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R�esum�e:
Nous �etablissons par la m�ethode des actifs contingents la valeur de l'option d'e�ectuer des

investissements irr�eversibles r�eels qui sont sensibles aux param�etres �economiques pr�evalant

au moment de la d�ecision. Nous testons ensuite si des mines de cuivre canadiennes choisissent

bien d'e�ectuer leurs investissements en capacit�e de production au moment o�u le prix du

cuivre atteint le niveau critique impliqu�e par la th�eorie. Les r�esultats sont fortement en

faveur de celle-ci. Le mod�ele explique tant la taille que la date des investissement d'une

mani�ere statistiquement et �economiquement satisfaisante; des simulations avec un processus

de retour �a la moyenne indiquent que ces r�esultats ne d�ependent pas de fa�con cruciale de

l'hypoth�ese que le prix suit un processus Brownien g�eom�etrique.

Abstract:
This paper statistically tests the option theory of irreversible investment under uncertainty.

Using contingent claims valuation, we derive the value of options to invest in capacity, where

the projects are endogenous to the economic circumstances prevailing at the investment

date. We then test whether capacity investment decisions made by Canadian copper mines

are compatible with the trigger price implied by the theory. The results speak strongly in

favor of option theory as a theory of real investment. Our model explains both investment

size and timing satisfactorily, from a statistical, and from an economic, point of view, and

numerical simulations with a mean-reverting process suggest that the results do not depend

crucially on the price being assumed to follow a geometric Brownian motion.
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1. Introduction

Much of the economic literature on investment has focused on incremental investment in

a neoclassical framework. With notable exceptions such as the seminal works of Arrow

(1968) and Henri (1974), and the strand of papers in the environment literature following

Arrow and Fisher (1974), this literature generally ignores irreversibilities. More recently,

the theory of option pricing has been brought to bear in the area of real investment.

It was shown that irreversible investment opportunities may be viewed as options and

valued accordingly, and that similar rules as govern the exercise of options may be applied

to real investment decisions. While this new literature has been successful and innovative

in modeling real investment decisions, and while many simulations have contributed to

illustrate its implications, it has not been tested in a statistical sense, and it still has to

make a dent in the econometrics of investment. Our paper is a step in that direction.

We provide a test of option theory applied to real investment, and, in the process, we

actually estimate econometrically both the magnitude and the timing of irreversible

investments.

Natural resources provide an impressive series of contributions to the real option

literature. Tourinho (1979), later followed by Paddock, Siegel and Smith (1988), mod-

eled the value of natural resource reserves under uncertainty as an option to extract

the resource in the future; Brennan and Schwartz (1985) showed how to value an op-

tion to invest in a mine and established the companion investment rule. Mackie-Mason

(1990) cast the option pricing model into a framework involving the non linear tax-

ation of mining ¯rms. But, as the survey by Pindyck (1991) and the book by Dixit

and Pindyck (1994) make clear, even more papers are now unrelated to natural re-

source investments. To mention some of the most relevant to our purpose, Pindyck

(1988) investigated capacity investment as a compounded set of options while Majd and

Pindyck (1987) modeled the `time to build' as a process in which a ¯rm invests contin-

uously until the completion of a project, each expenditure buying it an option to spend

the next dollar.
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Besides illustrating the numerous implications of option theory to real investment,

this literature cast a serious doubt on the validity of alternative, more traditional, the-

ories. It showed that irreversibility a®ects investment rules in a fundamental way: by

undertaking an irreversible investment, a ¯rm gives up the possibility to use new infor-

mation that might arrive later on (Bernanke, 1983). As stressed by Ingersoll and Ross

(1992) and McDonald and Siegel (1986), this invalidates the Net Present Value (NPV)

rule of investment.

The strong implications of option theory to the realm of real investment underline the

urgency of empirical tests. Here, however, the literature is still in its infancy. According

to Dixit and Pindyck (1994, p. 483), `Given the di±culties (: : :), it is not surprising that

there have been few attempts to statistically test the theory of irreversible investment

under uncertainty.' A few papers focus on various qualitative implications of the theory:

return volatility in the case of Pindyck and Solimano (1993), Leahy and Whited (1996),

or Bell and Campa (1997); the waiting period in the case of Hurn and Wright (1994); the

presence of an option premium in the case of Quigg (1993). In this paper, we focus on the

threshold that triggers investment, overcoming the obstacle encountered by Caballero

and Pindyck (1996) that the trigger price cannot be observed directly, and recognizing

that project characteristics are endogenous.

Thus the work presented here uses option theory to derive the value of capacity

investment projects, where the projects are endogenous to the economic circumstances

prevailing at the investment date. Knowing the value of the option to invest, ¯rms com-

pute a threshold value for the project, and decide on investment dates by comparing

current project value with the threshold. Our results speak strongly in favor of option

theory as a theory of real investment. The model explains investment behavior satisfac-

torily, both from a statistical, and from an economic, point of view. It also illustrates

how option premia a®ect investment timing.

A number of simplifying assumptions are made and we try to check the sensitivity

of our results to some of them. Perhaps the major one is that we focus on the price of

output (copper) as single source of uncertainty. While this is a wild simpli¯cation, we
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believe that it preserves the essence of capacity investment decisions in the copper mining

industry: once a deposit has been ascertained, the uncertainty surrounding output prices

exceeds by far uncertainty on factor prices, the technology, or available ore reserves.

Another strong assumption made in our paper is that ¯rms lose all °exibility when they

make their initial capacity investment. In reality, ¯rms still have a number of options

left open at that stage, such as shut-down and expansion options; in fact Slade (1997)

focuses on such alternatives. However we believe that the decision to go ahead with

a development is a major commitment whatever happens next, and we focus on that

decision.

The paper is organized as follows. In Section 2, we present the capacity investment

model, taking the investment date as given; this model allows us to compute the project

value. The option to invest is based on the underlying project; its valuation is presented

in Section 3. In Section 4, we present the econometric model, the data set and the

estimation procedure, while Section 5 discusses the results and concludes.

2. Capacity investment and project value

Capacity investments by mines provide a good example of irreversible investment under

uncertainty. In fact, there is evidence that the `Putty Clay' model of investment performs

well in explaining capacity levels at Canadian mines (Lasserre, 1985; Harchaoui and

Lasserre, 1995), although that model fails to explain the dates at which such investments

are undertaken. The option model, on the other hand, focuses on timing, taking the

characteristics of the project as given. We use a simple version of the `Putty Clay' model

in order to endogenize the characteristics of the investment project which will be used

in the option model presented further below.

Let S be the date at which a capacity investment project is completed and produc-

tion is reported to start up. In such projects, construction typically takes from two to

four years (Conrad and Hools, 1980); although construction duration is to some extent

endogenous, we assume that, at some time s during the construction period, a ¯nal deci-
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sion is made on capacity, based on information available at that time; then construction

proceeds for another period c until start-up. Under that assumption, the capacity ob-

served at S is based on information available at the decision date s, with s = S ¡ c (c
is exogenous and identical across projects).

We treat s as a choice variable further below. At this stage, however, let s be exoge-

nous and examine the value of the project at decision time as a function of economic,

technological, and geological conditions observed at s. In order to focus on what we con-

sider the key source of uncertainty, future output price, we assume that, at s, the ¯rm

knows its mineral reserves R (s),1 as well as the available technology, current and future

factor prices, and the current and future tax systems. More speci¯cally, we assume that

real factor prices are non stochastic and rise at the common, constant, rate ®w; and we

assume that the current tax system is expected to remain unchanged.

Once the project is operational, ore reserves are transformed into metal or concen-

trate, whose real price at date t, p(t), is assumed to follow a geometric Brownian motion

dp (t)

p (t)
= ®pdt+ ¾dz (1)

The `Putty Clay' assumption implies that ex ante, before s, the ¯rm has a choice

among a wide array of technologies and scales; ex post, once the investment has been

realized, the ¯rm must use the particular technology selected at s: for any t > s,

capacity and factor quantities are ¯xed. Productive capacity is maintained throughout

the operating life. However, capital depreciates because of obsolescence and because

major mining investments are highly mine speci¯c and costly to transfer and adapt to

other sites. Thus the project has no residual value at the end of its operating life.

We assume that mines produce at full capacity during their entire, uninterrupted,

1It is not uncommon for mines to delineate new reserves as exploitation proceeds. Thus the decision
to invest creates options to expand. In our econometric work, we introduced dummy variables to
distinguish between mine creations and expansions in our data set. They were not signi¯cant, which
we interpret as meaning that expansion options do not a®ect capacity decisions signi¯cantly.
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operating life T .2 Since the latter is constrained by available reserves, it follows (provided

reserves are measured in the same units as output Q) that

T =
R (s)

Q (s)
(2)

If a ¯rm that discounts net real future revenues at rate r undertakes a capacity

investment at s, it selects an ex post technology (input mix and corresponding capacity)

so as to maximize expected net cumulative revenues over its operating life. Since Q is

¯xed and p follows (1), the stream of discounted expected revenues may be integrated out

over T : Es
nR s+T

s
e¡rtpQdt

o
= 1¡e¡±T

±
pQ where ± = r¡®p is the discount rate applying

to revenues, after correction for the drift in output price. The stream of variable costs

may be integrated out in a similar way. Thus the net present value of the project at s

is, with all variables evaluated at s

V = max
Q;T;L;K

fa (T; ±) pQ¡ a (T; ½)w0L¡ qKg (3)

where a (T; i) = 1¡e¡iT
i

is the capitalization function giving the present value of a con-

stant °ow of $1 over a period of T when the rate of discount is i; ½ = r ¡ ®w is the

discount rate applying to variable costs, after correction for their rate of growth; L is

the vector of variable factors, whose prices are w; q is the asset price of the capital K

sunk at s. All prices are tax corrected according to the regime prevailing at s under the

assumption that ¯rms do not expect any change in the relevant future (see Harchaoui

and Lasserre (1995) for details on the relevant taxation regimes).

2Mining projects are highly capital intensive. As a result, once a particular capacity investment
has been realized, revenues cover variable costs by far; furthermore, variable costs cannot be entirely
suppressed by temporarily closing down because of maintenance costs, long-term contractual arrange-
ments, etc.; ¯nally, there are substantial costs associated with starting up again a mine that closed
down temporarily. As a result, it is highly unusual to observe mines shut down temporarily, or even
simply reduce output substantially, in periods where prices are low. Although some gold mines, closed
during the Bretton Woods era, reopened in the seventies, no such phenomenon ever occured with copper
mines.
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Capacity investment projects may involve speci¯c characteristics not taken into ac-

count in the foregoing analysis. We control for them by introducing the variables X for

geological characteristics; G for ore grade; and s for the state of technology at the time

or the capacity decision3. Furthermore, it is immediate to show that V is homogeneous

of degree one in prices (p; w; q), so that it can be rewritten, dividing all prices by the

price of materials

V = wM max fa (T; ±)PQ¡ a (T; ½)PiWiLi ¡WKKg

´ wM ~V (P;Wl;WE ;WK ; ±; ½; R;X;G; s)

(4)

where wM is the price of materials; P = p
wM
; Wi =

wi
wM
, for i = l (labor), E (energy);

and Wk =
q
wM
.

We assume that technological change is neutral and takes place at a constant rate

°, where neutrality means that V (:; s) = e°[s¡s
0]V (:; s0), where all variables other than

s0 are evaluated at s. By (4), this is e°[s¡s
0]wM (s) ~V (:; s

0) or, substituting wM (s) =

e®wswM (0), choosing s
0 = 0, and choosing price indices so that wM (0) = 1, V (:; s) =

e[®w+°]s ~V (:; 0). Consequently, the optimal expected project value at s may be decom-

posed into the product of an exponential function of s by a time-autonomous function

of P and Z; v (P;Z) ´ ~V (P;Z; 0), where Z =Wl;WE ;WK ; ±; ½; R;X;G:

V (p; wl; wE ; wM ; q; ±; ½; R;X;G; s) = e
[®w+° ]sv (P;Z) (5)

Interpreting V as a pro¯t function, the capacity function Q¤ (P;Z; s) is obtained

3In some preliminary econometric investigations, we used location dummies (Ontario, Qu¶ebec,
Yukon) to account for geographical e®ects other than provincial di®erences in taxation, themselves
embodied in the price variables; these dummies did not have any signi¯cant explanatory power. We
also introduced dummies to distinguish between ¯rms that are sampled once, twice, or three (four, ¯ve)
times; they were not signi¯cant.
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from the version of Hotelling's lemma which applies in this context:

Q¤ (P;Z; s) = a

µ
R

Q¤
; ±

¶¡1
e°s
@v (P;Z)

@P
(6)

The next section is devoted to the evaluation of the option to undertake the project.

3. The option model applied to capacity investment

Prior to the date s of a capacity investment, a ¯rm may be viewed as holding an option

to invest into a project whose value V evolves over time as prices change. If the theory

is correct, the ¯rm holds on to that call option in the years prior to s, and the option is

actually exercised at s. Thus the model is a standard application of option theory. As

such it emphasizes the timing of the investment decision, although the fact that we allow

the stock of capital, proxied by capacity, to be endogenous, introduces into the model

that traditional dimension of neoclassical investment models. However the model di®ers

from traditional cost-of-adjustment models such as Abel (1985) in that no adjustment is

possible ex post while there is full °exibility ex ante. The fact that our ¯rm decides when

to give up that °exibility also makes our model di®erent from the model with partial

irreversibility and expendability recently proposed by Abel et al. (1996) to examine the

role of put and call options in investment decisions. In that two-period model, the ¯rm

chooses its capital stock in each period but has no °exibility with respect to the date

that separates the two periods. Nonetheless, in both models, an increase in the value of

a call option reduces the incentive to invest: in their model this means a lower capital

stock; in our model, this means that the output price required to trigger investment is

higher.

Evaluation of the option by contingent claims analysis requires the assumption that

stochastic changes in the value of the project or the underlying asset may be spanned

by existing assets. Here the underlying asset is copper concentrate, so that the spanning

assumption does not seem unrealistic. Copper concentrate is an asset x whose relative
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price equals P . The return on x is made up of the change in P and the unobserved

convenience yield, which we treat as a residual variable ensuring the consistency of the

model with data on the drift in P and on rates of return (see Appendix 1).

The problem is to evaluate an option ¦ (P;Z; t) giving the right to invest, at some

uncertain date s to be chosen in the future, into a project whose net current value at s will

be v (P;Z) e[®w+° ]s. Applying the standard approach requires dealing with the fact that

¦ is not time autonomous. We show in Appendix 1 that the pseudo-option ¼ (P;Z) ´
¦ (P;Z; t) e¡[®w+° ]t is autonomous and must satisfy the following homogeneous, second-

degree, di®erential equation in P :

[½f ¡ °] ¼ = [®¡ [~r ¡ rf ]]P¼P +
1

2
¾2P 2¼PP (7)

where ® ´ 1
dt
E dP

P
= ®p ¡®w; ~r is the risk-adjusted real rate of return; rf is the risk-free

real rate of return; and ½f ´ rf ¡ ®w.
As shown in Appendix 1, the solution is ¼ (P;Z) = ¯P b where4

b =
1

2
¡ ®¡ [~r ¡ rf ]

¾2
+

"·
® ¡ [~r ¡ rf ]

¾2
¡ 1

2

¸2
+ 2

½f ¡ °
¾2

# 1
2

(8)

and where the trigger price P ¤ and the parameter ¯ are de¯ned by

¯ =
v (P ¤; Z)

P ¤b
(9)

¯bP ¤
b¡1

= vP (P
¤; Z) (10)

The solution can now be written in an empirically useful form. From (5), vP =

4b must be greater than one.This requires ½f ¡° > ®¡[~r ¡ rf ] i.e. rf ¡®w ¡° > ®p ¡®w ¡[~r ¡ rf ] or
~r > ®p + °. Indeed, if the combination of expected growth in output price and technological change
was higher than the required rate of return, it would always be preferable to wait, without investing.
Furthermore, as a pro¯t function, v (P; Z) is convex and increasing in P ; it is also negative at P = 0.
As a result, the smooth pasting condition (A4) can be satis¯ed only if cP b is at least as convex as v.
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e¡[®w+°]sVp
@p
@P
with P = p

wM
; substituting Vp = a (T; ±)Q and wM = e®ws yields

vP (P;Z) = e
¡°sa (T; ±)Q (11)

Substituting for ¯ and vP in (10) gives
v(P ¤;Z)
P ¤b

bP ¤
b¡1
= e¡°sa (T; ±)Q which, using (4)

and (5), reduces to
b¡ 1
b
P ¤ =

a (T; ½)
P

iWiLi +WKK

a (T; ±)Q
(12)

This expression will be the basis of our econometric model. It deserves some com-

ments. Since they solve problem (3), Q, the Li's, and K may be treated as a supply

function and conditional factor demands respectively, while T is the endogenous extrac-

tion period R
Q
, re°ecting the constraint imposed by the ¯niteness of reserves. As such,

they are functions of (P;Z) so that the right-hand side of (12) may be written as

U (Q¤ (P;Z; s) ; Z; s) ´
a
³

R
Q¤(P;Z;s) ; ½

´P
iWiLi (Q¤ (P;Z; s) ; Z; s) +WKK (Q¤ (P;Z; s) ; Z; s)

a
³

R
Q¤(P;Z;s) ; ±

´
Q¤ (P;Z; s)

(13)

The numerator gives total cumulative costs capitalized at s. By the de¯nition of a (T; ±),

the denominator is
R T
0
e¡±tQ¤dt, an output aggregator giving more weight to earlier

production. Consequently, U (Q¤ (P;Z; s) ; Z; s) is a unit-cost function evaluated at the

optimal level of Q¤. Thus (12) expresses the relationship between price and average

total cost at the price P ¤ which triggers the investment:

P ¤ = BU (Q¤; Z; s) (14)

where B ´ b
b¡1 is the option premium multiple (1 < B < 1), the price-cost ratio at

which it becomes desirable to exercise the investment option. Finally, the assumption of

a neutral form of technological change has led to a system of two equations (9) and (10)

which de¯ne ¯ and P ¤ implicitly as functions of Z only; consequently, the right-hand

9



side of (14) must also be independent of s. This requires

@U

@Q¤
@Q¤

@s
= ¡@U

@s
(15)

4. The empirical estimation

4.1. Data organization and description

The econometric model (17)-(18), described further below, consists of two simultaneous

equations: one for capacity based on (6); one for the trigger price derived from (14).

The data set is made of individual observations on Canadian copper mines. The sample

covers the period 1954-1980, a period of major investment activity in that sector. Some

of the investment decisions were decisions to wait; those did not result in the apparition

of any new productive capacity. Others were decisions to go ahead with a project; those

were followed by the introduction of productive capacity c years after the decision. Our

data set involves 60 such go-ahead decisions with actual start-up dates spread between

1960 and 1980. A few other investments involving copper extraction took place after

1980 but were not included in the sample because their major purpose was the mining

of zinc.

The lag c between the date s at which the capacity is irreversibly chosen and the

actual start-up date recorded in our data source was set at two years on the basis of

heuristic information on mining projects. We also experimented with lags of zero, one,

or two years, but the brief description which follows, and the more detailed one given in

the Data Appendix, correspond to c = 2.

A total of 38 di®erent ¯rms, some of which were observed more than once, made the

60 capacity investments: 20 in British Columbia, 9 in Ontario, 8 in Qu¶ebec, and 1 in

the Yukon territory. To qualify, an investment has to correspond to the creation of a

new operation, or to any capacity increase exceeding 20 percent of existing capacity.5

5In Harchaoui and Lasserre (1995) it was found that the capacity chosen was not a®ected by whether
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An observation is a vector of variables corresponding to the occurrence of a capacity

investment, or to the failure of any investment to occur. The data set is an unbalanced

panel where the dependent variables P ¤ and Q¤ appear only once for each investment.

It is organized as a succession of short time series whose dates may overlap. Each series

corresponds to the `history' of a particular investment. The last observation in each

series corresponds to the actual investment, and the preceding observations correspond

to a `waiting period' over which the ¯rm was { this is the hypothesis to be tested {

holding on to the option to invest.

4.2. The output price process and the option premium

The process corresponding to (1) for the relative price is dP = ®Pdt + ¾Pdz. The

random walk hypothesis is known to be rejected in favor of mean reversion when it is

tested over the (century) long period for copper prices. Our point of view is di®erent,

as we are interested in durations relevant for capacity investment decisions (11 year on

average) and as the decisions under investigation were all made in the post-war area

and before 1980, a period that witnessed the energy shocks and over which a lot of

casual evidence suggests that many experts and practitioners believed commodity price

behavior could be governed by scarcity considerations µa la Hotelling rather than long-

run attraction toward some steady production cost. Dickey-Fuller tests may not be

very powerful over medium range periods; the fact remains that they do not allow the

rejection of the random walk hypothesis in the current instance.6

Nonetheless, since our model, as most of the underlying theoretical literature, relies

it was a creation, or an expansion.
6Consider the model

¢P (t) = ´0 + ´tt + [´P ¡ 1]Pt¡1 +
4X

j=1

´j¢Pt¡j + ³ (t)

where ¢P (t) = P (t) ¡ P (t ¡ 1). Testing the random walk hypothesis involves the joint test that
´t = ´P ¡ 1 = ´j = 0. In order to verify whether this is an acceptable assumption from the point of
view of a ¯rm considering an investment at s 2 [1954 ¡ 1980], we carried out the test for each of the
27 sub-periods [s ¡ 14; s], s 2 [1954 ¡ 1980] and also over the period [1941 ¡ 1980]. There is no period
over which the geometric random walk is rejected.
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on the assumption that the price follows a geometric Brownian motion, it is legitimate

to wonder about the sensitivity of our results to that assumption. Simulations by Wey

(1993) for oil reserves indicate that the option premium and the decision rule are not nec-

essarily very di®erent under mean reversion and under geometric random walk; roughly

the di®erence depends on whether the mean value toward which reversion takes place

is or is not very di®erent from the cost of the project. Thus sensitivity is an empirical

question. A similar issue is raised by our assumption that the price process has ¯xed

coe±cients: we investigate ¯rms considering investments at t 2 [1954¡ 1980] under the
¯xed-coe±cient geometric random walk hypothesis; in order the estimates of ® and ¾

to re°ect the information available at t about the behavior of the relative price, we use

di®erent estimates ® (t) and ¾ (t) for each decision year. Thus the empirical experiment

is one in which agents respond to changes in ® or ¾ as if they were completely unex-

pected, permanent, and never to be repeated; if changes were temporary, ¯rms might

respond less aggressively to price changes, much the same as they might do under a

mean-reverting process.7

We cannot address these questions from within our econometric model because the

theoretical model does not yield any analytical solution for the alternative price processes

involved. Instead, we use numerical results from a stochastic dynamic programming

model, to produce ¯gures for comparison with the results obtained econometrically.

These comparisons are discussed in Section 5; the results show little sensitivity to the

assumed behavior of copper price.

To estimate the constant-coe±cient geometric Brownian process, we use Slade's

(1988) discrete approximation,

¢P (¿) = ® (t)P (¿ ) + » (¿) (16)

where » (¿ ) is an heteroscedastic error term such that » (¿) = ¾ (t)P (¿ ) ². We estimate

7This interpretation was suggested by an anymous referee.

12



(16) over each of the 26 fourteen year periods preceding a capacity investment decision

(whether a decision to wait or a decision to go ahead). The choice of a fourteen year

estimation period is justi¯ed by the fact that the ¯rst investment decision that our data

set allows us to consider occurs in 1954, while our price series starts in 1940. We use the

same period for later decisions for consistency. The estimated values of ® (t) and ¾ (t)

respectively lay between .5% and 5.3%, and between 10.4% and 17.2%.

The option premium coe±cient is computed for each observation as B (t) = b(t)
b(t)¡1

where b (t) is given by (8). Besides the price process parameters and the risk free

and risk-adjusted interest rates, b (t) depends on ° the rate of technological progress.

Although ° is not observable, there is ample evidence of a signi¯cant regress, even when

reserves and grade are controlled for. In particular, Stollery (1985) estimated the rate of

total factor productivity growth for Canadian copper mines at -1.40% over the 1957-65

period, -3% over 1966-79, and -3.6% over 1971-79. We experienced with alternative

constant values of ° between -1% and -7%, generating the corresponding time series for

B in each case. The likelihood function of the trigger price equation culminates when we

use the B series corresponding to ° = ¡6%; retained for that reason in the rest of the
paper. However models obtained with alternative B series are not signi¯cantly di®erent

according to J tests and yield similar economic results.

4.3. Econometric model and estimation procedure

De¯ne lnZ = (lnWl; lnWE ; lnWK ; ln®; ln ½; lnR;X; lnG);
8 x = (1; lnB; lnZ; s); y =

(1; lnZ; s). The theoretical model implies that the vector lnZ is common to the capacity

and the trigger price equations. We have substituted ln® for the variable ln ± implied

by the theoretical model because ± and ½ di®er only by ®.

Suppose the pro¯t function V that generates the supply function is a®ected by a

multiplicative error due to decision inaccuracy, uncertainty about demand, etc.. As an

implication of Hotelling's lemma, this error a®ects (6) multiplicatively; if we further

8As a dummy variable, X is left untransformed.
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assume that the supply function is loglinear, the latter may be represented by

lnQ¤ = b0 + bP lnP + bZ lnZ
0 + bss+ º

= by0 + bP lnP + º (17)

where b and bZ are row vectors of parameters, b0, bP , and bs are individual parameters,

and º is the logarithm of the pro¯t function error term, which may be assumed to be

zero on average. P is the market price, not the trigger price, although both coincide at

the dates when the investments are undertaken.

Assume that lnU is linear in lnQ¤ and lnZ. Then (14) may be written as

lnP ¤ = a0 + aB lnB + aQ lnQ
¤ + aZ lnZ

0 + ass+ ²

= ax0 + aQ lnQ
¤ + ² (18)

where ² is an error term to be discussed momentarily and the a's are scalar or vector

parameters. If (14) is true, then aB = 1. This is the basis of our test of option theory:

the option premium should a®ect the trigger price positively; in a logarithmic model, the

coe±cient of proportionality is precisely 1. The error term ² does not originate from the

error term discussed above a®ecting the pro¯t function (hence v) multiplicatively. This

may be veri¯ed by considering the value matching condition (10) used in the derivation

of (14): since ¯ in (10) is given by (9), that error on v is on sides of (10) and washes

out. Besides inaccuracy in the timing decision, a major source for the error in (18) is

measurement error on both the dependent and the explanatory variables: rather than

being measured on decision day, the variables are yearly averages. On average this error

can be expected to be zero.

Error terms may be heteroscedastic if they contain ¯rm speci¯c components, due to

di®erences in size or to the fact that some investments are capacity expansions while

others are creations. We have investigated this by introducing dummy variables based on
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creation versus expansion, the number of times a ¯rm is sampled, geographical location,

or the type of exploitation (open pit versus underground); the latter variable X is the

only one with a marginally signi¯cant impact. White tests were also applied to the

residuals of both equations and conclude to the rejection of heteroscedasticity.

Error terms may also be a®ected by various measurement errors and by misspec-

i¯cation. First, the loglinear form may be a misspeci¯cation. However, models that

include second-order terms (second-order, rather than ¯rst-order, approximations of the

true models) do not dominate the linear ones in J-tests, nor does this alternative spec-

i¯cation a®ect our major conclusion (the coe±cient of lnB is practically unchanged).

Second, our failure to model shut-down and expansion options a®ects the theoretical

evaluation of the investment option and may a®ect the trigger price. If these options

matter, B is computed from the wrong theoretical formula, a problem compounded by

our use of estimated price-process parameters. However, the important explanatory

variables would be the same so that no systematic e®ect on the error terms is likely to

result. The theoretical prediction that aB = 1 might be a®ected, although, to the extent

that the alternative theoretical model implies that the trigger price exceeds average cost

by some option premium, the sign of aB should remain positive. In such a context, a

rejection of the null hypothesis aB = 1 should be taken with caution, both because the

null hypothesis might be o®-mark, and because, as shown by Pagan (1984), the power

of the tests may be lower than in conventional situations.

On the basis of the above discussion we may assume that the error terms in (17)

and (18) follow uniform distributions with zero means; we further assume that the

distributions are normal, with standard errors of ¾º and ¾" respectively, and covariance

¾"º . These full-sample distributions may be a®ected by censoring. In the full sample

268 observation data set, P ¤ and Q¤ are observed when P ¤ overtakes P for the ¯rst

time; otherwise neither P ¤ nor Q¤ are observed, although P is. Then the distribution

of ² corresponding to the sub-sample where P ¤ is known has not zero mean. It may be
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shown that, for any observation i where P ¤ is known

E (²i j lnPi ¸ lnP ¤i ) = ¡¾"
Á (¢Pi)

© (¢Pi)
(19)

where ¢Pi =
lnPi¡ax0i¡aQ lnQ¤i

¾e
while Á and © are the density and cumulative functions of

the standard normal distribution.

In contrast, the distribution of º in the sub-sample is less likely to be biased in any

direction relative to its full sample distribution. This is because the truncation does

not depend on Q¤ exceeding some particular level but on lnP exceeding lnP ¤ so that

a truncation bias will arise only if there is a signi¯cant covariance between the error

arising in the censored sample on the price equation, and º. Precisely, it may be shown

that (see Maddala, 1996, p.224), for any observation i where Q¤ (or P ¤) is known

E (ºi j lnPi ¸ lnP ¤i ) = ¡¾ºu
¾u

Á (¢Qi)

© (¢Qi)
(20)

where ¢Qi =
[1¡aQbP ] lnPi¡ax0i¡aQby0i

¾u
; and the stochastic variable u ´ ²+ aQº is normally

distributed with zero expected value, variance ¾2u = ¾
2
" + a

2
Q¾

2
º + 2aQ¾"º and covariance

(with º) ¾ºu = E ([²+ aQº] º) = ¾"º + aQ¾2º.

Equations (18) and (17) represent a simultaneous-equation model with censoring.

Identi¯cation is possible even if the residuals in the two equations are correlated be-

cause the price equation includes the variable lnB; not present in the quantity equation

(Maddala, 1996, ch. 8).9 Given (19) and (20), the structural form may be estimated by

Heckman's two-stage method. Since only (18) includes an endogenous variable lnQ¤ on

its right-hand side, the simultaneity problem is dealt with by ¯rst estimating (17) and

then using the predicted value of Q¤ in (18).

Let I = 1 if Q¤ (and P ¤) is observed and I = 0 otherwise. Expression (20) implies

9As pointed out by a referee, although some of the variables from which B is computed are also in
the quantity equation, the volatility ¾ appears only in B. In practice ln ½ was also eliminated from the
price equation.
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that the following augmented equation may be used to estimate the capacity model on

the sub-sample corresponding to I = 1 (see Maddala, 1996, esp. ch. 8, for details)

lnQ¤ = by0 + bP lnP + bM
Á (¢Q)

© (¢Q)
+ º2 (21)

where º2 has a standard normal distribution. The coe±cient bM provides an estimate of

¡¾ºu
¾u
. In order to compute the inverse Mills ratio

Á(¢Q)
©(¢Q)

, the two-stage method requires

estimating ¢Q by running a probit of I on the variables in ¢Q: lnP and the variables in

either y or x. The estimated value of ¢Q, ¢̂Q is then used to approximate the variable
Á(¢Q)
©(¢Q)

.

When this two-stage procedure was implemented, the t statistic associated with bM

was .09 (Table 1, column 3), implying that censoring is a negligible issue when estimating

(17) from the I > 0 sub-sample. Consequently we reestimated the equation without

including Mills ratio among the explanatory variables (Column 4). The predicted value

ln Q̂¤, of lnQ¤ was then used as explanatory variable in (18).

PLEASE INSERT TABLE 1 AROUND HERE

Equation (18) may be estimated by using the two-stage method again. The second-

stage, augmented, model (estimated on the sub-sample corresponding to I > 0) is:

lnP ¤ = ax0 + aQ ln Q̂
¤ + aM

Á
³
¢̂P

´

©
³
¢̂P

´ + ²2 (22)

where ²2 is a normally distributed residual whose expected value is zero. Since ¢Pi =

lnPi¡ax0i¡aQ lnQ¤i
¾e

, where lnP has a coe±cient of unity, we used the likelihood function
Q
I=0 [1¡ © (lnPi ¡ ax0i ¡ aQ lnQ¤i )]

Q
I=1©(lnPi ¡ ax0i ¡ aQ lnQ¤i ). Columns 5 and 7

report the ¯rst stage probit estimations for ° = ¡3% and ¡6% respectively. Columns

6 and 8 give the corresponding second-stage results; the reported t statistics for these

two price equations are obtained by following Maddala's procedure (pp. 253-56), using

his formula (A4). Finally, in Column 9, we present the results of estimating a reduced
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form obtained by substituting (17) into (18). This reduced form does not permit the

identi¯cation of aB but we use it to test restriction (15), implied by the assumption of

neutral technological change. The corresponding cross-equation restriction aQbs¡as = 0
is satis¯ed if the coe±cient of s is zero in Column 9, which the t statistic of -.43 allows

to accept.

5. Result discussion and conclusion

We may now focus on column 4, giving the results of estimating the capacity equation

(17), and column 8, giving the results for the trigger price equation (22). With R2's

ranging from :95 to :99, both equations have a good explanatory power. If the option

value of remaining °exible is important, the coe±cient of lnB should be signi¯cant in

column 8; furthermore it should not be signi¯cantly di®erent from 1. Since aB = 1:64 (t

statistics of 3.06 against the maintained hypothesis aB = 0; t statistics of 1.19 against the

maintained hypothesis aB = 1), the model passes these two tests. The paper also rejects

a 'naive NPV rule', to borrow the words of Abel et al. (1996), whereby the expected

present value of revenues minus costs should be zero at the time of investment.When

B is computed using alternative values of ° ranging from -1% to -7%, the results are

similar (see Column 6 for ° = ¡3%).
Given the strong assumptions underlying the model one might be concerned about

the robustness of the reported estimates, especially the signi¯cance and magnitude of

the impact of B, our measure of the option premium. Despite the various tests and

checks described earlier, a major potential source of error on B remains the assumption

that the price follows a geometric Brownian motion. This assumption cannot be tested

by econometric methods within the general methodology of the paper because, for most

alternative price processes, including the prominent candidate, a mean-reverting process,

the theoretical model does not yield any explicit solution for the trigger price. In order to

assess the error possibly involved, we provide some numerical simulations of the trigger

price and the corresponding price-cost margin when the price follows a mean-reverting
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process. They are presented and compared with their (geometric Brownian motion)

counterparts in Graphs 1 and 2.10

Although no hypothesis test is readily available for such a procedure, we ¯nd that

there is a remarkable similarity between the implied option premia under both alternative

assumptions. Graph 1 shows that the trigger price °uctuates less widely under mean

reversion, probably because price changes are perceived of a temporary nature and

require less aggressive a reaction. Such a behavior might also be expected if ¯rms

considered changes in the parameters of the price process not to be of a permanent

nature.

Graph 2 presents the option premium multiples, computed as the ratio 'predicted

trigger price over predicted unit cost' for the geometric Brownian motion (Table 1,

col. 8), or obtained numerically for the mean-reverting process; the striking similarity

between the two curves is an indication that the qualitative implications of our results

are not overly sensitive to the strong assumptions made.

PLEASE INSERT GRAPHS 1 AND 2 AROUND HERE

The validation of the real-options model is welcome, as alternative theories have

a relatively poor record of explaining observed investment behavior. In particular, as

documented by Chirinko (1993), alternative models imply that prices (especially output

price and the user cost of capital) should explain a higher proportion of variations in

investment than is actually found in empirical work. In contrast the option model,

while not ruling out such an in°uence, implies that the in°uence of prices may also be

manifest in the timing of investments. Similarly, empirical neoclassical supply models,

10For each of the 60 capacity investments in our data set, we solved a stochastic dynamic programming
investment decision problem based on a binomial approximation of a mean-reverting price process. Since
we could not rely on econometric inference to determine project values, we used hypothetical values.
More precisely, we addressed the following question. Let v̂ (P ) be the predicted project value inferred
from the econometric model under the assumption that the price follows a geometric Brownian motion.
Suppose that a ¯rm holds a project worth v̂ (P ) where P follows a mean-reverting process (estimated
from our price data) rather than a geometric Brownian one; what is the critical price PM at which it
would invest into the project and to what extent would PM di®er from the critical price under Brownian
motion?
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especially in resource sectors, often ¯nd that output price explains supply poorly; indeed

this must be expected in models such as the option model where capacity is adjusted

only occasionally.

How much does the option premium a®ect copper mine investment? For a rough

answer, one may compute how many years it takes for the price to move by an order of

magnitude corresponding to the trigger premium: on average, it takes 3.5 years for the

price to move up or down by the average size of the trigger premium, which represents

15% of the trigger price on average. Of course the impact of changes in B is smaller;

it takes on average 1.5 years for the price to move up or down by the average yearly

change in the premium.

At a more sophisticated level of analysis, one has to note that the same factors

that drive the option premium may also a®ect the characteristics of the project. For

example, while Graph 2 shows a striking correlation between B and the price drift ®,

the correlation between the trigger price and ® is much less pronounced. The reason

is that a rise in ® increases B but also reduces the unit cost U on which the premium

is applied: the rise in ® implies that future output fetches a higher price; this amounts

to a rise in cumulative output, hence a drop in unit cost. Consequently the e®ect on

the trigger price is dampened, as one can see by comparing the sharp increases in both

® and the premium noticeable on Graph 2 at observation #12, with the corresponding

change in the trigger price on Graph 1. Thus taking project endogeneity into account

in real options models may be crucial.

The strong correlation between ® and B evident on Graph 2 would appear to con-

tradict the belief often derived from the ¯nance literature that volatility, not expected

price change, matters. In fact, from the three variables involved in the expected return

identity ~r ´ ¹ + ®, where ¹ is the dividend or the convenience yield, it is customary

in the ¯nance literature to eliminate ® by expressing it in terms of the other two; this

does not mean that ® does not matter but that its impact is accounted for by ~r and ¹.

In our real-options context, the convenience yield is not measurable so that it is more

practical to focus on ®, as we have done (see Appendix 1). Intuitively, the higher ®, the
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likelier it is that the price will be high in the future; the cost of waiting relative to the

value of future prospects being lower, waiting becomes more attractive which calls for

a higher trigger price. In fact, neither the volatility of the Brownian process, nor the

parameters of the mean-reversal process (average price, reversal parameter, volatility),

have such a striking impact on the option premium as the drift of the Brownian process.

This does not mean that volatility does not matter; however, as Graph 2 indicates, it

has not experienced much variation.

Table 2 allows more precision in the analysis. Since the estimated elasticity of P ¤

with respect to B is 1.64, the implied elasticity of P ¤ with respect to ¾ may be obtained

from the de¯nition of B using (8):11 at the mean value of the relevant variables that

elasticity is 1.87. This con¯rms that uncertainty has a major dampening e®ect on

investment; however, in the current instance, the relative stability of ¾ implies that

it is not responsible for much of the variation in the trigger price. Similar elasticity

calculations (at mean values of all variables) with respect to the variables that determine

B indicate that the elasticity of P ¤ with respect to ® (resp. °) is 1.01 (.68).

Finally, the elasticities with respect to the risk adjusted interest rate and the risk

free interest rate, at -2.04 and .77 respectively, cast the remark of Chirinko (1993) that

the user cost has little practical relevance in empirical models of investment in a new

light. It appears that much of the e®ect of interest rates on real investment may occur

through the option premium channel rather than via the user cost. An increase in the

cost of borrowing ~r reduces the expected value of future incomes; hence it also reduces

the value of waiting while not a®ecting the opportunity cost of waiting which re°ects

11The elasticities of P ¤ with respect to the variables that determine B are obtained by the following
formula, applied here to the case of ¾:

²P;¾ (¾;®; ~r; rf ; °) =
@ lnP¤

@ lnB

@B (b)

@b

@b (¾; ®; ~r; rf ; °)

@¾

¾

B

with B (b) =
b(¾;®;~r;rf ;°)

b(¾;®;~r;rf ;°)¡1where b is given by (8). In our model, more uncertainty increases the value

of the call option to undertake the project, which reduces the incentive to invest, implying a higher
trigger price. This contrasts sharply with models such as Abel (1985) where an increase in uncertainty
implies more opportunities to adjust to °uctuations in the future, an incentive to hold more capital. In
models such as Abel et al. (1996), the ¯rm holds both a put option (to shrink) and a call option (to
expand), so that uncertainty has an ambiguous e®ect.
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current foregone income. Consequently, an increase in ~r makes immediate investment

more attractive, reducing the trigger price. This e®ect in favor of immediate investment

runs counter to the negative cost of capital e®ect on which the neoclassical investment

model has traditionally focused, and may explain the low impact noted by Chirinko. An

increase in both ~r and rf that would preserve the risk premium would reduce P ¤.

The discussion sofar has been focused mostly on the option pricing model. An

important feature of our model, often ignored in the theoretical option-value literature

where projects have been treated typically as exogenous, is the jointness of timing, and

project size, decisions. With an elasticity of P ¤ with respect to Q¤ of .89 (t = 3:96),

the dimension of the project is an important and highly signi¯cant determinant of the

trigger price. This e®ect is not related to the option premium but re°ects the rise in

unit cost associated with high scale. Because our de¯nition of unit cost (13) involves

the capitalization of costs and output over the life of the mine, this cost rise re°ects the

shortening of the extraction period, requiring faster sunk-cost amortization, implied by

larger scale.

Turning to the capacity choice equation (Column 4), we note that capacity is signif-

icantly positively related to output price, and that the corresponding elasticity of 1.18

(t = 1 :93 ) is fairly high. In a neoclassical supply model the estimated elasticity would

probably have been lower, perhaps not signi¯cant, because observations where capacity

was not adjusted would have been treated the same way as instances where it was in-

creased. Here the elasticity re°ects the ex ante in°uence of price on capacity. This result

does not contradict the ¯nding that output price has little e®ect on supply in general;

but it does mean that output price plays a signi¯cant role occasionally, when capacity

decisions are made. Nonetheless geological considerations play the key role in the choice

of scale: higher reserves call for a higher production rate (elasticity: .63; t= 24:14); a

high ore grade G is associated with lower scale, in accordance with the observation that

high-grade deposits are often small and of odd shapes.

Why does the price drift ® have a negative impact? From the point of view of

discounted future revenues, a high ® is equivalent to a low discount rate. As explained
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in the resource literature, the discount rate has an ambiguous e®ect on the rate of

extraction of an exhaustible resource when capital is used as an input: on one hand, a

low discount rate implies a low user cost of capital; on the other hand, the same low

discount rate implies a high resource rent, calling for slow extraction. In the speci¯cation

adopted here, WK picks up the input price e®ect, while ® picks up the resource rent

e®ect: when copper prices are expected to rise, there is a gain involved in economizing

on the exhaustible resource by adopting a slow extraction path.

The option value model of real, irreversible, investment appears to explain capacity

decisions and timing decisions in a satisfactory way, both from a statistical and from an

economic point of view. This allows us to be hopeful that option theory, as applied to

real investment, may become a useful tool of empirical investigation. Until now, it has

been much used in simulations but little as a basis for statistical inference. Of course,

many gaps remain to be ¯lled. Many features that have been studied in the theoretical

literature were left out of our model. In particular, we did not consider the possibility of

further capacity expansions; we did not consider the duration of the investment process;

we ignored, although on good empirical grounds, the option to shut down during the

mine's life; we focused on output price as the single source of uncertainty, using a

procedure which remains conditional on the validity of the Brownian-motion assumption.

These are serious restrictions which beg to be eliminated in further work, if the theory

is to be successfully used in wider a range of applications.
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Appendix 1: Evaluation of the investment option
The option is worth ¦ (P;Z; t) = Et

©
v (P;Z) e[®w+°]sA2wM (0) e¡r[s¡t]

ª
. If, over

an interval [t¡ "; t+ "], P and Z do not change, then the probability that the op-
tion to invest will be exercised at t0 + ¿ is the same for any t0 in that interval, and
this is true for any ¿ ¸ 0. This implies that ¦tdt may be obtained by di®eren-
tiating Et

©
v (P;Z) e[®w+°]sA2wM (0) e¡r[s¡t]

ª
totally while maintaining ds = dt and

dZ = dP = 0. It follows that ¦t = [®w + °]¦.
To evaluate ¦, we construct a portfolio consisting of the option and a short position

consisting of n units of x , where n is selected in such a way that the portfolio is riskless.
By the CAPM, in order to accept holding one unit of x, the party entering the long

side of the transaction will expect a return of ~r = rf +
h
rm¡rf
¾m

i
½xm¾, where rm is the

expected market rate of return, ¾m is the standard deviation of that return, rf is the
risk-free rate of return, and ½xm is the coe±cient of correlation between the return on x
and the market return. This return must be produced by the combined price increase
and convenience yield ¹, so that ¹ = ~r¡®.. The convenience yield, amounts to a cost to
the portfolio holder of n¹Pdt per interval of time dt. Thus the portfolio, which is worth
¦¡ nx, yields in total, over dt, d¦¡ ndP ¡n¹Pdt. Evaluating d¦ by Ito's lemma, and
substituting for dP and dP 2, this yield becomes

¦P [®Pdt+ ¾Pdz] +
1

2
¦PP¾

2P 2dt+¦tdt¡ n [®Pdt+ ¾Pdz]¡ n [~r ¡ ®]Pdt

This is riskless if n = ¦P . Non arbitrage requires the yield to equal the riskless return
on the value of the portfolio:

©
1
2
¾2P 2¦PP ¡ [~r ¡ ®]P¦P +¦t

ª
dt = rf [¦¡ P¦P ]dt.

Dividing by dt and rearranging we obtain

rf¦ = [®¡ [~r ¡ rf ]]P¦P +
1

2
¾2P 2¦PP +¦t (A1)

This is a partial di®erential equation. However, consider the corresponding pseudo-
option de¯ned as

¼ (P;Z) = ¦ (P;Z; t) e¡[®w+°]t

This pseudo-option is time autonomous because ¦t = [®w + °] ¦; also, ¼P = ¦Pe¡[®w+°]t

and ¼PP = ¦PPe
¡[®w+°]t. Substituting into (A1), and de¯ning ½f ´ rf ¡ ®w, we obtain

Equation (7). It may be veri¯ed that ¼ (P;Z) = ¯P b solves (7) and satis¯es the boundary
conditions (¼ = 0 when the price is null; value matching; smooth pasting):

¼ (0; Z) = 0 (A2)

¼ (P ¤; Z) = v (P ¤; Z) (A3)

¼P (P
¤; Z) = vP (P

¤; Z) (A4)

The trigger price P ¤ and the parameter ¯ are obtained from (A3) and (A4): (A3) implies
(9): ¯ = v(P ¤;Z)

P ¤b
and, substtituting for ¼P in (A4) gives (10): ¯bP ¤

b¡1
= vP (P ¤; Z).
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Appendix 2: Data

This appendix lists the major capacity investments investigated in the paper, explains data organization,
and describes variables and sources; sources are given as Roman numbers between brackets and listed at the
end of the appendix.

1. Firm name, location, and investment dates [II]

Copper Rand Mine, Qu¶ebec, 1960, 1968, 1970; Craigmont Mines, British Columbia, 1961, 1962; Vauze
Mines, Qu¶ebec, 1961; Bethlehem Copper, British Columbia, 1962, 1964, 1966, 1967, 1971, 1976; Coast
Copper Co. Ltd., British Columbia, 1962; Phoenix Copper, British Columbia, 1962, 1963, 1969; Solbec
Mines, Qu¶ebec, 1962; Sunro Mines, British Columbia, 1963; Kam Kotia Mines Ltd., Ontario, 1963, 1968;
Manitouadge Mines, Ontario, 1963; Lake Dufault Mines, Qu¶ebec, 1964; Copper Corp. Ltd., Ontario,
1965; Lorraine Mining Corp., Qu¶ebec, 1965; Minoca Mines, British Columbia, 1965; Endako Mines,
British Columbia, 1965, 1967, 1978; Kidd Creek Mines, Ontario, 1966, 1978; Westmin Resource Ltd.,
British Columbia, 1966, 1968; Kidd Copper Mines, Ontario, 1966; Granisle Mines, British Columbia,
1966, 1972; Whitehorse Copper Mines, Yukon, 1967; Prace Mining Corp., Ontario, 1967; Munro Copper,
Ontario, 1967; Mines Gaspe, Qu¶ebec, 1968, 1973; Madeleine Mines Ltd., Qu¶ebec,1969; Cons. Churchill
Copper Corp., British Columbia, 1970; Renzy Mines Ltd., Qu¶ebec, 1970; Geco Mines, British Columbia,
1970; Brenda Mines, British Columbia, 1970; Island Copper Mines, British Columbia, 1971; Opemiska
Mines, Qu¶ebec, 1971; Lornex Mining Corp., British Columbia, 1972, 1974, 1979; Gilbraltar Mines,
British Columbia, 1972; Similkameen Mining, British Columbia, 1972, 1975; Bell Copper Mines, British
Columbia, 1972; Maybrun Mines Ltd., Ontario, 1973; Sturgeon Lake Mines, Ontario, 1975; Thierry
Mines, Ontario, 1976; Afton Mines, British Columbia, 1978; Equity Silver Mining, British Columbia,
1980; Highmont Mines, British Columbia, 1980.

2. Description of the data set

In 1960 the Copper Rand Mine started its new operation in Qu¶ebec. Since we assume that c = 2,
the decision was taken in 1958, based on information (price and economic as well as geological data)
available at that date. We hypothesize that, prior to 1958, the ¯rm was observing new information as it
became available and was actually holding on to the option to invest. If the theory is correct, the ¯rm
decided to wait during the years preceding 1958, and decided to go ahead in 1958. This approach would
not be valid if the ore deposit had just been discovered, so that 1958 would be the ¯rst opportunity for
the ¯rm to exercise its option. However, the data indicate only a few instances of minor corrections or
validations of reserve ¯gures made in the period immediately preceding an investment, allowing us to
assume that the geological variables (R;X;G) were known and had the same value (R (s) ;X (s) ;G (s))
during the `waiting period' as at s.

According to the theory, the price of copper was too low for the investment of the Copper Rand Mine
to take place during the `waiting period' (P < P ¤) and it reached P ¤ (plus or minus an error term) in
1958. Thus in 1958 we observe the trigger price and the capacity chosen Q¤ (as recorded at start-up
date in 1960). The year s = 1958 for the Copper Rand Mine corresponds to an observation where both
P ¤ and Q¤ are observed. During the waiting period neither P ¤ nor Q¤ are observed. All other relevant
variables are observed whether the ¯rm is `waiting' or `going ahead'.

The `waiting period' is set at four year, unless a ¯rm made major capacity investments at intervals of
less than four years, in which case we reduce the period in such a way that the time series for any two
investments by the same ¯rm do not overlap. Thus our data set starts with ¯ve observations associated
with the Copper Rand Mine: 1954, 1955, 1956, and 1957 are observations that include all explanatory
variables but for which the dependent variables P ¤ and Q¤ are not available; 1958 includes the same
explanatory variables, as well as P ¤ and Q¤. The second investment that we consider was made by
Craigmont Mines (British Columbia) in 1961. It generates another series of ¯ve observations that are
stacked after the ¯ve observations corresponding to Copper Rand's 1960 investment: 1955, 1956, 1957,
1958, and 1959. Thus the ¯rst two series of ¯ve observations overlap by four years. Output and factor
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prices, as well as interest rates, are the same in both series for their common years; geological variables
(reserves, grade, type of exploitation) di®er between the two series because the mines are di®erent, but
stay at the same value during the ¯ve years of any series. Similarly the tax parameters used to adjust
prices di®er between the two series because the two mines are located in di®erent provinces.

Stacking in such a way series of 5 observations for each of the 60 capacity investments would generate a
data set of 300 observations. However, as mentioned, some mines invested more than once at intervals
of less than ¯ve years. In such cases the `waiting period' was reduced in such a way that the time
periods corresponding to di®erent investments by any one ¯rm do not overlap. Thus the Copper Rand
Mine expanded in 1968 and again in 1970. The 1968 expansion (¯nal decision in 1966) generates ¯ve
observations (1962-66) which do not overlap with the ¯rst ¯ve observations mentioned above (1954-
58). However, if the `waiting period' corresponding to the 1970 expansion was not reduced, the latter
would generate a series (1964-68) that would overlap with the previous (1962-66) series; consequently
we allow only two observations (1967-68) for the last Copper Rand Mine expansion. As a result of these
adjustments, the data set includes 268 observations, 60 of which include the dependent variables P ¤ and
Q¤.

An observation always consists of, or make use of variables constructed from, the following variables (in
alphabetical order, ¯rst Latin, then Greek):

B (t): option premium coe±cient at year t; B (t) = b(t)
b(t)¡1 with b (t) given by (??); (??) involves the

time series variables ® (t) ; ¾ (t) ; ~r (t) ; rf (t) ; ½f (t), and the constant °.

G (i): ore grade, in percentage, for investment i (constant over the waiting period);

P (t; i): after-tax °ow price of copper relative to materials at t for project i (the price may di®er at any
date between projects if the tax parameters di®er);

P ¤ (t; i): exercise price at t for project i relative to the price of material; P and P ¤ coincide up to an
error term when an investment occurs; otherwise P ¤ is not observed;

Q¤ (t; i): optimal capacity at t for project i (Q¤ is observed only when an investment occurs);

r (t): real discount rate for long-term projects at t; we set r (t) = ~r (t);

rf (t): risk-free real interest rate at t;

~r (t): risk-adjusted real rate of return at t;

R (i): mineral reserves for investment i (constant over the waiting period);

s (i): year of the go ahead decision for project i; s = S ¡ c; c = 2; S (i): year of production start-up for
project i;

t: year of a major capacity investment decision (wait, or go ahead);

Wl (t; i) ; WE (t; i): after-tax °ow prices of labor and energy relative to materials at t for project i;

WK (t; i): after-tax asset price of capital equipment relative to materials at t for project i;

X (i): dummy variable for project i (= 1 for open-pit operations; = 0 for underground operations;
constant over the waiting period);

® (t) and ¾ (t): drift (= ®p (t) ¡ ®w (t)) in the after-tax price of copper relative to materials, and its
variance parameter, as estimated at t (see text);

± (t): discount rate (= r (t) ¡ ®p (t)) applying to revenues at t, after correction for the drift ®p in real
output price;

°: rate of neutral technological change (assumed constant);

½ (t): discount rate (= r (t) ¡ ®w (t)) applying to variable costs at t, after correction for the real rate of
growth ®w (t) common to the four factor of production prices ( in practice ®w (t) = 0);

½f (t): risk free discount rate applying to variable costs at t (= rf (t) ¡ ®w (t)).
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3. Variables construction and sources (except where stated otherwise, all prices are Canadian prices
expressed as index numbers (1971=100))

1. Output price [1940-1980]

The New York Stock Exchange nominal price index of one metric ton of copper, converted into
Canadian dollars [(XII) and (VI), Series B3400], and multiplied by the appropriate tax parameter
(source below).

2. Estimated parameters of the output price process: Drift and variance

The estimation of the drift parameter of the Brownian geometric process is explained in Section
4.2. The variance parameter ¾ (t) was obtained by regressing »̂ (¿)2 on P (¿)2, over the period
t ¡ 14; t, where »̂ (¿) is the residual from the OLS estimation of (19) over t ¡ 14; t. There are 26
such periods (1940-1954; 1966-1980); t statistics ranged from .90 to 5.00.

3. Variable input prices [1940-1980] (all prices are multiplied by the appropriate tax parameter
(source below))

1. Nominal wage rate: Index number of average wage rates for mining [(VIII), Series E201 rebased
for the period 1940-1975, and (IX) for the period 1976-1980];

2. Nominal energy price: TÄornqvist price index based on natural gas, electricity, and crude oil for
the manufacturing, mining, and electric power industries. Shares are de¯ned as value shares;
prices are de¯ned as value ¥ quantity. Data come from (VIII, Series Q31and Q32 for gas,
Series Q104 and Q109 for electricity, and Series Q19 and Q20 for oil), and the corresponding
series from (VII);

3. Nominal price of materials: general wholesale price index excluding gold [(VIII) for the period
1940-1975, Series K33-43 (rebased) and (I) for the period 1976-1980, Series D500000].

4. Nominal asset price of capital [1940-1980]

Implicit price indexes of Gross National Expenditures: new machinery and equipment [(VIII), Series
K181, for the period 1940-1975, and (I), Series D40639, for the period 1976-1980], multiplied by
the appropriate tax parameter (source below);

5. Rate of growth of factor prices

The rate of growth in the share-weighted index of factor prices was so close to that of the general
price index that we set ®w = 0.

6. Tax parameters [1960-1980]

All tax parameters correspond to the post tax holiday period [(III) for the formulas and (IV) for
the the computations].

7. Rates of return [1957-1980]

The risk-free rate of return is measured as the Canadian 90-day Treasury Bill rate [(VIII), Series
J471, for the period 1954-1977; (VI), Series B14001, for the period 1971-1980]. The risk-adjusted
rate of return is based on an unconditional CAPM. It is de¯ned as the sum of i) the Canadian 90-
day Treasury Bill real rate, ii) the market risk premium, and iii) an additional premium accounting
for the long term nature of the investment, and measured as the di®erence between the Long term
Canada bond rate [(VIII), Series J475, for the period 1954-1977; (VI), Series B14013, for the period
1971-1980]), and the Canadian 90-day Treasury bill rate [(VIII), Series J471, for the period 1954-
1977; (VI), Series B14001, for the period 1971-1980]. The risk premium is ¯ [~r ¡ rf ], where ¯ is the
(constant) market beta for Canadian metal mines. Since data on the metal mining industry rates of
return are available only since 1967 in Canada and given the empirical evidence of (at least partial)
integration of Canadian and US stock exchanges (Koutoulas and Kryzanowski, 1994), we used US
data to estimate Canadian metal mines market beta's (risk-free rate: US 3-Months Treasury Bills
[(X), Series X451, for the period 1957-1970; (XI), for the period 1971-1980)]; rate of return in
the metal mining industry and market rate of return: based on Share prices and dividends from
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Standard & Poors [(V), average of high and low yearly values]). Nominal rates were corrected for
the Canadian rate of in°ation (growth rate of the Implicit De°ator of GDP [(VI)]. We used the
risk-adjusted rate of return as discount rate.

8. Rate of technical change

Given the substantial rate of productivity regress experienced by the industry, we experienced with
rates ranging between -1% and -7%, and selected -6% as our prefered value based on the likelihood
of the price model (see text).

9. Reserves, ore grade, capacity, and extraction mode: [II]

Reserves are proven or probable and expressed in thousands of metric tons; grade is a percentage
rate by weight; capacity is in metric tons of ore per day; the extraction mode is X = 1 for open-pit
mining and X = 0 for underground extraction.
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Table 1: Capacity and Exercise Price Modelsa

  Dept. Var. Ln Q* Ln P*

γ=−3% γ=−6%
Two-stage estimation One-st. est. Two-stage estimation Two-stage estimations

Expl. Var.
First stage

Probit

Col. #2

Sec. stage

OLS

Col. #3

OLS

Col. #4

First stage

Probit

Col. #5

Sec. stage

OLS

Col. #6

First stage

Probit

Col. #7

Sec. stage

OLS

Col. #8

 red’d form 
(sec. stage

OLS)

Col. #9

Constant -4.89
(-.88) -1.00  

(-.97)
.95

(1.50)
-2.16
(-.74)

.34
(.70)

-3.08
(-.81)

.14
(.30)

.71
(.48)

LnP -.33
(-.27)

1.31
(1.70)

1.18
(1.93)

- - - - -

Ln Q* - - - .45
(.38)

.76
(3.32)

.99
(.80)

.89
(3.96)

-

Mills ratio
- .04

(.09)
- - -.32

(-1.72)
- -.30

(-1.58)
-.47

(-5.48)

Ln B -1.01
(-.19)

- - -3.64
(-1.87)

-.87
(-2.81)

-7.12
(-1.56)

-1.64
(-3.06)

.78
(.48)

LnWl -1.87
(-1.04)

-1.21
(-1.04)

-1.08
(-1.20)

2.25
(.99)

1.25
(2.60)

2.91
(1.26)

1.38
(2.85)

.55
(.89)

LnWE .47
(.42)

1.18
(.42)

1.17
(1.67)

-1.59
(-1.14)

-1.14
(-4.50)

-2.07
(-1.35)

-1.25
(-4.93)

-.55
(-1.71)

LnWK  -.13
(-.49)

.16
(1.70)

0.16
(1.84)

.14
(.36)

-.08
(-1.48)

.06
(.15)

-.10
(-1.92)

.04
(.51)

      Lnα b .02
(.03)

-.28
(2.35)

-.25
(-1.78)

-.65
(-1.43)

- -.69
(-1.24)

- .15
(.64)

Lnρ b 27.83
(2.54)

-2.13
(-.29)

- - - - - -.03
(-1.88)

LnR -.03
(-.51)

.63
(9.03)

.63
(24.14)

-.23
(-.31)

-.47
(-3.17)

-.57
(-.73)

-.55
(-3.81)

.02
(.76)

X .08
(.35)

-.15
(-1.58)

-.15
(-1.68)

-.02
(-.07)

.09
(1.44)

.07
(.23)

.12
(1.87)

-.03
(-.38)

LnG .11
(.72)

-.11
(-.72)

-.11
(-1.90)

-.03
(-.15)

.07
(1.46)

.04
(.17)

.08
(1.95)

-.03
(-.57)

s b .14
(1.64)

- - -.05
(-.62)

-.01
(-.64)

-.04
(-.57)

-.01
(-.55)

-.01
(-.43)

R2 / # of obs. 
 

- / 268 .95/ 60 .95 / 60 - / 268 .99 / 60 - / 268 .99 / 60 .95 / 60

Loglikelihood -131.75 -18.11 -18.30 -134.61 269.25 -135.43 281.72 112.43
a t-statistics are between parentheses. For the second-stage price equations, the standard errors of
the parameter estimates are based on Maddala (pp. 253-56).
b Omitted when not marginally significant.






