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Abstract:

In this paper, we test whether labor-hoarding environments with basic and augmented
laws of motion provide an adequate explanation for observed business cycle dynamics.
The basic law of motion assumes that the information set used by economic agents to
forecast future forcing variables includes only the history of forcing variables. Augmented
laws of motion assume that the information set is superior and include both forcing and
hidden exogenous variables. We show that the labor-hoarding environment with the basic
law of motion fails to replicate observed business cycle facts, while the environment with
augmented laws of motion successfully matches these facts.
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1. Introduction

The objective of real business cycle (RBC) studies is to evaluate the ability of dynamic,
stochastic, general equilibrium artificial economies to account for observed business cycle
facts. This evaluation proceeds as follows. First, the RBC researcher specifies a set of mar-
ket features (e.g. preferences, technology, and market clearing conditions) that describes
the environment in which agents form their decisions. These decisions rely on forward-
looking rules. The researcher also specifies a law of motion for the forcing variables that
depict the stochastic nature of the artificial economy. This law of motion is required to
forecast the future forcing variables involved in the decision rules. Second, the researcher
characterizes the equilibrium allocation of some key variables. As such equilibrium usually
does not possess an analytical solution, the allocation is approximated using numerical
methods. This approximation requires that values be assigned to all parameters. Gener-
ally, the researcher calibrates the parameters underlying the market features using long-run
averages and previously published estimates. The researcher also calibrates the parameters
of the law of motion for forcing variables from estimates on historical data. Finally, the
researcher assesses the ability of its artificial economy to account for business cycle facts
by confronting certain statistics computed from the artificial economy to those found in
historical data.

This evaluation is thus a joint test of the calibrated market features and of the es-
timated law of motion. In this context, the business cycle statistics computed from the
artificial economy may not match the data, not because market features are inadequately
described, but simply because the law of motion is misspecified. In RBC studies, the
standard law of motion involves only forcing variables. This presumes that the relevant
information set used by economic agents to forecast future forcing variables includes exclu-

sively the history of forcing variables. It seems most likely, however, that the law of motion
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used by agents in the actual economy incorporates other exogenous variables. If this is
the case, the relevant information set is superior to the researcher’s basic information set,

because it includes the history of both forcing and other exogenous variables.

Unfortunately, ignoring the extra relevant information (i.e. the other exogenous vari-
ables) is akin to omitting forcing variables and may lead to serious mismeasurements of the
statistics computed using the artificial economy. A number of studies have recognized this
issue. Shiller (1972) provides an early description of the superior information problem.
Hansen and Sargent (1982, 1980) develop econometric techniques to estimate forward-
looking decision rules with unobservable, or hidden, exogenous variables. Campbell and
Deaton (1989), Campbell and Shiller (1987), Flavin (1993), and Normandin (1999) ac-
count for superior information in partial equilibrium environments. Finally, Boileau and
Normandin (2001) and King and Watson (1996) extend the analysis to general equilibrium

RBC environments.

Boileau and Normandin (2001) demonstrate that adequate laws of motion for forcing
variables are obtained by augmenting the basic law of motion with endogenous variables.
In these augmented laws, the feedbacks from lagged endogenous variables to current forc-
ing variables reflect the existence of additional exogenous variables. This follows from the
fact that, under the assumed market features, all the relevant information is summarized
by agents’ optimal decisions. This is most attractive, since it allows us to avoid select-
ing the appropriate additional exogenous variables. That is, it only requires knowledge
of forcing and endogenous variables, and not of those other exogenous variables. Using
augmented laws of motion, these authors also document that the labor-hoarding environ-
ment of Burnside, Eichenbaum, and Rebelo (1993) offers the best account of aggregate

employment volatility and dynamics.

In this paper, we extend their analysis in two crucial directions. First, we enlarge
the analysis by studying the properties of several key macroeconomic variables. More

precisely, we assess whether an artificial economy with labor hoarding can explain observed
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business cycle fluctuations for output, consumption, and investment. Also, we confront the
business cycle properties predicted by the labor-hoarding environment with a basic law of
motion to those predicted with augmented laws of motion. This evaluation is important
to ensure that the labor-hoarding environment with augmented laws of motion succeeds in
matching the behavior of the key macroeconomic aggregates. This contrasts with Boileau

and Normandin (2001) whom focus exclusively on aggregate employment.

Second, we examine the cyclical fluctuations of output, consumption, and investment
under two distinct measures of the cycle. These series display both cyclical and secular
movements. Consequently, it is important to carefully distinguish between trend and
cycle components. Our first measure of the cycle corresponds to growth rates, which
is widely used in the RBC literature (e.g. Burnside and Eichenbaum 1996; Christiano
and Eichenbaum 1992). Our second measure is the cyclical components extracted using
the cycle definition of Beveridge and Nelson (1981). This measure has been recently
emphasized in the RBC literature (e.g. Rotemberg and Woodford 1996). This contrasts
with Boileau and Normandin (2001) whom use a single measure of the cycle, because

aggregate employment exhibits only cyclical fluctuations.

Our empirical results reveal that the labor-hoarding environment of Burnside, Eichen-
baum, and Rebelo (1993) with a basic law of motion numerically and statistically un-
derstates observed volatility for all key macroeconomic aggregates. This holds for both
measures of the cycle, but it is especially pronounced for the cyclical components of the
various series. Also, the predicted cross-correlations numerically and statistically under-
value observed cross-correlations between output and consumption and between output
and investment. Moreover, these predicted correlations often display the wrong sign for
the growth rates of investment and for the cyclical components of consumption. Finally,
the predicted responses to both technology and government expenditure growth shocks are
significantly different from observed ones for all aggregates. This is robust to the choice

of the cycle measure, and is particularly evident for the cyclical components of the key
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macroeconomic aggregates. Hence, the labor-hoarding environment with a basic law of
motion fails to reproduce observed business cycle facts.

In contrast, our results show that the labor-hoarding environment with augmented
laws of motion tracks remarkably well observed volatility, cross-correlations, and dynamic
responses. These findings hold for all the key macroeconomic aggregates and both measures
of the cycle. Hence, the labor-hoarding environment with augmented laws of motion
successfully matches observed business cycle facts.

The paper is organized as follows. Section 2 presents the labor-hoarding environment,
its calibration, and its solution with basic and augmented laws of motion for forcing vari-
ables. Section 3 documents empirical results for the growth rates of output, consumption,
and investment. Section 4 discusses results for the cyclical components of our macroeco-

nomic aggregates. Section 5 concludes.

2. The Economic Environment

Our analysis is based on both unrestricted and restricted vector autoregressions (VARs)
for selected variables. As in most of the RBC literature, these VARs are obtained using
calibrated decision rules and estimated laws of motion for forcing variables. In what follows,
the decision rules are derived using the market features of the Burnside, Eichenbaum, and
Rebelo (1993) labor-hoarding environment. The laws of motion are estimated under two
distinct assumptions. First, as is standard, we assume that the law of motion involves
exclusively the forcing variables. Second, we assume that the law of motion contains not

only forcing variables, but also other exogenous variables.

2.1 The Market Features

The main features are that labor is indivisible, employment is preset, and effort is adjusted

to ensure that the labor market clears. These features are summarized in the following
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social planning problem:

max F; [ B [1H(Ct+j) + NN In(H — ¢ = Wiy; f) + n(1 — Niyj) 1H(H)]] , (1.1)

j=0

Co+ I+ Gy = Vi, (1.2)
Kip1 =1 + (1 - 0)Ky, (1.3)
Y, = K (Z N W )12, (1.4)

where FE; represents the conditional expectation operator, Y; is output, C; is consumption,
I; is investment, K; is the capital stock, N; is the fraction of the population that is
employed, and W, is effort. The variables Gy and Z; correspond to stochastic government
expenditures and labor-augmenting technology. Also, the subjective discount factor g,
the preference parameter 7, the time endowment H, the fixed time cost (, the fixed shift
length f, the depreciation rate J, and the capital share o are the underlying parameters
of the market features. Equation (1.1) describes the planner’s objective, equation (1.2) is
the aggregate resource constraint, equation (1.3) defines investment, and equation (1.4)

describes the aggregate production function.

The forward-looking decision rules that characterize the competitive equilibrium allo-
cation can be found by solving the planning problem (1). This planning problem, however,
does not possess an analytical solution for general values of the underlying parameters. As
is standard practice, we obtain an approximate solution by applying the method developed
in King, Plosser, and Rebelo (1987, 1988). We implement this method as follows. First,
we divide all growing variables by the level of technology to ensure the existence of a deter-
ministic steady state, and express all variables in terms of percentage deviations from their
steady state. Then, we obtain a system of linear difference equations by log-linearizing
the first-order conditions of the social planning problem around the steady state. Finally,

this system is solved as in Blanchard and Kahn (1980) to yield decision rules for selected
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nonpredetermined and predetermined (state) variables:

m; = my — 011p; = 0128 + 013 E; [ Z )\_jStJrj] ) (2.1)
i=1
Pit1 = Pit1 — 021Dt = 0228t + 023 F[St41] + 024y l Z )\_jSH—j] ) (2:2)
1=1

where m; = (y; c¢; i) is the vector of nonpredetermined variables, p; = (k; n;)’ is
the vector of predetermined variables, and s; = (z; g¢¢)' is the vector of forcing variables.
The variables are 1y; = ln(}N’t/l?) for Y; = Yi/Z, c¢ = ln(ét/é') for C; = Ci/Zy, iy =
In(Iy/T) for I, = I,/ Z;, kipq = In(Kyy1/K) for Kyy1 = Kyy1/Zs, nepr = In(Nyy1/N),
2 = ln(Z/Z) for Z, = Zy/Zs 1, and gy = ln(ét/é) for Gy = G/Z; —where }7, 5, T, Iz',
N, Z , and G are the steady state values. The parameters A and fs are complex functions
of the underlying parameters as well as Z and G /}7 We obtain values for them using
the calibration of Boileau and Normandin (2001) and Burnside and Eichenbaum (1996):
B=1.03"92 5 =23.89, H=1369, ( =60, f =324.8, § = 0.021, and o = 0.344. We also
use a sample of U.S. seasonally adjusted quarterly data over the 1960:1I to 1993:1V period
to set Z = 1.0031 and G/Y = 0.125 (see Data Appendix).

2.2 The Basic Law of Motion

To obtain the restricted VARs, decision rules (2) must be expressed exclusively in terms of
observed variables. This requires a law of motion to construct the expectations of future

forcing variables that appear in decision rules (2). As a benchmark, we posit the law of
24 0 0 Zt—1 Uzt
= +
gt 0 p gt—1 Ugt

st = Igs¢—1 + uy, (3)

motion:!

or

L A similar law is used in Burnside and Eichenbaum (1996), Burnside, Eichenbaum, and Rebelo (1993),

and Christiano and Eichenbaum (1992).



where Qs = F [uzu’]. This basic law of motion implies that the relevant information set
used to forecast future forcing variables contains exclusively the history of forcing variables.

An estimated version of this law of motion is used to construct the expectations
of future forcing variables. OLS estimation yields p = 0.969, E [u,u,;] = 0.000084,
E [ugiug] = 0.000689, and E [u,ug:] = —0.000048. The constructed expectations are

then substituted in decision rules (2) to yield:

m’ = @48t (4.1)

ﬁg+1 = PpsSt- (4.2)

The parameters s are functions of the calibrated parameters in (2) and the estimated
parameters in (3): Qs = 612 + 013 [L; — \711L] ~'A~11, and ©ps = 022+ 02311, + 024 [I,—
)\_11_18]_1)\_11_[5, where I is an identity matrix. The superscript b indicates that these
are predicted variables using the basic law of motion.

The restricted VARs are built from the basic law of motion (3) and reduced forms
(4). For example, we obtain a restricted VAR for output as follows. First, we write the

reduced form for output contained in (4.1) as:

?/Jf = Qyz2t T PygJt, (5)

where ¢,, and ¢,, are the elements on the first line of ¢,,;. Then, we use the law of

motion (3) to produce:

2t 0 0 O Zt—1 Uzt
g =10 p O gt—1 | + | ug
@{f 0 ¢ 0 ???—1 “Zt
or
th = @szt_l + uzt, (6)

where ¢ = and ul, = ©,, U1 + Qyqlgs. Using this method, we obtain restricted VARs
Pygh yt — Py ygthg

for all nonpredetermined and predetermined variables.
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2.3 Augmented Laws of Motion

The basic law of motion (3) imposes the restrictive assumption that the relevant informa-
tion set that agents use to forecast future forcing variables includes only the history of those
forcing variables. It seems plausible, however, that agents possess extra relevant informa-
tion to construct these forecasts. In what follows, we assume that this extra information
is embodied in a single hidden variable h;.?

For exposition purposes, consider the following law of motion:

Zt 11 712 713 Zt—1 Uzt
gt | = | ™21 T2 a3 gt—1 | T+ | Vgt
hy T31 M32 33 hi—1 Uht
or
wy = I, Wy 1 + vy, (7)

where Q,, = F [v;v;]. This law of motion implies that the relevant information set includes
the history of both forcing and hidden variables. Agents make their decisions from (2) and

construct their expectations of future forcing variables from (7) to obtain:

I'/I\l.t = ﬁmwwt, (8].)

Pt+1 = UpuwWi. (8.2)

The parameters 9, and 9J,, are functions of the parameters in (2) and (7): Ve =

91263 +913es [Iw _)\_lﬂw} _1)\_11_[11” ﬁpw = 92263 +92363Hw+924es [Iw - )\_1Hw] -

AL,
where I, is an identity matrix and ey is defined such that s; = e;w;.

Unfortunately, it is difficult to built the required restricted VARs from the law of
motion (7) and reduced forms (8), because they include the hidden variable h;. The

omission of this variable from (3) and (4) suggests that h; is either unknown or unobservable

by the researcher. To circumvent this problem, we apply the method developed in Boileau

2 This variable can be interpreted as a factor common to several hidden variables.



and Normandin (2001). This method allows us to obtain laws of motion and associated
reduced forms that contain only observables. Under the null hypothesis that decision rules
(2) are valid, reduced forms (8) indicate that agents reveal their expectations of future
forcing variables through their decisions about m; and ps11. Then, an adequate law of
motion for forcing variables is obtained by replacing the hidden variable h; by any variable
included in either m; or P;y1. This result in a law of motion and reduced forms that are
augmented by agents’ superior information.

We illustrate this procedure using output. First, we write the reduced form for output
contained in (8.1) as:

i/\t = 19yzzt + ﬁyggt + ﬁyhhta (9)

where 4,,,, 9,4, and 9, are the elements on the first line of 9,,,,. Second, we rewrite this

reduced form as:

2 1 0 0 2%
g |=1 0 1 0 gt
Yt Vyz Vyg Vyn b
or
Xyt = Ty Wy (10)

Third, we substitute (7) in (10) to obtain a VAR for output:

2t Y11 Y12 Y13 Rt—1 Uzt
ge | = | Y21 Y22 723 gi—1 | + | Ugt
Ut Y31 Y32 Y33 Yp—1 Uyt
or
Xyt = DyXye—1 + uy, (11)

where 'y = T,II, T, " and uy,; = T,vy. The first two equations of (11) form the law
of motion for forcing variables augmented by output. In this augmented law of motion,
the feedbacks from lagged ¥; to current forcing variables reflect the effects of the lagged

hy on contemporaneous forcing variables highlighted in the true law of motion (7). The
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last equation of (11) states that the innovation of output is a function of the innovations
of forcing and hidden variables: wy; = Uy, u,¢ + Vygugr + Jypups. This formulation is in
accord with the notion that 7; fully summarizes the relevant information.

Fourth, given that the augmented law of motion contains all the relevant information,
we estimate an unrestricted VAR for output. OLS estimation yields y1; = 0.333, 12 =
0.015, y13 = 0.012, v21 = —0.226, 22 = 0.971, 23 = —0.064, v31 = 0.078, v32 = 0.001,
and 7y33 = 1.013. It also yields E [u,u,¢] = 0.000070, E [ugiug:] = 0.000686, E [tyitty:] =
0.000023, E [u,iug:] = —0.000042, E [uspuy:] = —0.000035, and E [ugiu,:] = 0.000030.3
The constructed expectations are then substituted in the decision rule for output contained
in (2.1) to yield:

Ut = Pyt + Oyt + Cyyle. (12)
The parameters ¢s are functions of the calibrated parameters in decision rules (2.1) and
the estimated parameters in the unrestricted VAR (11). Also, the superscript a indicates
that these variables are predicted using an augmented law of motion.

Finally, the restricted VAR for output is obtained using the augmented law of motion

(11) and the reduced form (12). That is, we rewrite (12) as:

2t 1 0 0 2t
g | =1 O 1 0 gt
vt Pyz Pyg Pyy/) \Ut
or
Xy = OyXyt. (13)

Then, the restricted VAR for output is:

2t b11 d12 P13 Zt—1 Uzt
gt | = | P21 b2z P23 gt—1 | + | ugt
vy $31 P32 P33 ) Uzt

3 Both the Aikaike and Schwartz criteria are consistent with first-order VARs for output, consumption,
investment, employment, and capital. Estimates of these unrestricted VARs can be obtained from the
authors.
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or

Xy = PyXy, 1+ uy,, (14)

where @y = 0,I',0, 1 and uy, = Oyuy;. These five steps are used to obtain restricted

VARs for all nonpredetermined and predetermined variables.

3. Results: Growth Rates

In this section, we evaluate whether the labor-hoarding environment with either basic or
augmented laws of motion explains a number of business cycle facts. As is frequent in
the RBC literature, we define the cycle component of a series from its growth rate. The
business cycle facts refer to volatility, cross-correlations, and dynamic responses of the

growth rates of output, consumption, and investment.

3.1. Volatility and Cross-Correlation

Throughout, we analyze several measures of volatility and correlation. The first mea-
sure of volatility is the standard deviation for the growth rates of output oaincy), con-
sumption oA 1n(c), and investment o 1n(7)- The second measure corresponds to the ratios
of standard deviations oain(c) /oA In(y) and oa () /oA In(y)- The measures of correla-
tion are the cross-correlations at different lags and leads of the growth rate of output
with the growth rates of consumption and investment: corr[Aln(Ct), Aln(Y;4x)] and
corr [AIn(ly), Aln(Yi4 k)], where k = —4, —2, —1, 0, 1, 2, and 4.

The observed measures of volatility and correlation are computed using usual sample
estimators of standard deviation and correlation on our U.S. quarterly data. The predicted
measures are constructed using the identities Aln(Y;) = Ay + 2z + In(Z), Aln(C,) =
Ac, + 2 + In(Z), and Aln(I;) = Aiy + 2 + In(Z), as well as the appropriate restricted

VARs for nonpredetermined and predetermined variables (see Technical Appendix). We

also calculate the p-value of a x2(1) distributed statistic of the test that the ratio of
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predicted to observed measures is unity. For this test, we treat the observed measure
as a constant and the predicted one as a random variable, where the variance of the
predicted measure accounts for the uncertainty of the estimated parameters in either basic
or augmented laws of motion.

Table 1 confronts observed and predicted measures of volatility. For output, the
volatility predicted with augmented laws of motion is both statistically and numerically
closer to the observed volatility. The sample estimate for oa1,(y) is 0.856 percent. The
volatility (p-value) predicted with the basic law of motion is 0.787 percent (0.000). Accord-
ingly, the ratio of predicted to observed volatility is 91.9 percent and statistically different
from unity. The volatility (p-value) predicted with augmented laws of motion, however,
is 0.825 percent (0.813). The ratio of predicted to observed volatility is 96.4 percent and
insignificantly different from unity.

For consumption, the volatility predicted with either the basic or augmented laws of
motion is numerically and statistically close to the observed volatility. The sample estimate
for oA n(c) is 0.512 percent. The volatility (p-value) predicted by the environment with
the basic law of motion is 0.488 percent (0.229) and the volatility (p-value) predicted with
augmented laws of motion is 0.538 percent (0.879). This pattern extends to the measure
of relative volatility o 1n(c) /oA In(Y), Where the volatility predicted with both basic and
augmented laws of motion statistically reproduces the observed volatility.

Finally, for investment, the volatility predicted with the basic law of motion signifi-
cantly understates the observed volatility. In contrast, the volatility predicted with aug-
mented laws of motion insignificantly overstates the observed volatility. More precisely, the
sample estimate for oa 1, (1) is 2.294 percent. The volatility (p-value) predicted with the
basic law of motion is 1.763 percent (0.000), while the volatility (p-value) predicted with
augmented laws of motion is 3.010 percent (0.463). This pattern extends to the measure
of relative volatility oA in(r)/TA n(y)-

In sum, the labor-hoarding environment with the basic law of motion generally fails to
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replicate observed business cycles volatility. In contrast, the environment with augmented

laws of motion statistically replicates observed business cycles volatility.

Table 2 compares observed and predicted measures of cross-correlation. For consump-
tion, the environments with basic and augmented laws of motion generate a contempora-
neous correlation that is close to the observed one. Specifically, the observed correlation is
0.764, while the correlations (p-values) predicted with basic and augmented laws of motion
are 0.813 (0.437) and 0.747 (0.870). Thus, the ratios of predicted to observed correlations
are 106.4 percent and 97.8 percent, and are insignificantly different from unity. At other
leads and lags, the environment with the basic law of motion generates correlation that
significantly underpredicts observed correlation. For example, at £k = —2 and k = 2, the
observed correlations are 0.296 and 0.275. The correlations (p-values) predicted with the
basic law of motion are 0.061 (0.000) and 0.003 (0.000). Accordingly, the ratios of predicted
to observed correlations are only 20.6 percent and 1.1 percent, and are significantly differ-
ent from unity. The correlations (p-values) predicted with augmented laws of motion are
0.146 (0.609) and 0.196 (0.768), such that the ratios of predicted to observed correlations

are 49.3 percent and 71.3 percent, and are both insignificantly different from unity.

For investment, the labor-hoarding environment with the basic law of motion predicts
cross-correlations that are always different from observed cross-correlations. The envi-
ronment with augmented laws of motion predicts cross-correlations that are statistically
closer to observed ones. More precisely, the observed contemporaneous correlation is 0.827.
The correlations (p-values) generated with basic and augmented laws of motion are 0.928
(0.000) and 0.804 (0.915). At k = —2 and k = 2, the observed correlations are 0.173 and
0.197, while the correlations (p-values) predicted with the basic law of motion are -0.042
(0.000) and 0.000 (0.000), whereas those predicted with augmented laws of motion are

0.159 (0.862) and 0.130 (0.353).

Overall, the cross-correlations generated by the labor-hoarding environment with the

basic law of motion also deviate from observed cross-correlations. The environment with
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augmented laws of motion, however, generally replicates them.

3.2. Dynamic Responses

We now study the dynamic responses of the growth rates of output, consumption, and in-
vestment to both positive technology and government expenditure growth shocks. The ob-

served responses are computed using the identities Aln(Y;) = Ay +2z: +1n(Z), Aln(Cy) =
Acy + 2 + In(Z), Aln(ly) = Aiy + 2 + In(Z), and Aln(Gy) = Agy + 2z + In(Z), as well
as the appropriate unrestricted VARs for nonpredetermined and predetermined variables.

For example, the unrestricted VAR for output is similar to (11):

Xyt = Fyxyt—l + Uyy¢. (]_5)

The predicted responses are computed from the relevant identities and restricted VARs
(see Technical Appendix). We also calculate the p-value from a x2(1) distributed statistic
of the test that the difference between predicted and observed responses is null. For this
test, we treat the observed response as a constant and the predicted one as a random
variable, where the variance of the predicted response accounts for the uncertainty of the
estimated parameters in either the basic or augmented laws of motion.

Figures 1 and 2 depict observed and predicted dynamic responses. For output, the
observed responses to both technology and government expenditure growth shocks ex-
hibit an increase at impact followed by a decay. The dynamic responses predicted by
the environment with either basic or augmented laws of motion numerically replicate this
pattern well. The responses generated with the basic law of motion, however, are almost
always significantly different from observed ones. With the exception of the first quarter,
the responses generated with augmented laws of motion are insignificantly different from
observed responses.

For consumption, the observed and predicted responses to both technology and gov-

ernment expenditure growth shocks display an increase at impact, followed by a second
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peak, and then a decay. As for output, the responses generated with the basic law of mo-
tion are most of the time significantly different from observed responses, while responses
generated with augmented laws of motion are almost always insignificantly different from
observed ones.

Finally, for investment, the observed responses to a technology growth shock show
a large increase at impact, followed by a trough and a return to the steady state. The
observed responses to a government expenditure growth shock show a small increase at
impact, followed by a peak, a trough, and a gradual return to the steady state. The
responses to both shocks predicted with the basic law of motion display a large increase at
impact, followed by a trough and a return to the steady state. With one exception, these
responses are significantly different from observed ones. The responses to a technology
growth shock predicted with augmented laws of motion exhibit a large increase at impact
followed by a peak, a trough, and a return to the steady state. Except for the first quarter,
these responses are insignificantly different from observed responses. The responses to a
government expenditure growth shock display a reduction at impact, followed by a peak,
a trough, and a return. These responses are often insignificantly different from observed
responses.

Thus, the predicted responses computed with both the basic and augmented laws of
motion predict observed dynamics fairly well. However, responses predicted with the basic
law of motion are significantly different from observed responses, while those generated

with augmented laws of motion are insignificantly different from observed responses.

4. Results: Cyclical Components

In this section, we evaluate whether the labor-hoarding environment with basic and aug-
mented laws of motion account for business cycle facts, when the cycle component of a

series corresponds to the cycle definition of Beveridge and Nelson (1981). We show that
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the labor-hoarding environment with the basic law of motion mostly fails to reproduce ob-
served business cycle facts, while the environment with augmented laws of motion almost

always replicates them.

4.1 Volatility and Cross-Correlation

The first measure of volatility is a standard deviation for the cyclical components of the
logarithms of output oy,(ye, consumption o1, (), and investment oy, (1y-. The second mea-
sure corresponds to the ratios of standard deviations oin(¢ye /Oin(y)e and Oi(r)e /Oin(y)e.
The measures of correlation are the cross-correlations at different lags and leads of the cycli-
cal component for the logarithm of output with the cyclical components of the logarithms
of consumption and investment: corr [In(Cy)¢, In(Y;1x)¢] and corr [In(1;)¢, In(Y;4%)¢], where
k=-4,-2,-1,0,1, 2, and 4.

The measures of volatility and correlation are computed using the cycle definition of

Beveridge and Nelson (1981):

In(¥e)° = = lim By [In(¥ig) = In(Y2) — o], (16.1)
111(Ct)c = — hli)IIC}o Et [ln(C’t_l_h) — ].Il(Ct) - h’)/c] s (162)
ln(It)c = — hll)IIolo Et [ln(It+h) - ln(It) — h’)/z] s (163)

where 7y,, 7., and <; are the unconditional mean growth of output, consumption, and
investment. The observed measures are obtained by evaluating (16) from the appropri-
ate unrestricted VARs for nonpredetermined and predetermined variables. The predicted
measures are computed from the relevant definitions and restricted VARs (see Technical
Appendix). As before, we also calculate the p-value of a x2(1) distributed statistic of the
test that the ratio of predicted to observed measures is unity.

Table 3 compares observed and predicted measures of volatility. For output, the
volatility predicted with the basic law of motion severely understates the observed volatil-

ity. In contrast, the volatility predicted with augmented laws of motion is both statistically
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and numerically close to the observed volatility. This observed volatility oy, yye is 0.133.
The volatility (p-value) predicted with the basic law of motion is 0.013 (0.000). Accord-
ingly, the ratio of predicted to observed volatility is only 9.8 percent and significantly
different from unity. The volatility (p-value) predicted with augmented laws of motion,
however, is 0.124 (0.973). The ratio of predicted to observed volatility is 93.2 percent and
insignificantly different from unity.

For consumption, the volatility predicted with augmented laws of motion is both
statistically and numerically closer to the observed volatility. The observed volatility
O1n(c)e is 0.290. The volatility (p-value) predicted by the environment with the basic law
of motion is 0.016 (0.000) and that predicted with augmented laws of motion is 0.175
(0.808). However, for Uln(c)c/ Oln(y)e, the environments with both basic and augmented
laws of motion predict a relative volatility close to the observed one. This occurs because
the environment with the basic law of motion undervalues the volatility for both output
and consumption.

Finally, for investment, augmented laws of motion also outperform the basic law of
motion. The observed volatility 01,7y is 0.426. The volatility (p-value) predicted with
basic and augmented laws of motion are 0.037 (0.000) and 0.320 (0.980). The environments
with both basic and augmented laws of motion generate a relative volatility o, (r)e /om(y)e
close to the observed one. As for consumption, this arises because the environment with
the basic law of motion underpredicts the volatility for both output and investment.

In sum, the labor-hoarding environment with the basic law of motion grossly under-
states observed business cycle volatility. This confirms the facts documented in Rotemberg
and Woodford (1996) for a standard RBC economy. However, the environment with aug-
mented laws of motion numerically and statistically replicates observed volatility.

Table 4 confronts observed and predicted measures of cross-correlation. For consump-
tion, the environment with the basic law of motion generates cross-correlations that dis-

play the wrong sign and are significantly different from observed cross-correlations. More
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specifically, the observed contemporaneous correlation is 0.679. The correlation (p-value)
predicted with the basic law of motion is -0.101 (0.000). Thus, the ratio of predicted to
observed correlations is -14.7 percent and significantly different from unity. Conversely,
the correlation (p-value) predicted with augmented laws of motion is 0.970 (0.248), such
that the ratio of predicted to observed correlations is 142.8 percent and insignificantly
different from unity. This pattern extends to all lags and leads. For example, the observed
correlations at £ = —2 and k¥ = 2 are 0.671 and 0.654. The correlations (p-values) pre-
dicted with the basic law of motion are -0.129 (0.000) and -0.151 (0.000). Accordingly, the
ratios of predicted to observed correlations are -19.2 percent and -23.1 percent, and are
significantly different from unity. The correlations (p-values) predicted with augmented
laws of motion are 0.948 (0.254) and 0.929 (0.286), such that the ratios are 141.3 percent
and 142.0 percent and insignificantly different from unity.

For investment, the labor-hoarding environment with either basic or augmented laws
of motion predicts cross-correlations that are insignificantly different from observed ones.
The environment with the basic law of motion, however, greatly undervalues observed
correlations. The observed contemporaneous correlation is 0.173. The correlation (p-
value) generated with the basic law of motion is 0.023 (0.624) and that generated with
augmented laws of motion is 0.226 (0.991). Also, the observed correlations at k = —2
and k = 2 are 0.146 and 0.185. The correlations (p-values) predicted with the basic law
of motion are 0.037 (0.690) and 0.067 (0.652), whereas the correlations predicted with
augmented laws of motion are 0.205 (0.989) and 0.237 (0.992).

Overall, the cross-correlations generated by the labor-hoarding environment with the
basic law of motion frequently fail to reproduce observed cross-correlations. The environ-

ment with augmented laws of motion, however, always matches them.

4.2 Dynamic Responses

We finally document the dynamic responses of the cyclical components of the logarithms
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of output, consumption, and investment to both positive technology and government ex-
penditure growth shocks. The observed responses are computed using the cycle definition
(16), as well as the appropriate unrestricted VARs for nonpredetermined and predeter-
mined variables. The predicted responses are computed from the relevant definition and
restricted VARs (see Technical Appendix). As before, we also calculate the p-value from
a x2(1) distributed statistic of the test that the difference between predicted and observed

responses is null.

Figures 3 and 4 display observed and predicted dynamic responses. For output, the
observed responses to a technology growth shock show an increase at impact and an hump-
shaped return. The observed responses to a government expenditure growth shock exhibit
a reduction at impact and a gradual return to the steady state. The responses predicted
with the basic law of motion display the wrong sign at impact and substantially understate
observed responses. The predicted responses to a technology growth shock show a small
decrease at impact and a rapid return to the steady state, while the predicted responses to a
government expenditure growth shock show a slight increase at impact followed by a hump-
shaped return. Clearly, for both shocks, the differences between predicted and observed
responses are always significantly different from zero. The dynamic responses predicted
with augmented laws of motion, however, track observed responses extremely well, such
that the differences between predicted and observed responses are always insignificantly

different from zero.

For consumption, the observed responses to a technology growth shock display an in-
crease at impact followed by a further increase after three quarters. The observed responses
to a government expenditure growth shock exhibit a reduction at impact followed by a re-
turn to the steady state. The responses predicted with the basic law of motion significantly
undervalue these responses. As for output, the responses predicted with augmented laws

of motion are always insignificantly different from observed responses.

Finally, for investment, the observed responses to both technology and government
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expenditure growth shocks show a large increase at impact, followed by a reduction and a
return to the steady state. The responses to both shocks predicted with the basic law of
motion display a small increase at impact, followed by a hump-shaped return to the steady
state. Once again, these responses are significantly smaller than the observed ones. In
contrast, the responses predicted with augmented laws of motion are always insignificantly
different from observed responses.

Hence, the predicted responses computed with the basic law of motion greatly under-
value observed responses. This accords with our empirical results that predicted measures
of volatility grossly understate observed measures. The responses predicted with aug-

mented laws of motion, however, replicate observed dynamic responses remarkably well.

5. Conclusion

In this paper, we test whether an artificial economy with labor hoarding provides an ad-
equate explanation for observed business cycle dynamics. Importantly, our evaluation is
performed using two different descriptions for the law of motion of the economy’s forc-
ing variables. The first assumes that the information set used to forecast future forcing
variables contains exclusively the history of these forcing variables. This leads to a basic
law of motion that only includes forcing variables. The second assumes that the relevant
information set is superior and includes not only forcing variables but also hidden exoge-
nous variables. This leads to augmented laws of motion that include both forcing and
endogenous variables, where the endogenous variables replace hidden variables.

We show that omitting the hidden variables leads to serious mismeasurements of
the business cycle. More precisely, we find that the labor-hoarding environment with
a basic law of motion predicts volatility, cross-correlations, and dynamic responses of
key macroeconomic aggregates that substantially deviate from observed ones. This holds

whether we define the cycle as growth rates or as Beveridge-Nelson cyclical components,
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but it is especially severe for the latter. Hence, the labor-hoarding environment with
a basic law of motion fails to reproduce observed business cycle facts. In contrast, our
results reveal that the labor-hoarding environment with augmented laws of motion tracks
observed statistics of all the key macroeconomic aggregates remarkably well. These findings
are robust to the choice of the cycle measure. Hence, the environment with augmented

laws of motion successfully matches observed business cycle facts.
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Technical Appendix

The VARs

With the exception of the observed measures of volatility, all our computations are based

on VARs. The unrestricted VARs for output, consumption, investment, employment, and
capital are:

Xjt = ijjt—l + Wy, (Al)

where Qjp = Elujug’] for j, £ =y, ¢, i, n, k. Also, X0 = (2t 9¢+ Us )',

~ \/ RV ~ ! T /

(Zt gt Ct)7 Xit = (Zt gt Zt) y Xnt = (Zt gt nt+1); and xg; = (Zt gt kt—i—l)-

Some of our computations are based on the stacked version:

(th\ (Fy 0 0 0 0 (th—l (uyt\
Xct 0 I‘c 0 0 0 Xet—1 Ugt
x¢ = 0 0 It 0 O Xig—1 | + |
Xnt 0 0 0 Fn 0 Xnt—1 Unt
\th/ \ 0 0 0 0 Fk) kat—lj \ukt/
or
Xt = FXt—l + Ut' (A2)

The relevant covariance matrices are 2 = E [UtUt'] and ¥ = F [XtXt'}, where ¥ =
rXr’ + Q.

The restricted VARs are constructed from the reduced forms and the law of motion
w; = II,wi_1 + v¢, where Q,, = E[v;vy]. When superior information is ignored, w; =
st = (2t g )', I, = II,, and ©, = ©Q,. When superior information is considered,
w:= (2 g+ ht)'. In both cases, the restricted VARs are:

X = PixG o+ uy, (4.3)

where Qge =F [ugtuzt'} for r = b, a. Note that u?, = ©;u;; = ©;T;v; for appropriately
defined ©®; and Y. Finally, the stacked version is:

(¥ (P 0 0 0 0 /x5, (5 )
Xet 0 @ 0 0 0 Xet—1 g
xi, =0 o @ o0 o x5, |+ | ul

T T
t—1

Xnt O Xn u
\x;t) \o 0o o o &) \xgt_l \u;t




or

Xi =®"X;_; + U;. (A.4)
The covariance matrices are " = E [U7U}'] and £" = E [X7X}'], where " = $" %" ®"'
+Qr.

Volatility and Correlation of Growth Rates

The observed measures of volatility and correlation for the growth rates of output, con-
sumption, and investment are computed from sample estimates of variances and covari-

ances in our U.S. quarterly data. Variances are computed as:

1
Z xy —T), (A.5)
t=1

where T = (1/T) Zz;l xy for z; = Aln(Y;), Aln(Cy), Aln(1;). Covariances are computed

as:
T—|k|

S 2 -9 (M) ~BR) . (49

covlzy, Aln(Yiix)] = T

for z; = Aln(C}), Aln(1).

The predicted measures of volatility and correlation are computed from the stacked
VAR (A.4). First, we use the relations Aln(Y;) = Ay, + 2 +1n(§), Aln(Cy) = Acy + 2 +
In(Z), Aln(I) = Aiy+ 2z +1n(Z) to define the vector of predicted demeaned growth rates:
W9 = Am? +¢'z, where WY = (Aln(Y;) Aln(Cy) Aln(l)),m; = (y; ¢ ;) and

= (1 1 1). Second, we employ the identities m; = m;+611p; and pyyr1 = Prr1+621P¢

to write W;? in terms of X7:

W9 = U5 Xy + UrXE | + 0 Z 03,epX}_5_s, (A7)

7=0

where U = e, + €'e,, U] = —ep, + 6116p, and U5 = —011 + 6011021. Also, ey, ep, and e,
are defined by m; = e, Xy, Prr1 = €, Xy, and 2, = e, Xy, where pr = (ny ke )'. Finally,
we use (A.7) to compute the necessary moments of W;?. In particular, we compute:
E [w;gwgg’] = (U7 ® UT)vec [S7] + (U] @ U7)vec [7] +
(V5@ U3) (L — 021 @ 0] (e ® e)vec S +
(U7 @ WLd") vec [27] + (U @ Uh) [[pg — 021 @ D] (e, ® ®"2)vec [E7] +
(U5 @ WT) [Tpq — 021 @ B"] 7" (e ® B")vec [B] + Qpvec [£7] +
(U5D" @ U )vec [B7] + (U @ Uh) [I,g — B @ 051] " (72 @ e,)vec [7] +
(U] @ Uh) [Ipg — B @ Oa1] " (B ® ep)vec [X7] + Qf,vec [X7], (A.8)
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—1

where vec[QF;,] = ((f216, @ ®7) @ (V5 @ U})) [Ipsq — (01 ® 1) ® (I ® 021)]

vec [(Ip Qep) [Ipg — 021 ® <I>’"]_1] and vec[Qf,] = ((®" ® fOaep) @ (V5 @ U3))
—1

g = (I, @ 021 ® (B @ L) vec|(ep @ L) [Ig = " @ 01] 7| Fimally, I, Iy, Iz,

Ip,q, and Ip3, are identity matrices, where p and ¢ refer to the dimensions of p; and X;.

Finally, for £ =1, 2, and 4, we compute:

E [W{gwg k’] UT ® By)vee [S7] + (V] ® U0k e, )vee [S7] +

Ul ® Brp®")vec [X"] +

UL @ By) [Ipg — 021 © @) (ep ® ®"%)vec [Z7] +

ravec [Z7] 4 (U5 ® U5) [Ty — 7 @ 6511 (87 @ 051 ep)vec [27] +
(U] @ Uh) [Ipg — B @ O1] " (D" ® 05 ep)vec [Z7] + Qh,vec [E7] (A.9)

=(
(U5 ® U5) [Tz — 021 @ Oa1] - (ep ® 05 ep)vec [E7] +
(
(

-1
where vec[Q7,] = ((ep ® ") ® (V5 ® U3)) [Ipsq — (021 @ 1) ® (I ® 021)]

vec [(Ip ® 9’2“1_161,) [Ipg — 021 ® (I’r]_l] and vec[Q},] = (((I’T ® 9§1+1@p)l ® (V3 ® \1’5))
-1
[Ipsq — (I, ®021) ® (6 ®Ip)} vec [(ep ® 1) [Ipg — " ® 921]‘1] Finally, B, = U ®" +
U7, By = Uh®"2 4 U1®" + Uhe,, and By = U5P™ + UIH™3 4 Uhe @72 + Uy e, B +

r 2

Dynamic Responses of Growth Rates

The observed dynamic responses are computed using the unrestricted VARs, as well as the
relations AIn(Y;) = Ayt—l-zt—}-ln(g), Aln(Cy) = Act—l—zt—l-ln(Z), Aln(l) = Ait—l-zt—l—ln(Z),
and the identities my; = my + 011p¢, and pgr1 = Prr1 + O21P¢- As an example, consider
the dynamic responses of output growth. First, we recursively compute the responses of
Yt, Zt, Ney1, and kpqq using the appropriate unrestricted VARs:

A.10
All
A.12
A.13

Ry,j = egFiAyé' + Qyan,j—l + 0ykRk,j_1,
R,;=elIA @,

Rn,j = eSF%AnéI + enanyj—l + anRk,j—la

—_ o~ o~ o~
— ' N N

Ry ;= e;»,FiAké' + Opn L j—1 + O Ry 1.
Then, the observed dynamic responses are computed as:
RA ln(Y),j = Ry’J - Ryaj_l + Rzaj’ (A']‘4)
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where e1 = (1 0 0),ea=(0 1 0),andeg = (0 0 1). Also, 8, and 6 are
the elements on the first line of 644, 0,,,, and 0, are the elements on the first line of 51,
and 0k, and O are the elements on the second line of f2;. Note that Q,, = AyAy',
Qnn = ApAy', and Qg = AgAy', where Ay, A, and Ay are lower triangular matrices
with positive elements on their diagonals. This allows us to extract orthogonal innovations
eyt = A Yuye, where ey = (€0 €gr eyt )'. The technology growth shock is measured by
a positive one standard deviation in e,;, € = e;. The government expenditure growth shock

is measured as the sum of a positive one standard deviation in e,; and eg, € = e + eg,

since Aln(Gy) = Agt + 2z + In(2).
Similarly, the predicted dynamic responses are constructed using the restricted VARs
and relevant relations and identities. For output growth, we first compute the responses

of yi, z¢, ney1, and k¢4 using the appropriate restricted VARs:

R =e3®l ATe + 0y R o1 + 0y Ry iy,
Rl =e®7ATE,

Ry ;= es®p? Ane' + Onn Ry g + Ok R 51,
Ry ;= es®LIATE + Okn By, j—1 + Ok By 51

Then, we compute the predicted responses as:
Aln(y), = By — By 1 + 1 5 (4.19)

Note that Q7 = ATAZ', Q7 = A7 A7’ and Qf, = ALA}’, where A7, A7, and A}, are lower

Yy Ty n-n

triangular matrices with positive elements on their diagonals.

Volatility and Correlation of Cyclical Components

The observed measures of volatility and correlation for the cyclical components of the
logarithms of output, consumption, and investment are computed from the stacked VAR
(A.2) using the cycle definition (16). First, we use the relations In(Y;1p) — In(Y;) =
Yerh — Yt + 2?21 Ziyj + hn(Z) , In(Cyyn) —In(Cy) = copn —c + Z?:l Zgyj+h In(Z), and
In(Leyp)—In(ly) = deqn —it—i-Z?:l Zeyi+h ln(Z) to define the vector of cyclical components
W¢ = —limp 00 By [Myyp — my + € Z?zl ztﬂ} =m; —¢€ Z;’il Ei[2zt4+;], where W§ =
(In(Y;)¢ In(Cy)¢ In(I)¢)'. Second, we employ the identities m; = my + 61,;p; and
Pt+1 = Pt+1 + 021p: to write W{ in terms of X;:

Wf = \I/()Xt + \I"lXt_l + \112 Z Hglert_2_j, (AQO)
3=0
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where ¥y = e, +€'e, [I, — ! T —611ep, U1 = —011021€p, and Vo = —01163,. Finally, we
use (A.20) to compute the necessary moments of W¢. These computations use equations
similar to (A.8) and (A.9).

Similarly, the predicted moments are computed from the stacked VAR (A.4). We use
the required relations and identities to write the vector of predicted cyclical components

in terms of Xj:

Wie=UXy + WXy, + U5y 0)en Xy, ), (A.21)
§=0

where U = e, +€'e, [I; — <I>’"]_1 ®" — f11ep, U = —011021€,, and VG = —011603,. Then,
we use (A.21) to compute the necessary moments of Wi¢, where the computations use
equations similar to (A.8) and (A.9).

Dynamic Responses of Cyclical Components

The observed dynamic responses are computed using the unrestricted VARs, as well as
the relations In(Y;)® = y; — 372, By [2644], In(Ch)® = ¢; — Y252 By [2e44], In(Ly)® = iy —
Z;’il E:[z44], and the identities m; = my; + 611p+ and piy1 = Pet1 + O21pe. As an
example, consider the dynamic responses of the cyclical components of the logarithm of
output. First, we construct the infinite sum of expected future technology growth using
the unrestricted VAR for output: Y772, Fy [2t4,] = ByXy:, where By = eq [I3 — r, 'r,
and I3 is an identity matrix. Second, we use the responses (A.10), (4.12) , and (A.13).

We also construct the responses of x,; using the unrestricted VAR for output:
Ry, ; =TI (A.22)
Finally, the observed dynamic responses are computed as:
Rinyye,j = Ry j — ByRgy, ;- (A.23)

Similarly, the predicted dynamic responses are constructed using the restricted VARs
and relevant relations and identities. For output, we first construct the infinite sum using
the restricted VAR for output: Z]Oi1 Ej [2¢44] = Byxyt, where By = e; [13 — @;} -1 7.
We then use the responses (A.15), (A.17), and (A.18), as well as the responses of x,,
constructed using the appropriate restricted VAR:

J— j =/
Ry, ;=@ A€ (A.24)
Finally, the predicted dynamic responses are computed as:

Riyyye ;= Ry j — Bylg . (A.25)

TyyJ
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Data Appendix

This appendix describes the U.S. seasonally adjusted quarterly data covering the 1960:11

to 1993:1V period. The Citibase data mnemonics are presented on the right-hand side of

the following definitions:

Pop

p

C

h.<

= P16 is the civilian noninstitutional population aged 16 or older, which is expressed
in thousands of persons for the last month of each quarter;

= (GCN +GCS)/(GCNQ+ GCSQ) is the implicit 1987 deflator for consumption in
nondurables and services;

= [(GCN + GCS) x 1000000]/(Pop x P) is per capita consumption of nondurables
and services;

=[(GGNN + GGOSA + GGSN + GGSA) x 1000000]/(Pop x P) is per capita gov-
ernment expenditures on nondurables and services;
=[(GIF+GCD+GGE-GGNN -GGOSA—-GGSN —-GGSA) x1000000]/(Pop x P)
is per capita gross private domestic fixed investment plus consumer durables plus
government durables and structures;

= (LHOURS x 1000 x 52)/(4 x Pop) is per capita total hours worked, which is
constructed from the quarterly average of the manhours employed per week reported
in the household survey;

= C + G + I is per capita output;

=1 1+ (1 —9)K_; is per capita capital stock, where Ko = koZ_1 for kg set to its

steady state value;

is labor effort constructed from the first-order condition % =(1-a) CtYIth;
(64

is technology constructed from the production function Y; = K@ (Z; N;Wyf )1_ i
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Table 1. Volatility of Growth Rates

TAIn(Y) TAIn(C) OAIn(I) 732 i:ii; 752 11:((3)
U.S. Data 0.856 0.512 2.294 0.598 2.679
Basic 0.787 0.488 1.763 0.620 2.241

(0.000) (0.229) (0.000) (0.290) (0.000)
Augmented 0.825 0.538 3.010 0.652 3.649

(0.813) (0.879) (0.463) (0.735) (0.260)

Note: o, denotes the standard deviation of z; in percentages, where z;=AIn(Y;), Aln(C;), and Aln(I;).
Aln(Y:), Aln(C:), and Aln(l;) are the growth rates of per capita output, per capita consumption, and per
capita investment. Numbers in parentheses are p-values associated with a x2(1) statistic of the test that
the ratio of predicted to observed volatility is unity. This statistic uses the variance of the ratio, which
is computed as D'ED —where D is the vector of numerical derivatives of the ratio with respect to the

parameters of the appropriate laws of motion, and = is the covariance matrix of these parameters.
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Table 2. Cross-Correlation of Growth Rates

corr [AIn(Ct), Aln(Yiik)]

k -4 -2 -1 0 1 2 4
U.S. Data 0.087 0.296 0.344 0.764 0.395 0.275 0.128

Basic 0.008  0.061  0.064  0.813  0.090  0.003  0.004
(0.000)  (0.000) (0.000) (0.437)  (0.000)  (0.000)  (0.000)

Augmented  0.099  0.146  0.141  0.747  0.609  0.196  0.018
(0.970)  (0.609) (0.489) (0.870) (0.045) (0.768)  (0.746)

corr [AIn(l;), Aln(Yisx)]

k -4 -2 -1 0 1 2 4
U.S. Data 0.139 0.173 0.330 0.827 0.318 0.197 0.123

Basic -0.006 -0.042  0.282 0928  0.126  0.000  0.001
(0.000)  (0.000)  (0.005)  (0.000) (0.000) (0.000)  (0.000)

Augmented  0.000  0.159  0.585  0.804  0.448  0.130  0.014
(0.007) (0.862) (0.132)  (0.915) (0.278) (0.353)  (0.007)

Note: corr[z:,AlIn(Y;4)] denotes the correlation between z; and lags k of Aln(Y}:), where z:=AIn(C}) and
Aln(I:). Aln(Y:), Aln(C:), and Aln(I;) are the growth rates of per capita output, per capita consumption,
and per capita investment. Numbers in parentheses are p-values associated with a x?(1) statistic of the
test that the ratio of predicted to observed correlation is unity. This statistic uses the variance of the ratio,
which is computed as D'=D — where D is the vector of numerical derivatives of the ratio with respect to

the parameters of the appropriate laws of motion, and Z is the covariance matrix of these parameters.
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Table 3. Volatility of Cyclical Components

Tin(Y)e Tin(C)e Tin(1)e 7::;32 7511:(% ))cc
U.S. Data 0.133 0.290 0.426 2.178 3.201
Basic 0.013 0.016 0.037 1.310 2.994

(0.000)  (0.000)  (0.000)  (0.236)  (0.901)
Augmented 0.124 0.175 0.320 1.413 2.991

(0.973)  (0.808)  (0.980)  (0.304)  (0.984)

Note: o, denotes the standard deviation of z;, where z;=In(Y:)°, In(C;)°¢, and In(1;)°. In(Y%)°, In(C:)°,
and In(I;)¢ are the cyclical components of the logarithms of per capita output, per capita consumption,
and per capita investment. Numbers in parentheses are p-values associated with a x2(1) statistic of the
test that the ratio of predicted to observed volatility is unity. This statistic uses the variance of the ratio,

which is computed as D'ED — where D is the vector of numerical derivatives of the ratio with respect to

the parameters of the appropriate laws of motion, and Z is the covariance matrix of these parameters.
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Table 4. Cross-Correlation of Cyclical Components

corr [In(Cy)¢, In(Yiix)€]

k -4 -2 -1 0 1 2 4
U.S. Data 0.787 0.671 0.675 0.679 0.666 0.654 0.638
Basic -0.285 -0.129 -0.136 -0.101 -0.157 -0.151 -0.117
(0.000)  (0.000)  (0.000)  (0.000)  (0.000) (0.000)  (0.000)
Augmented 0.934 0.948 0.960 0.970 0.949 0.929 0.905
(0.563) (0.254) (0.249) (0.248)  (0.264) (0.286) (0.354)
corr [In(1;)°, In(Yy )€
k -4 -2 -1 0 1 2 4
U.S. Data 0.118 0.146 0.159 0.173 0.179 0.185 0.366
Basic 0.169 0.037 0.042 0.023 0.070 0.067 0.558
(0.913)  (0.690) (0.679) (0.624) (0.685) (0.652)  (0.745)
Augmented 0.189 0.205 0.215 0.226 0.231 0.237 0.248
(0.983)  (0.989) (0.990) (0.991)  (0.992) (0.992)  (0.990)

Note: corr[z:,In(Y;1x)°] denotes the correlation between z; and lags k of In(Y:)®, where z;=In(C:)¢ and
In(I;)°. In(Y:)¢, In(C:)¢, and In(I;)° are the cyclical components of the logarithms of per capita output,
per capita consumption, and per capita investment. Numbers in parentheses are p-values associated with
a x2(1) statistic of the test that the ratio of predicted to observed correlation is unity. This statistic uses
the variance of the ratio, which is computed as D'=D — where D is the vector of numerical derivatives of

the ratio with respect to the parameters of the appropriate laws of motion, and = is the covariance matrix

of these parameters.
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Figure 1. Dynamic Responses of Growth Rates: Basic
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Figure 2. Dynamic Responses of Growth Rates: Augmented
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Figure 3. Dynamic Responses of Cyclical Components: Basic
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Figure 4. Dynamic Responses of Cyclical Components: Augmented
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