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R¶esum¶e:
Lorsqu'il est coûteux pour les agents ¶economiques de trouver un partenaire d'¶echange, le fait

d'int¶egrer de petits march¶es dans un plus grand augmente les di±cult¶es d'appariement. Nous
examinons dans quelle mesure les nombre d'appariements d¶epend de la taille du march¶e en

mod¶elisant explicitement les tentatives de la ¯rme d'attirer des travailleurs en a±chant des
salaires. Nous montrons que l'int¶egration r¶eduit le pouvoir de march¶e des agents sur le côt¶e

le moins satur¶e du march¶e. Ainsi, s'il y a au moins autant de travailleurs que de postes,
l'int¶egration des march¶es augmente les salaires; s'il y en a beaucoup moins, l'int¶egration r¶eduit

les salaires. Ceci est le cas même si le ratio travailleurs/postes reste inchang¶e. Ind¶ependamment
de la r¶eaction des salaires, l'int¶egration des march¶es r¶eduit le bien-être social lorsque chacun est

pond¶er¶e uniform¶ement et lorsque d'autres bienfaits de l'int¶egration comme la meilleure qualit¶e
des appariements sont absents. Nous caract¶erisons la limite sup¶erieure des pertes de bien-être
r¶esultant de di±culte's plus ¶elev¶ees d'appariement et montrons que la perte marginale de bien-être

d¶ecrô³t lorsque le march¶e s'intµegre de plus en plus.

Abstract:

When it is costly for agents to ¯nd a match, integrating small markets into a large one increases
the matching di±culty. We examine such dependence of the number of matches on the market

size by explicitly modelling ¯rms' attempt to attract workers by posting wages. It is shown
that integration reduces the relative market power of agents on the much shorter side of the

market. Thus, if there are at least as many workers as jobs, integrating markets increases wages;
if there are much fewer workers than jobs, integration reduces wages. This is the case even

though integration does not change the worker/job ratio in the market. Regardless of the wage
response, market integration reduces social welfare when everyone is weighted equally and when
other bene¯ts of integration such as improved match qualities are absent. We characterize the

upper bound on the welfare loss from increased matching di±culty and show that the marginal
welfare loss shrinks as the market becomes increasingly integrated.

JEL classi¯cations: J60, D40,E24, C72.
Keywords: Market integration; Wage posting; Endogenous matches.



1 Introduction

Market integration can bring many bene¯ts to market participants. This is particularly true

where participants have private information regarding their own valuations or costs, or when

workers di®er in productivity. For these markets integration can improve match qualities and

increase welfare. Such bene¯ts are well known. What is not carefully examined is that market

integration calls for extensive coordination among agents and, when such coordination is lacking,

market integration increases the matching di±culty between the two sides of the market. In

this paper we characterize the strategic interactions among agents that lead to the matching

di±culty and examine how market integration a®ects wages and welfare through this endogenous

matching process. For this focus, we will assume that match qualities are homogeneous and

perfectly observable.

The importance of the matching di±culty arises in a number of situations. For instance, when

a planned economy makes a transition to a market economy, workers are given the freedom to

look for jobs in a larger labour market than before. Even though the transition allows workers

to switch from initially less productive matches to more productive ones, it is observed that

the transition often leads to increased unemployment. To measure the welfare gain from the

transition, it is then necessary to know how the transition changes unemployment and wages in

addition to the e®ect on matching quality and productivity.

To analyze how the number of matches and wages depend on the size of the market, one needs

a theory that explicitly models how matches are formed and a®ected by ¯rms' wage decisions.

For this purpose the Walrasian theory where markets are cleared at every instant is of little help.

The search theory by Diamond (1984), Mortensen (1982), and Pissarides (1990) is capable of

generating persistent unemployment but the exogenous matching function in that theory makes

it di±cult to address how agents might try to set prices to change the number of matches. In

this framework, whatever e®ect the market size has on the number of matches is exogenously

determined the moment the matching function is speci¯ed. In particular, Diamond (1984) uses
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a matching function that exhibits increasing returns to scale to justify a positive \thick market

externality". It is not clear whether agents' strategic play could deliver a matching function that

has this feature.

To capture the endogenous response of matches to market integration, we adopt the framework

of Peters (1991) and Montgomery (1991). This framework is described for a labour market in the

next section. The distinct feature is that ¯rms can post wages to direct the search decision of

workers, who make a trade-o® between the wage and the probability of getting a match.1 Besides

the di®erence in focus, our contribution to this framework is to examine the equilibrium in ¯nite

sized markets. In contrast, Peters focuses on in¯nite markets and Montgomery approximates the

¯nite equilibrium (discussed later). An exact characterization of the ¯nite market equilibrium is

necessary for examining how the equilibrium changes with the size of the market.

It is shown that market integration unambiguously reduces the aggregate number of matches

by endogenously increasing the match uncertainty that each ¯rm faces. Although ¯rms do com-

pete in posting wages to attract workers, wages do not always rise after integration. If there

are as many workers as jobs, integration raises wages, but if there are much fewer workers than

jobs, integration reduces wages. This is the case even though integration does not change the

worker/job ratio in the market. Depending on the wage response, one side or both sides of the

market may be worse o® after integration. Regardless of the wage response, market integration

reduces social welfare if all agents are weighted equally.

Despite this welfare result, it is not our intention to claim that market integration is always

bad for the society: The special setup abstracts from any possible match quality improvements

generated by market integration. We merely want to bring attention to the much neglected fact

that a larger market increases the search cost, even though agents on one side of the market

can try to direct the search decisions of agents on the other side of the market. Whatever

1Carlton (1978) seems to be the ¯rst one to formally analyze the trade-o® in the goods market between price
and service probability. Rather than generating this relationship endogenously by agents' strategic behavior, he
exogenously assumes that each buyer has a smooth preference ordering over the pair of price and service probability.
As discussed before, the endogeneity of such relationship is critical for the issue examined here.
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bene¯ts that market integration might have must outweigh this negative e®ect in order to be

socially desirable. With this in mind, we calculate the upper bound on the social welfare loss

from increased matching di±culty and show that the marginal welfare loss falls as markets get

increasingly integrated.

This paper is related to but di®erent from the search literature surveyed by McMillan and

Rothschild (1994). An important feature of the model here is that ¯rms can direct workers'

search by posting wages. In contrast, models in the search literature typically assume that

workers know only the distribution of wages before search and learn about a particular ¯rm's

wage after visiting the ¯rm. This setup is not capable of capturing the trade-o® between a wage

and the match probability. Another related work is by Julien, et al. (1998), who allow ¯rms to

use reserve wages rather than actual wages to attract workers. Although they also analyze the

coordination problem, they do not focus on the e®ects of market integration.

The remainder of this paper is organized as follows. Section 2 gives two examples to illustrate

why an integrated market might have an increased matching di±culty. Section 3 extends the

analysis. Section 4 derives the limit result where the market gets arbitrarily large and provides

the upper bound on the welfare cost of market integration. Section 5 concludes the analysis and

the appendix provides necessary proofs.

2 Examples

2.1 Example 1: Two Workers and Two Firms

Consider a labour market with two workers and two ¯rms. Workers and ¯rms are both risk-

neutral. Throughout this paper, the generic index is i for workers and j for ¯rms. The workers,

termed worker 1 and worker 2, are identical in all aspects, each wanting to work for one job for

an indivisible amount of time. The utility cost of time is normalized to zero. The ¯rms, termed

¯rm A and ¯rm B, are also identical, each having one job to o®er. The output of a worker is

normalized to one.

Like a typical search model (e.g., Mortensen (1982)), the market here di®ers from a Walrasian
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market in two aspects. First, it is more costly for a worker to seek for o®ers from multiple ¯rms

than from a single ¯rm. We use the extreme form of this assumption that each worker can seek for

only one job at a time.2 Second, agents cannot coordinate their decisions. This assumption may

not be reasonable for the current example with only four agents but our intention is to use this

example to illustrate the forces that are important for a large market, where the assumption of

uncoordinated decisions is reasonable. These assumptions imply that agents may face uncertainty:

it is possible that both workers end up with the same ¯rm, in which case one of the workers fails

to obtain the job and one of the ¯rms fails to hire a worker.

In contrast to a standard search model, we do not assume that matches are dictated by an

exogenous matching function. Instead, each ¯rm actively posts a wage to attract workers, taking

the other ¯rm's wage o®er as given, and each worker decides which ¯rm to apply to after observing

all posted wages. Assuming that agents can a®ect their own matches by posting wages seems

realistic. To focus on the central issue of how ¯rms use wages to mitigate their matching di±culty,

we abstract from all other uncertainty and other transaction costs in the market.

To simplify the analysis further, we assume that the time horizon is one period. In Section

5, we will argue that the qualitative results are valid also for an in¯nite horizon, as long as the

turnover is large in the market.

To begin, suppose that the market is originally separated into two sub-markets, each having

one worker and one ¯rm. Agents in one sub-market cannot transact in the other sub-market. Let

wj be the wage posted by ¯rm j (= A;B). Since there is only one ¯rm in each sub-market and

¯rms move ¯rst, it is clear that each ¯rm posts the bottom wage, i.e., wA = wB = 0, and each

worker applies to the only ¯rm in his sub-market with probability one.3 Firms' expected pro¯t,

denoted F , is the highest, FA = FB = 1; workers' expected surplus, denoted U , is the lowest,

U1 = U2 = 0. Let us measure social welfare by the ex ante measure V , which gives the same

2Lang (1991) allows workers to have two job o®ers at a time. This generates wage dispersion among homogeneous
¯rms, which is not the focus here.

3Workers applies to the corresponding ¯rm with probability one despite a zero wage because the ¯rms can post
a positive wage arbitrarily close to 0 to induce a positive surplus for the workers. The equilibrium is the limit
outcome when the wage approaches zero.
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weight for each agent in the economy. Then the social welfare level is V = 1=2.

Now the two sub-markets are integrated into one so that each worker can apply to either of

the two ¯rms. The agents' actions are as follows. At the beginning of the period, each ¯rm j

posts a wage wj, taking the other's wage as given. Observing all wages, each worker i (= 1; 2)

chooses a probability ®Ai to apply to ¯rm A and a probability ®Bi = 1¡®Ai to apply to ¯rm B,

taking the other worker's strategy as given. If both workers end up with the same ¯rm, the ¯rm

selects one of the two for the job, each with probability 1=2, at the posted wage.4

Let us examine the strategy of worker i (= 1; 2). If he applies to ¯rm j, he does not get the

job if and only if the other worker i0 ( 6= i) also applies to the same ¯rm and is chosen by the

¯rm, the probability of which is ®ji0=2. Thus, worker i's expected utility from applying to ¯rm j

is (1¡ ®ji0=2)wj. Denote W ´ (wA; wB). Worker i's strategy is

®Ai(W )

8
>>>>><
>>>>>:

= 1; if (1¡ ®Ai0
2 )wA > (1¡

®Bi0
2 )wB ;

= 0; if (1¡ ®Ai0
2 )wA < (1¡

®Bi0
2 )wB ;

2 [0; 1]; if (1¡ ®Ai0
2 )wA = (1¡

®Bi0
2 )wB :

(1)

Now consider the ¯rms. For ¯rm j (= A;B), the vacancy is ¯lled if there is at least one worker

applying to the ¯rm, i.e., if the two workers do not both apply to the other ¯rm j0 (6= j). Since

the probability that both workers apply to ¯rm j0 is ®j01®j02, the expected pro¯t of ¯rm j is

Fj = (1¡ ®j 01®j02)(1¡wj), j = A;B; j0 6= j:

An equilibrium consists of wagesW = (wA; wB) and workers' strategies (®j1(W ); ®j2(W ))j=A;B,

with ®j 0i(W ) = 1¡®ji(W ), such that (i) given wages and the other worker's strategy, each worker

i's strategy (®ji(W ))j=1;2 maximizes his expected utility, and (ii) given (®j1(W ); ®j2(W ))j=A;B

and the other ¯rm's wage, each ¯rm posts a wage to maximize his expected pro¯t. The important

feature of the equilibrium is that each ¯rm can choose a wage to in°uence workers' strategies and

hence changes the number of matches he/she gets.

4The assumption that a ¯rm can commit to the posted wage even when there are two workers applying to him
is debatable, but it is not essential. One can instead allow ¯rms to announce reserve wages and hold an auction
after workers have applied, as in Julien, et al. (1998). This alternative mechanism generates dispersion in actual
wages, which only complicates the analysis.

5



Let us examine the equilibrium where both workers use mixed strategies, i.e., ®ji(W ) 2 (0; 1)

for j = A;B and i = 1; 2, leaving the discussion on pure strategies to the end of this sub-section.

The following lemma can be established:

Lemma 1 If ®ji(W ) 2 (0; 1) for j = A;B and i = 1; 2, then wA > 0, wB > 0, ®A1 = ®A2 and

®B1 = ®B2.

Proof. First, let us show wA > 0 and wB > 0. Suppose, to the contrary, that at least one ¯rm

posts the bottom wage w = 0. Let this ¯rm be ¯rm B. If wA > 0, both workers will choose ¯rm

A with probability one, since applying to ¯rm B obtains zero surplus while applying to ¯rm A

obtains an expected surplus no less than wA=2 > 0. In this case, workers will not mix between

the two ¯rms, contradicting the assumption of mixed strategies. If wA = 0, it is pro¯table for

¯rm A to increase the wage to wA = ", where " is a su±ciently small positive number. Since

wB = 0, the wage increase will induce both workers to apply to ¯rm A with probability one and

so ¯rm A's expected pro¯t is 1¡ ". The expected pro¯t before the wage increase is 1¡ ®A1®A2.

By choosing " < ®A1®A2, which can be done since ®A1; ®A2 > 0, ¯rm A increases his expected

pro¯t. A contradiction.

Let wA > 0 and wB > 0. We show ®A1 = ®A2. Using ®Bi(W ) = 1¡ ®Ai(W ) in (1) yields:
µ
1¡ ®A2

2

¶
wA =

1 + ®A2
2

wB;

µ
1¡ ®A1

2

¶
wA =

1 + ®A1
2

wB:

Subtracting the two equations yields: (®A1¡®A2)(wA+wB) = 0. Since wA+wB > 0, ®A1 = ®A2

and so ®B1 = ®B2.

The above lemma shows that if both workers mix between both ¯rms, then the two workers

must use the same strategy and the two ¯rms must post wages above the bottom wage. Denote

®A = ®A1 = ®A2. Then, ®B1 = ®B2 = 1¡ ®A and (1) yields:

®A(W ) =
2wA ¡wB
wA + wB

: (2)
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Taking wB as given, ¯rm A solves:

max
wA

h
1¡ (1¡ ®A(W ))2

i
(1¡ wA):

Similarly, taking wA as given, ¯rm B solves:

max
wB

h
1¡ (®A(W ))2

i
(1¡ wB):

Solving the above maximization problems establishes the following proposition:

Proposition 2 In the integrated market with 2 workers and 2 ¯rms, there is a unique mixed-

strategy equilibrium that is characterized by:

wA = wB =
1

2
; ®A1 = ®A2 = ®B1 = ®B2 =

1

2
: (3)

Firms' expected pro¯t, workers' expected surplus and the social welfare level are:

FA = FB =
3

8
; U1 = U2 =

3

8
; V =

3

8
:

Market integration increases wage dramatically (from 0 to 1=2) and bene¯ts workers, but ¯rms

are worse o® and social welfare is reduced. With suitable transfers between ¯rms and workers,

both workers and ¯rms prefer separated markets. Welfare is lower after integration because the

matching di±culty increases with the market size. When markets are separated all agents are

matched, since the worker in each sub-market does not have any choice but to apply to the

only ¯rm there. In contrast, with an integrated market each worker can choose from two ¯rms

and their uncoordinated decisions induce employment uncertainty. Each ¯rm faces a positive

probability of failing to get a worker, (1¡ 1
2)
2 = 1

4 .

The above equilibrium described is not the only one for the integrated market: The strategies

in the separated markets also form a (pure-strategy) equilibrium in the integrated market.5 To

verify, note that, when worker 1 applies to ¯rm A with probability 1 and worker 2 applies to ¯rm

B with probability 1, each ¯rm gets one worker with probability one and so the expected pro¯t

5The other pure-strategy equilibrium is such that worker 1 applies to ¯rm B with probability one, worker 2
applies to ¯rm A with probability one and both ¯rms post w = 0.
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is the highest level that a ¯rm can possibly obtain. No ¯rm has incentive to increase wage above

0, which would only reduce the expected pro¯t. Given that both ¯rms post w = 0, workers get

zero surplus everywhere and so the decisions (®A1; ®B2) = (1; 1) are rational.

However, this pure-strategy equilibrium is not trembling-hand perfect in the integrated mar-

ket. To see why, note that ¯rms do not have incentive to increase wage in the pure-strategy

equilibrium because they do not face any uncertainty and the expected payo® is at the highest

possible level. But if there were any trembling by workers to mix between ¯rms there would be

uncertainty for ¯rms, in which case it would be worthwhile for the ¯rm to trade o® between wage

and the expected number of workers: Given that the other ¯rm maintains the wage w = 0, a

¯rm can increase his wage o®er marginally, which would attract all workers and eliminate the

¯rm's uncertainty. For this reason, the equilibrium with trembling hand will not converge to the

pure-strategy equilibrium even when the amount of trembling shrinks to zero.

For general environments where there are more than two workers and ¯rms in each sub-market

before integration, the argument of trembling-hand perfection is much more di±cult to be made.

This is because the equilibrium before integration can be mixed strategies. To check whether it

can survive trembling-hand perfection in the integrated market, one must examine how workers

in one sub-group in the integrated market modify their strategies in response to a wage deviation

by a ¯rm in another sub-group. This is a di±cult task even when there are only four workers

and four ¯rms in the economy.6 Despite this di±culty, we will restrict attention throughout this

paper to equilibria where all workers in the market (or sub-market) mix among all available ¯rms

in the market (or sub-market).

This restriction to completely mixed strategy equilibria re°ects the premise that coordination,

including the kind implied by partially mixed strategies, is di±cult to be achieved in decentralized

markets. Even for very small markets, experimental evidence in Ochs (1990) indicates signi¯cant

coordination failure among agents. For example, when there are only four locations and nine

6This is not a problem in the case with only two workers and two ¯rms, because the equilibrium in the separated
markets is pure strategies and wages are zero. Starting from this situation in an integrated market, a wage increase
by one ¯rm draws the worker from the other group with probability one.
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buyers with nine units of goods as the total supply, the matching failure rate can be as high as

2=9. Such a high failure rate for such a small \economy" is unlikely to occur if buyers only partially

mix among the ¯rms or use pure strategies. In fact, with each ¯rm's price being exogenously

set, Ochs has found that buyers mix among all locations, even when some ¯rms have much more

units of goods than do other ¯rms and when prices vary. Moreover, when all ¯rms have the same

stock of goods, buyers buy from each ¯rm with roughly the same probability, a result consistent

with symmetric strategies.

2.2 Example 2: Four Workers and Four Firms

In Example 1 workers are better o® from market integration, although aggregate welfare is lower.

The increased workers' expected utility arises from the special feature that wages in the sub-

market are bottom wages and so market integration increases wages drastically. If wages in the

sub-markets were already high, market integration would increase wages only in small magnitudes

and workers could be worse o®. To illustrate this, consider a market with four identical workers

and four identical ¯rms. As before, workers are numbered with arabic numbers i = 1; 2; 3; 4.

Firms now are also numbered with arabic numbers j = 1; 2; 3; 4. If the market is separated

into two sub-markets, where each sub-market has two workers and two ¯rms, then the wage in

each sub-market is the one calculated in Example 1. That is, each ¯rm posts w = 1=2 and

the two workers in each sub-market apply to each of the ¯rms with probability 1=2, yielding

F = U = V = 3=8 = 0:375.

Now suppose that the sub-markets are integrated into one. The wage posted by ¯rm j is wj

and the probability that worker i applies to ¯rm j is ®ji, with
P4
j=1 ®ji = 1, for all i. As discussed

in the last example, we focus on the equilibrium where all workers mix among all ¯rms. One can

extend Lemma 1 to show that all wages should be above the bottom wage and all workers use the

same strategy. Since ¯rms are identical with each other, all ¯rms post the same wage, w (> 0),

and workers apply to each ¯rm with the same probability: ®ji = 1=4 for all j and i.

To ¯nd equilibrium wage w, let us analyze a single ¯rm's deviation to wd 6= w, given that all
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other ¯rms continue to post w. Since wd = 0 will attract no worker at all, it is not pro¯table.

Thus let wd > 0. Responding to this deviation, each worker applies to the deviator with a revised

probability ®d and applies to each of the other ¯rms with ®̂ = (1¡ ®d)=3. If a worker applies to

the deviator, he/she is expected to be hired with the following probability:

3X

t=0

1

t+ 1
Ct3(®

d)t(1¡ ®d)3¡t = 1¡ (1¡ ®d)4
4®d

;

where Ct3 = 3!=[t!(3 ¡ t)!]. Similarly, if a worker applies to a ¯rm who posts w, a non-deviator,

the probability that he will be hired by the ¯rm is
h
1¡ (1¡ ®̂)4

i
/(4®̂) . For the worker to be

indi®erent between the deviator and a non-deviator, i.e., for ®d 2 (0; 1), the worker must obtain

the same expected surplus from the two types of ¯rms. That is,

1¡ (1¡ ®d)4
4®d

¢ wd =
1¡

³
1¡ 1¡®d

3

´4

4(1¡ ®d)=3 ¢ w:

This indi®erence relation solves for a smooth function ®d = ®d(wd; w). Since the left-hand side of

the relation is a decreasing function of ®d and the right-hand side is an increasing function of ®d,

®d(wd; w) is an increasing function of wd. That is, by increasing wage the deviator can attract

workers to apply to him with a higher probability.

When each worker applies to the deviator with probability ®d, the deviator gets at least one

worker with probability 1¡ (1¡ ®d)4. Taking w as given, the deviator chooses wd to solve:

max
wd

F d ´ (1¡wd)
·
1¡

³
1¡ ®d

´4¸
s.t. ®d = ®d(wd; w).

If w is the equilibrium wage in a mixed strategy equilibrium, then the deviation wd cannot improve

the ¯rm's pro¯t and so wd = w must be the solution to the above maximization problem. In this

case, ®d = 1=4. Setting wd = w and ®d = 1=4 in the ¯rst-order condition of the maximization

problem yields w = 81=148. In this equilibrium each ¯rm's pro¯t F , each worker's expected

surplus U and the social welfare level V are: F ¼ 0:309, U ¼ 0:374, V ¼ 0:342.

As in Example 1, market integration leads to a higher wage, a lower expected pro¯t for ¯rms

and lower social welfare. The fundamental reason why market integration reduces welfare is the
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same as in Example 1, i.e., a larger market experiences a more severe matching di±culty and so

the expected number of matches falls. The expected number of matches for each ¯rm (or for each

worker) is 1¡ (1¡1=4)4 ¼ 0:684 when the market is integrated and is 1¡ (1¡1=2)2 = 0:75 when

the market is separated into two.

In contrast to Example 1, market integration increases the wage by only a small amount: the

wage increases by only 81
148 ¡ 1

2 ¼ 0:047. Since the number of matches per worker falls by roughly

0:066, the wage increase is not su±cient to o®set the increased matching di±culty. Even without

transfers, both workers and ¯rms prefer separating the market into two.

3 A Large Market

The above examples share the feature that the total demand for workers is equal to the total

supply. This is restrictive and cannot provide information on how the wage response to integration

depends on the \tightness" of the market. In particular, it is not clear whether the positive wage

response is a general feature. To generalize, let us now consider an economy with N workers and

M ¯rms, where N; M ¸ 4 and N is not necessarily equal to M . Each ¯rm has on vacancy to be

¯lled. Denote r = N=M as the worker/job ratio, sometimes referred to as the market tightness.

Suppose ¯rst that the market is separated into k sub-markets, with n ´ N=k workers and

m ´M=k ¯rms in each sub-market. For simplicity let us assume that n and m are both integers.

Denote x = 1=m (= k=M). Since x is increasing in k, a larger x corresponds to less integrated

markets and the completely integrated market corresponds to x = 1=M . Thus we can refer to x

as the degree of market separation. Note that the tightness in each sub-market is the same as in

the integrated market. Since the case where each sub-market has only one ¯rm or one worker is

straightforward, let us exclude it by assuming m ¸ 2 and n ¸ 2. That is,

1

M
· x · ¹x ´ 1

2
¢minf1; rg : (4)

Let us now examine a sub-market and, as before, focus on the symmetric equilibrium where

all workers mix among all ¯rms in the sub-market. In this equilibrium each worker applies to each

¯rm with probability 1=m = x and each ¯rm posts a wage, which is denoted w(x) to emphasize
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its dependence on x. To ¯nd the equilibrium wage w, again consider a single ¯rm's deviation

to a wage wd > 0, while every other ¯rm continues to post w. Observing the deviation and

other wages, each worker applies to the deviator with probability ®d and applies to each of the

non-deviators with probability ®̂ = (1¡ ®d)=(m¡ 1).7

If a worker applies to the deviator, the probability that he will be chosen is:8

n¡1X

t=0

1

t+ 1
Ctn¡1

³
®d
´t ³

1¡ ®d
´n¡1¡t

=
h
1¡ (1¡ ®d)n

i
=(n®d):

Similarly, if a worker applies to a non-deviator, he gets the job with probability [1¡ (1¡ ®̂)n] =(n®̂).

For the worker to be indi®erent between the deviator and non-deviators, the following must hold:

1¡ (1¡ ®d)n
n®d

¢wd =
1¡

³
1¡ 1¡®d

m¡1
´n

n(1¡ ®d)=(m¡ 1) ¢w: (5)

This de¯nes a smooth function ®d = ®d(wd; w), where the dependence on wd is positive. The

smoothness implies that a marginal wage increase will not attract all workers: If workers chose

probability one to apply to the deviator, each of them would be chosen with a very low probability.

Note that the right-hand side of (5) is an increasing function of ®d. Since ®d is an increasing

function of wd, the right hand side of (5) is an increasing function of wd. That is, a wage

increase by the deviator raises the expected payo® to workers who apply to non-deviators. This

is because the wage increase attracts more workers to the deviator, reduces the congestion of

workers applying to the non-deviators and so each worker applying to a non-deviator gets a job

7The way the model works does not literally require each worker to observe all posted wages. For example, if
each worker observes only two wages randomly drawn from the posted ones, the essential results should continue
to hold, but the exercise would be messy.

8To compute, de¯ne

A(y) =

n¡1X

t=0

1

t+ 1
Ctn¡1

¡
y®d
¢t ¡

1¡ ®d
¢n¡1¡t

:

Clearly A(0) = 0 and the probability to be computed is A(1). Since

d

dy
[yA(y)] =

n¡1X

t=0

Ct
n¡1

¡
y®d
¢t ¡

1¡ ®d
¢n¡1¡t

= (y®d + 1¡ ®d)n¡1;

integration yields:

A(1) =

Z 1

0

(y®d + 1¡ ®d)n¡1dy = 1¡ (1¡ ®d)n
n®d

:

12



with a higher probability than before. This is an indirect cost to the wage increasing ¯rm, because

the ¯rm must match up with the increased workers' surplus from elsewhere. The indirect cost

and the wage increase itself are both compensated by the increased number of applicants.9

When each worker applies to the deviator with probability ®d, the deviator successfully hires

a worker with probability 1 ¡ (1 ¡ ®d)n. Taking other ¯rms' wages w as given, the deviator

chooses wd to solve:

max
wd

(1¡ wd)
h
1¡

³
1¡ ®d

´ni
s.t. ®d = ®d(wd; w).

Again in the symmetric mixed-strategy equilibrium the deviation cannot be pro¯table and so

wd = w(x) solves the above maximization problem, which in turn implies ®d = ® = 1=m = x.

Substituting (wd; ®d) = (w;x) and n = r=x into the ¯rst-order condition of the maximization

problem yields:

w(x) =

"
1 +

(1¡ x)¡r=x ¡ 1
r

¡ 1

1¡ x

#¡1
: (6)

Each ¯rm's expected pro¯t, each worker's expected surplus and the social welfare level can

also be expressed as functions of x:

F (x) = (1¡ w) [1¡ (1¡ ®)n] = [1¡w(x)]
h
1¡ (1¡ x)r=x

i
; (7)

U(x) = w ¢ 1¡ (1¡ ®)
n

n®
= w(x) ¢ 1¡ (1¡ x)

r=x

r
; (8)

V (x) =
M ¢ F (x) +N ¢ U(x)

M +N
=
1¡ (1¡ x)r=x

1 + r
: (9)

The expected number of matches per ¯rm, denoted H(x), is

H(x) = 1¡ (1¡ x)r=x: (10)

The social welfare level is proportional to the number of matches per ¯rm. Recalling that a

larger x corresponds to less integrated markets, we have:

9Montgomery (1991) assumes that a worker's expected payo® from the market is exogenous to each ¯rm. This
is true only when there are in¯nitely many agents on each side of the market.
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Proposition 3 Increasing market integration reduces the number of matches and reduces social

welfare. Therefore, when suitable transfers between ¯rms and workers are available, both workers

and ¯rms prefer market separation.

Proof. Since V (x) = H(x)=(1 + r), it su±ces to show that H(x) is an increasing function of

x. De¯ne

g(x) = ¡1
x
ln(1¡ x): (11)

Then H(x) = 1¡ e¡rg(x) and so H0(x) > 0 is equivalent to g0(x) > 0. Compute:

g 0(x) =
1

x

µ
1

1¡ x ¡ g(x)
¶
=
1

x2

·
x

1¡ x + ln(1¡ x)
¸
:

The function x
1¡x +ln(1¡ x) has a value 0 at x = 0, a positive derivative for all x 2 (0; 1) and so

it is positive for all x > 0, yielding g0(x) > 0.

The welfare response is similar to that in Examples 1 and 2, but the wage response is more

complicated. Noting that ln(1¡ x) < 0 for all x 2 (0; 1), it can be directly veri¯ed from (6) that

w0(x) > 0 if and only if

r < f(x) ´ 2x¡ 1

g(x)
ln g0(x); (12)

where g(¢) is de¯ned by (11). The following proposition is proved in Appendix A:

Proposition 4 Let x be in the range speci¯ed by (4).

(i) If r · f ( 1M ), then w0(x) > 0 for all x;

(ii) If r ¸ f (f(12 )=2) ¼ 0:829, then w0(x) < 0 for all x;

(iii) If f( 1M ) < r < f(f(
1
2 )=2), then there exists x0 2

³
1
M ; ¹x

´
such that w0(x) < 0 for x 2 [ 1M ; x0]

and w0(x) > 0 for x 2 (x0; ¹x].

The wage response to increased market size is ambiguous. If the number of workers relative to

jobs in the economy is not too low, integrating markets (reducing x) increases wages (case (ii)).

On the other hand, if the number of jobs exceeds the number of workers by a large margin (case
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(i)), integrating markets reduces wages. The simplest example for the latter case is when there

are two workers and four ¯rms. When the market is initially separated into two sub-markets,

each sub-market has two ¯rms and only one worker and so Bertrand competition drives wages to

one. Wages can only be lower when the sub-markets are integrated. More generally, when there

are many more jobs than workers in each sub-market, workers have a strong market power that

supports high wages. Integrating the sub-markets in this case allows each ¯rm to have access

to a larger group of workers than before. Although the integration also allows each worker to

have access to a larger group of ¯rms, such a bene¯t to workers is relatively small at the margin

as workers started with an already strong market power. In this case, wages decreases with

integration, even though the integration does not change the market tightness.

Phrased di®erently, market integration increases the relative market power of the side of the

market that is much longer. Although this may not seem controversial, the critical level of the

market tightness for a positive wage response is roughly 0:83 rather than one. That is, even when

the supply of workers is lower than but close to the demand, market integration increases wages.

This is because of the asymmetric treatment of workers and ¯rms in our model { ¯rms can set

wages to exploit the market but workers can only respond to these wages. This asymmetry gives

¯rms a relatively higher market power even when r = 1, which is reduced by market integration.

It should be emphasized that the wage response is not a result of changes in the market

tightness but rather of changes in the extent of coordination. In fact, the market tightness is

constant before and after integration. But a more integrated market requires more extensive

coordination. The cost of coordination is unevenly shared by the two sides of the market and the

¯rms bear a larger part of the cost as they are the ones who competitively organize the market

by posting wages.

From Propositions 3 and 4 it is clear that at least one group, ¯rms or workers, is worse o® after

market integration. Workers are worse o® when the worker/job ratio is low (i.e., when r < f(x0))

and ¯rms are worse o® when the worker/job ratio is not too low (i.e., when r ¸ f(f(12 )=2) ¼
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0:829). One would like to know whether workers and ¯rms can both be worse o® (without

transfers between the two groups), as in Example 2. Unfortunately this cannot be determined

analytically since the wage response depends on the worker/job ratio in a non-monotonic fashion.

The following three examples illustrate the patterns of the responses, with M = 100.

Example 3. r = 1. In this case Proposition 4 tells us that wages increase with market

integration and so ¯rms' expected pro¯t falls, as depicted by Figure 1:1. Workers' expected

surplus, U(x), may rise of fall, depending on the initial degree of market integration. Let us

start from the situation where the market is so severely separated that each sub-market has

only two ¯rms and two workers (i.e., x = 1=2) and then gradually increase the degree of market

integration (i.e., reduce x). Initially, workers are better o® slightly (not very discernible in Figure

1:1) when markets become more integrated, but further integration makes workers worse o®. This

non-monotonic pattern of workers' utility arises from the fact that wage increases generated by

market integration diminish when markets become more and more integrated. When markets are

severely separated, wage increases resulted from market integration are large enough to dominate

the increased matching di±culty and to increase workers' utility. When markets are already

integrated to some degree, however, the increased matching di±culty dominates wage increases

and so workers are worse o®. It is worthwhile noting that workers are worse o® when markets

are fully integrated (x = 1=M) than when markets are severely separated (x = 1=2).

Example 4. r = 1:5 (Figure 1:2). As in Example 3, wages rise with market integration

and ¯rms' expected pro¯t falls. In contrast with Example 3, workers are better o® with market

integration.

Example 5. r = 0:5 (Figure 1:3). This case is opposite to Example 4. With increasing

market integration, wages fall, ¯rms are better o® and workers are worse o®.

These three examples indicate that market integration is most likely to reduce both workers'

and ¯rms' surpluses when the total supply of workers is close to the number of jobs. When one

side of the market is much shorter than the other side, the longer side of the market bene¯ts from
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market integration and the shorter side loses.
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Figure 1:1: The case r = 1
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Figure 1:2: The case r = 1:5
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Figure 1:3: The case r = 0:5

4 Bounds on the Welfare Loss

Since our analysis omits some important bene¯ts of market integration, such as improved match

qualities, our welfare result about market integration is only suggestive of the negative conse-

quences of integration. Nevertheless, the result is useful for providing a yardstick against which

one can measure other bene¯ts of market integration. For this purpose we ask: What is the

upper bound on the welfare loss from increased matching di±culty due to market integration?

Also, realistic markets such as the labour market are typically large. For our results to be useful,

we need to know the answer to the following question: How does the welfare loss from increased

matching di±culty behave when the market gets large?

The two questions are related and we start with the second question. Let us compare the

welfare level where the market is separated into k sub-markets with the one where the market

is fully integrated. Denoting x1 = 1=M and using g(¢) de¯ned in (11) one can calculate the

per-capita welfare loss from integration as:

¢V (k) ´ V ( k
M
)¡ V ( 1

M
) =

1

1 + r

h
e¡rg(x1) ¡ e¡rg(kx1)

i
: (13)

The limit of this loss depends on the way in which the market expands. One way is that k
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is ¯xed while M ! 1. That is, the number of sub-markets is ¯xed and the expansion of the

market simply adds more workers and ¯rms to each sub-market. In this case x1 ! 0 and kx1 ! 0,

which imply ¢V (k) ! 0. Thus, when each sub-market expands to in¯nity at the same rate as

the total market does, the di®erence in per-capita welfare between the integrated market and k

sub-markets vanishes. This is not surprising because in the limit each sub-market has in¯nitely

many ¯rms and workers, just as the integrated market does.10

The second way that the market expands is that k=M is ¯xed while M ! 1. That is, the

numbers of workers and ¯rms in each market do not change and the expansion of the economy

simply adds more sub-markets. In this case, x1 ! 0 but kx1 is constant. Because the expansion

does not change the numbers of workers and ¯rms in each sub-market, the per-capita welfare loss

from integration does not vanish in the limit. Instead,

¢V (k)! e¡r ¡ e¡rg(kx1)
1 + r

: (14)

Proposition 5 Per-capita welfare loss from market integration in the limit is bounded above by

L(r) where

L(r) =

8
>><
>>:

e¡r¡(1¡ r
2
)2

1+r if r < 1

e¡r¡4¡r
1+r if r ¸ 1:

(15)

Proof. Per-capita welfare loss from market integration is the highest when market expansion

does not change the size of each sub-market. Thus, the upper bound on the welfare loss can be

found by maximizing (14) over kx1. The maximum is attained at kx1 = ¹x. Since ¹x = r
2 when

r < 1 and ¹x = 1
2 when r ¸ 1 (see (4)), then g(kx1) · g( r2) when r < 1 and g(kx1) · g(12 ) = 2 ln 2

when r ¸ 1. Calculating e¡rg(r=2) leads to the upper bound in (15).
10Note that the total welfare loss from integration does not vanish: (N +M) ¢ ¢V (k) ! k¡1

2 re
¡r , which is

maximized at r = 1.
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Figure 2: The upper bound on the welfare loss

The upper bound L(¢) is plotted in Figure 2. There are two interesting details about the

upper bound. First, the maximum of L(r) is L(1) ¼ 0:06. That is, when the number of workers

is equal to the number of jobs, the increased matching di±culty caused by market integration is

most severe and the upper bound of such welfare loss is about 12% of the total value of output.

Second, the function L(r) decreases very rapidly when r deviates from 1, with L(r)! 0 for r ! 0

or r !1. Thus, in markets where one side is much shorter than the other side, the increase in

the matching di±culty generated by market integration is very limited, in which case the welfare

loss is small relative to other bene¯ts of market integration omitted here.11

The upper bound L(r) is obtained by comparing the fully integrated market with the extremely

separated markets where there are only two ¯rms or two workers in each sub-market. In realistic

discussions markets have already been integrated to some degree and one is interested in the

coordination cost of further integration. The welfare cost of such further integration is much

smaller than the upper bound provided above. For example, if M = 100 and there are two sub-

11If each sub-market can have only one ¯rm or one worker, a situation ruled out by (4), the upper bound on the
welfare loss from market integration is larger than in (15). In this case, kx1 · minf1; rg. Noting that g(1) = 1
and rg(r) = ¡ ln(1¡ r), the upper bound L(r) is now given by

L(r) =
e¡r ¡ (1¡ r)

1 + r
if r < 1; =

e¡r

1 + r
if r ¸ 1:

This function has the same shape as the one in (15) and the maximum is L(1) ¼ 0:183.
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markets (i.e., k = 2), then integrating the two sub-markets into one increases the coordination

cost by at most 0:25% of the total value of output.

In general, if the worker/job ratio is not too high, the marginal increase in the matching

di±culty generated by integration is decreasing as the market becomes increasingly integrated.

To see this, begin with ka sub-markets and let xa = ka=M . The cost of integrating the sub-markets

into ka=t (t ¸ 2) sub-markets can be obtained by modifying (13):

1

1 + r

h
e¡rg(xa=t) ¡ e¡rg(xa)

i
:

For ¯xed xa, this cost is increasing and concave in t, provided r · 2t=xa. Since xa · 1=2 and

t ¸ 2, successive integration increases the cost by smaller and smaller amounts, provided r · 8.
5 Conclusion

When it is costly for agents to ¯nd a match, integrating small markets into a large one reduces the

number of matches. We have focused on this dependence of the matching di±culty on the market

size by explicitly analyzing how ¯rms' wage decisions a®ect the number of matches and how they

respond to market integration. It is shown that integration reduces the relative market power of

agents on the much shorter side of the market. Thus, if the worker/job ratio is high, integration

increases wages, but if the worker/job ratio is low, integration reduces wages. Regardless of the

nature of the wage response, market integration reduces social welfare when everyone is weighted

equally. This marginal reduction in welfare shrinks as the market becomes increasingly integrated.

The social welfare loss from the increased matching di±culty might be outweighed by other

bene¯ts of market integration, which are deliberately abstracted from the analysis here. As shown

in Section 4, the upper bound on the social welfare loss from increased matching di±culty falls

very rapidly when the total demand in the market deviates (in either direction) from the total

supply. Thus, when the labour market is characterized by a shortage of skilled workers, the

increased matching di±culty is likely to be overwhelmed by other bene¯ts of market integration.

For transitional economies the high unemployment rate typically associated with increased labour

mobility might be small in comparison with the bene¯t from better matches between skills and
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jobs.

To conclude the paper, we comment on two assumptions made in the model. The ¯rst is that

each ¯rm has only one job to o®er. This assumption is not necessary for the negative dependence

of the aggregate number of matches on the market size. Appendix B extends the analysis to the

case where each ¯rm o®ers more than one job and obtains similar results. The second assumption

is that the wage posting game ends after one-period play. In reality, agents who fail to get matched

in one period can try to get matched in the future. Incorporating this repeated play will reduce

the extent to which market integration reduces the number of matches. However, the negative

e®ect will not vanish, as long as there always are positive measures of unmatched agents on both

sides of the market. In the stationary equilibrium of such an economy, ¯rms' wage decisions and

workers' trade-o® between a wage and the match probability will be qualitatively similar to the

ones in the one-period game. The restriction to a one-period setting is thus a useful simpli¯cation

for markets, such as the labour market, that exhibit high turnovers and persistent unemployment.
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Appendix

A Proof of Proposition 4

The function f(x) de¯ned in (12) is an increasing function for all x 2 (0; ¹x], as shown later. With

f 0(x) > 0, consider the three cases in the proposition:

Case (i): r · f( 1M ). In this case (12) is satis¯ed and so w0(x) > 0 for all x 2 [ 1M ; ¹x].

Case (ii): r ¸ f(f(12 )=2). Since f(f(12 )=2) < f(12 ), either r ¸ f(12 ) or f(f(12 )=2) · r < f(12 ).

If r ¸ f(12 ) then (12) is violated for all x · 1=2 and so w0(x) < 0 for all x · ¹x (note ¹x · 1=2). If

r < f (12 ) then ¹x · r=2 < f(12 )=2 and so r ¸ f(f(12 )=2) implies w0(x) < 0 for all x 2 [ 1M ; ¹x].

Case (iii): f( 1M ) < r < f(f(
1
2)=2). Then f(¹x) > r and so there exists x0 2 ( 1M ; ¹x) such that

r > f(x) for x 2 [ 1M ; x0), in which case w0(x) < 0, and r < f(x) for x 2 (x0; ¹x], in which case

w0(x) > 0.

Let us now show f 0(x) > 0 for x 2 (0; ¹x]. Calculate f 0(x) = g0(x)f1(x)=[g(x)]2 where

f1(x) =
2(g(x))2

g0(x)
+ ln(g0(x))¡ g(x)g

00(x)
(g0(x))2

:

Since g(x) > 0 and g0(x) > 0 for all x 2 (0; 1) (see the proof of Proposition 3), f 0(x) > 0 i®

f1(x) > 0. It can be computed that f1(12 ) > 0. Since ¹x · 1=2, f1(x) > 0 for all x 2 (0; ¹x] if

f10(x) < 0 in this range. Compute:

g0(x) =
1

x

µ
1

1¡ x ¡ g(x)
¶
; g00(x) =

1

x2

·
3x¡ 2
(1¡ x)2 + 2g(x)

¸
;

g000(x) =
1

x3

"
11x2 ¡ 15x+ 6
(1¡ x)3 ¡ 6g(x)

#
:

Then,

f10(x) =
g(x)

x4(1¡ x)2[g0(x)]3
·
2¡ 3x
1¡ x ¡ (4¡ x)g(x) + 2 [g(x)]2

¸
:

Thus f10(x) < 0 i® g(x) 2 (g1(x); g2(x)) where

g1(x) = 1¡
x

4

2
41 +

s
9¡ x
1¡ x

3
5 ; g2(x) = 1¡

x

4

2
41¡

s
9¡ x
1¡ x

3
5 :

It is easy to show that the function [xg(x) ¡ xg1(x)] is an increasing function for x 2 (0; 1)

and has a value 0 at x = 0. Thus g(x) > g1(x). To show g(x) < g2(x), consider the function
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f2(x) ´ xg2(x)¡ xg(x). Then f2(0) = 0 and

f20(x) » (1¡ x)(9¡ x) + 2x2 ¡ (3¡ x)
q
(1¡ x)(9¡ x):

It can be veri¯ed that the expression on the right-hand side is negative for all 0 < x · 1=2. Thus

f20(x) < 0 and so f2(x) ¸ f2(12 ) > 0 for all 0 < x · 1=2. This shows g(x) < g2(x) and so

f1(x) > 0 for all 0 < x · 1=2, yielding f 0(x) > 0.
B The Case When Each Firm Has Multiple Vacancies

The symbols (M;N;m;n; x) have the same meanings as in Section 3. Let each ¯rm have b ¸ 2

jobs. Since the case where one ¯rm can satisfy all the workers in the sub-market is not interesting,

let us assume b < n. In the symmetric, mixed-strategy equilibrium, all ¯rms post a wage w 2 (0; 1)

and each worker applies to each ¯rm with probability 1=m. If a ¯rm gets b or fewer workers, each

worker gets a job with probability one; if the ¯rm gets t > b applicants, only b applicants will be

chosen randomly and so each applicant will be chosen with probability b=t.

To determine w, consider a single ¯rm's deviation to a wage wd 2 (0; 1). Observing the

deviation, each worker applies to the deviator with probability ®d and applies to each of the

non-deviators with probability ®̂ = (1 ¡ ®d)=(m ¡ 1). If a worker applies to the deviator, the

probability that he gets a job is

q(®d) ´
b¡1X

t=0

Ctn¡1(®
d)t(1¡ ®d)n¡1¡t +

n¡1X

t=b

b

t+ 1
Ctn¡1(®

d)t(1¡ ®d)n¡1¡t:

The ¯rst summation deals with cases where the ¯rm has at most (b ¡ 1) other applicants; the

second summation deals with cases where the ¯rm has at least b other applicants. The probability

q(®d) can be rewritten as

q(®d) = b ¢ 1¡ (1¡ ®
d)n

n®d
¡
b¡2X

t=0

µ
b

t+ 1
¡ 1

¶
Ctn¡1(®

d)t(1¡ ®d)n¡1¡t:

Similarly, when a worker applies to a non-deviator, the probability that he gets a job is q(®̂). For

the worker to be indi®erent between the two ¯rms, we must have:

wd ¢ q(®d) = w ¢ q
Ã
1¡ ®d
m¡ 1

!
: (16)
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Again, this de¯nes a relationship ®d = ®d(wd; w).

The deviator chooses wd to maximize the expected pro¯t, taking w as given and facing the

constraint ®d = ®d(wd; w). The deviator's expected pro¯t is

(1¡wd)
2
4
b¡1X

t=1

tCtn(®
d)t(1¡ ®d)n¡t + b ¢

nX

j=b

Ctn(®
d)t(1¡ ®d)n¡t

3
5 :

The expression in [¢] can be shown to be n®dq(®d). Using (16) to eliminate wd, the deviator's

expected pro¯t is:

n®d
"
q(®d)¡ wq

Ã
1¡ ®d
m¡ 1

!#
:

Deriving the ¯rst-order condition for ®d and setting ®d = ® = 1=m, one obtains:

w =
q( 1m)¡ ®±
q( 1m ) +

®
m¡1±

; where ± = ¡q0(®d) j®d=1=m .

Let H now be the probability that a ¯rm successfully ¯lls each vacancy and F be a ¯rm's

expected pro¯t per vacancy. De¯ne (U;V ) accordingly. To ¯nd how (w;H;V;U; F ) respond to

market integration, consider an example: M = 20, b = 5, N = 100. Initially the market is

separated into ¯ve sub-markets so that m = 4 and n = 20. Integrating the ¯ve sub-markets into

one yields the following changes:

¢w ¼ 0:047; ¢H ¼ ¡0:019; ¢V ¼ ¡0:016; ¢F ¼ ¡0:049; ¢U ¼ 0:030:

In this example, market integration increases wages, increases workers' surplus but reduces ¯rms'

surplus and reduces the social welfare level.

Workers can also be worse o®. For example, if N = 80, integrating the ¯ve sub-markets into

one yields the following changes:

¢w ¼ 0:013; ¢H ¼ ¡0:017; ¢V ¼ ¡0:017; ¢F ¼ ¡0:015; ¢U ¼ ¡0:003:
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