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Abstract
We present a dynamic model of factor demands based on expected discounted costs min-
imization. While making only very mild assumptions on expectations and technology,
we are able to establish a duality relationship between contemporary factor demands and
the technology, and we provide formula for easily recovering marginal products, returns
to scale, and technological change from estimated factor demands. Parametrization and
implementation are illustrated in a detailed example.

Key words: Dynamic duality; Investment; Expectations; Expected future cost function;
Factor demands; Returns to scale; Technological change.

R¶esum¶e
Nous pr¶esentons un modµele dynamique de demande de facteurs de production bas¶e sur un
comportement de minimisation de l'esp¶erance des coûts cumulatifs actualis¶es. Sous des
hypothµeses peu restrictives sur les anticipations et la technologie, nous ¶etablissons une
relation de dualit¶e entre les demandes courantes de facteurs et la technologie. Produits
marginaux, rendements d'¶echelle et progrµes technologique peuvent se calculer simple-
ment µa partir des demandes de facteurs. Nous illustrons µa travers un exemple d¶etaill¶e
une fa»con de param¶etriser et d'appliquer le modµele.

Mots-cl¶es: Dualit¶e dynamique; Investissement; Anticipations; Demandes de facteurs de
production; Rendements d'¶echelle; Progrµes technique.



1 Introduction

During the 1980's, dynamic ¯rm theory has evolved along three major avenues. Dynamic

duality was investigated in a series of papers by McLaren and Cooper (1980a,b); Epstein

(1981a); and Epstein and Denny (1983). Despite some important results, it failed to

become an encompassing tool of empirical analysis in a similar fashion as static duality

did. As an alternative, following Hansen and Sargent (1980), several authors used and

explicitly solved expected-utility (or pro¯t) maximization problems of greater theoret-

ical generality, but whose implementability remains limited to linear-quadratic forms

and subject to considerable computational di±culties. Finally, other authors traded

theoretical completeness for generality and simplicity, by focusing on Euler equations.

In this paper, we present a simple alternative way to formulate dynamic factor de-

mand models, and a simple way to recover the main features of the primal technology.

The model is very general, the only restrictions on expectations being restrictions that

ensure the existence of an optimum program. Although we present the case of a non-

rival ¯rm, this generality implies that our approach can be extended to many situations

involving strategic behavior, the main restriction being the existence of a unique, dif-

ferentiable, value function. We establish the existence of a duality relationship between

factor demands and technology. In itself, this does not imply that it is easy to recover

the technology from the expenditure system; however, our procedure also yields simple

formula for the computation of marginal products, returns to scale, and technological

progress from a system of factor demands.

In the rest of this introduction, we present and discuss the main existing dynamic

factor demand models in more detail. Then, in Section 2, we introduce our model, de¯ne

the relevant cost functions and establish the corresponding system of factor demands.

The properties of factor demands are given in Section 3. Section 4 establishes the

duality results and deals with the recovery of primal technology characteristics. Some
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expectation formation processes, rational expectations in particular, give rise to speci¯c

properties that can be tested; we discuss how this might be done in Section 5. Before

concluding, in Section 6, we illustrate how to go about implementation by formulating a

second-order factor demand system and deriving the parameter restrictions implied by

the theoretical model.

Interest toward duality theory, static or dynamic, arises mainly out of the hope

that it can simplify empirical work substantially, at no cost in terms of generality. It

is because of its relative lack of generality and simplicity that dynamic duality never

became successful as a tool of empirical analysis.

Let us outline some major aspects of the methodology developed by McLaren and

Cooper (1980a, b), and Epstein (1981a). The model is formulated under perfect cer-

tainty. In the case of producer theory, the objective is the minimization of cumulated dis-

counted expenditures, or the maximization of cumulated discounted net pro¯ts, subject

to technological constraints de¯ned over each period. Intertemporal links are provided

by, say, investment. The assumption of perfect certainty is not su±cient for tractable

results, however: since the planning period extends over an in¯nite horizon, the problem

involves an in¯nite number of parametric prices, unless the latter are assumed to be

constant or to evolve according to some simple rule.

As the discussion by Epstein and Denny (1983) makes clear, the relaxation of this

assumption is not simply a matter of extra algebra but puts the whole apparatus under

question. Finally the theoretical model is developed as a generalization of the °exible

accelerator model of investment. This is not necessarily a limitation by itself, but intro-

duces the apparently benign assumption that the model has a steady state. As a result

other classic dynamic aspects of the theory of the ¯rm (exhaustible-resource extraction;

learning by doing) require non trivial adjustments to the theoretical model if they are

to be included in its realm of validity.
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Under the list of assumptions sketched above, the theory of dynamic duality is built

up from the value function G corresponding to the problem of minimizing cumulative

discounted costs. The Hamilton-Jacobi equation for that problem de¯nes a duality

relationship between the production function f , and G. Thus the primal technology f

can be recovered from the value function G , provided the latter satis¯es appropriate

regularity conditions, and vice versa. The dynamic factor demand system can be derived

from G. This system is rather complex, involving, in particular, third derivatives of

G. Thus the dynamic dual approach does not have the same clear edge in terms of

simplicity as its static counterpart, under which factor demands are directly derived

from an observable, easily characterized, cost function, by use of Shephard's lemma.

Empirical analysts might have overcome these di±culties had the rewards been com-

mensurate with the e®orts. However, because the model lacks generality, other alter-

natives were privileged. Interpreted in the current context, the model of Hansen and

Sargent (1980) is based on the minimization of expected cumulated discounted cash

°ows. In discrete time, for a quadratic technology, linear equations of motion, and

linear investment rules, the problem is a special linear-quadratic dynamic game. The

solution concept is a decision rule (a contingency plan) rather than a program.

The model can be interpreted as a rational-expectations model if, besides purely

exogenous information and variables speci¯c to the ¯rm, the information set on which

investment decisions are based only contains information that re°ects the aggregate im-

pact of other economic agents' strategies and is considered exogenous by the ¯rm (see

Sargent, 1985, for a nice discussion of these issues). Despite the restrictions imposed

by \quadratic-linearity", this methodology can be extended beyond the traditional in-

vestment decision framework to cases that do not necessarily admit a steady state, such

as, e.g., resource extraction (Epple,1985). Despite various attempts to simplify it or to

extend its somewhat rigid framework (Epstein and Yatchew, 1985; Kollintzas, 1985),
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this methodology has proved di±cult to apply.

Indeed, it is very di±cult to construct, as do Hansen and Sargent and their followers,

econometric models based on explicit closed form solutions. Cooper et al. (1989) have

made an advance in this line of investigation by ¯nding conditions for the existence of

explicit closed form solutions in dynamic stochastic consumer demand models. Other

authors (Pindyck and Rotemberg, 1985; Shapiro, 1986; Bernstein and Nadiri, 1989),

while using a similar model (without the linear quadratic restrictions), have chosen to

stop short of providing a closed-form solution and work from Euler equations.

For investment demand, the Euler equations at date t involve the expected values of

the marginal products of quasi-¯xed factors, @f=@kt+1, at t+1; the latter depend on the

arguments of f which are typically, with costs of adjustment, a vector xt+1 of n variable

factors, a vector kt+1 of m quasi-¯xed factors, and it+1, the corresponding vector of gross

investment °ows. Under rational expectations, this expected marginal-product vector

does not di®er in any predictable way from the value obtained by substituting into f

the values of xt+1, kt+1, and it+1 as observed ex post, at t + 1. It is thus possible to

estimate the Euler equations directly, although not without some loss in information,

as Euler equations do not exhaust necessary conditions1. From an econometric point

of view, the presence of kt+1; it+1; xt+1 in the equation for period t causes the error

term to be correlated with the dependent variable, which calls (see, e.g. Pindyck and

Rotemberg, 1985; Bernstein and Nadiri, 1989) for the use of instrumental methods such

as the generalized method of moments (Hansen, 1982) in the estimation.

To sum up, each of the three major approaches to dynamic ¯rm theory has one

or several of the following weaknesses: restrictive assumptions on expectations or the

technology; complexity; failure to use relevant information. In the analysis presented

1One alternative approach is to work out numerical solutions based on the Euler equations and the
appropriate transversality conditions. Again this approach appears to be cumbersome and we are not
aware that other authors than Prucha and Nadiri (e.g. 1989) have attempted to use it.
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below, our ¯rst aim is to establish and characterize a dynamic factor demand system

which can be used as a basis for empirical work: it must be general; it must be convenient;

it must make use of available information; and it must incorporate the restrictions

implied by the underlying economic theory.

Our second aim is the measurement of key technological concepts: marginal factor

products; returns to scale; technological change. The duality results presented below

establish the existence of a technology corresponding to the system of factor demands,

and we provide simple formula for key technology measurements. Thus, one of our

achievements is to propose a model and a methodology which ensure that expectations

do not interfere with the study of factor demands and technology.

2 A model of expected cost minimization with arbi-

trary expectations and technology

2.1 The model

As with static ¯rm theory, our analysis can easily be carried out in terms of the pro¯t

function, treating output as endogenous. Because supply decisions are often more com-

plex than factor demand choices, analysts have often focused on factor demands, given

output. Consequently, the static duality between the cost function and the production

function has been exploited empirically more than any other static duality relation. We

adopt a similar approach in what follows, by treating output as given. As in static

setups, this may be interpreted to mean that output is truly exogenous, or is deter-

mined at some other stage of the decision process. Although these two alternative views

have di®erent econometric implications, they have little implications on the theoretical

analyses which follows.

As far as future output levels are concerned, they must be anticipated, as other future
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exogenous variables, based on current information. If we consider that output is not truly

exogenous but determined, in each period, at a separate stage of the decision making

process, expectations of future outputs are conditional on the use of an appropriate

pro¯t maximizing rule at the time such output levels will be chosen. But this will not

a®ect our analysis, as we do not model the expectation formation process explicitly;

what matters here is that future output anticipations are based on current information.

Although several cost functions will be de¯ned below, our analysis will focus on the

duality between a system of current factor demands, including investment demands, on

one hand, and the current production function on the other hand. This is the same

relationship as the one between the cost function and the production function.

In a static framework, as is well known, one obtains factor demands from the cost

function by Shephard's lemma or the cost function from factor demands by summing

optimal expenditures. Consequently there is no distinction to be made between the

production function - cost function relationship on one hand, and the production function

- factor demand system relationship on the other hand.

In the dynamic framework that we are going to introduce, such a distinction is useful,

although only as a matter of convenience. In fact, factor demands, which include invest-

ment demands, are observable while the corresponding expenditures are not: there is

no observable variable re°ecting the appropriate shadow rental price applying to capital

expenditures. As shown below, that shadow price can be computed, but only using fac-

tor demand functions. Consequently, it is algebraically simpler to focus on the duality

between factor demands and the production function. Looking for a duality between

factor demands and technology might be considered unusual in production economics.

However, there is a long tradition of focusing on the duality between demands and pref-

erences in consumer theory. We adopt the convention of referring to the production

function as the primal representation of the technology, while factor demands belong to
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the dual side.

The ¯rm operates in a stochastic environment, attempting to minimize the expected

value of cumulated discounted expenditures given its current output (taken as exoge-

nous), its current quasi-¯xed inputs, and its current information, under technological

constraints. Technology at date t is represented by a production function f(xt; kt; it; °t)

where xt, kt, and it respectively are vectors of n variable factors, m quasi-¯xed factors,

and m gross investment °ows corresponding to kt; wt and qt are the prices corresponding

to xt and it respectively; °t is a vector of parameters which represent the current state

of technology (in most empirical applications, ° is simply the date). As in the most

general treatment of the cost-of-adjustment model, f may be rising or decreasing in i,

depending on the level of i and other arguments.

Decisions at date t are based on current information and involve contemporary control

variables xt and it. The choice of xt+¿ and it+¿ is postponed until the relevant information

is revealed so that, formally the problem is to choose decision rules for x and i at all

future dates so as to

min
fx¿ (¢);i¿ (¢)g

Et

( 1X

¿=t

·
¯¿
¯t
(wT¿ x¿ + q

T
¿ i¿ )

¸)
(1)

subject to

y¿ · f (x¿ ; k¿ ; i¿ ; °¿ ); ¿ = t; : : : ;1 (2)

k¿+1 = [I ¡ ±¿ ] k¿ + i¿ ; ¿ = t; : : : ;1 (3)

yt and kt given (4)

where ¯¿ is the discount coe±cient from date ¿ to zero, based on a sequence of discount

rates fro; : : : ; r¿ ; : : : ; r1g, while I and ±¿ are diagonal matrices of dimension m whose
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jth diagonal elements are respectively 1 and the rate of depreciation ±j¿ for the j
th ¯xed

factor. We make the following standard assumption

Assumption 1 The production function f (x¿ ; k¿ ; i¿ ; °¿) has the following properties

1. twice continuously di®erentiable: f 2 C2;

2. monotonously increasing in x and k: fx > 0(n£1); fk > 0(m£1);

3. strongly quasi-concave in x and i: Á 6= 0([n+m]£1) and [fx fi]Á = 0

) ÁT

2
64
fxx fxi

fix fii

3
75Á < 0.

Although the variables on which future decisions will be based are stochastic, and nei-

ther the process by which k will evolve in the future, nor the future states of technology,

may be known at t, problem (1) is a standard, non-stochastic, dynamic programming

problem as the current motion of k is non stochastic and the current technology is

known (Cooper and McLaren (1987) study a situation where current investment and

future investments have stochastic e®ects on capital; when their model is restricted to

deterministic current investment, it is a particular case of ours).

We do not attempt to establish conditions for the existence of a solution; however, a

solution is known to exist for several expectation formation rules, static expectations and

rational expectations being prime examples that have been developed in the literature.

Restricting our attention to the set of expectation formation rules under which a solution

exists, let G( ~Jt; kt; yt) be the optimized value function, where ~Jt is the vector of all

information which condition the expected value operator Et in (1).

Under static expectations and a constant technology, ~Jt = (wt; qt; rt); more generally,

~Jt may also contain past values of w, q, and r, as well as current and past values of °

and a vector µt of other relevant variables. Current and past decisions by other agents

are not included in µt because of the assumption of perfect competition; however, in
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a rational expectations competitive equilibrium, the ¯rm may watch current and past

values of a vector of aggregate state variables (e.g. G.N.P., the rate of in°ation, wage

in°ation, etc.) that determine the evolution of market prices. µt may also include ¯rm

speci¯c variables such as past and current values of ±. Thus we may de¯ne ~Jt as

~Jt = (wt; qt; ½t; °t; ¾t)

where ½t =
¯t+1
¯t

and where ¾t =
¡
fw¿ ; q¿ ; ½¿ ; µ¿ ; °¿gt¡1t¡S ; µt

¢T
is the column-vector of

relevant information, excluding current input prices, the current discount factor, and

current technology indicators, S being the number of past periods over which information

is relevant for current decisions; the dimension of ¾ is § = S [n+m+ 1 + ¡]+ [S + 1]£

where £ is the dimension of µt and ¡ is the dimension of °t.

It is for future analytical convenience that we keep current prices and technology

indicators distinct from other information variables in ~Jt. Unlike other variables, they

would be present in the model as decision parameters even if they did not play any

informational role in future periods. In what follows, it will also be important to keep

the state of technology distinct from other variables. For example, if °t is just the

date, we will need to express technology in a form that does not depend on expectation

variables, but is conditioned on the date; this requires allowing all variables in ~Jt to vary

while °t is kept constant. Thus we partition ~J as

~Jt = (Jt; °t) (5)

with

Jt = (wt; qt; ½t; ¾t) (6)

Finally, if we take the view that current output is in fact endogenous, although

chosen at some other stage of the decision process, then it does not play any role in
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the formation of expectations: indeed if current output is actually under the control

of the ¯rm, the latter does not change its expectations about future prices and output

levels when it considers alternative current levels of yt. Alternatively, if we take the view

that output is truly exogenous, then it may play a role in the formation of anticipations

implying that current and past levels of y are part of ¾t. In either interpretation, future

levels of y are unknown; they are anticipated from the information vector Jt in the same

way as, say, future prices.

Before de¯ning the cost functions that generate variable factor demands and invest-

ment demands, we make an assumption on the information set that will greatly simplify

the analysis.

Assumption 2 S is ¯nite and independent of t; the dimension of µ is ¯nite; the com-

position of µ and ° is time invariant.

The ¯nite dimension of the information vector is a fairly common assumption in

discrete-time models; the constant dimension assumption is not crucial to the analysis

but simpli¯es notation and derivations greatly. Instead of S, we could also have cho-

sen one speci¯c duration for each component of the information vector, at the cost of

increasing the notational burden.

Let the expected future cost function ¹C(Jt; kt+1; °t) be de¯ned as the minimum, as

expected at t, and discounted to t, of cumulated expenditures from t+ 1 on

¹C(Jt; kt+1; °t) = ½tEt min
fx¿ (¢);i¿ (¢)g

( 1X

¿=t+1

·
¯¿
¯t+1

(wT¿ x¿ + q
T
¿ i¿ )

¸
j (2) and (3)

)
(7)

We need to strengthen the existence assumption mentioned earlier as follows:

Assumption 3 Expectations are formed in such a way that, given f , there exists a

unique solution to problem (1). The solution is such that the expected future cost function
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¹C(Jt; kt+1; °t) de¯ned as part of the solution to (1) is unique and twice continuously

di®erentiable in Jt, kt+1, and °t.

It is easy to see that ¹C is non increasing in kt+1: suppose it is not; then, for some

(Jt; k; °t), there exists k0 > k such that ¹C(Jt; k0; °t) > ¹C(Jt; k; °t). However, with

kt+1 = k0, it is possible to use decision rules that will yield the same values of x¿

and i¿ as are obtained, optimally, when kt+1 = k; doing so would achieve the same

expected cumulated discounted costs while exceeding the production constraints (since

f is increasing in k); thus ¹C (Jt; k
0; °t) > ¹C(Jt; k; °t) cannot result from an optimal

factor allocation rule, proving the result. Since ¹Ckt+1 gives the reduction in expected fu-

ture cumulative discounted costs associated with marginal increases in kt+1, acquired at

unit cost qt, qt+ ¹Ckt+1(Jt; kt+1; °t) may be interpreted as the vector of quasi-¯xed factor

shadow prices at t. This shadow prices re°ect both expectations and the technology.

Although we do not attempt to characterize the set of expectations under which

Assumption 3 holds, it is easy to see that this set is non empty. Indeed, for any

¹Ckt+1(Jt; kt+1; °t) · 0(1£m), suppose that expectations at t are such that t + 1 is ex-

pected with certainty to be the last operating period (e.g. w¿ = 1, q¿ = 0, and y¿ = 0

for ¿ > t + 1) and that yt+1, as well as all relevant parameters at t + 1, are known

with certainty as functions of current information Jt. In that case, ¹C (Jt; kt+1; °t) =

c (wt+1(Jt; °t); qt+1(Jt; °t); kt+1; yt+1(Jt; °t)) is a static cost function, the (unique, twice

continuously di®erentiable) solution to the minimization of expenditures at t + 1 sub-

ject to (2); it is easily shown that @
¹C(Jt;kt+1;°t)
@kt+1

= ¡@c(wt+1;qt+1;kt+1;yt+1)
@yt+1

@f(xt+1;kt+1;it+1;°t+1)
@kt+1

.

Since, for any f satisfying Assumption 1, @c
@y
may be chosen to equal any non negative

value by choice of wt+1 and qt+1, this provides an example of the construction of ¹C.

Other examples may be obtained by reformulating the models of Epstein (1981a),

Epstein and Denny (1983), or Hansen and Sargent (1980) to ¯t the above framework.

Thus if we assume that the discount rate and the input prices are constant and known
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over the entire period and that the technology is invariant over time, we obtain Epstein's

model. On the other hand, if the technology is quadratic and if we assume that ¯rms do

not make any systematic forecasting errors, we get Hansen and Sargent's model. Thus

we may state:

Lemma 1 For any technology satisfying Assumption 1, the set of expectations satisfying

Assumption 3 is non empty.

By a standard dynamic programming argument

G(Jt; kt; yt; °t) = min
xt;it

©
wTt xt + q

T
t it + ¹C(Jt; kt+1; °t)

ª
(8)

subject to yt · f (xt; kt; it; °t); kt+1 = [I ¡ ±t] kt + it; with kt and yt given. Let

xt(Jt; kt; yt; °t) and it(Jt; kt; yt; °t) be the solutions to problem (8). Then we may de¯ne

the contemporary cost function as

C(Jt; kt; yt; °t) = w
T
t xt(Jt; kt; yt; °t) + q

T
t it(Jt; kt; yt; °t) (9)

Now we turn to the properties of the model, which will be presented in the form of

propositions.

3 Properties

Unless otherwise mentioned, from here on, variables are evaluated at t, the notation

z1 means that the variable z is measured one period into the future relative to other

variables, and expected-value operators are conditioned on information relevant at t. For

a function g(l; z), gl refers to the partial derivative (the line-vector of partial derivatives)

of g with respect to the variable (the vector) l; also, if a vector h contains l as well as

other elements b which are not arguments of g, i.e. hT =
¡
bT ; lT

¢
, then gh =

¡
0T ; gl

¢
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where 0T is a transposed vector of zeros with the same dimension as b. Occasionally,

we use the same notation for vectors or matrices of di®erent dimensions; thus 0 may be

a number, or a matrix of zeros, whose dimension must ensure compatibility with the

terms it is combined with. If we need to specify the dimension of such matrices, we

use a subscript between parentheses, as in I(n£n) the diagonal matrix of ones. Unless

otherwise mentioned, x and i will either refer to the optimized level of variables x and

i, or to the functions x (:) and i (:).

Dynamic factor demands are known not to possess the same testable properties as

their static counterparts. The same is true for our model, as it is more general in several

respects than most alternative dynamic factor-demand models. It is also well known that

this lack of veri¯ability does not a®ect variable-factor demands, conditional on (y; k; i).

However, here, variable factor demands are conditional on (y; k) only. As the following

proposition indicates, their observable properties include the additivity property, but

not homogeneity, nor the symmetry and negative de¯nitiveness of xw: like investment

demands, variable factor demands may not be downward-sloping. (Proofs may be found

in the Appendix)

Proposition 1 Variable factor demands, investment demands, and quasi-¯xed factor

shadow prices have the following properties

1.

£
wT qT + ¹Ck1

¤
2
64
xJ xk xy x°

iJ ik iy i°

3
75 =

£
0T ¡ ¸fk ¸ ¡ ¸f°

¤

where ¸fk is a vector whose elements are all positive and ¸ is a positive scalar.

2. The system of factor demands satis¯es the following symmetry and negativity con-
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ditions

£
xTJ iTJ 0

¤
+ iTJ ¹CJk1 is symmetric and negative semi-de¯nite

where 0's dimension is a£ (a¡ [m+ n]).

Properties 1 and 2 correspond to the familiar homogeneity, additivity, symmetry,

and curvature conditions of static factor-demand theory. In particular, in the absence of

quasi-¯xed factors, iJ = 0 and J reduces to w; thus Property 2 reduces to xw symmetric

and negative semi-de¯nite, while Property 1 becomes wTxw = 0 and w
Txy = ¸, where

¸ is marginal cost. By the symmetry of xw, it follows that xww = 0, which is the

homogeneity property. Note that Property 2 is possible only if a ¸ m+ n, which is the

case since J contains at least all factor prices. In general, a > m+n, so that the matrix

in Property 2 is negative semi-de¯nite, and not negative de¯nite. As is clear from the

proof, the ¯rst-order conditions for the maximum of g with respect to J may be viewed

as a system of a equations in the n + m variables (x; i). The existence and unicity of

(x; i) as functions of J thus require functional relationships between the elements of the

a equations, as implied by the proposition.

One convenient way to express Proposition 1 in terms of factor demands only is given

in the following corollary.

Corollary 1 If iq is invertible, then, at the optimum

1. ¹Ck1 = ¡
£
wTxqi¡1q + qT

¤
< 0

2. wT
£
xJ ¡ xqi¡1q iJ

¤
= 0

3. wT
£
xk ¡ xqi¡1q ik

¤
< 0

4. wT
£
xy ¡ xqi¡1q iy

¤
> 0
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5. wT
£
x° ¡ xqi¡1q i°

¤
< 0 in case of technological progress (· 0 in case of regress)

6.
£
xTJ iTJ 0

¤
+ iTJ

"
[I ¡ ± + ik]¡1

·
@[wTxqi¡1q ]

@k

¸T
iJ ¡

·
@[wTxqi¡1q +qT ]

@J

¸T#
is symmetric

and negative semi-de¯nite.

If iq is not invertible, another subset of the matrix equation in Proposition 1.1 may

be used to obtain an alternative expression for ¹Ck1 in terms of x and i. In the rest of

the paper, we assume that iq is invertible. Although Corollary 1 only involves rewriting

Proposition 1, we have also replaced equations involving ¸fk, ¸, and ¸f° with inequal-

ities; this is because, ¸fk, ¸, and ¸f° being unobservable, the only empirically relevant

information that they contain in general is their sign.

In a static model, the curvature condition (Proposition 1.2) would only involve CJJ

with J reduced to the vector of current prices, thus collapsing to the familiar curvature

property of the cost function (concavity in current prices). Although di±cult to impose

on an econometric system of factor demands a priori, the restrictions implied by Propo-

sition 1.2 would be easy to verify a posteriori. It is interesting to mention an important

group of special cases.

Corollary 2 If contemporary factor prices w and q do not a®ect ¹C (J; k1; °), then2
64
xw xq

iw iq

3
75 is symmetric and negative-de¯nite.

This special case (downward sloping, symmetric, factor demands) includes all situ-

ations where contemporary prices do not a®ect current expectations (as, e.g., when ex-

pectations are formed with a lag). In fact, the matrix of price e®ects may be expressed,

in general, as the sum of a symmetric negative-de¯nite matrix and a matrix re°ecting

both expectations and the technology. The lemma spells out su±cient conditions under

which the second matrix vanishes.

Before closing this section of the paper it is useful to draw attention to what dis-

tinguishes the contemporary cost function C from some other cost functions. C is a
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restricted cost function (Diewert, 1974) in the sense that k is one of its arguments, but

it is not restricted with respect to i. As an important consequence, C is not homogeneous

of degree one in current variable factor prices.

It is also interesting to compare our results with Epstein (1981a, b). In `Generalized

Duality and Integrability', Epstein allows the non decision variables (prices and/or other

parameters) faced by an agent to enter the optimization problem in a non linear way.

Thus, e.g., the linear budget constraint is replaced with a non linear relationship. Our

model, besides the fact that ¹C is not known in Problem (8), may be seen as an extension

to a situation where the agent faces an additional (capital motion) constraint, and as

a restriction to the extent that our expenditure function has some structure (before

optimization). Proposition 1 is related to Epstein (1981b)'s Theorem 10.

More importantly, as is clear from the contemporaneous or subsequent literature on

dynamic factor demands (McLaren and Cooper, 1980a, 1987; Epstein, 1981a; Epstein

and Denny, 1983), the `Generalized Duality' framework was not used in a dynamic

context. There may be two reasons for that.

First, Epstein's paper provides su±cient conditions for strong integrability (Theo-

rem 9 and the discussion following Theorem 10). One of them restricts the negative

semi-de¯nite matrix corresponding to the matrix in our Proposition 1.2 to be negative-

de¯nite; since this is possible only if the number of parameters is equal to the number of

factors, this restriction is devastating in most contexts outside the standard static dual-

ity framework. However, since it is not necessary, one wonders why such a restriction,

although convenient (easy to check), should be requested in dynamic models.

Second, while Epstein's `Generalized duality' was formalized in terms of a ¯nite

number of parameters (e.g. prices), intertemporal optimization involves an in¯nity of

future prices. This dimensionality issue may be resolved, as we have done, by allowing

for uncertainty and focusing on expected value functions, but this was not the way early
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dynamic factor demands models were formulated. Instead, dynamic duality theory was

initially established around some non-stochastic form of the Hamilton-Jacobi equation

of dynamic programming.

In our model (8) de¯nes a value function. The corresponding Hamilton-Jacobi equa-

tion involves partial derivatives of ¹C with respect to J. As they depend on expectations,

these derivatives are arbitrary. Consequently, unless restrictive assumptions are made

about expectations, the Hamilton-Jacobi equation does not imply any additional re-

strictions on the system of factor demands. The literature on dynamic duality, on the

contrary, is characterized by highly restrictive assumptions on expectations. What is

remarkable about the duality result that we are presenting below, is the fact that the

technology set may be recovered from a system of factor demands satisfying Proposition

1, without any knowledge about expectations.

4 Dynamic duality

One major appeal of duality is the possibility to characterize the primal technology (the

production function) entirely from the analysis of factor demands. There are two main

issues. The ¯rst one is the existence of a technology set dual to the system of factor

demands used as an empirical model. The second one is the actual recovery of the primal

technology from the factor-demand system; here, in practice, we are mostly interested in

some key characteristics of the primal technology: marginal products, returns to scale,

and technological change. We shall deal with both issues in turn, starting with the

existence issue.

Let x¤(J; k; y; °) and i¤(J; k; y; °) be twice di®erentiable functions that satisfy Corol-

lary 1; let ¹C¤ (J; k1; °) be some twice di®erentiable real valued function such that,

¹C¤k1 (J; k1; °) = ¡
£
wTx¤q + q

T i¤q
¤
i¤¡1q when k1 is set at its optimal value k1 = [1¡ ±] k+i¤;

let G¤ (J; k; y; °) ´ wTx¤(J; k; y; °) + qT i¤(J; k; y; °) + ¹C¤ (J; [1¡ ±] k + i¤; °). As a dual
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to the cost minimization Problem (8) one may de¯ne, at any date, the technology set,

for all admissible (k; y; °), as2

Z¤(k; y; °) =
©
(x0; i0) : wTx0 + qT i0 + ¹C¤(J; [I ¡ ±] k + i0; °) ¸ wTx¤(J; k; y; °)

+qT i¤(J; k; y; °) + ¹C¤(J; [I ¡ ±] k + i¤(J; k; y; °); °) 8J
ª (10)

Note that Z¤ is de¯ned for all J (not only for all w, q, and ½), and is conditioned on °.

Unlike previous dynamic duality results characterizing future dimensions of technology

together with current ones, Z¤ represents only the current state of the technology, and

the fact the it is conditional on ° will allow the analyst to study its evolution over time,

as data on factor demands become available.

We must pause to address an important issue at this stage. As the reader may

have noticed, ¹C¤ is only partially de¯ned. First it is de¯ned by a condition on one

of its partial derivatives, ¹C¤k1 only. Second, that partial derivative is only known at

k1 = [I ¡ ±] k + i¤ (J; k; y; °), so that ¹C¤k1 is not known from its de¯nition as an explicit

function of k1 but as a function of (J; k; y; °) : ¹C
¤
k1
(J; [I ¡ ±] k + i¤ (J; k; y; °) ; °). Indeed

this is re°ected in the fact that Z¤ is not conditioned on k1 but on k and y. Thus one

might conclude that, although (10) is a proper de¯nition of the technology set, it does

not permit its recovery because ¹C¤ (:) is not entirely known. In fact the opposite is true;

the following result can be established.

Lemma 2 The technology set may be expressed in terms of factor demands only:

Z¤(k; y; °) =
©
(x0; i0) : wTx0 + qT i0 ¸ wTx¤(J; k; y; °) + qT i¤(J; k; y; °)

¡
£
wTx¤q(J; k; y; °) + q

T i¤q(J; k; y; °)
¤
i¤¡1q (J; k; y; °) [i0 ¡ i¤(J; k; y; °)] +O(J; k; y; °; ²)8J

ª

(11)

2Equivalently, the technology may be de¯ned by the production function f¤(x; k; i; °) =
maxy

©
y jG(J; k; y; °) · wT x + qT i + ¹C([I ¡ ±]k + i; J; °) 8 J

ª
.
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where ² = i0 ¡ i¤(J; k; y; °), O(J; k; y; °; ²) = 1
2
²T ¹C¤k1k1([1¡ ±] k + i¤(J; k; y; °); J; °)²+

higher-order terms, and O(J; k; y; °; ²) may be expressed in terms of factor demands by

use of the identity ¹C¤k1 ´ ¡
£
wTx¤q + q

T i¤q
¤
i¤¡1q :

The fact that (11) is a very complex expression is irrelevant, as it is not meant ever to

be implemented. Its usefulness resides with the next proposition, which states our main

duality result, providing a theoretical foundation for the speci¯cation of factor demand

equations, and justifying their use as an approach to study the primal technology.

Proposition 2 If factor demands x¤(J; k; y; °) and i¤(J; k; y; °) satisfy Corollary 1, and

if we de¯ne Z¤(k; y; °) as in (11), then x¤(J; k; y; °) and i¤(J; k; y; °) solve Problem (8)

for a ¯rm with production set Z¤(k; y; °).

Given that expectations and the technology together determine factor demand deci-

sions, it is surprising that technology may be recovered from factor demands without a

complete knowledge of expectations. In reality, there is nothing mysterious about this

result. Current factor demands give the knowledge of ¹C¤k1 , which is enough information

about expectations to specify the value to the ¯rm of the link between present and

future provided by the marginal unit of each type of capital. This in turn allows the

recovery of the current technology, while leaving future technologies unknown, and still

not di®erentiated from expectations. Had it been assumed, as in Epstein (1981a), that

technology was not changing over time, then of course the recovery would be complete.

5 The recovery of the primal technology

By use of (11), it is possible, in theory, to construct Z¤ from the estimated system of

factor demands. Fortunately, content with the existence result of Proposition 2, most

researchers will not need to carry out such a tedious exercise, but will only possibly be

interested in marginal products, returns to scale, and technological change. As we show
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now, these magnitudes are easily obtained analytically. We assume that f ¤ (x; k; i; °), as

de¯ned in footnote 2, is once continuously di®erentiable, and we drop the `*' superscript

from both f and factor demands to alleviate notation.

5.1 Marginal products

From the ¯rst-order conditions for Problem (8) we obtain fx = wT=¸ and fi = (qT +

¹Ck1)=¸, where ¸ is the Lagrangian multiplier associated with the technological con-

straint. By Proposition 1.1, ¸ = wT
£
xy ¡ xqi¡1q iy

¤
; and by Corollary 1.1, ¹Ck1 =

¡
£
wTxqi¡1q + qT

¤
. Substituting, we have

fx =
wT

wT
£
xy ¡ xqi¡1q iy

¤ (12)

fi =
¡wTxqi¡1q

wT
£
xy ¡ xqi¡1q iy

¤ (13)

Also, from the equations involving partial derivatives with respect to k in Proposition

1.1, we derive, after substituting for ¹Ck1 as above,

fk = ¡w
T

£
xk ¡ xqi¡1q ik

¤

wT
£
xy ¡ xqi¡1q iy

¤ (14)

5.2 Returns to scale

There are competing de¯nitions of returns to scale. Because we deal with a di®erent,

dynamic, cost function, it is important to use an undisputable de¯nition of returns to

scale, based on the production function. With k ¯xed at ¹k, short-term returns to scale

are de¯ned as

¹(x; ¹k; i; °)S =
d ln f(Áx; ¹k; Ái; °)

d lnÁ
; evaluated at Á = 1;
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=
nX

j=1

fxjx
j

f
+

mX

l=1

fili
l

f
(15)

where x and i are evaluated at their optimized levels. Substituting (12) and (13) into

(15), we have

¹S =
wT

£
x¡ xqi¡1q i

¤

ywT
£
xy ¡ xqi¡1q iy

¤ (16)

Consequently, the primal measure ¹S is fully recoverable from the system of factor

demands. Note that the formula for short-run returns to scale and marginal variable-

factor products reduce to the well-known static expressions ¹S = C
yCy

and fx =
wT

Cy
when

the terms involving i are removed from both the numerator and the denominator, while

wTx and wTxy are respectively replaced by C and Cy, using the de¯nition of a static

cost function.

Similar results apply to long-run returns to scale to which we turn now. Long-run

returns to scale are de¯ned as

¹(x; k; i; °)L =
d ln f(Áx;Ák; Ái; °)

d ln Á
; evaluated at Á = 1;

= ¹(x; k; i;°)S +
mX

l=1

fklk
l

f
(17)

Here again, using Proposition 1 and a similar succession of substitutions as before, ¹L

is fully recoverable from the system of factor demands:

¹L =
wT

£
x¡ xqi¡1q i

¤
¡ wT

£
xk ¡ xqi¡1q ik

¤
k

ywT
£
xy ¡ xqi¡1q iy

¤ (18)

5.3 Technological change

In a dynamic setup where current costs not only re°ect the state of technology but

also current expectations, and where current cost changes may have a counterpart in
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the future, a measure of technological change based on the production function is less

subject to interpretation errors than a measure based on a cost function. The primal

measure of technological change is de¯ned as the shift in the production function over

time, a shift associated with changes in the components of ° over time (in many models,

° is simply de¯ned as t). Expressed as a rate, this is

_A

A
=

¡X

v=1

f°v°v

f

_°v

°v
(19)

This can be computed using the fact that, from the equations involving partial deriv-

atives with respect to ° in Proposition 1.1

f° = ¡w
T

£
x° ¡ xqi¡1q i°

¤

wT
£
xy ¡ xqi¡1q iy

¤ (20)

Equivalently
_A
A
may be measured by substracting from _y

y
the contribution of all variables

not in °
_A

A
=
_y

y
¡

X

j

fxjx
j

f

_xj

xj
¡

X

l

"
fili

l

f

_il

il
+
fklk

l

f

_kl

kl

#

Using the ¯rst-order conditions for Problem (8) as well as Proposition 1, we obtain

_A
A
= _y

y
¡ C

[Cy¡ ¹Ck1 iy]y

nP
j
wjxj

C
_xj

xj
+

P
l

h
qlil

C

_il

il
¡ Eckl _k

l

kl

io

¡ C

[Cy¡ ¹Ck1 iy]y
P

l

·
¹C
kl
1
il

C

_il

il
¡ P

e

¹C
kl
1
ie
kl
kl

C

_kl

kl

¸ (21)

where C = wTx+qT i, Cy =
@C
@y
, ¹Ck1 is de¯ned by Corollary 1.1, ¹Ckl1 being its l

th element,

and Eckl = @ lnC=@ ln k
l.

Again, once the appropriate substitutions are made, the primal measure of techno-

logical change can be recovered from the system of factor demands. It is also interesting

to verify that this formula simpli¯es to a more familiar form in the absence of adjustment

costs. Indeed, if i is not an argument of f , ¹Ck1 = ¡
£
wTxq + q

T iq
¤
i¡1q = ¡q, where the
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last equality is one of the ¯rst-order conditions for Problem (8). De¯ning CV ´ w0x,

²cy ´ CVyy
CV
, and ²ckl ´ CV

kl
kl

CV
the formula simpli¯es to

_A

A
=
_y

y
¡ ²¡1cy

(X

j

wjxj

CV

_xj

xj
¡

X

l

²ckl
_kl

kl

)

This is the standard static measure of technological change.

6 Testing expectations

The previous developments have focused on factor demands, costs, and the technology

under the minimal assumptions on expectations spelled out in Assumption 3. It was

noted in Corollary 2 that, for expectations under which current factor prices do not a®ect

¹C (J; k1; °), the factor demand system exhibits the symmetry and negativity properties

of static factor demands. We will show now that the model yields additional predictions,

if we constrain it to the family of rational expectations. Using the de¯nitions of ¹C and

G, (7) and (8), we may write

¹C (J; k1; °) = ¯E fG (J1; k1; y1; °1)g

Since k1 = [I ¡ ±] k + i and since the expectation on the right-hand side is a function

of k

@ ¹C (J; k1; °)

@k
= ¯

@E fG (J1; k1; y1; °1)g
@k

Taking a second-order expansion of the right-hand side around (J; k; y; °) and car-

rying out the di®erentiation on the left-hand side, while supposing for simplicity that
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there is only one quasi-¯xed input, we obtain

[1¡ ±] ¹Ck1 = ¯ @
@k

¡
G+GJE fdJg+Gkdk +GyE fdyg+G°E fd°g

+1
2

P
l

P
j GJlJ jE

©
dJ ldJj

ª
+ 1

2
Gkkdk

2 + 1
2
GyyE fdy2g+ 1

2

P
l

P
j G°l°jE

©
d°jd°l

ª

+
P

j GkJjdkE fdJ jg+GkydkE fdyg+P
j Gy°jE fdyd°jg

+
P

j GyJjE fdydJ jg+P
l

P
j G°jJlE

©
dJ ld°j

ª
+

P
j Gk°jdkE fd°jg+ hot2

´

where we used the fact that dk, de¯ned as k1 ¡ k, is not stochastic; for any vector z,

dz means z1 ¡ z, zj being the jth element of z; hot2 represents the residual term of the

Taylor expansion. Since k is the result of past decisions, and decisions do not a®ect

expectations, all terms of type @Efzg
@k

vanish when we carry out the partial di®erentiation

with respect to k on the right-hand side of the above expression. Thus, using the fact

that @
@k
dk = ik ¡ ± and that @

@k
(dk2) = 2 [ik ¡ ±] dk

[1¡ ±] ¹Ck1 = ¯
¡
Gk +GJkE fdJg+Gkkdk +Gk [ik ¡ ±] +GykE fdyg+G°kE fd°g

+1
2

P
l

P
j GJ lJjkE

©
dJ ldJ j

ª
+ 1

2
Gkkkdk

2 +Gkk [ik ¡ ±] dk

+1
2
GyykE fdy2g+ 1

2

P
l

P
j G°l°jkE

©
d°jd°l

ª
+

P
j GkJj [ik ¡ ±]E fdJjg

+
P

j GkJ ikdkE fdJ jg+Gky [ik ¡ ±]E fdyg+GkykdkE fdyg

+
P

j Gy°jkE fdyd°jg+P
j GyJ jkE fdydJg+P

l

P
j G°jJ lkE

©
dJ ld°j

ª

+
P

j Gk°j [ik ¡ ±]E fd°jg+P
j Gk°jkdkE fd°jg+ @hot2

@k

´

(22)

All partial derivatives on the right-hand side may be seen to be derivatives of elements

of Gk. Since, by (8), Gk = w
Txk + qik + ¹Ck1 [1¡ ± + ik], where ¹Ck1 may be expressed

in terms of factor demands using Corollary 1.1, all partial derivatives in (22) may be

expressed in terms of factor demands.

Let us assume rational expectations. Then the expectations on the right-hand side

may be evaluated using actual observations. Thus, for example, EdJ = J1¡J+², where

²'s expected value is zero. As a result, (22), including @hot2
@k
, may be entirely expressed
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in terms of factor demand functions and observed variables. The rational expectation

hypothesis may be tested by including (22) into the factor demand model, and testing

whether this additional m equation system signi¯cantly constrains the estimation.

7 An example

There are two ways to go about the parametrization of the factor demand model. One

way consists in using a set of functions satisfying the required properties (Proposition

1) over their whole domain. Econometric estimation then provides a test of the joint

hypothesis that the theory is true and that the true technology may be represented by

the functions used to parametrize the model. Given that chances are slight that the true

parametric representation be selected from within a possibly in¯nite-dimensional set of

admissible parametric representations, the only reason why the joint hypothesis would

not be rejected is the lack of power of the statistical tests.

The alternative way is to interpret the parametrization as an approximation of the

true technology. If the candidate set of functions are °exible forms, they will represent

the true technology at one point but deviate from the true technology outside this point.

Under that approach, the theoretical restrictions should hold exactly at one point; at all

other points, departures from the theoretical properties may re°ect both approximation

errors and departures from the theoretical model, making it di±cult to test the theory.

The former approach has been privileged in the empirical literature, and has been in-

terpreted to mean that the required properties should hold either over the whole domain,

or at least at each observation of a data sample. In practice, the properties which take

the form of equalities are imposed a priori on the econometric model, while inequality

restrictions are usually veri¯ed a posteriori.3

3See Diewert and Wales (1987) for a discussion about procedures imposing curvature properties a
priori.
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Let us illustrate model speci¯cation and the global imposition of equality restrictions

in an example. Rather than starting from a cost function and estimate it together with

(all but one) demand or share equations as is most commonly done in static models,

the procedure consists in specifying all variable-factor, and investment, demand func-

tions and estimate them simultaneously. This approach has the additional advantage of

avoiding the tricky issue, discussed by McElroy (1987) of ensuring the compatibility of

error terms in share, and cost, equations.

We choose a system of quadratic factor demands. Although such a model involves a

number of parameters that may be too large in many practical situations, it may be spe-

cialized to a linear model. But unlike the linear model for which any equality restrictions

that holds locally also holds globally (as it does not involve any variable), the quadratic

model illustrates the global imposition of the equality restrictions in Corollary 1. It

should be noted that the linear specialization of our model does not correspond to the

so-called linear quadratic model of investment. Here, specifying linear demand functions

does not imply that the expected cumulative future cost function ¹C is linear or quadratic

(only that ¹Ck1 is linear), nor does it imply that the value function G is known. Note

also that prices should not be normalized, as the demand functions are not homogenous

of degree zero.

For simplicity we assume that ° is reduced to t and that i has dimension one. Then

the model is

xj = ®j +
nX

l=1

®jlwl + ®
j
qq +

a¡n¡1X

m=1

®jmÁm + ®
j
kk + ®

j
yy + ®

j
t t (23)

+
1

2

nX

l=1

nX

l0=1

¯jll0wlwl0 +
nX

l=1

¯jlqwlq +
nX

l=1

a¡n¡1X

m=1

¯jlmwlÁm +
nX

l=1

¯jlkwlk

+
nX

l=1

¯jlywly +
nX

l=1

¯jltwlt+
1

2
¯jqqq

2 +
a¡n¡1X

m=1

¯jqmqÁm + ¯
j
qkqk + ¯

j
qyqy

26



+¯jqtqt+
1

2

a¡n¡1X

m=1

a¡n¡1X

m0=1

¯jmm0ÁmÁm0 +
a¡n¡1X

m=1

¯jmkÁmk +
a¡n¡1X

m=1

¯jmyÁmy

+
a¡n¡1X

m=1

¯jmtÁmt+
1

2
¯jkkk

2 + ¯jkyky + ¯
j
ktkt+

1

2
¯jyyy

2 + ¯jytyt+
1

2
¯jttt

2

8 j = 1; : : : ; n and

i = º +
nX

l=1

ºlwl + ºqq +
a¡n¡1X

m=1

ºmÁm + ºkk + ºyy + ºtt (24)

+
1

2

nX

l=1

nX

l0=1

¹ll0wlwl0 +
nX

l=1

¹lqwlq +
nX

l=1

a¡n¡1X

m

¹lmwlÁm +
nX

l=1

¹lkwlk

+
nX

l=1

¹lywly +
nX

l=1

¹ltwlt+
1

2
¹qqq

2 +
a¡n¡1X

m=1

¹qmqÁm + ¹qkqk + ¹qyqy

+¹qtqt+
1

2

a¡n¡1X

m=1

a¡n¡1X

m0=1

¹mm0ÁmÁm0 +
a¡n¡1X

m=1

¹mkÁmk +
a¡n¡1X

m=1

¹myÁmy

+
a¡n¡1X

m=1

¹mtÁmt+
1

2
¹kkk

2 + ¹kyky + ¹ktkt+
1

2
¹yyy

2 + ¹ytyt+
1

2
¹ttt

2

where, by Young's theorem, ¯jll0 = ¯
j
l0l 8 j; ¯jmm0 = ¯

j
m0m 8 j; ¹ll0 = ¹l0l; and ¹mm0 = ¹m0m.

In each equation, the ¯rst line gives the linear specialization of the model.

The equality restrictions implied by Corollary 1 consist of item #2: wT
£
xJ ¡ xqi¡1q iJ

¤
=

0 and the symmetry of
£
xTJ iTJ 0

¤
+iTJ

"
[I ¡ ± + ik]¡1

·
@[wTxqi¡1q ]

@k

¸T
iJ ¡

·
@[wTxqi¡1q +qT ]

@J

¸T#

in item #6. It is simple, although tedious, to substitute the appropriate expressions de-

rived from (23) and (24) into these restrictions to obtain a series of equations in model

parameters and variables. Since we want to impose the restrictions globally, they must

be valid for any value of the variables. This yields the following set of parameter restric-

tions

®jl =
®jqºl

ºq
8 (j; l) ®jm =

®jqºm

ºq
8 (j;m)

¯jll0 =
®jq¹ll0

ºq
8 (j; l; l0) ¯jlq =

®jq¹lq

ºq
8 (j; l) ¯jlm =

®jq¹lm

ºq
8 (j; l;m)
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¯jqq =
®jq¹qq

ºq
8 j ¯jqm =

®jq¹qm

ºq
8 (j;m) ¯jmm0 =

®jq¹mm0

ºq
8 (j;m;m0)

¯jlk =
®jq¹lk

ºq
8 (j; l) ¯jqk =

®jq¹qk

ºq
8 j ¯jmk =

®jq¹mk

ºq
8 (j;m)

¯jly =
®jq¹ly

ºq
8 (j; l) ¯jqy =

®jq¹qy

ºq
8 j ¯jmy =

®jq¹my

ºq
8 (j;m)

¯jlt =
®jq¹lt

ºq
8 (j; l) ¯jqt =

®jq¹qt

ºq
8 j ¯jmt =

®jq¹mt

ºq
8 (j;m)

where the ¯rst line corresponds to the linear model.

Once model (23)-(24) has been estimated subject to the above restrictions, one may

verify if the items #1, #3, #4, and #5, as well as the negative semi-de¯nitiveness in

#6, are satis¯ed. All key measurement characterizing the primal technology may be

computed from the estimated model: marginal products, using (12), (13), and (14);

short-run and long-run returns to scale, using (16) and (18); technological change, using

(19). If the analyst so wishes, it is then possible to test rational expectations by including

(22) as an additional equation into model (23)-(24). Similarly, it is possible to test the

expectation structure in Corollary 2 by adding the symmetry of

2
64
xw xq

iw iq

3
75 to the

restrictions implied by Proposition 1.6; if this additional restriction is not rejected, then

one must also check the negative-de¯nitiveness of

2
64
xw xq

iw iq

3
75.

8 Conclusion

We have outlined a theory of dynamic factor demands which admits standard expectation

formation assumptions as special cases, but is not limited to them. Even when very little

is known about expectations, factor demands exhibit restrictive, testable, properties that

re°ect the cost minimization behavior of the ¯rm and assumptions on the technology.

Our results show that the empirical analyst may be fairly agnostic about expectations

while obtaining unambiguous measurements of such important dimensions of technology
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as marginal products, scale economies and productivity.

Only standard assumptions are made on the technology, and the sole restriction

imposed on expectations is a condition ensuring the existence of a di®erentiable solution

to the intertemporal cost minimization problem faced by the ¯rm. There is a dynamic

duality relationship between optimized current expenditures and the technology. As a

result, it is possible to recover the underlying technology from factor demand functions,

without any further information on expectations. While the analysis presented here

is based on a dynamic model of expected expenditure minimization, it can also be

formulated in terms of expected pro¯t maximization.

Although our model can also be extended to situations involving strategic behavior

on the part of several ¯rms, we have not addressed such issues in this paper, as the

dynamic theory of the non-rival ¯rm provided a ¯eld which is both in need of a more

complete exploration, and whose boundaries are perfectly well de¯ned. We did, however,

investigate the case of rational expectations and showed how that assumption can be

tested in our framework.
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PROOF APPENDIX4

A Proposition 1

1. At the optimum, the Lagrangian for problem (8) is equal to G

L = wTx+ qT i+ ¹C (J; k [I ¡ ±] + i; °) + ¸ [y ¡ f (x; k; i; °)]

= wTx (J; k; y; °) + qT i (J; k; y; °) + ¹C (J; k [I ¡ ±] + i (J; k; y; °) ; °) = G (J; k; y; °)

Di®erentiating with respect to J; k; y; °, using the Envelope theorem, gives the

result.

2. De¯ne the function g (J; k; y; °;x; i) ´ G (J; k; y; °)¡
£
wTx+ qT i+ ¹C (J; k [I ¡ ±] + i; °)

¤
.

This function reaches a maximum of zero with respect to J , subject to y ·

f(x; k; i; °), when x and i are set at the values which solve (8). The ¯rst-order

conditions for the maximum of g with respect to J imply

gJ = GJ ¡
£
xT iT 0

¤
¡ ¹CJ = 0

and the second-order condition is

gJJ = GJJ ¡ ¹CJJ negative semi-de¯nite

Substitute the demand functions x (:) and i (:) into the ¯rst-order conditions: the

latter become identities, which may be di®erentiated with respect to J to obtain,

4Corollary 2 and Lemma 1 follow directly from the main text.
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upon rearranging

GJJ ¡ ¹CJJ ´
£
xTJ iTJ 0

¤
+ iTJ ¹CJk1

Since the left-hand side is a symmetric matrix, negative semi-de¯nite by the second-

order condition, the result is established.

B Corollary 1

#1. From Proposition 1.1,
£
wTxJ +

£
qT + ¹Ck1

¤
iJ

¤
= 0. Thus

£
wTxq +

£
qT + ¹Ck1

¤
iq

¤
=

0 as q is part of J ; the result follows if iq is invertible.

#2, #3, #4, and #5. Substitute the above result into the lines respectively corre-

sponding to J; k; y; and ° in Proposition 1.1.

#6. From Proposition 1.2,
££
xTJ iTJ 0

¤
+ iTJ

¹CJk1
¤
is symmetric and negative semi-

de¯nite. We want to express iTJ ¹CJk1 in terms of the factor demand functions.

Since k1 = [I ¡ ±] k + i, @
@k
¹Ck1 = [I ¡ ± + ik] ¹Ck1k1 ; also, @

@J
¹Ck1 = i

T
J
¹Ck1k1 + ¹Ck1J .

It follows that

iTJ ¹CJk1 = i
T
J

µ
@

@J
¹Ck1

¶T

¡ iTJ [I ¡ ± + ik]¡1
µ
@

@k
¹Ck1

¶
iJ

From Corollary 1.1, ¹Ck1 = ¡
£
wTxq + qT iq

¤
i¡1q . Di®erentiating with respect to J

and k, and substituting the results for the appropriate terms in the above expres-

sion, yields the result.

C Lemma 2

Replace ¹C¤(J; [I ¡ ±] k + i0; °) in (10) by a Taylor expansion around (J; [I ¡ ±]k +

i¤(J; k; y; °); °). (11) follows after cancellations and rearrangements. Although the iden-
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tity ¹C¤k1 ´ ¡
£
wTx¤q + q

T i¤q
¤
i¤¡1q gives ¹C¤k1 as a function of (J; k; y; °) rather than (J; k1; °),

higher order derivatives such as ¹C¤k1k1 are obtained by using the fact that k1 = [I ¡ ±]k+

i¤ (J; k; y; °):

@
@k1
¹Ck1 (J; k1; °) jk1=[1¡±]k+i¤(J;k;y;°) = (I ¡ ± + i¤k)¡1 @

@k
¹Ck1 (J; [I ¡ ±] k + i¤ (J; k; y; °) ; °).

D Proposition 2

We want to show that, 8J 0, x0 = x¤ (J 0; k; y; °) and i0 = i¤ (J 0; k; y; °) solve Problem (8)

when the choice is out of Z¤ (k; y; °). If x0 and i0 indeed belong to Z¤ (k; y; °), then they

do solve the problem since this is precisely the way Z¤ (k; y; °) is de¯ned. Thus we have

to show that, 8 J , (x0; i0) 2 Z¤ (k; y; °); i.e. we have to show that, 8 JT = (wT ; qT ; ½; ¾T )

wTx0 + qT i0 + ¹C¤(J; [I ¡ ±] k + i0; °) ¸ wTx¤(J; k; y; °) + qT i¤(J; k; y; °)

+ ¹C¤(J; [I ¡ ±] k + i¤(J; k; y; °); °) (25)

or, taking a Taylor expansion of the right-hand side around (J 0; k; y; °), replacing x¤(J 0; k; y; °)

and i¤(J 0; k; y; °) by x0 and i0 respectively, and eliminating the terms that vanish by

Proposition 1.1

wTx0 + qT i0 + ¹C¤(J; [I ¡ ±]k + i0; °) ¸ w0Tx0 + q0T i0 + ¹C¤(J 0; [I ¡ ±] k + i0; °)

+
££
x0T i0T 0

¤
+ ¹C¤J (J

0; k; °)
¤
[J ¡ J 0] + hot

where hot represents all terms of order two and higher in the expansion of the right-hand

side of (25) around (J 0; k; y; °). Simplifying, we obtain

¹C¤(J; [I ¡ ±] k + i0; °)¡ ¹C¤(J 0; [I ¡ ±] k + i0; °) ¸
£
¡x0T ¡ i0T 0

¤
[J ¡ J 0]

+
££
x0T i0T 0

¤
+ ¹C¤J (J

0; k; °)
¤
[J ¡ J 0] + hot
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Taking a Taylor expansion of ¹C¤(J; [I ¡ ±] k + i0; °) around (J 0; [I ¡ ±] k + i0; °), and

simplifying, the inequality becomes

0 ¸ hot¡ hot1

where hot1 represents all terms of order two and higher in the expansion of ¹C¤(J; [I ¡ ±] k+

i0; °) around (J 0; [I ¡ ±] k+ i0; °). By de¯nition, remembering that the right-hand side of

(25) is G¤, hot¡hot1 represents the terms of order two and higher in a Taylor expansion

of G¤ ¡ ¹C¤ around J 0. By Proposition 1.2, this term is non positive, proving that the

inequality holds.
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