

f�; �; ; "; 'g ;

f�; �; ; "g ; f�; �; "; 'g ; f�; ; "; 'g ;

f�; �; g ; f�; �; "g ; f�; ; "g ; f�; "; 'g ;

f�; �g ; f�; g ; f�; "g

9>>>>>>=>>>>>>;
c�1 () =

8>>><>>>:
f; �; "; 'g ; f�; ; �; 'g ;

f�; ; 'g ; f�; ; �g ; f; �; "g ; f; �; 'g ;

f�; g ; f; �g ; f; 'g

9>>>=>>>;
c�1 (�) = ff�; �; 'g ; f�; "; 'g ; f�; "g ; f�; 'gg

c�1 (") =

8>>>>>><>>>>>>:

X; f�; �; ; "; 'g ; f�; �; �; "; 'g ; f�; �; ; "; 'g ;

f�; �; "; 'g ; f�; ; "; 'g ; f�; �; "; 'g ;

f�; "; 'g ; f; "; 'g ;

f; "g ; f"; 'g

9>>>>>>=>>>>>>;

c�1 (') =

8>>>>>><>>>>>>:

f�; �; �; ; 'g ;

f�; �; ; 'g ; f�; ; �; 'g ; f�; �; �; 'g ;

f�; �; 'g ; f�; ; 'g ; f�; �; 'g ;

f�; 'g ; f�; 'g

9>>>>>>=>>>>>>;
The �base relation�Pc = f(a; b) 2 X �X : a = c (fa; bg)g is thus:
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Pc =

8<: (�; �) ; (�; ") ; (�; �) ; (�; ") ; (�; ') ; (�; �) ; (�; ) ; (�; ") ;

(; �) ; (; �) ; (; ') ; ("; ) ; ("; ') ; ('; �) ; ('; �)

9=;
If the rationales Pi and the collections Ci�1 are built according to the algorithm in

the proof of theorem 4, obviously it can never be (a; b) 2 Pc \ Pi for any a and b such

that b is chosen from some S 2 Ci�1 that also contains a. Consequently we are going

to construct the rationales by �rst ruling out as potential members of Pi all such pairs;

then we will verifying whether the residual subcollection of pairs in Pc which have not yet

been �allocated�to any previous rationale Pj, j < i, satisfy the requirement in the Weak

reducibility axiom, removing more pairs if necessary until we have the largest collection

that satis�es the axiom.

Beginning with C0 = �, inspection of the inverse images reveals that each alternative

is chosen in the presence of any other, with the exception of �, which is never chosen in

the presence of �; moreover, � is also the only alternative such that, when it is removed

from sets that also contain �, leaves choice unchanged. Consequently,

P1 = f(�; �)g

The domain thus reduces from C0 to C1 as indicated in the display that follows (simply

remove all sets containing � and �), where observe that the �rst line is a subcollection of

c�1 (�), the second line is a subcollection of c�1 (�), and so on:

C1 =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

f�; �; ; "g ; f�; �; g ; f�; �; "g ; f�; ; "g ; f�;�g ; f�; "g

f�; ; �; "; 'g ; f�; ; �; "g ; f�; �; "; 'g ; f�; ; "; 'g ;

f�; ; �g ; f�; �; "g ; f�; ; "g ; f�; "; 'g ; f�; �g ; f�;g ; f�; "g

f; �; "; 'g ; f�; ; 'g ; f; �; "g ; f; �; 'g ; f�; g ; f; �g ; f; 'g

f�; �; 'g ; f�; "; 'g ; f�; "g ; f�; 'g

f�; �; ; "; 'g ; f�; �; "; 'g ; f�; ; "; 'g ; f�; "; 'g ; f; "; 'g ; f; "g ; f";'g

f�; �; ; 'g ; f�; ; �; 'g ; f�; �; 'g ; f�; ; 'g ; f�;'g ; f�; 'g

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;
Next, observe that � and ' are chosen in the presence of , so that our algorithm

prescribes (; �) =2 P2 and (; ') =2 P2. Moreover, � is chosen in the presence of ';  is

chosen in the presence of "; � and " in the presence of �; " is chosen in the presence of �;
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and ' is chosen in the presence of �. This leaves only (�; �), (�; ), (; �), (�; "), ("; ')

and ('; �) as potential members of P2 (appearing in boldface in the above display), and

it is easy to verify that indeed the whole collection of �candidate pairs�

P2 = f(�; �) ; (�; ) ; (; �) ; (�; ") ; ("; ') ; ('; �)g

is such that c (S) = c
�
Sn
S
i:xi2S yi

�
. Note also that Reducibility fails on the collection C1:

no set contains � and �, and for the same considerations contained in the previous para-

graphs, the only pairs of alternatives that might satisfy Reducibility are f�; �g, f�; g,

f; �g, f�; "g, f"; 'g and f'; �g. However, none of them does: �rst of all, because all

these binary sets are in C1, the �losing�alternative must be the one that is not chosen

in pairwise sets; in addition, x2; y2 6= �; � since e.g. � = c (f�; �; g) 6= c (f�; g) = ;

x2; y2 6= �;  since e.g. ' = c (f�; ; �; 'g) 6= c (f�; �; 'g) = �; x2; y2 6= ; � since e.g.

 = c (f; �; "; 'g) 6= c (f; "; 'g) = "; x2; y2 6= �; " since e.g. � = c (f�; ; �; "; 'g) 6=

c (f�; ; �; 'g) = '; and �nally x2; y2 6= "; ' since e.g. " = c (f�; �; ; "; 'g) 6= c (f�; �; ; "g) =

�.

Going back to our algorithm, the construction of P2 yields

C2 =

8>>>>>>>>>>>><>>>>>>>>>>>>:

f�; ; "g ; f�; "g

f�; �g ; f�; "g

f�; ; 'g ; f�; g ; f;'g

f�; �; 'g ; f�;'g

f; "g

f�;'g

9>>>>>>>>>>>>=>>>>>>>>>>>>;
For the next step, we note that � is chosen in the presence of �; � is chosen in the

presence of . So one can verify that all together the remaining candidate pairs provide

a suitable P3, that is:

P3 = f(�; ") ; ("; ) ; (�; ") ; (�; ') ; ('; �) ; ('; )g

As a consequence, the subdomain reduces to:

C3 = ff�; �g ; f�; gg
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so that we can build the �nal rationale

P4 = f(�; �) ; (; �)g

It is straightforward to double check that P1; P2; P3; P4 so de�ned sequentially ratio-

nalises c.
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