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1 Introduction

According to the classic theory on intra-household resource allocation, households make interdepen-

dent choices regarding the number of children and investments in child-specific human capital. The

theory predicts a negative relationship between child outcomes (quality) and the number of children

in the household (quantity) (Becker and Tomes 1976; Becker and Lewis 1973). Here, we test the

empirical validity of this so-called quantity-quality trade-off using data on household size and child

health in Indonesia. We do so accounting for the potential endogeneity of fertility decisions and

allowing for heterogeneous effects across the distribution of child health.

The results are striking, yielding three main conclusions. First, distributions of weight-for-age

are statistically different when we account for the endogeneity of the quantity of children. Second,

despite the significant difference in the distributions across households with more than two or only

two children, we fail to find statistically meaningful evidence of the quantity-quality trade-off over

the whole distribution or on average as Two-Stage Least Squares (TSLS) estimates of the mean

trade-off are statistically insignificant. In particular, using an identification strategy based on gender

composition of the first two children, the answer to the question posed in the title is some. Finally,

while modest evidence of the trade-off is found when using a more short-run measure of health

(based on weight), there is no statistically meaningful evidence of a trade-off on a long-run measure

(based on height) once the endogeneity of fertility decisions is addressed.

In the prior literature, the quantity-quality trade-off is typically modeled as arising from parental

preferences for equal levels of quality across children combined with a binding budget constraint

(Rosenzweig and Wolpin 1980). Empirical tests of the trade-off center on estimating demand

equations for child-specific outcomes, where the number of children is one potential determinant of

demand. Such studies typically find a negative relationship between the number of children and

human capital investments (e.g., Rosenzweig and Zhang 2006; Conley and Glauber 2005; Glick et

al. 2005; Lee 2004), although a few find no effect (e.g., Black et al. 2005) or even a positive effect

(e.g., Qian 2008).

Empirical tests of the trade-off have focused, however, mainly on schooling. While clearly impor-
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tant, health constitutes another salient component of child quality. Researchers and policymakers

are cognizant of the impact of child health on adult health and other economic outcomes. For

example, Thomas et al. (1990, 1991) note the relationship between child anthropometric measures

and the probability of survival and skill development, and Thomas and Frankenberg (2002) state

that adult stature is largely determined during the fetal and early childhood periods. Moreover,

adult health is associated with and labor market outcomes at both the microeconomic and macroe-

conomic levels. Many studies have found that there is a positive impact of height on earnings

(Strauss and Thomas (1998) provide an excellent review), Fogel (1994) documents the parallel his-

torical increases in height and economic growth, and Weil (2005) suggests that variation in health

explains approximately 20% of the cross-country variation in (log) income per worker, roughly the

same fraction as explained by variation in education.1

Given the importance of children’s health, a small literature has developed investigating its

determinants; Strauss and Thomas (1995) survey the literature. In many of these studies, household

size enters the analysis as a control, although the estimated relationship is not of primary interest

and the issue of causation is often ignored. Two recent exceptions are Glick et al. (2007) and

Angrist et al. (2006). Glick et al. (2007) utilize data on twins to isolate the casual effect of fertility

on child health and school enrollment using Romanian data, finding sizeable negative effects that

increase in magnitude after accounting for the endogeneity of the number of children. Angrist et

al. (2006) use Israeli data on twins and the gender composition of children to estimate the causal

impact of fertility on a variety of children’s outcomes as adults (e.g., completed education, labor

market outcomes, and own marital and fertility patterns), finding little impact.

In this paper, we advance this literature in two ways. First, we assess the empirical validity of

the quantity-quality trade-off using two measures of child health: height-for-age and weight-for-age.

Both are frequently used measures, where the former (latter) is a reflection of relatively long-term

(short-term) health status.2 Second, we assess this trade-off within a distributional framework,

1López-Casasnovas et al. (2005) offer a detailed theoretical and empirical account of the linkages between health
and economic development.

2Cogill (2003, p. 11) states that height-for-age “identifies past undernutrition or chronic malnutrition” and
“cannot measure short term changes in malnutrition.” He notes that weight-for-age “reflects both past (chronic)
and/or present (acute) undernutrition.” See also Thomas et al. (1991, 1996).
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via the estimation of quantile treatment effects (QTE). Moreover, we provide a welfare-consistent

method of summarizing the QTEs based on the notion of stochastic dominance (SD).3 This approach

uncovers any heterogeneity in the magnitude and existence of the trade-off across the distribution

of child quality, enabling one to answer: Is the quantity-quality trade-off a trade-off for all, none,

or some? The answer to this question may not only shed light on the moderately inconsistent

empirical findings detailed at the outset, but also is vital for sound policymaking. For instance, if

policymakers are interested in improving the health of the least healthy children, but the trade-off is

more pronounced in the upper tail of the distribution, then inferring the impact of fertility-reducing

programs (e.g., investments in family planning clinics) based on the mean trade-off may vastly

overstate the effects of such programs.

To perform the analysis, we first present a simple theoretical model based on Becker and Tomes

(1976) showing why the trade-off may not be homogeneous. Then, we utilize data from the 2000

wave of the Indonesian Family Life Survey (IFLS) on roughly 3,000 children ten years of age and

younger to assess the trade-off. Specifically, we assess the treatment effect of residing in a household

with more than two children (relative to only two children) on child health, controlling for potentially

confounding observable and unobservable characteristics by implementing an instrumental variable

(IV) method put forth in Abadie (2002). The method relies on a binary instrument, and we use

the gender composition of the first two children, as utilized in Butcher and Case (1994), Angrist

and Evans (1998), Cruces and Galiani (2004), Conley and Glauber (2005), Angrist et al. (2006),

and Henderson et al. (2006).

Assessing the distributional consequences of the quantity-quality trade-off in Indonesia repre-

sents more than academic curiosity. After the Asian financial crisis of the late 1990s, children’s

health and poverty have become even more of a policy concern in Indonesia. At the 27th Spe-

cial Session of the United Nations General Assembly on Children in 2002, Dr. Achmad Sujudi,

Indonesian Minister for Health, stated: “[U]nless vigorous measures are urgently taken, the threat-

ened menace of a ‘lost generation’ of malnourished, unhealthy and poorly educated children could

3Although there exist alternative frameworks for comparing distributions (or portions of distributions), the infor-
mation content provided by QTE and SD analysis has led to an increasing number of applications (see, e.g., Bitler
et al. 2006; Abadie 2002; Maasoumi and Heshmati 2000).
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become a stark reality,” where vigorous measures include “investing more of its resources for the

poor, particularly for children and women, and support for the 20/20 initiative in which the govern-

ment should allocate 20% of its national budget to social development programs.”4 Such extreme

measures are necessary since even as the Indonesian economy recovers at the macroeconomic level,

the microeconomic consequences are not easily reversed given past inadequacies in the provision

of health care (FitzGerald 2001). Rukumnuaykit (2003) estimates that infant mortality increased

roughly 1.4 percentage points after the financial crisis. Recent figures provided by UNICEF (2005)

indicate that 28% of children under age five are moderately or severely underweight; the under age

five (one) mortality rate is 38 (30) per 1,000 live births, nearly five times higher than in the United

States and placing it in the bottom half of countries in the world.

Indonesia also has a relatively long history of encouraging smaller families, particularly families

with two children. The National Family Planning Coordinating Board, BKKBN (Badan Koordinasi

Keluarga Berencana Nasional), was established as part of a national population campaign in 1970

in order to reverse the trend of rapid population growth and to promote the welfare of women

and children. The campaign conveyed two consistent messages: (i) “A Small Family Is a Happy,

Healthy, and Prosperous Family” and (ii) Dua Anak Cukup, meaning “Two Children Are Enough”

(Weidemann 1999). Weidemann (1999, p. 9-10) summarized the extent of the campaign, which

continues at present:

“This theme was repeated everywhere, in all kinds of forums. The back of a five-
rupiah coin, displayed a two-child family with the message “Family Planning: the Way
to Prosperity.” Everywhere, posters with this message greeted people from billboards
and storefront windows. Family planning subjects are written into soap opera and
film scripts, as well as radio and television programs. Even Indonesia’s ancient puppet
theatre programs, the wayang kulit and wayang golek, feature family planning. These
nation-wide information campaigns are still going on around Indonesia.”

The result of the campaign has been a reduction in the average number of children per woman from

5.57 in 1970, to 4.73 in 1980, to 3.50 in 1990, and further to 2.60 in 2000.5

The political desire to improve child health combined with the message that the ‘ideal’ family

4Available at http://www.un.org/ga/children/indonesiaE.htm.
5Data are from the United Nations Common Database (http://globalis.gvu.unu.edu/).
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contains two children motivates our focus on the treatment effect of more than two versus only

two children. Moreover, the large number of severely unhealthy children suggests that one should

examine the determinants of child health at all parts of the distribution. The remainder of the

paper is organized as follows: section 2 provides a simple theoretical framework to motivate the

distributional analysis; section 3 details the econometric approach and data; section 4 discusses

some preliminary analysis focused mainly on the validity of the instrument; section 5 discusses the

distributional results; and, section 6 concludes.

2 Theoretical Model

To motivate the distributional analysis and clarify the identification strategy, we present a simple

extension to the model in Becker and Tomes (1976). To begin, assume households maximize utility

given by U (n, q, r, c), where n is the number of children, q is the quality per child, r is the sex ratio

of children (r ∈ [0, 1]), and c is consumption. Child quality depends on market purchased health

inputs and a household-level health endowment; the production function is q = q (w, θ), where w is

a vector of market purchased health inputs and θ is the household health endowment.6 We assume

positive marginal products for each input, qw > 0 and qθ > 0; we make no assumptions about the

cross-derivative qwθ. The household budget constraint is given by

pcc + pnn + pwwn− δ(r − 0.5)2 = I (1)

where pc is the price of c, pn is the fixed cost per child independent of the level of child quality, pw

is a vector of input prices, δ is a parameter reflecting cost-savings due to having more children of

one gender, and I is household income.

The household maximizes U given the production function for child quality and the budget

6Designation of the health endowment at the household level implies that the endowment of each child is equal.
As Becker and Tomes (1976) discuss, heterogeneous endowments do not alter the primary implications of the model.
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constraint. The equilibrium conditions are:

∂U

∂c
= λpc = λπc (2)

∂U

∂q
= λ

pw

∂q/∂w
n = λπq

∂U

∂n
= λ(pww + pn) = λπn

where λ is the marginal utility of income and πc, πq, and πn are the shadow prices of consumption,

child quality, and child quantity, respectively. As is well known, the equilibrium conditions imply

that the shadow price of child quality, πq, is positively related to the number of children, n. Thus,

an ‘exogenous’ increase in fertility increases the shadow price of child quality, which reduces the

demand for quality per child, q, which reduces the shadow price of child quantity, πn, further

increasing n, and so on. This reaction yields the familiar quantity-quality trade-off.

Further examination, however, reveals that the magnitude of the trade-off – although not the

trade-off itself – depends on the health endowment, θ, as well as the form of the health production

function. Specifically, the impact of an exogenous increase in fertility depends on the resultant

change in the shadow price of child quality. The magnitude of the change in πq depends on the prices

of market purchased health inputs, pw, which are assumed fixed, and the marginal productivity of

market purchased health inputs, qw, which in turn may depend on the household health endowment,

θ. Consequently, the sign of the cross-derivative qwθ has important implications.

Consider the three possible cases. First, if qwθ > 0 (as in a Cobb-Douglas production function),

then the change in πq from an exogenous increase in n is deceasing in θ. Thus, the quantity-quality

trade-off will be larger in magnitude in the lower tail of the distribution of θ. Second, if qwθ < 0, then

the opposite occurs and the trade-off will be larger in magnitude in the upper tail. Finally, if qwθ = 0

(e.g., if the production function is additively separable), then the change in πq from an exogenous

increase in n is independent of θ. Thus, the magnitude of the trade-off will be independent of θ.

Assessing heterogeneity in the trade-off is one of the goals of the empirical analysis. However, since

θ is unobserved, we test for such heterogeneity not across the distribution of θ, but rather across

the distribution of q itself (net of other observable inputs, w). An additional goal – assuming the
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quantity-quality trade-off is found to exist over at least a portion of the distribution – is to assess

the robustness of distributional comparisons over a large class of social welfare functions.

3 Estimation

3.1 Regression Approach

To initially examine the data, we use Ordinary Least Squares (OLS) and TSLS to estimate the

model

qi = Xiβ + Diτ + εi (3)

where qi is the health of individual i, X is a vector of individual, family, and community attributes

(which includes health inputs, w), D is an indicator variable equal to one if there are more than two

children in the household (zero otherwise), and ε is a mean zero, possibly heteroskedastic, normally

distributed error term. We also estimate (3) by TSLS, instrumenting for D using an exclusion

restriction based on the gender composition of children (discussed below).

3.2 Distributional Approach

3.2.1 Quantile Treatment Effects

To allow for heterogeneous effects of household size, we estimate quantile treatment effects (QTE).7

To begin, let Q0 and Q1 denote two health variables to be compared. For instance, Q0 (Q1) may

represent a measure of weight of children residing in households with only two children (more than

two children). {q0i}N0

i=1 is a vector of N0 observations of Q0 (denoted by Di = 0); {q1i}N1

i=1 is an

analogous vector of realizations of Q1 (denoted by Di = 1). Let F0(q) ≡ Pr[Q0 < q] represent the

cumulative density function (CDF) of Q0; define F1(q) similarly for Q1. The pth quantile of F0

is given by the smallest value qp
0 such that F0(q

p
0) = p; qp

1 is defined similarly for F1. Under this

7As an alternative, one could utilize IV techniques recently developed for quantile regression models (e.g., Cher-
nozhukov and Hansen 2005). We pursue the current approach as it lends itself more naturally to stochastic dominance
testing (discussed below), which is informative for comparing entire distributions when treatment effects vary across
the distribution.
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notation, the QTE for quantile p is given by ∆p = qp
1 − qp

0, which is simply the horizontal difference

between the CDFs at probability p.8 Estimates, ∆̂p, are obtained using the sample analogues of

qp
j ≡ infq{Pr[Qj ≤ q] ≥ p}, j = 0, 1 and p = 0.01, ..., 0.99. In the results below, we plot ∆̂p, as well

as 90% confidence intervals based on a simple bootstrap technique, similar to Bitler et al. (2006).

3.2.2 Test of Equality

In addition to examining the QTEs at each quantile, we test the joint null Ho : ∆p = 0 ∀p ∈ (0, 1),

or equivalently Ho : F0 = F1, utilizing a two-sample Kolmogorov-Smirnov (KS) statistic and a

bootstrap procedure (Abadie 2002). See Appendix A for detail.

3.2.3 Selection Issues

Selection on Observables Thus far, the distributional analysis has only considered uncondi-

tional distributions. However, dependence between the treatment (number of children) and other

determinants of the outcome (child health) most certainly precludes one from inferring causation.

To alleviate the bias attributable to selection on observables, we utilize several sets of observable

determinants of child health and analyze the health distributions adjusting for covariates. Here, we

utilize the inverse propensity score weighting procedure as applied in Bitler et al. (2006) (see also

Firpo (2007) and Appendix A for detail).

Selection on Unobservables Adjusting the distributions of child health for observable covariates

is not sufficient to identify the causal effect of household size if there is selection on unobservables.

As a result, we implement the IV procedure developed in Abadie (2002) to compare the distributions

of potential health outcomes for (a subpopulation of) children. According to Imbens and Rubin

(1997), given a binary instrument, the potential distributions of the outcome are identified for

the subpopulation (referred to as compliers) whose treatment assignment (in this case, number of

children) is determined by the instrument.

8It is important to note that the QTEs do not correspond to quantiles of the distribution of the treatment effect
unless the assumption of rank preservation holds (Heckman et al. 1997; Firpo 2007). Absent this assumption,
whereby the ranking of children would remain unchanged under of the two household types, the QTE simply reflects
differences in the quantiles of the two marginal distributions.

8



To proceed while avoiding new notation, re-define Q0 and Q1 as two potential health variables

for the untreated (children in households with two children) and treated (children in households

with more than two children). Let q0i and q1i represent the corresponding values for observation

i, i = 1, ..., N0 + N1, from the respective distribution, and let Zi be a binary instrument. Denote

Di(0) the value of Di if Zi = 0; similarly for Di(1). Given this setup, for any child i, the pair

of treatment indicators {Di(0), Di(1)} and the pair of potential health outcomes {q0i, q1i} are not

both observed since only one state of the world – Zi = 0 or Zi = 1 – is realized. Instead, the

realized treatment assignment Di = Di(1)Zi + Di(0) (1− Zi) and the realized potential outcome

qi = q1iDi + q0i (1−Di) are observed.

Let F c
0 (q) and F c

1 (q) represent the CDFs of potential health outcomes for compliers in the control

and treatment groups, respectively, which are defined as follows:

F c
0 (q) = E [I{q0i ≤ q}|Di(1) = 1, Di(0) = 0]

F c
1 (q) = E [I{q1i ≤ q}|Di(1) = 1, Di(0) = 0] (4)

If Zi satisfies the following three assumptions:

(i) Independence: {q0i, q1i, Di(0), Di(1)} ⊥ Zi

(ii) Correlation: Pr[Zi = 1] ∈ (0, 1) and Pr[Di(0) = 1] < Pr[Di(1) = 1]

(iii) Monotonicity: Pr[Di(0) ≤ Di(1)] = 1,

then QTEs based on the distributions F c
0 (q) and F c

1 (q) identify the causal effect of household size

for the subpopulation of compliers despite unobservables being correlated with both the quantity

and quality of children (Imbens and Angrist 1994; Angrist et al. 1996). Moreover, as shown in

Abadie (2002), QTEs based on the distributions F c
0 (q) and F c

1 (q) are proportional to QTEs based

on the distributions G0(q) and G1(q), where G0 (G1) represents the distribution of health outcomes

for children with Zi = 0 (Zi = 1). Thus, QTE estimates obtained using the empirical CDFs of G0

and G1 identify both the sign and statistical significance of the QTEs.
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Finally, we also estimate the QTEs combining Abadie’s (2002) approach with the previous

method of adjusting for observables. Conditioning on X, in combination with the IV strategy,

increases the likelihood that the instrument satisfies the necessary criteria. In addition, even in

randomized experiments, controlling for potentially confounding variables may be advisable to

capture residual covariance, as well as the fact that randomization only balances confounders in

expectation (Imai and van Dyk 2004).

In the analysis, the instrument is an indicator of whether the first two children are of the same

gender. As shown in Rosenzweig and Wolpin (2000), for gender composition to be a valid exclusion

restriction certain assumptions are required (see also Rosenzweig and Zhang (2006)). Specifically,

we require that (i) the sex ratio of children, r, enters the household utility function, (ii) child-rearing

costs do not vary with r (i.e., δ = 0 in (1)) and/or consumption, c, and per child quality, q are

strongly separable in the utility function, and (iii) per child quality, q, and r are strongly separable

in the child quality production function. We assess the validity of these requirements below through

examination of the first-stage regressions and various sensitivity analyses.9

3.2.4 Stochastic Dominance

While examination of the QTEs is of great interest, in the event that the QTE estimates vary

in sign or statistical significance over the distribution, tests for SD enable welfare comparisons of

distributions. To begin, assuming general von Neumann-Morgenstern conditions, let U1 denote the

class of (increasing) social welfare functions u such that welfare is increasing in health (i.e. u′ ≥ 0),

and U2 the sub-class of functions in U1 such that u′′ ≤ 0 (i.e. concavity). Concavity represents

an aversion to inequality in the health of children. Note that u refers to the welfare function of a

policymaker, not the household.

Under this notation, Q0 First Order Stochastically Dominates Q1 (denoted Q0 FSD Q1) iff

E[u(Q0)] ≥ E[u(Q1)] for all u ∈ U1, with strict inequality for some u, where E[·] is the expected

9The monotonicity assumption is inherently untestable. It rules out the presence of defiers: households who
have only two children because the first two children were of the same gender, or households who have a third child
because the first two children were of opposite gender.
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value operator. Equivalently,

F0(q) ≤ F1(q) ∀q ∈ S, with strict inequality for some q (5)

where S denotes the union of the supports of Q0 and Q1. Condition (5) may be alternatively stated

as

∆p ≤ 0 ∀p ∈ (0, 1), with strict inequality for some p. (6)

If Q0 FSD Q1, then the expected social welfare from Q0 is at least as great as from Q1 for all

increasing welfare functions, with strict inequality for some function(s) in the class. The distribution

of Q0 Second Order Stochastically Dominates Q1 (denoted as Q0 SSD Q1) iff E[u(Q0)] ≥ E[u(Q1)]

for all u ∈ U2, with strict inequality for some u. Equivalently,

∫ q

−∞
F0(v)dv ≤

∫ q

−∞
F1(v)dv ∀q ∈ S, with strict inequality for some q, or (7)

∫ p

0

∆vdv ≤ 0 ∀p ∈ (0, 1), with strict inequality for some p. (8)

If Q0 SSD Q1, then the expected social welfare from Q0 is at least as great as that from Q1 for all

social welfare functions in the class U2, with strict inequality holding for some function(s) in the

class. FSD implies SSD and higher orders. To test for FSD and SSD, we use generalizations of the

Kolmogorov-Smirnov test criteria and the simple bootstrap proposed in Maasoumi and Heshmati

(2000) (see Appendix A for detail).

3.3 Data

The data are obtained from the IFLS. The IFLS contains a longitudinal sample of households

representing about 83% of the Indonesian population living in 13 of the 26 provinces in 1993; see

Strauss et al. (2004a, 2004b) for a complete description. We utilize the 2000 wave to form a sample

of roughly 3,000 children aged ten and under, with at least one identifiable birth parent in the

survey, and who come from a household with at least two children.

We use two measures of child health – height and weight – standardized to the reference popu-
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lation for the child’s age and sex utilizing the 1990 British Growth Reference data.10 The quantity

of children is defined as the number of children ‘belonging’ to a given set of parents. Assuming that

households take into account their spouses’ fertility history, this definition includes any children

from previous marriages. For example, if one (or both) parents were previously married and entered

the current marriage with children, then these children are counted in the number of siblings. Our

definition, however, does exclude children ‘belonging’ to other couples who reside in the same home.

Finally, our definition includes children ‘belonging’ to the couple, but not currently residing in the

household if the child resided in the household during the prior survey waves (1993 or 1997).

Once the number and identity of siblings are established, we create a dummy variable, MoreThan2,

equal to one if the household has more than two children and zero otherwise; households with less

than two children are omitted. As the instrumental variable, we define SameSex2 equal to one if

the first two children are of same gender, and zero otherwise. Because the first two children are the

subjects of the quasi-experimental design, we restrict the sample to these children (Angrist et al.

2006). For comparison, Appendix B reports results using all children under ten years of age.

When adjusting for covariates, we utilize three sets of covariates, X. Control Set A includes the

child’s gender, age in months, and birth order. Control Set B includes the variables in A plus:

Parental: dummy variables for mother’s and father’s education, mother’s and father’s height,

mother’s and father’s weight, mother’s and father’s age, dummy variables for mother’s and

father’s work status, dummy variables for mother’s and father’s religion, dummy indicating

whether or not parents’ height are missing, dummy indicating whether or not father’s age is

missing;

Household: dummy variable for ownership of farm, dummy variable indicating if the household

head is female, dummy variables for decision-making powers concerning children’s health,

dummy variables for type of dwelling, house size, number of rooms in the house, dummy

variables for type of floor materials in the house, dummy variables for type of wall materials

in the house, dummy variables for water source for the house, dummy variable indicating

10Note, there are a few missing values for the health outcomes. Thus, the samples utilized to analyze the two
measures are not identical.
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if water is boiled prior to consumption, dummy variables for type of sanitary conditions of

household, region dummy, province dummies, and a dummy variable indicating whether or

not house size is missing.11

Control Set C includes the variables in B plus community-level variables: number of and minimum

distance to various health facilities in the community. These variables are missing for a significant

portion of the sample; we replace missing data with the sample mean and include dummy variables

denoting missing data.

Table 1 provides summary statistics. On average, children in a household with two children are

healthier in terms of their height-for-age and weight-for-age z-scores, consonant with the quantity-

quality trade-off.

4 Preliminaries

Prior to presenting the distributional results, Table 2 presents the regression results utilizing OLS

(Panel A) and TSLS (Panel B). This is useful not only for comparison to the distributional results,

but also relative to the literature. The OLS results indicate that moving from a two child household

to one with more than two children is associated with a small, statistically significant reduction in

both height-for-age and weight-for-age: roughly 0.11 to 0.21 standard deviations. Treating fertility

as endogenous, however, we fail to find any statistically significant impact of the number of children

regardless of conditioning set utilized, consonant with Angrist et al. (2006). While the estimates

are imprecise, we note that the point estimates are positive using Control Sets B and C for the

long-run measure, height-for-age.

For the TSLS estimates to be meaningful, our instrument, SameSex2, has to be correlated

with the endogenous variable, but independent of health outcomes conditional on the endogenous

variable. We discuss the evidence concerning each of these requirements in turn.

To assess the former requirement, we provide results from several specification tests, as well

as the results from the first-stage regressions, in Table 3. In terms of the first-stage results, as

11Missing values are replaced with sample means.
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expected, our SameSex2 has a positive and statistically significant effect on Morethan2, regardless

of sample or conditioning set. Specifically, having the first two children of same gender increases

the probability of having more than two children by roughly five percent.

Although encouraging, statistical significance alone is not sufficient to rule out a weak instrument

problem. Thus, Table 3 presents results from two additional tests assessing the relevance of our

instrument: the Kleibergen-Paap rk Wald Statistic and the first-stage F -statistic for the significance

of the instrument. Our instrument fares very well in terms of these tests. Finally, despite these

comforting findings, we also utilize several weak-instrument robust inference approaches to assessing

the statistical significance of the endogenous variable in the second-stage: Anderson-Rubin F -test

Statistic and Stock-Wright S-statistic. The results, in Panel C of Table 2, indicate that our inference

is robust to the use of these alternatives. Moreover, results from the reduced form regressions of

child health on SameSex2 are presented in Panel D of Table 2. These regressions also fail to yield

any statistically significant estimates.

The second requirement for a valid instrument is independence; the instrument must be in-

dependent of potential health outcomes (conditional on X). Such dependence could arise from

either a direct impact of the instrument on health outcomes (i.e., the instrument belongs in the

second-stage), or an indirect effect arising from correlation between the instrument and unobserv-

able health determinants (i.e., the instrument itself is endogenous). The existing literature suggests

several reasons for concern. First, as discussed above, Rosenzweig and Wolpin (2000) point out

that there may exist economies of scale in households with children of the same sex. This implies a

(positive) direct effect of our instrument on child health due to an income effect. We are not able

to test for a direct link between gender composition and the intra-household allocation of resources

or availability of household public goods due to data limitations (although a direct link does not

preclude the viability of the identification strategy, it only implies that additional restrictions on

household preferences are needed). Second, Baez (2008) suggests that interactions with opposite

sex siblings may benefit individuals due to complementarities arising in the production of health.

This implies a negative direct effect of our instrument of child health.

As an informal test of a direct effect of the instrument, we regress each health measure on Same-
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Sex2 and Morethan2, along with the other covariates discussed above. Conditional on Morethan2,

the coefficient on SameSex2 is statistically insignificant in both cases (height-for-age: β̂samesex2 =

0.02, s.e. = 0.049; weight-for-age: β̂samesex2 = −0.014, s.e = 0.052). Moreover, the negative point

estimate for weight-for-age is not consistent with the mechanism suggested in Rosenzweig and

Wolpin (2000).

A third possibility that would invalidate independence of the instrument is endogenous sex

selection. While child gender is generally exogenous, this need not be the case if abortion or infant

mortality rates differ by gender. Such a selection process leads to an imbalance in the sex ratio.

However, in 1992, the population sex ratio was unity (in contrast, it was 1.06 men per woman in

mainland China, 1.07 in India, 1.08 in Bangladesh, and 1.02 in Thailand).12 This is consistent

with the fact that abortion is illegal in Indonesia except under certain extreme circumstances. In

addition, the under age five infant mortality rate in 2000 was higher for boys than girls (47.3 versus

34.3).13

Absent gender-biased abortion or infant mortality rates, the gender of children past the first child

could nonetheless be endogenous if there exists male preference, as suggested in Jensen (2002).14

However, as suggested by the figures referenced above, there is little evidence to suggest gender bias

in Indonesia. In addition, Kevane and Levine (2001) find no evidence of ‘missing girls’ in Indonesia,

and document a narrowing, if not a complete disappearance, in the gender gap in educational

attainment. Similarly, Levine and Ames (2003) find that even during the Asian financial crisis

in the late 1990s, girls did not suffer disproportionately relative to boys, and may have actually

benefited, in terms of a wide range of measures including school enrollment, immunizations, and

mortality. Finally, Wongboonsin and Ruffolo (1995) and Soeradji and Hatmadji (1994), among

others, find that son preference appears nonexistent in Indonesia.

Despite this prior evidence, we nonetheless assess the existence of son preference in our data.

First, a simple tabulation of our data reveals that less than 52% of first born children are male, as

are first and second born children and all children under ten years of age in our sample. Second, we

12See http://www.census.gov/apsd/www/statbrief/sb93_18.pdf.
13See http://www.census.gov/ipc/www/idb/tables.html.
14We thank the editor for bringing this to our attention.
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utilize regression analysis to assess determinants of second and higher order births. As suggested in

Lee (2008), if son preferences exist, households with daughters at earlier parity should have more

children. Specifically, we utilize two fertility measures: Morethan1 equal to one if a household has

more than one child (zero otherwise), and Morethan2 (defined above). We also use two measures of

sex composition: Daughter1 equal to one if the first child is a girl (zero otherwise), and Daughter2

equal to one if the first two children are girls (zero otherwise). These regressions can be thought

of as alternative first-stage results of a TSLS procedure or as parity progression models as in the

demography literature.15 The results – obtained by conditioning on Control Set C – are displayed

in Table 4. Despite the relative precision of the estimates (the standard errors are similar to those

in Table 3), the alternative measures of sex composition do not have a statistically meaningful

relationship with family size. In addition, the point estimates in Panels A and B are negative,

indicating if anything a lower probability of larger families when the first child is a daughter.

The discussions above indicate that our instrument is at least plausibly exogenous. Nonetheless,

we undertake a final test based on a method proposed in Conley et al. (2008). The method is

couched in a modified version of the model given in (3). The modification entails permitting the

instrument to have a direct impact on child health. Formally, the model is now given by

qi = Diτ + Ziγ + εi (9)

Di = Ziπ + ui (10)

where we omit the other covariates, X, purely for notational convenience.

A valid instrument requires γ = 0. Conley et al. (2008) seek to construct a valid confidence

interval for τ even when this requirement does not hold. Their approach – referred to as the Union

of Confidence Intervals (UCI) with γ support assumption approach – assumes that γ ∈ Γ, where Γ

is the bounded support of γ. Given a specific value of γ from the support, say γ0, one can subtract

15Except that in the demography literature, the conditional mean is usually modeled using a logit model instead
of a linear probability model.
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Ziγ0 from equation (9), yielding

q̃i = qi − Ziγ0 = Diτ + Zi(γ − γ0) + εi. (11)

If γ = γ0, then one can consistently estimate τ via TSLS using Z as an instrument and construct

a symmetric (1− α)% confidence interval, CIN(1− α, γ0), based on the asymptotic variance of the

TSLS estimator. However, because the true value is unknown, one can estimate τ for all values

within the support Γ via TSLS regressions of q̃i on Di and construct the union of the resulting

confidence intervals. As long as γ ∈ Γ, the union will contain the true parameter value of τ as

Pr[τ ∈ ∪
γ0∈Γ

CIN(1− α, γ0)] ≥ (1− α) asymptotically.16

To implement the UCI approach, we utilize an interval for Γ consistent with our discussions

above. Specifically, we assume the positive income effects and negative complementarity effects

of SameSex2 are roughly equal, yielding a value of γ close to zero. As such, we use a symmetric

support centered at zero: Γ = {−δ, δ} for different values of δ.

The results are shown in Figure 1 and obtained using Control Set C. The left (right) column

displays the results for height-for-age (weight-for-age). The figures reveal only that this approach

adds extra uncertainty, thereby increasing the width of the confidence intervals. Thus, allowing for

γ 6= 0 only strengthens our inability reject the null hypothesis that τ is zero, consonant with our

original TSLS results.

While all these discussions do not provide a definite answer to the question of whether our

instrument is valid, they do increase our confidence in the identification strategy. We now turn to

the distributional results.

16Since Pr[τ ∈ CIN (1 − α, γ0)] → (1 − α) when γ = γ0, it follows that Pr[τ ∈ ∪
γ0∈Γ

CIN (1 − α, γ0)] ≥ (1 − α). In

practice, we approximate the interval by taking the union of the confidence intervals for grid points in the support
Γ.
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5 Results

5.1 Unconditional Distributions

The QTEs of the unconditional distributions are plotted in Figure 2. Treating MoreThan2 as

exogenous (denoted as ‘No Instrument’ in Figure 2), the estimated QTEs are negative at every

quantile for both height-for-age and weight-for-age, consonant with the quantity-quality trade-off

applying to all, instead of just on average. Moreover, the estimates are statistically different from

zero in both cases over the majority of the distribution.17 Finally, in both cases, the QTE estimates

are relatively constant across the distribution. In light of the theoretical model, this is consonant

with the production function being additively separable for both anthropometric measures.

The corresponding tests for equality and SD are provided in Table 5. Several findings are

noteworthy. First, we easily reject the null of equal distributions for both health measures (height-

for-age: p = 0.000; weight-for-age: p = 0.014). Second, despite the fact that the QTEs are negative

at all quantiles for both health measures, we fail to observe either a first- or second-order SD ranking

as the distributions cross below the first percentile.18 Moreover, the simple bootstrap confirms the

inability to rank the distributions in even the second-order sense (height-for-age: Pr(s ≤ 0) = 0.134;

height-for-age: Pr(s ≤ 0) = 0.448). The inability to find a statistically significant first- or second-

order ranking utilizing the simple bootstrap is attributable to the relatively frequent occurrence of

positive QTEs at low quantiles, as indicated in Figure 2.

Although interesting, these results treat MoreThan2 as exogenous (and fail to adjust for any

covariates). Thus, we now turn to the IV results (still not controlling for any covariates). Examina-

tion of the plots (Figure 2, second row) yields two findings. First, for height-for-age, the QTEs are

almost always negative below roughly the 90th quantile but positive above it, although the 90% con-

fidence intervals for the QTEs nearly always contain zero. Second, for weight-for-age, the QTEs are

negative at nearly all quantiles, and the 90% confidence intervals exclude zero around the median,

17All inference is based on 500 bootstrap repetitions.
18To be more specific, because the d and s statistics used to assess the existence of SD rankings are based on 500

points along the support, rather than just the 99 quantiles displayed in the plots, the SD tests capture crossings not
shown in the figures.
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supporting the quantity-quality trade-off. In terms of the statistical tests (Table 5), we now reject

equality of the distributions only for weight-for-age (height-for-age: p = 0.220; weight-for-age: p =

0.026). In addition, we again fail to obtain a statistically meaningful SSD ranking in either case.

In sum, the unconditional results yield modest statistically meaningful evidence of a quantity-

quality trade-off over at least some portions of the distribution using the more short-run measure

of health (weight-for-age) whether one treats the number of children as exogenous or endogenous.

However, we only find evidence of an impact of household size on the long-run measure (height-

for-age) when we ignore endoeneity. The fact that the evidence of a trade-off is stronger when

household size is treating as exogenous is consistent with negative selection into larger households.

To further assess the sensitivity of these results, we turn to the results adjusting for covariates.

5.2 Adjusting for Covariates

The QTEs based on the distributions obtained using inverse propensity score weighting are displayed

in Figures 3 (height-for-age) and 4 (weight-for-age). In each figure, the top row utilizes Control Set

A, whereas the second (third) row uses Control Set B (C). In addition, the first column considers

the treatment, MoreThan2, as exogenous, whereas the second column instruments for the treatment

using SameSex2.

Treating the number of children as exogenous, we find that the point estimates of the QTEs

are negative at every quantile for height-for-age (Figure 3), and negative over the majority of the

distribution for weight-for-age (Figure 4). However, unlike the unconditional analysis, the estimates

are rarely statistically significant, particularly when using Control Set B or C. Moreover, the lack

of statistical significance is as much attributable to a fall (in absolute value) in the point estimates

as due to a widening of the confidence intervals. Thus, household size appears strongly correlated

with observable attributes associated with worse child health.

The corresponding test statistics are displayed in Table 6. In terms of the tests for equality, we

reject the null of equality at conventional levels in all six cases. Thus, despite the fact that many

of the QTEs are individually not statistically significant in Figures 3 and 4, we still easily reject

the null of no effect of the number of the children under the selection on observables assumption.
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In terms of making robust welfare statements, we fail to observe any SD ranking in the first- or

second-order sense for height-for-age, and this is confirmed by the simple bootstrap. While we

observe an SSD ranking in two cases using weight-for-age, none are statistically meaningful.

Turning to the IV results, there are several findings of note. First, although the point estimates

of the QTEs are negative at nearly every quantile below roughly the 90th quantile in figures, the

estimates are rarely statistically significant. The exception is for quantiles between then 20th and

50th quantiles when using weight-for-age. Thus, we again find modest statistically meaningful

evidence of a quantity-quality trade-off for some when using a more short-run measure of health.

Second, although the estimates are not statistically significant elsewhere, due to the wider confidence

intervals further above the median, the QTEs do appear relatively uniform across the majority of

the distributions. In light of theory, this uniformity suggests that the health production function

is additively separable. Finally, in most cases, the confidence intervals for the IV QTEs are tighter

compared with the estimates under exogeneity. Moreover, once we instrument for the treatment,

the results are invariant to the control set utilized.

In terms of the test statistics (Table 6), two findings stand out. First, as in the unconditional

case, we reject the equality of the distributions at conventional levels in all cases using weight-

for-age and when using Control Set C using height-for-age. Second, while find no evidence of a

statistically meaningful SSD ranking . As a result, when adjusting for covariates and allowing for

the endogeneity of the number of children, we obtain little support for the trade-off over the whole

distribution. Although, as in the unconditional analysis, evidence favoring the existence of the

trade-off even in the case of weight-for age arises when one moves beyond a narrow focus on average

effects (mostly concentrated in between 20th and 50th quantiles).

In sum, upon adjusting for covariates, we reach three conclusions. First, the distribution of

weight-for-age continues to be statistically different. Such differences imply the existance of a

trade-off at least over portions of the distribution when treating household size as endogenous.

This contrasts starkly with the TSLS analysis which indicated no statistically meaningful trade-off

on average. Second, failure to find any FSD or SSD welfare ranking implies that the trade-off is

not robust across the whole distribution; the trade-off exists at most for some. Finally, the relative
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uniformity of the point estimates of the quantile treatment effects when treating household size as

endogenous is consonant with the health production function being additively separable in inputs

and endowments.

5.3 Sensitivity to Sample Selection

As mentioned earlier, we restrict our sample to first and second born children since these are the

children subjected to the quasi-experimental design. Nonetheless, we also performed our analysis

on the full sample of all children, although the results based on first and second born children

only constitute our preferred estimates. We continue to restrict the sample to children residing in

households with at least one sibling. The results are relegated to Appendix B.

In the interest of brevity, we simply highlight the main differences. First, the negative (local)

average treatment effect estimated by TSLS is now statstically significant when using weight-for-

age and Control Set A; all other TSLS estimates remain statistically insignificant (see Table B2).

Second, in Tables B4 (Unconditional Results) and B5 (Adjusted for Covariates), we now reject

equality of the distributions in all cases when using height-for-age. Finally, in all cases in Tables B4

and B5, the distribution of weight-for-age in households with only two children is observed to second

order dominate the corresponding distribution from larger households. Moreover, the rankings of

the unconditional distributions (Table B4) are statistically meaningful.

In sum, while the majority of results – particularly those concerning the validity of our instru-

ment – are unchaged when utilizing the full sample of children, we do find moderately stronger

results pertaining to a quantity-quality trade-off for children between the 20th and 50th quantiles

when using the more short-run measure of health (weight-for-age).

6 Conclusion

Although the theoretical trade-off between the quantity and quality of children is well-established,

empirical evidence supporting such a causal relationship is limited. Moreover, most existing em-

pirical studies focus on education as a measure of child quality and are limited to linear regression
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analysis. While such results are easily interpretable, at best they provide evidence of the aver-

age effect of the number of children on child-specific investments. In contrast, this study analyzes

the impact of household size on the entire distribution of two measures of health using data from

Indonesia, while accounting for the potential endogeneity of the quantity of children.

The analysis yields three main conclusions. First, distributions of weight-for-age are statistically

different when we account for the endogeneity of the quantity of children. Second, despite the

significant difference in the distributions across households with more than two or only two children,

we fail to find statistically meaningful evidence of the quantity-quality trade-off over the whole

distribution. In particular, using an identification strategy based on gender composition of the first

two children, there is evidence that the quantity-quality trade-off applies to only some. Finally,

while modest evidence of the trade-off is found when using a more short-run measure of health

(based on weight), there is no statistically meaningful evidence of a trade-off on a long-run measure

(based on height) once the endogeneity of fertility decisions is addressed.

While these findings are striking, future research is necessary to answer questions generated

by this analysis. First, how robust are the results to alternative instruments that identify the

trade-off from other subpopulations of compliers (e.g., twins, such as in Rosenzweig and Zhang

(2006))? Second, utilizing other instruments for identification, are there larger gains from reducing

the number of children from, say, six children in a family to five, or from two children to only one?

Finally, are robust rankings possible if one examines bivariate distributions, such as health and

education, or health and family income? Despite these open questions, answering these and other

similar questions within a distributional framework is necessary for a deeper understanding of the

nature of intrahousehold allocation as well as sound policymaking.
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Table 1: Summary Statistics

Variable More than Two Children Two Children

Mean SD Obs Mean SD Obs

Height-for-age (z-score) -1.843 1.119 810 -1.484 1.335 2103

Weight-for-age (z-score) -1.822 1.198 796 -1.545 1.344 2115

First two children are same sex (1 = yes) 0.514 0.5 1014 0.48 0.5 2594

First two children are daughter2 (1 = yes) 0.266 0.442 1014 0.229 0.421 2594

Age in months 93.677 27.061 966 62.929 37.128 2522

Gender (1=male) 0.499 0.5 1014 0.515 0.5 2594

First Child’s Gender (1 = male) 0.492 0.5 1014 0.494 0.5 2594

Second Child’s Gender (1 = male) 0.489 0.5 1014 0.527 0.499 2594

Father’s Education

Elementary School and below 0.427 0.495 1014 0.412 0.492 2594

Junior High School 0.17 0.375 1014 0.177 0.381 2594

Senior High School 0.259 0.439 1014 0.287 0.452 2594

University 0.144 0.351 1014 0.125 0.33 2594

Mother’s Education

Elementary School and below 0.527 0.5 1008 0.447 0.497 2574

Junior High School 0.157 0.364 1008 0.196 0.397 2574

Senior High School 0.229 0.421 1008 0.278 0.448 2574

University 0.087 0.282 1008 0.08 0.271 2574

Father’s Height 161.997 5.972 749 162.428 6.47 2011

Mother’s Height 150.968 5.36 849 151.01 5.363 2180

Father’s Weight 57.161 9.83 745 57.398 9.801 2005

Mother’s Weight 51.568 9.491 846 51.745 8.988 2172

Father’s Age 36.705 5.543 1014 34.878 6.48 2588

Mother’s Age 31.996 4.495 1008 30.085 5.318 2568

Father’s Religion (1 = Islam) 0.853 0.354 1014 0.891 0.312 2592

Mother’s Religion (1 = Islam) 0.854 0.353 1008 0.893 0.309 2572

Father’s Work Status (1 = Wrok) 0.988 0.108 1014 0.984 0.125 2594

Mother’s Work Status (1 = Wrok) 0.481 0.5 1008 0.486 0.5 2572

Region (1 = Urban) 0.485 0.5 1014 0.507 0.5 2594

Dweilling Type

Single Unit 0.777 0.416 1014 0.836 0.37 2594

Duplex 0.087 0.282 1014 0.079 0.269 2594

Multiple Unit 0.04 0.197 1014 0.035 0.185 2594

House on Stilts 0.096 0.294 1014 0.05 0.217 2594

Floor Type

Ceramic/Marble/Granite/Stone 0.162 0.369 1012 0.188 0.391 2594

Tiles/Terrazzo 0.186 0.389 1012 0.223 0.416 2594
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Table 1 – (cont.) Summary Statistics

Variable More than Two Children Two Children

Mean SD Obs Mean SD Obs

Cement/Bricks 0.373 0.484 1012 0.354 0.478 2594

Lumber/Board/Bamboo 0.182 0.386 1012 0.122 0.328 2594

Dirt 0.098 0.297 1012 0.113 0.316 2594

Wall Type

Masonry (cement/brick) 0.609 0.488 1014 0.665 0.472 2594

Lumber/Board 0.271 0.445 1014 0.247 0.432 2594

Bamboo/Woven/Mat 0.119 0.324 1014 0.088 0.283 2594

Water Type

Pipe water 0.284 0.451 1006 0.266 0.442 2569

Well/Pump 0.262 0.44 1006 0.313 0.464 2569

Well water 0.308 0.462 1006 0.28 0.449 2569

Spring/Rain Water 0.056 0.229 1006 0.069 0.253 2569

River/Creek Water 0.051 0.219 1006 0.028 0.165 2569

Other 0.039 0.193 1006 0.044 0.204 2569

Decision on Children’s Health

Jointly made by husband and wife 0.025 0.155 889 0.032 0.175 2243

Only made by husband 0.126 0.332 889 0.117 0.322 2243

Only made by wife 0.094 0.293 889 0.088 0.283 2243

Otherwise 0.755 0.43 889 0.763 0.425 2243

House surrounded by

human/animal waste (1 = yes) 0.085 0.279 1014 0.068 0.252 2594

House surrounded by

piles of trash (1 = yes) 0.116 0.321 1014 0.119 0.324 2594

House surrounded by

stagnant water (1 = yes) 0.106 0.307 1014 0.097 0.296 2594

Stable under/next to

house (1 = yes) 0.217 0.412 1014 0.197 0.398 2594

Sufficient ventilation (1 = yes) 0.769 0.422 1012 0.801 0.399 2594

Yard is cleaned up (1 = yes) 0.681 0.466 1014 0.718 0.45 2594

House has a moderately

sized yard (1 = yes) 0.61 0.488 1014 0.616 0.486 2594

House has kitchen

outside (1 = yes) 0.271 0.445 1012 0.266 0.442 2594

No. of Rooms 5.386 2.639 1014 5.463 2.612 2594

House Size 75.536 67.265 1014 82.532 182.343 2594

Boil Water (1 = yes) 0.921 0.27 983 0.95 0.218 2499

Own Farm (1 = yes) 0.331 0.471 1006 0.299 0.458 2569
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Table 1 – (cont.) Summary Statistics

Variable More than Two Children Two Children

Mean SD Obs Mean SD Obs

Female Household Head (1 = yes) 0.033 0.178 1014 0.028 0.165 2594

Number of Health Facilities

Hospitals 2.655 1.432 1014 2.797 1.59 2594

Integrated Health Post 8.888 5.588 1014 9.502 5.54 2594

Private Practice 27.86 9.191 1014 28.751 9.719 2594

Commnuity Health Centers 7.855 2.89 1014 8.209 3.543 2594

Traditional Practices 5.514 3.384 1014 5.381 3.054 2594

Minimum distance of Health Facilities

Hospitals 17.012 22.689 1014 15.882 21.751 2594

Integrated Health Post 5.643 62.677 1014 3.986 48.03 2594

Private Practice 0.416 0.512 1014 0.438 0.602 2594

Commnuity Health Centers 1.137 1.385 1014 1.045 1.05 2594

Traditional Practices 0.775 1.821 1014 0.796 2.103 2594
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Table 2: Regression Results

Height-for-age Weight-for-age

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
(1) (2) (3) (4) (5) (6)

Control Set A B C A B C
Panel A: OLS Results

Morethan 2 -0.207*** -0.123** -0.114* -0.190*** -0.117* -0.110*
[0.058] [0.059] [0.059] [0.064] [0.064] [0.065]

Panel B: IV Results

Morethan 2 -0.294 0.170 0.312 -1.426 -0.474 -0.378
[0.916] [1.143] [1.033] [1.029] [1.131] [1.012]

Panel C: Weak-IV Robust Inference

Anderson-Rubin F 0.102 0.022 0.090 2.192 0.173 0.136
p-value 0.749 0.883 0.764 0.139 0.677 0.713
Stock-Wright S stat 0.102 0.022 0.093 2.192 0.178 0.140
p-value 0.749 0.882 0.760 0.139 0.673 0.708

Panel D: Reduced Form

Samesex2 -0.016 0.007 0.015 -0.078 -0.022 -0.019
[0.050] [0.049] [0.049] [0.053] [0.052] [0.052]

Number of Obs 2863 2399 2399 2861 2399 2399

1 Note – Robust standard errors in brackets. *** p < 0.01, ** p < 0.05, * p < 0.1.
2 Columns (1)-(3) report results for Height-for-age using Control set A, B, and C, respectively;

Columns (4)-(6) report results for Weight-for-age using Control set A, B, and C, respectively. See
text for detail of the variables in each control set.

3 Panel D reports reduced form estimates where morethan2 is excluded from these regressions.
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Table 4: The Effects of Alternative IVs on Fertility (First Stage)

Height-for-age Weight-for-age

Model No. of obs Model No. of obs
(1) (2) (3) (4)

Panel A Endog Var: Morethan 1 -0.014 3762 -0.014 3785
IV: Daughter 1 [0.010] [0.010]

Panel B Endog Var: Morethan 2 -0.027 2399 -0.028 2399
IV: Daughter 1 [0.019] [0.019]

Panel C Endog Var: Morethan 2 0.03 2399 0.032 2399
IV: Daughter 2 [0.025] [0.025]

1 Note – Robust standard errors in brackets. *** p < 0.01, ** p < 0.05, * p < 0.1
2 Columns (1)-(3) report results for Height-for-age using Control set A, B, and C, respec-

tively; Columns (4)-(6) report results for Weight-for-age using Control set A, B, and C,
respectively. See text for detail of the variables in each control set.

33



T
ab

le
5:

D
is

tr
ib

u
ti

on
al

T
es

ts
of

U
n
co

n
d
it

io
n
al

C
h
il
d
re

n
’s

H
ea

lt
h
.

D
is

tr
ib

u
ti
o
n
s

O
b
se

r
v
e
d

T
e
st

o
f

F
ir

st
O

r
d
e
r

D
o
m

in
a
n
c
e

S
e
c
o
n
d

O
r
d
e
r

D
o
m

in
a
n
c
e

R
a
n
k
in

g
E
q
u
a
li
ty

P
r
d
∗
≤

0
P

r
s∗
≤

0
X

Y
d
1
,M

A
X

d
2
,M

A
X

d
(S

im
p
le

B
o
o
t)

s 1
,M

A
X

s 2
,M

A
X

s
(S

im
p
le

B
o
o
t)

N
o

IV
A

.
H

e
ig

h
t-

fo
r
-A

g
e

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
N

o
n
e

p
=

0
.0

0
0

0
.0

3
8

3
.0

4
8

0
.0

3
8

0
.0

5
6

0
.1

3
7

2
2
2
.1

9
5

0
.1

3
7

0
.1

3
4

B
.
W

e
ig

h
t-

fo
r
-A

g
e

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
N

o
n
e

p
=

0
.0

1
4

0
.0

1
8

2
.2

1
6

0
.0

1
8

0
.2

8
6

0
.0

1
8

2
0
0
.4

7
5

0
.0

1
8

0
.4

4
8

W
it
h

IV
A

.
H

e
ig

h
t-

fo
r
-A

g
e

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
N

o
n
e

p
=

0
.2

2
0

1
.0

1
8

1
.3

5
3

1
.0

1
8

0
.0

0
2

1
.3

6
0

5
9
.6

0
7

1
.3

6
0

0
.0

3
0

B
.
W

e
ig

h
t-

fo
r
-A

g
e

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
N

o
n
e

p
=

0
.0

2
6

0
.1

3
1

1
.8

9
1

0
.1

3
1

0
.0

0
2

0
.1

7
7

1
0
7
.3

9
4

0
.1

7
7

0
.1

8
4

1
N

o
te

–
R

o
b
u
st

st
a
n
d
a
rd

er
ro

rs
in

b
ra

ck
et

s.
*
*
*

p
<

0
.0

1
,
*
*

p
<

0
.0

5
,
*

p
<

0
.1

2
P

-v
a
lu

es
o
b
ta

in
ed

u
si

n
g

5
0
0

b
o
o
ts

tr
a
p

re
p
et

it
io

n
s.

34



T
ab

le
6:

D
is

tr
ib

u
ti

on
al

T
es

ts
of

C
h
il
d
re

n
’s

H
ea

lt
h

A
d
ju

st
ed

fo
r

C
ov

ar
ia

te
s

D
is

tr
ib

u
ti
o
n
s

C
o
n
tr

o
l
S
e
t

O
b
se

r
v
e
d

T
e
st

o
f

F
ir

st
O

r
d
e
r

D
o
m

in
a
n
c
e

S
e
c
o
n
d

O
r
d
e
r

D
o
m

in
a
n
c
e

R
a
n
k
in

g
E
q
u
a
li
ty

P
r
d
∗
≤

0
P

r
d
∗
≤

0
X

Y
d
1
,M

A
X

d
2
,M

A
X

d
(S

im
p
le

B
o
o
t)

s 1
,M

A
X

s 2
,M

A
X

s
(S

im
p
le

B
o
o
t)

N
o

IV
A

.
H

e
ig

h
t-

fo
r
-A

g
e

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
A

N
o
n
e

p
=

0
.0

0
0

0
.0

4
8

2
.7

1
9

0
.0

4
8

0
.0

2
2

0
.1

9
4

1
6
5
.8

0
7

0
.1

9
4

0
.0

9
2

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
B

N
o
n
e

p
=

0
.0

0
0

0
.0

5
4

3
.7

2
9

0
.0

5
4

0
.0

1
0

0
.2

7
4

2
5
7
.7

7
5

0
.2

7
4

0
.0

7
4

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
C

N
o
n
e

p
=

0
.0

0
0

0
.0

5
2

3
.0

7
6

0
.0

5
2

0
.0

1
2

0
.2

5
7

2
0
1
.3

5
0

0
.2

5
7

0
.0

7
2

B
.
W

e
ig

h
t-

fo
r
-A

g
e

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
A

N
o
n
e

p
=

0
.0

0
4

0
.0

2
0

2
.3

3
5

0
.0

2
0

0
.2

5
2

0
.0

2
0

1
9
5
.7

2
9

0
.0

2
0

0
.4

4
8

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
B

X
S
S
D

Y
p
=

0
.0

1
2

1
.2

1
9

1
.9

4
8

1
.2

1
9

0
.0

7
6

0
.0

0
0

1
1
2
.8

8
3

0
.0

0
0

0
.5

6
4

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
C

X
S
S
D

Y
p
=

0
.0

0
8

1
.0

1
3

1
.9

8
0

1
.0

1
3

0
.0

6
2

0
.0

0
0

1
1
6
.9

3
3

0
.0

0
0

0
.5

9
4

W
it
h

IV
A

.
H

e
ig

h
t-

fo
r
-A

g
e

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
A

N
o
n
e

p
=

0
.1

4
8

0
.9

0
1

1
.4

7
0

0
.9

0
1

0
.0

0
0

1
.4

7
3

6
8
.9

5
6

1
.4

7
3

0
.0

2
4

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
B

N
o
n
e

p
=

0
.1

2
4

0
.9

5
1

1
.4

1
8

0
.9

5
1

0
.0

0
0

2
.4

1
1

4
9
.8

7
9

2
.4

1
1

0
.0

2
6

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
C

N
o
n
e

p
=

0
.0

6
8

0
.9

7
1

1
.5

3
9

0
.9

7
1

0
.0

0
0

2
.3

3
9

4
9
.6

1
8

2
.3

3
9

0
.0

2
8

B
.
W

e
ig

h
t-

fo
r
-A

g
e

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
A

N
o
n
e

p
=

0
.0

1
2

0
.1

1
4

2
.0

2
8

0
.1

1
4

0
.0

0
4

0
.1

7
0

1
2
0
.1

9
0

0
.1

7
0

0
.2

0
4

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
B

N
o
n
e

p
=

0
.0

4
6

0
.3

8
3

1
.7

1
6

0
.3

8
3

0
.0

0
0

1
.3

6
9

6
4
.4

5
4

1
.3

6
9

0
.0

8
4

T
w

o
C

h
il
d
re

n
M

o
re

th
a
n

T
w

o
C

N
o
n
e

p
=

0
.0

5
2

0
.4

9
6

1
.7

5
4

0
.4

9
6

0
.0

0
0

1
.3

7
4

6
3
.6

8
9

1
.3

7
4

0
.1

0
2

1
N

o
te

–
R

o
b
u
st

st
a
n
d
a
rd

er
ro

rs
in

b
ra

ck
et

s.
*
*
*

p
<

0
.0

1
,
*
*

p
<

0
.0

5
,
*

p
<

0
.1

2
P

-v
a
lu

es
o
b
ta

in
ed

u
si

n
g

5
0
0

b
o
o
ts

tr
a
p

re
p
et

it
io

n
s.

35



−
1

0
−

5
0

5
1

0
b

e
ta

0 .05 .1 .15 .2
delta

Lower Limit, UCI Upper Limit, UCI

Note: Solid green line is TSLS Estimate

(a) Height-for-age

−
1

0
−

5
0

5
1

0
b

e
ta

0 .05 .1 .15 .2
delta

Lower Limit, UCI Upper Limit, UCI

Note: Solid green line is TSLS Estimate

(b) Weight-for-age
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Figure 2: Unconditional Quantile Treatment Effects
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Figure 3: Quantile Treatment Effects Adjusted for Covariates: Height-for-age z-scores
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Figure 4: Quantile Treatment Effects Adjusted for Covariates: Weight-for-age z-scores
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A Econometric Details

A.1 Calculation and Inference of the KS Test of Equality

The test is based on the following KS statistic:

deq =

√
N0N1

N0 + N1

sup |F1 − F0| (12)

Specifically, our procedure calls for:

(i) obtaining the empirical CDF for Q0 and Q1, defined as

F̂jNj
(q) =

1

Nj

Nj∑
i=1

I(Qj ≤ q), j = 0, 1 (13)

by computing the values of F̂0N0(qk) and F̂1N1(qk), where I(·) is an indicator function and qk,

k = 1, . . . , K, denotes points in the support that are utilized (K = 500 in the application),

(ii) and computing

d̂eq =

√
N0N1

N0 + N1

max
k
{|F̂1(qk)− F̂0(qk)|} (14)

Inference is conducted using the bootstrap procedure applied in Abadie (2002). Specifically, we pool

the two samples, resample (with replacement) from the combined sample, split the new sample into

two samples, where the first N0 represent Q0 and the remainder represent Q1, and compute the KS

statistic. This process is repeated B times, and the p-value is given by

p− value =
1

B

B∑

b=1

I(d̂
∗
eq > d̂eq) (15)

The null hypothesis is rejected if the p-value is less than the desired significance level, say 0.10.

40



A.2 Implementation of the Inverse Propensity Score Weighting Proce-

dure

To control for covariates, we utilize the inverse propensity score weighting procedure as applied

in Bitler et al. (2006) (see also Firpo 2007). This entails altering the method for estimating the

empirical CDFs. Specifically, the empirical CDF for Qj, j = 0, 1, is now computed as

F̂jNj
(q) =

∑Nj

i=1 ω̂i I(Qj ≤ q)∑Nj

i=1 ω̂i

(16)

where the weights, ω̂i, are given by

ω̂i =
Di

p̂i(Xi)
+

1−Di

1− p̂i(Xi)
(17)

and p̂i(Xi) is the propensity score (i.e., the predicted probability that Di equals one given the

observables, Xi, from a first-stage probit model). Inference is conducted using the same bootstrap

procedure discussed above. The only difference is that the first-stage probit model, and resulting

weights, are estimated anew during each bootstrap replication.

A.3 Implementation of Stochastic Dominance Tests

To test for FSD and SSD, we use the following generalizations of the Kolmogorov-Smirnov test

criteria:

d =

√
N0N1

N + N1

min sup
z∈Z

[F0(z)− F1(z)] (18)

s =

√
N0N1

N0 + N1

min sup
z∈Z

∫ z

−∞
[F0(v)− F1(v)] dv (19)

where min is taken over F0 − F1 and F1 − F0, in effect performing two tests in order to leave no

ambiguity between the equal and unrankable cases. Specifically, our procedure calls for:

(i) computing the empirical CDFs using either (13) and (16), depending on if one wishes to adjust
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for covariates, at qk, k = 1, . . . , K,

(ii) computing the differences d1(qk) = F̂0N0(qk)− F̂1N1(qk) and d2(zj) = F̂1N1(qk)− F̂0N0(qk),

(iii) obtaining d̂ =
√

N0N1

N0+N1
min {max{d1}, max{d2}},

(iv) calculating the sums s1j =
∑j

k=1 d1(qk) and s2j =
∑j

k=1 d2(qk), j = 1, ..., J , and

(v) obtaining ŝ =
√

N0N1

N0+N1
min {max{s1j}, max{s2j}}.

If d̂ ≤ 0 and max{d1} < 0, then Q0 is observed to first-order dominate Q1; if d̂ ≤ 0 and max{d2} < 0,

then the reverse is observed. If d̂ > 0, then there is no observed ranking in the first-order sense.

Similar interpretations are given to ŝ, max{s1j}, max{s2j} with respect to second order dominance.

There exist two inferential approaches based on different bootstrap procedures to evaluate the

null of FSD (SSD), which is equivalent to Ho : d ≤ 0 (Ho : s ≤ 0): equal bootstrap and simple

bootstrap. The first follows Abadie (2002), and is identical to the approach described above for the

test of equality. However, as noted in Linton et al. (2005), the boundary between the null and alter-

native hypotheses is much larger than the LFC region. As such, bootstrap-based tests imposing the

LFC are not asymptotically similar on the boundary, implying that the test is biased. In particular,

if d = 0 or s = 0 is true, but the LFC fails to hold, the test will not have the appropriate asymptotic

size. Thus, we utilize the second procedure, following Maasoumi and Heshmati (2000). Here, one

resamples (with replacement) from each individual sample, Q0 and Q1. Thus, this procedure does

not impose the LFC (or any other portion of the null). Consequently, one does not form p-values

using (15). Instead, under this resampling scheme, if Pr{d̂∗ ≤ 0} is large, say 0.90 or higher, and

d̂ ≤ 0, one can infer FSD to a desirable degree of confidence. This is a classic confidence interval

test; one is assessing the likelihood that the event d ≤ 0 has occurred. Pr{ŝ∗ ≤ 0} is interpreted in

similar fashion.
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B Additional Results Using the Full Sample of All Children

Table B1: Regression Results

Height-for-age Weight-for-age

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
(1) (2) (3) (4) (5) (6)

Control Set A B C A B C

Panel A: OLS Results

Morethan 2 -0.147*** -0.098** -0.088* -0.164*** -0.152*** -0.149***
[0.048] [0.047] [0.047] [0.050] [0.050] [0.050]

Panel B: IV Results

Morethan 2 -1.159 -0.990 -0.825 -2.191* -1.621 -1.466
[0.961] [1.055] [0.978] [1.169] [1.252] [1.149]

Panel C: Weak-IV Robust Inference

Anderson-Rudin F 1.589 0.947 0.740 4.768 2.015 1.872
p-value 0.207 0.331 0.390 0.029 0.156 0.171
Stock-Wright S stat 1.590 0.959 0.753 4.764 2.041 1.902
p-value 0.207 0.327 0.386 0.029 0.153 0.168

Panel D: Reduced Form

Samesex 2 -0.048 -0.036 -0.032 -0.086** -0.055 -0.053
[0.038] [0.037] [0.037] [0.039] [0.039] [0.039]

Number of Obs 5122 4355 4355 5140 4374 4374

1 Note – Robust standard errors in brackets. *** p < 0.01, ** p < 0.05, * p < 0.1.
2 Columns (1)-(3) report results for Height-for-age using Control set A, B, and C, respectively; Columns

(4)-(6) report results for Weight-for-age using Control set A, B, and C, respectively. See text for
detail of the variables in each control set.

3 Panel D reports reduced form estimates where morethan2 is excluded from these regressions.
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Table B3: The Effects of Alternative IVs on Fertility (First Stage)

Height-for-age Weight-for-age

Model No. of obs Model No. of obs
(1) (2) (3) (4)

Panel A Endog Var: Morethan 1 -0.007 5718 -0.007 5760
IV: Daughter 1 [0.009] [0.009]

Panel B Endog Var: Morethan 2 -0.011 4355 -0.013 4374
IV: Daughter 1 [0.013] [0.013]

Panel C Endog Var: Morethan 2 0.016 4355 0.013 4374
IV: Daughter 2 [0.015] [0.015]

1 Note – Robust standard errors in brackets. *** p < 0.01, ** p < 0.05, * p < 0.1
2 Columns (1)-(3) report results for Height-for-age using Control set A, B, and C, respec-

tively; Columns (4)-(6) report results for Weight-for-age using Control set A, B, and C,
respectively. See text for detail of the variables in each control set.
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Figure B1: Sensitivity Analysis of Instrument Variable

Note: Control set C is utilized.
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Figure B2: Unconditional Quantile Treatment Effects
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Control Set C

Figure B3: Quantile Treatment Effects Adjusted for Covariates: Height-for-age z-scores
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(f) Instrument

Control Set C

Figure B4: Quantile Treatment Effects Adjusted for Covariates: Weight-for-age z-scores

51




