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Abstract:
This paper studies a general equilibrium model with multiple stages of production
and sticky prices. Working through the input-output relations among industries
at different stages and the timing of firms’ pricing decisions, the model generates
persistent fluctuations in both the inflation rate and aggregate output following a
monetary shock. The persistence is larger, the greater the number of production
stages. With a sufficient number of stages, the real persistence is arbitrarily large.
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I. I NTRODUCTION

An order for a new computer often initiates a chain of orders for parts. When
the order arrives at a computer vendor’s desk, the vendor will start contacting sup-
pliers of microchips, processors, hard-drives, monitors, and operating systems. The
monitor maker will then contact suppliers of plastic, glass, and electronic compo-
nents; and the plastic maker will respond by sending out orders to its own suppliers,
and so on. The computer itself, once made, is frequently used as an intermediate
input in the production of other goods.

Production of a final good typically requires multiple stages of processing. A
thesis of this paper is that the multi-stage structure of production is important for
explaining the relationship between money and aggregate economic activity. We
show that the input-output structure helps explain persistent fluctuations in both the
inflation rate and aggregate output following a monetary shock.

It is an old idea that in an industrialized economy the relationship between
money, prices, and output is tied to the interdependence of firms at different stages
of production. The idea has been presented at least since Means (1935). Here we
quote Basu (1995):

[Means] presented evidence that different industries had very dif-
ferent patterns of price changes versus quantity changes in the Great
Depression. Means showed that simple goods, such as agricultural
products, declined heavily in price, while their quantity was almost
unchanged. Complex manufactured goods, on the other hand, showed
the opposite pattern, with small price changes and consequently huge
declines in the quantity of sales. Crude manufactured goods fell some-
where in between.

More recent studies have confirmed Means’s finding on the patterns of price changes
at different stages of production (e.g., Gordon (1981), Blanchard (1987), Clark
(1999), and Hanes (1999)).

The evidence presented by Means (1935) and others have led many to speculate
that there are connections between the chain structure of production and aggregate
fluctuations. For example, Gordon (1990) considers “the input-output table as an
essential component in the description of price stickiness.” Yet, few attempts have
been made to theorize the idea, with the notable exception of Blanchard (1983).
Blanchard (1983) shows that a simple structural model incorporating a chain of
production and sticky prices can generate patterns of price changes similar to those
noted by Means (1935).
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Blanchard (1983) was concerned with explaining the sluggish adjustment of
the price level. More recently, another set of empirical facts has attracted attention:
the persistent responses of the inflation rate and aggregate output to a monetary
shock (e.g., Christiano, et al. (1999)). Nelson (1998) compares the ability of sev-
eral popular business cycle models with sticky prices in generating the inflation
persistence. His finding suggests that most sticky price models need to be modi-
fied “to reconcile them with the actual behavior of inflation.” On the other hand,
Chari, et al. (1998) challenge the ability of traditional models with staggered price
contracts in the spirit of Taylor (1980) in explaining the output persistence. In
meeting this challenge, various mechanisms have been proposed, most of which
focus on introducing factor market frictions in the baseline model of Chari, et al.
(1998) (e.g., Huang and Liu (1998) and Gust (1998)).

In this paper, we propose a new mechanism to explain the behavior of the in-
flation rate and aggregate output following a monetary shock. We build a model in
which the production of a final good goes through multiple stages, as in Blanchard
(1983), but in which individuals optimize. In the model, a firm at the first stage
uses labor as an input, while a firm at a later stage uses all outputs produced at the
previous stage. A representative household consumes a basket of goods produced
at the final stage and supplies labor to firms at the first stage. To generate real ef-
fects of a monetary shock, we assume that pricing decisions are staggered at each
stage (e.g., Taylor (1980, 1999)). We derive firms’ optimal pricing decision rules
within the standard monopolistic competition framework (e.g., Blanchard and Kiy-
otaki (1987)). Working through the input-output relations among industries across
stages and the timing of pricing decisions among firms within each stage, the model
generates persistent responses of both the inflation rate and aggregate output to a
monetary shock. The persistence is larger, the greater the number of production
stages. If the production of a good goes through a sufficient number of stages,
arbitrary real persistence obtains.

To illustrate the importance of the input-output structure in generating persis-
tence, we first show that, in the special case of a single production stage, there
is neither inflation nor real effects of money beyond the initial contract duration.
In a single-stage model, prices immediately rise following the shock, since the
wage rate, and hence the marginal cost for all firms, rises quickly (e.g., Chari, et
al. (1998)). To generate persistence in the inflation rate or in real output, more
production stages are needed.

Our baseline model with multiple stages of production does generate persistent
fluctuations in both the inflation rate and real output, since firms at more advanced
processing stages face smaller changes in marginal cost and thus have less incentive
to change prices than do firms at less advanced stages. Following the shock, the
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marginal cost for firms at the first stage immediately rises and consequently these
firms raise prices fully whenever they have the chance to renew contracts. But
firms at the second stage do not face the full rise in marginal cost. Their marginal
cost does not rise fully because it is determined by the price index of the first-stage
goods, and the price index records both the prices newly adjusted and those fixed by
previous contracts. Thus firms at the second stage do not have an incentive to adjust
their prices fully even if they have the chance to renew contracts. In consequence,
firms at the third stage face an even smaller change in their marginal cost, and they
have even less incentive to adjust prices, and so on. It turns out that, when there
are more processing stages, price level adjustments become more sluggish and the
responses of the inflation rate and real output to the shock become more persistent.
With a sufficient number of stages, the real persistence is arbitrarily large.1

Our conclusion that the degree of price stickiness is a function of the number of
production stages is similar to that of Blanchard (1983), but for different reasons. In
his model, pricing decisions are staggered across different stages and firms within
each stage are homogeneous. Basu (1995) points out that, “if the pricing decision in
Blanchard’s model were made state-dependent then, since the ‘first good’ is made
without intermediate goods, there would be no increase in price rigidity regardless
of the number of stages of production.” But Basu’s (1995) criticism does not apply
to our model. In our model, pricing decisions are staggered among firmswithin
each stage. Under a state-dependent pricing rule, firms at each stage in general do
not have an incentive to synchronize as long as they face heterogeneous costs of
changing prices (e.g., Dotsey, et al. (1997, 1999)). Thus, changes in marginal cost
will diminish along the production chain and price rigidity will increase with the
number of stages.2

There is also some similarity between our model and that of Basu (1995), both
suggesting that a small rigidity in prices of intermediate goods generates large real
effects of a monetary shock. Yet, the models differ in two aspects. First, Basu
(1995) assumes pricing decisions are state-dependent, while in our model, they
are time-dependent. As we have just noted, our results are robust under state-
dependent pricing rules. Second, and more importantly, the input-output struc-
tures differ. Basu (1995) assumes a single production stage with a roundabout
input-output structure, while we have multiple stages of processing with an in-line
chain-of-production structure. Both types of input-output structure are empirically
relevant. While Basu (1995) has shown that a roundabout input-output structure is
an important source of real rigidity, we demonstrate here that the chain structure of
production plays an important role in propagating monetary shocks.

The assumption that pricing decisions are staggered is supported by empirical
evidence (e.g., Taylor (1999)). Yet, answering the question of why there is stagger-
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ing rather than complete synchronization is beyond the scope of this paper. In the
literature, some progress has been made on this issue. Dotsey, et al. (1997) show
that introducing heterogeneity of menu costs across firms can result in endogenous
staggering. Ball and Romer (1989) demonstrate that staggering is an equilibrium
outcome if there are firm-specific shocks that arrive at different time for different
firms. Ball and Cecchetti (1988) show that, with imperfect information, firms can-
not distinguish between aggregate demand shocks and firm-specific shocks, and
thus do not have an incentive to synchronize. Gordon (1990) argues that, in a
world with imperfect information, the complexity of the input-output table makes
it unlikely for firms to synchronize, since “the typical firm has no idea of the iden-
tity of its full set of suppliers when all the indirect links within the input-output
table are considered.. . . [T]he sensible firm just waits by the mailbox for news of
cost increases and then. . . passes them on as price increases.” Clearly, incorporat-
ing these elements and thus making staggering endogenous will make the model
more intuitively appealing. But it will not change the mechanism through which
the production chain propagates monetary shocks.

The assumption that labor market is perfectly competitive is for the purpose
of isolating the role of the input-output structure in transmitting monetary shocks.
Under this assumption, labor costs change quickly following a shock, creating an
incentive for a quick price adjustment. Thus, any price level rigidity is generated
solely through the input-output structure. Incorporating labor market rigidity will
dampen fluctuations of labor costs and therefore, along with the input-output in-
teractions, will generate more sluggish changes in the price level. In this sense,
adding labor market rigidity strengthens our results.

In what follows, we describe the model in Section II, present the results in
Section III, and conclude the paper in Section IV. All proofs are contained in the
Appendix.

II. T HE MODEL

In the model, production of consumption goods requiresN stages of process-
ing, from crude material to intermediate goods, then to more advanced goods, and
so on. At each stage, there is a continuum of firms indexed in the interval[0; 1], pro-
ducing differentiated goods. Production at stagen 2 f2; : : : ; Ng requires all goods
produced at stagen � 1, while production at the first stage (i.e., the raw material
sector) uses homogeneous labor services provided by a representative household
(see Figure I for an illustration of the economy’s structure).

In each periodt, there realizes a shockst. The history of events up to datet is
st � (s0; � � � ; st), with probability�(st). The initial realizations0 is given.
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The representative household is infinitely lived and has an expected lifetime
utility given by

1X
t=0

X
st

�t�(st)

"
lnC(st) + � ln

 
M(st)
�PN (st)

!
�	L(st)

#
;

where� 2 (0; 1) is a subjective discount factor,C(st) is consumption,M(st)
is nominal money balances,L(st) is labor hours, and�PN (st) is a price index of
goods produced at the final stage (i.e., a price level). The consumption good is a
Dixit-Stiglitz (1977) composite of final-stage goods. Specifically, we have

C(st) =

�Z 1

0
YN (i; s

t)
��1

� di

� �

��1

� Y (st);(1)

whereYN (i; st) is a typei good produced at stageN and � is an elasticity of
substitution among all such goods. The household is endowed with one unit of
time in each period. It faces a sequence of budget constraints

Z 1

0
PN (i; s

t)YN (i; s
t)di+

X
st+1

D(st+1
jst)B(st+1) +M(st)(2)

�W (st)L(st) + �(st) +B(st) +M(st�1) + T (st);

wherePN (i; st) is the price of a typei good produced at the final stage,B(st+1)
is a one-period nominal bond that costsD(st+1jst) dollars atst and pays off one
dollar in the next period ifst+1 is realized,W (st) is a nominal wage,�(st) is the
household’s claim to all firms’ profits, andT (st) is a nominal lump-sum transfer
from the government. The household maximizes utility subject to (1), (2), and a
borrowing constraintB(st) � � �B for some large positive�B, taking the wage and
prices as given. The initial conditionsM(s�1) andB(s0) are also taken as given.

The price index�PN (st) is given by �PN (st) =
hR 1

0 PN (i; s
t)1��di

i 1

1�� . It fol-
lows that the expenditure on the basket of consumption goods equals the total ex-
penditure on all types of goods produced at the final stage, that is,�PN (s

t)Y (st) =R 1
0 PN (i; s

t)YN (i; s
t)di. The demand function for a typei good produced at stage

N is

Y d
N (i; s

t) =

"
PN (i; s

t)
�PN (st)

#��
Y (st):(3)

Thus, the more expensive is goodi relative to other stage-N goods, the lower is
the relative demand fori.
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Production of each good at stagen 2 f2; : : : ; Ng requires all goods produced
at the previous stage. Specifically, the production function is

Yn(i; s
t) =

�Z 1

0
Yn�1(i; j; s

t)
��1

� dj

� �

��1

;(4)

whereYn(i; st) is the output of firmi at stagen andYn�1(i; j; st) is the input
supplied by firmj at stagen � 1. Production of each good at the first stage uses
labor, with a constant returns to scale production functionY1(i; s

t) = L(i; st);
whereY1(i; st) is the output andL(i; st) is the labor input.

To generate real effects of monetary shocks, we assume that pricing decisions
are staggered (e.g., Taylor (1980, 1999)), and we derive optimal pricing decision
rules within a monopolistic competition framework (e.g., Blanchard and Kiyotaki
(1987)). To focus on the role of the chain-of-production in propagating monetary
shocks, we look at simple two-period staggered price contracts. Under such con-
tracts, in each period, half of the firms at each stage can set new prices for their
outputs. Once a price is set, it remains effective for two periods, which is re-
ferred to as a “contract duration”. We sort the indices of firms at each stage so that
those indexedi 2 [0; 1=2] set new prices in periods0; 2; 4; : : : ; and those indexed
i 2 (1=2; 1] set new prices in periods1; 3; 5; : : : ; and so on. Formally, upon the
realization ofst, if firm i at stagen 2 f1; : : : ; Ng can set a new price, it chooses
Pn(i; s

t) to solve

Max
t+1X
�=t

X
s�

D(s� jst)[Pn(i; s
t)� Vn(i; s

� )]Y d
n (i; s

� );(5)

taking its unit cost functionVn(i; s� ) and a demand scheduleY d
n (i; s

� ) as given.
The unit cost for firms at the first stage is simply the nominal wage rate, that

is, V1(s� ) � V1(i; s
� ) = W (s� ), since labor is the only input at that stage.

The unit cost for firms at stagen 2 f2; : : : ; Ng is derived from minimizing the
cost

R 1
0 Pn�1(j)Yn�1(i; j)dj subject to (4). The resulting unit cost isVn(s� ) �

Vn(i; s
� ) = �Pn�1(s

� ); where �Pn�1(s
� ) �

hR 1
0 Pn�1(j; s

� )1��dj
i 1

1�� is a price
index of all goods produced at stagen � 1. Given constant-returns-to-scale tech-
nologies, the unit cost is also the marginal cost and it is firm-independent.

In the case withn 2 f2; : : : ; Ng, the firm’s demand for goodj produced at
stagen� 1 is also derived from the cost-minimization problem and is given by

Y d
n�1(i; j; s

� ) =

�
Pn�1(j; s

� )
�Pn�1(s� )

���
Yn(i; s

� ):
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The total demand for goodj is the sum of the demand by all firms at stagen, that
is,

Y d
n�1(j; s

� ) =

�
Pn�1(j; s

� )
�Pn�1(s� )

���
Yn(s

� );(6)

whereYn(s� ) �
R 1
0 Yn(i; s

� )di is a linear aggregate of stage-n outputs. Equation
(6) says that the demand forj is higher if its price relative to the price index of all
stage-(n � 1) goods is lower.

Solving the profit-maximization problem (5) yields the optimal pricing deci-
sion rule

Pn(i; s
t) =

�

� � 1

Pt+1
�=t

P
s� D(s� jst)Y d

n (i; s
� )Vn(s

� )Pt+1
�=t

P
s� D(s� jst)Y d

n (i; s
� )

;(7)

wheren 2 f1; : : : ; Ng. Thus the optimal price is a constant mark-up over a
weighted average of the firm’s marginal costs within the contract duration. The
weights are normalized total demand for its output. In light of (3) and (6), the
weights depend on industry- and economy-wide variables only. If the expected
marginal costs rise, the firm will respond by raising its price.

A monetary authority injects newly created money into the economy via a
lump-sum transfer to the household, so that

T (st) =M s(st)�M s(st�1):(8)

The money supplyMs(st) grows at a rate�(st), that is,Ms(st) = �(st)M s(st�1).
We assume thatln�(st) follows a stationary stochastic process.

An equilibrium for this economy consists of allocationsfYN (i; st)gi2[0;1]; L(s
t),

M(st); and B(st+1) for the household, allocationsfL(i; st)gi2[0;1] and prices
fP1(i; s

t)gi2[0;1] for firms at the first stage, allocationsfYn�1(i; j; st)gi;j2[0;1] and
pricesfPn(i; st)gi2[0;1] for firms at stagen, for everyn 2 f2; : : : ; Ng, and wage
rateW (st), bond pricesD(st+1jst), and price indicesf �Pn(st)gn2f1;:::;Ng that sat-
isfy the following conditions: (i) taking wage and prices as given, the household’s
allocations solve the utility maximization problem; (ii) taking wage and all prices
but its own as given, each firm’s allocation and price solve its profit maximization
problem; (iii) markets for labor, money, and bonds clear; (iv) money supply and
transfers are as specified.

It is important to recognize that the composite of final goodsY (st) in (1) can
be interpreted as an aggregate output, corresponding to real GDP in the data.3

To justify this interpretation, first observe that, in an equilibrium, the budget con-
straint (2) is binding since the utility function is strictly monotone. Then, by im-
posing the money market clearing condition and the transfer process (8), we can
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cancel out the terms involving money balances and transfers in the budget equa-
tion. From the bond market clearing condition (i.e.,B(st) = 0), the terms involv-
ing nominal bonds drop out. Thus, with the equilibrium relation�PN (s

t)Y (st) =R 1
0 PN (i; s

t)YN (i; s
t)di, the budget equation reduces to

�PN (s
t)Y (st) =W (st)L(st) + �(st):

The left-hands side of the equation is the aggregate expenditure while the right-
hand side is the total income, including wage income and equity income. The
equity income is the total profits of firms at all production stages. Thus the right-
hand side is also the aggregate value-added. It is clear from this equation thatY (st)
corresponds to real aggregate output, or real GDP.

We focus on a symmetric equilibrium in which firms in the same cohort make
identical decisions. In a symmetric equilibrium, firms are identified by the stage at
which they produce and the time at which they can change prices. Thus we drop
the indicesi andj for individual firms, and letPn(t) denote prices set at timet for
goods produced at stagen 2 f1; : : : ; Ng.

III. T HE RESULTS

In this section, we show that the chain structure of production helps explain the
persistent responses of the inflation rate and aggregate output to a monetary shock.
The persistence increases with the number of production stages. When there is a
sufficient number of stages, arbitrary real persistence obtains.

To elaborate the results, we derive analytical solutions to a log-linearized sys-
tem of equilibrium conditions. We begin by reducing the equilibrium conditions
to 2N + 2 equations, includingN pricing decision equations, a labor supply deci-
sion equation, a money demand equation, andN equations defining price indices.
We then log-linearize these equations around a deterministic steady state. In what
follows, we use lowercase letters to denote the log-deviations of the corresponding
level variables from their steady state values.4

The linearized pricing decision rule for firms at stagen 2 f1; : : : ; Ng is given
by

pn(t) =
1

1 + �
�pn�1(t) +

�

1 + �
Et[�pn�1(t+ 1)];(9)

where �p0(t) denotes the nominal wagew(t) andEt is a conditional expectation
operator. According to (9), a firm’s optimal price is a weighted average of its
expected marginal costs within the contract duration. The marginal cost for a firm
at stagen 2 f2; : : : ; Ng is the price index of goods produced at stagen� 1 since
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the firm uses all these goods as inputs. The marginal cost for a firm at the first stage
is the nominal wage since labor is the only input of that stage. If the marginal costs
are expected to rise, a firm will respond by setting a higher price if it can renew its
contract.

The labor supply decision of the household is described by

w(t) = �pN (t) + y(t):(10)

Thus real wage is proportional to aggregate output. The money demand equation
is

�pN (t) + y(t) = (1� �)m(t) + �Et[�pN (t+ 1) + y(t+ 1)]:(11)

Therefore, nominal GDP is a weighted average of money and expected future nom-
inal GDP. The presence of the expectation terms in (11) reveals that the money
demand is interest-rate sensitive.

Finally, the price index at stagen 2 f1; : : : ; Ng is related to pricing decisions
by

�pn(t) =
1

2
pn(t� 1) +

1

2
pn(t):(12)

Under the staggered contracts, the price index at each stage records both the price
set in the current period and that set in the previous period. The lagged price enters
(12) because each contract lasts for two periods.

The equilibrium conditions are fully described by (9)-(12). To focus on the
role of the input-output structure in generating persistence in the inflation rate and
aggregate output, we assume that there is no serial correlation in the money growth
process. In particular, we assume that the money supply follows a random walk
process, i.e.,m(t) = m(t � 1) + �(t), where�(t) is a white noise disturbance
corresponding to the money growth rate. Suppose that there is a one percent shock
to the money growth rate in period0, that is,�(0) = 1 and�(t) = 0 for all t � 1.
We compute the impulse response functions to determine how the shock is divided
between movements in the price level and in aggregate output. Thus, we focus on a
perfect foresight equilibrium and drop the expectation operatorEt. The following
proposition partially characterizes the equilibrium.

PROPOSITION3.1: There is a unique perfect foresight equilibrium in which

w(t) = 1; t � 0;(13)

pn(t) = 1; t � n� 1; n 2 f1; : : : ; Ng;(14)

�pn(t) = 1; t � n; n 2 f1; : : : ; Ng;(15)

y(t) = 0; t � N:(16)
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Following the shock, nominal wage immediately rises, so does the marginal
cost for firms at the first stage. These firms thus fully raise their prices whenever
they can renew contracts. At the end of the initial contract duration when they all
have had a chance to change prices, the first-stage price index is entirely composed
of fully raised prices and thus rises fully as well.

In the case of a single production stage (i.e.,N = 1), there is neither inflation
nor real effects of money beyond the initial contract duration since, in this case, the
price level corresponds to the first-stage price index which rises fully as soon as
the initial contract duration is over. Clearly, to obtain a persistent response of the
inflation rate or of real output, a sluggish adjustment of the price level is necessary.
We now demonstrate that, with multiple production stages, the model does generate
such a sluggish adjustment.

PROPOSITION3.2: Suppose N � 2. In the perfect foresight equilibrium, the
strict inequalities

pn+1(t) < pn(t); 0 � t � n� 1;(17)

�pn+1(t) < �pn(t); 0 � t � n(18)

hold for every n 2 f1; : : : ; N � 1g.

Hence, when the number of stages increases, changes in the price level are
smaller on a period-by-period basis and the price level does not rise fully for more
periods. In other words, the greater the number of stages, the more sluggish is the
adjustment of the price level.

The key to understanding this result is to see how the effects of the shock on
marginal costs are gradually dampened through the chain. The dampening pro-
cess is illustrated in Figure II for the case withN = 2 (the arrows in the figure
correspond to the equilibrium relations between price decisions and price indices
described by (9) and (12)). Following the shock, firms at the first stage face a full
rise in marginal cost and consequently raise their prices fully whenever they can
renew contracts. Firms at the second stage, however, do not face the full rise in
marginal cost until the second period arrives. The marginal cost of these firms is
equal to the first-stage price index. In the impact period, this price index is an
average of the prices newly adjusted and those fixed by contracts and therefore,
does not rise fully. Facing a partial increase in marginal cost, firms at the second
stage choose not to raise their prices fully even if they can set new prices. At the
end of the initial contract duration, the first-stage price index rises fully, so does
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the marginal cost for firms at the second stage. Thus, those firms that can renew
contracts do choose to adjust prices accordingly. Yet, the second-stage price index
does not rise fully because it is an average of the prices newly adjusted and those
partially adjusted in the impact period. In consequence, changes in prices at the
second stage are smaller and less rapid than do changes in prices at the first stage,
and the price level does not rise fully even when the initial contract duration is over.

WhenN becomes larger, the impact of the shock on marginal costs diminishes
from earlier to later stages, and the adjustments in the price level become more
sluggish. In particular, the price level does not rise fully until periodN arrives, as
illustrated by Table I.

A. Inflation Persistence

In light of Proposition3:2, a greater number of production stages corresponds
to more sluggish changes in the price level. Thus, inflation will last for for more
periods. In addition, the equilibrium relations (10) and (13) suggest that, if adjust-
ments of the price level are more sluggish, then the response of real output will
be larger on a period-by-period basis and be longer-lasting. This finding opens the
way for the chain-of-production mechanism to generate persistent effects of the
shock on inflation and real output.

Yet, to have more persistent responses of the inflation rate and real output also
requires higher auto-correlations in these variables so as to allow their impulse
responses to die out more gradually following the shock. In other words, it requires
larger impulse responses in later periodsrelative to those in earlier periods. Based
on this idea, we measure the magnitude of persistence by the ratio of the impulse
response in periodt to that in periodt� 1.5

We now establish the monotonicity of inflation persistence in the number of
stages. WithN stages, the inflation rate in periodt is equal to�pN (t)� �pN (t� 1).
The inflation persistence is monotone if the ratio of the inflation rate in periodt to
that in periodt� 1 is increasing inN .

PROPOSITION3.3 (Monotonicity of inflation persistence):In the perfect fore-
sight equilibrium, the strict inequality

�pN+1(t)� �pN+1(t� 1)

�pN+1(t� 1)� �pN+1(t� 2)
>

�pN (t)� �pN (t� 1)

�pN (t� 1)� �pN (t� 2)
; 1 � t � N + 1;(19)

holds for all N � 1.

Thus the greater is the number of stages, the more gradually does the response
of the inflation rate die out.
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B. Output Persistence

Given the equilibrium relations in (10) and (13), real aggregate output in period
t is equal to1� �pN (t) when there areN stages. Output persistence is monotone if
the ratio of output in periodt to that in periodt� 1 increases withN .

PROPOSITION 3.4 (Monotonicity of output persistence):In the perfect fore-
sight equilibrium, the strict inequality

1� �pN+1(t)

1� �pN+1(t� 1)
>

1� �pN (t)

1� �pN (t� 1)
; 1 � t � N;(20)

holds for all N � 1.

Therefore, the greater the number of stages, the more persistent is the response
of output to the shock. To illustrate this result, we examine the model’s implications
on output persistence based on two persistence measures which are special cases
of ours. One is the ratio of the output response at the end of the initial contract
duration to that in the impact period (i.e., the “contract multiplier”). The other
is the number of periods it takes for output to return to half of the level of its
initial response (i.e., the “half-life”). As illustrated by Table II, both the contract
multiplier and the half-life increase withN . As the number of stages grows from
one to five and then to ten, for example, the contract multiplier increases from0 to
0:46 and then to0:62.

The remaining question is: how long a way can the input-output structure go
in generating real persistence? Our next result shows that, whenN is sufficiently
large, the ratio of the output response in periodt to that in periodt�1 is sufficiently
close to1.

PROPOSITION3.5: In the perfect foresight equilibrium, the equality

lim
N!1

1� �pN (t)

1� �pN (t� 1)
= 1(21)

holds for all t � 1.

According to (21), arbitrary real persistence obtains when there is a sufficient
number of stages. In the proof of this proposition, we show that whenN ap-
proaches infinity, the price level does not change and real output carries the full
burden of adjustment. Thus the chain-of-production mechanism goes a long way
in generating real persistence.
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IV. CONCLUSION

We have shown that a model with multiple stages of production and sticky
prices helps explain the behavior of inflation and aggregate output following a
monetary shock. The effects of the shock on the inflation rate and real output
are more persistent, the greater the number of production stages. With a sufficient
number of stages, arbitrary real persistence obtains.

To help exposition, we have assumed a dense input-output structure, with labor
being used at the first stage only. These assumptions are not essential for our re-
sults. Our conclusion does not hinge upon the assumption that production of a good
at a given stage usesall outputs produced at the previous stage. To dampen the fluc-
tuations of marginal costs across stages, what matters is that input-supplying firms
do not change their prices simultaneously. It does not matter whether the input-
supplying firms constitute all or just a fraction of the firms of the previous stage.
Neither do our results depend on the assumption that labor is used at the first stage
only. With labor input at every stage, the mechanism through which marginal cost
fluctuations are dampened along the production chain works in the same way as in
the baseline model.

To assess the quantitative importance of the input-output structure in explaining
the relationship between money, prices, and output, however, we do need to have
labor input at every stage and to calibrate the share of labor and of intermediate
goods at each stage. A sensible quantitative model built for this purpose should
also take into account labor market rigidity, for there is overwhelming evidence
on such rigidity. In a model like this, labor and purchased materials are both a
component of cost. With nominal rigidity in both the labor market and the goods
market and through the interactions of prices and costs along the production chain,
the model is likely to account for a significant fraction of the observed fluctuations
in the inflation rate and real output following a monetary shock.6

The quantitative importance of the input-output structure also depends on the
number of production stages (theN in our model). Calibrating the value ofN ,
however, requires a detailed examination of the input-output table. In light of our
conclusion that the input-output structure is potentially a powerful mechanism in
propagating monetary shocks, an empirical investigation of the input-output table
should be elevated to the top of the research agenda. Casual observations do sug-
gest thatN is likely to be large. On this, Gordon (1990) pictures the world as “a
giganticn � n matrix, wheren is measured in the thousands, if not the millions.
. . . The gigantic matrix represents the real world, full of heterogeneous firms en-
meshed in a web of intricate supplier-demander relationships.” In this web, the
intricately made computer is perhaps just a tiny node.

13



APPENDIX: PROOFS

PROOF OFPROPOSITION3.1: Using (10), (11) andm(t) = 1 for t � 0, we
obtain

w(t) = 1 + [w(0) � 1]=�t(22)

for eacht � 0. Subsituting (22) into (9) for the case withn = 1 yields

p1(t) = 1 + 2[w(0) � 1]=[�t(1 + �)](23)

for eacht � 0. Substituting (12) into (9) leads to

pn(t) =
1

2(1 + �)
pn�1(t� 1) +

1

2
pn�1(t) +

�

2(1 + �)
pn�1(t+ 1)(24)

for eacht � 0 and eachn 2 f2; : : : ; Ng. Using (23) and (24), we can prove by
induction onn that

pn(t) = 1 + 2[w(0) � 1]=[�t(1 + �)](25)

for eacht � n � 1 and eachn 2 f2; : : : ; Ng. It then follows from (12), (23) and
(25) that

�pn(t) = w(t)(26)

for eacht � n and eachn 2 f1; : : : ; Ng.
We claim that the only value ofw(0) that is consistent with an equilibrium is

w(0) = 1. If otherwise,w(0) > 1 or w(0) < 1, then by (22), ast goes to in-
finity, w(t) diverges to plus or minus infinity at a rate of1=�, so does the price
level �pN (t) as implied by (26). These possibilities, however, can be ruled out as
in Obstfeld and Rogoff (1983, 1986). The hyper-inflationary path withw(t)!1

cannot be an equilibrium, because with the log-utility in real balances the house-
hold would suffer an infinite utility loss as real balances approach zero along such
a path. The hyper-deflationary path withw(t)! �1 cannot be an equilibrium ei-
ther, because it would violate the appropriate transversality condition with respect
to real balances. Therefore,w(0) = 1, and there is a unique equilibrium in which
w(t) = 1 for all t � 0 according to (22). That is, equation (13) holds. Equations
(14) and (15) then follow from (23), (25) and (26). Finally, equation (16) follows
from (10), (13) and (15). This completes the proof.

PROOF OF PROPOSITION 3.2: We prove(17) by induction onn: We first
verify (17) forn = 1. Equation (14) implies thatp1(0) = 1 and thus�p1(0) = 1=2
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according to (12). This together with�p1(1) = 1 by (15) results inp2(0) = 1 �
1=[2(1 + �)] < 1 according to (9). Therefore, (17) holds forn = 1. This would
be the end of the proof of (17) ifN = 2. Without loss of generality, we assume
N > 2. Suppose that (17) holds forn with 1 � n � N � 2. We need to show that
(17) holds forn+ 1, that is,

pn+2(t) < pn+1(t); 0 � t � n:(27)

Fix an arbitraryt with 0 � t � n. It follows that�1 � t � 1 � n � 1 and
1 � t+ 1 � n+ 1: By the induction hypothesis and (14), we have

pn+1(t� 1) � pn(t� 1); pn+1(t) � pn(t); pn+1(t+ 1) � pn(t+ 1);

with at least one strict inequality. Noticing that relation (24) holds for eacht � 0
and eachn 2 f2; : : : ; Ng, we have

pn+2(t)� pn+1(t) =
1

2(1 + �)
[pn+1(t� 1)� pn(t� 1)]+

1

2
[pn+1(t)� pn(t)] +

�

2(1 + �)
[pn+1(t+ 1)� pn(t+ 1)] < 0;

which establishes (27). This completes the proof of (17).
To prove (18), fix an arbitraryn 2 f1; : : : ; N � 1g and an arbitraryt with

0 � t � n. It follows that�1 � t� 1 � n� 1. Then (14) and (17) imply that

pn+1(t� 1) � pn(t� 1); pn+1(t) � pn(t);

with at least one strict inequality, which together with (12) leads to

�pn+1(t)� �pn(t) =
1

2
[pn+1(t� 1)� pn(t� 1)] +

1

2
[pn+1(t)� pn(t)] < 0:

This establishes (18), and thus completes the proof.

PROOF OFPROPOSITION 3.3: We prove theproposition by induction onN .
To simplify notations, we define�N (t) � �pN (t) � �pN (t � 1). Thus�N (t) is the
inflation rate in periodt when there areN stages. The claimed inequality in (19)
can be rewritten as

�N+1(t)

�N+1(t� 1)
>

�N (t)

�N (t� 1)
; 1 � t � N + 1:(28)
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It is straightforward to verify that (28) holds forN = 1 andN = 2. Now
suppose it holds when there areN > 2 stages. We need to show that it also holds
when there areN + 1 stages. That is, we need to establish

�N+2(t)

�N+2(t� 1)
>

�N+1(t)

�N+1(t� 1)
; 1 � t � N + 2:(29)

We proceed by first noting that, when adding an additional stage to a chain with
N stages, (9)-(12) remain to be equilibrium conditions for the modified economy
with N + 1 stages, withN + 1 in place ofN everywhere.

Manipulating (9) and (12) for indexN + 1 leads to

�pN+1(t) =

(
1

2(1+�)
�pN (t� 1) + 1

2
�pN (t) +

�

2(1+�)
�pN (t+ 1); if t � 1;

1
2(1+�)

�pN (0) +
�

2(1+�)
�pN (1); if t = 0;

(30)

which, along with the notation�N (t) � �pN (t)� �pN (t� 1), implies that

�N+1(t) =

8>><
>>:

1
2(1+�)

�N (t� 1) + 1
2
�N (t) +

�

2(1+�)
�N (t+ 1); if t � 2;

1
2
�N (0) +

1
2
�N (1) +

�

2(1+�)
�N (2); if t = 1;

1
2
�N (0) +

�

2(1+�)
�N (1); if t = 0:

(31)

Similarly, the�N+2(t) term in (29) is given by

�N+2(t) =

8>><
>>:

1
2(1+�)

�N+1(t� 1) + 1
2
�N+1(t) +

�

2(1+�)
�N+1(t+ 1); if t � 2;

1
2
�N+1(0) +

1
2
�N+1(1) +

�

2(1+�)
�N+1(2); if t = 1;

1
2
�N+1(0) +

�

2(1+�)
�N+1(1); if t = 0:

(32)
By the induction hypothesis, we have

�N+1(t+ 1)

�N+1(t)
>

�N (t+ 1)

�N (t)
;

�N+1(t)

�N+1(t� 1)
>

�N (t)

�N (t� 1)
;(33)

�N+1(t� 1)

�N+1(t� 2)
>

�N (t� 1)

�N (t� 2)
; if 2 � t � N ;

�N+1(t+ 1) = �N (t+ 1) = �N (t) = 0;
�N+1(t)

�N+1(t� 1)
>

�N (t)

�N (t� 1)
;(34)

�N+1(t� 1)

�N+1(t� 2)
>

�N (t� 1)

�N (t� 2)
; if t = N + 1;
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�N+1(t+ 1) = �N+1(t) = �N (t+ 1) = �N (t) = �N (t� 1) = 0;(35)
�N+1(t� 1)

�N+1(t� 2)
>

�N (t� 1)

�N (t� 2)
; if t = N + 2:

Finally, (31)-(35) along with Lemma 1 establish that

�N+2(t)

�N+2(t� 1)
>

�N+1(t)

�N+1(t� 1)
; 3 � t � N + 2:

To establish (29), it remains to show that

�N+2(2)

�N+2(1)
>

�N+1(2)

�N+1(1)
(for t = 2); and

�N+2(1)

�N+2(0)
>

�N+1(1)

�N+1(0)
(for t = 1):

Given (31) and (32), it is equivalent to showing that, fort = 2,

1
2(1+�)

�N+1(1) +
1
2
�N+1(2) +

�

2(1+�)
�N+1(3)

1
2
�N+1(0) +

1
2
�N+1(1) +

�

2(1+�)
�N+1(2)

>

1
2(1+�)

�N (1) +
1
2
�N (2) +

�

2(1+�)
�N (3)

1
2
�N (0) +

1
2
�N (1) +

�

2(1+�)
�N (2)

;

and fort = 1,

1
2
�N+1(0) +

1
2
�N+1(1) +

�

2(1+�)
�N+1(2)

1
2
�N+1(0) +

�

2(1+�)
�N+1(1)

>

1
2
�N (0) +

1
2
�N (1) +

�

2(1+�)
�N (2)

1
2
�N (0) +

�

2(1+�)
�N (1)

:

Both inequalities follow from the induction hypothesis and Lemma 2.

PROOF OFPROPOSITION 3.4: We prove theproposition by induction onN:
DefineYN (t) � 1� �pN (t) so that (20) can be written as

yN+1(t)

yN+1(t� 1)
>

yN (t)

yN (t� 1)
; 1 � t � N:(36)

We shall verify in Lemma 1 that (36) holds forN = 1; 2; 3. Suppose that (36)
holds forN � 3: We need to show that (36) holds forN + 1, that is,

yN+2(t)

yN+2(t� 1)
>

yN+1(t)

yN+1(t� 1)
; 1 � t � N + 1:(37)

We first use (30) to obtain a recursive relation

yN+1(t) =

(
1

2(1+�)
yN(t� 1) + 1

2
yN (t) +

�

2(1+�)
yN(t+ 1); if t � 1;

1
2(1+�)

yN(0) +
1
2
+ �

2(1+�)
yN (1); if t = 0:

(38)
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Similarly, we obtain theyN+2(t) term in (37)

yN+2(t) =

(
1

2(1+�)
yN+1(t� 1) + 1

2
yN+1(t) +

�

2(1+�)
yN+1(t+ 1); if t � 1;

1
2(1+�)

yN+1(0) +
1
2
+ �

2(1+�)
yN+1(1); if t = 0:

(39)
We then note that a version of Proposition 1 holds for the modified economy with
N + 1 stages, withN + 1 in place ofN everywhere. Using (15) and the induction
hypothesis, we obtain

yN+1(t+ 1)

yN+1(t)
>

yN (t+ 1)

yN (t)
;

yN+1(t)

yN+1(t� 1)
>

yN(t)

yN (t� 1)
;(40)

yN+1(t� 1)

yN+1(t� 2)
>
yN (t� 1)

yN (t� 2)
; if 2 � t � N � 1;

yN+1(t+ 1) = yN (t+ 1) = yN (t) = 0;
yN+1(t)

yN+1(t� 1)
>

yN(t)

yN (t� 1)
;(41)

yN+1(t� 1)

yN+1(t� 2)
>

yN(t� 1)

yN(t� 2)
; if t = N ;

yN+1(t+ 1) = yN+1(t) = yN (t+ 1) = yN (t) = yN (t� 1) = 0;(42)
yN+1(t� 1)

yN+1(t� 2)
>

yN (t� 1)

yN (t� 2)
; if t = N + 1:

Finally, (38)-(42) and Lemma 1 imply that

yN+2(t)

yN+2(t� 1)
>

yN+1(t)

yN+1(t� 1)
; 2 � t � N + 1:

To establish (37), it thus remains to show that

yN+2(1)

yN+2(0)
>

yN+1(1)

yN+1(0)
;

which, given (38) and (39), is equivalent to showing that

1
2(1+�)

yN+1(0) +
1
2
yN+1(1) +

�

2(1+�)
yN+1(2)

1
2(1+�)

yN+1(0) +
1
2
+ �

2(1+�)
yN+1(1)

>

1
2(1+�)

yN (0) +
1
2
yN (1) +

�

2(1+�)
yN (2)

1
2(1+�)

yN (0) +
1
2
+ �

2(1+�)
yN (1)

:

(43)
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To establish (43), by Lemma 1, it suffices to show that

yN+1(2)

yN+1(1)
>

yN (2)

yN (1)
;

yN+1(1)

1
>

yN (1)

1
;

yN+1(0)

yN+1(0)
=

yN (0)

yN (0)
:

The first inequality follows from the induction hypothesis, the second follows from
(18) for indexN in an economy withN + 1 stages, and the last equality is trivial.
This establishes (37), and thus completes the proof.

PROOF OF PROPOSITION 3.5: In light of (10), (12) and (13), it suffices to
show that, for eacht � 0,

lim
N!1

pN (t) = 0:(44)

We proceed by first showing that the limit exists. Similarly as in the proofs of
Propositions 3.1 and 3.2, we can show thatpN (t) is monotonically decreasing in
N . The recursive relations in (24) imply that, for allN � 2, pN (t) is a weighted
average of the first-stage pricesp1(�1), p1(0); : : : ; andp1(t+N�1). This together
with (14) and the fact thatp1(�1) = 0 implies thatpN (t) is uniformly bounded
from below by0 and from above by1. Therefore, for eacht � �1, the limit of
pN (t) asN !1 exists. Denote this limit byp(t). Then, triviallyp(�1) = 0, and

0 � p(t) � 1;(45)

for eacht � 0. It remains to show thatp(t) = 0 for eacht � 0. For convenience,
we rewrite here (24) for indexN and for eacht � 0:

pN (t) =
1

2(1 + �)
pN�1(t� 1) +

1

2
pN�1(t) +

�

2(1 + �)
pN�1(t+ 1):

Since each of the four terms in the above equation converges to a finite limit, taking
N !1 on both sides of the equation leads to

p(t) =
1

2(1 + �)
p(t� 1) +

1

2
p(t) +

�

2(1 + �)
p(t+ 1);

which can be rewritten asp(t + 1) � p(t) = [p(t) � p(t� 1)]=�. By iterating on
t, we get

p(t+ 1)� p(t) =

�
1

�

�t+1

[p(0) � p(�1)]:(46)

Summing up both sides of (46) through periods0; : : : ; t, and usingp(�1) = 0 and
0 < � < 1, we havep(t+ 1) = p(0)[(1=�)t+2 � 1]=[(1=�) � 1].7 It follows that,
for eacht � 0,

p(t) =

"
(1=�)t+1 � 1

(1=�) � 1

#
p(0):(47)

19



Equation (47) implies thatp(0) = 0. If otherwisep(0) > 0, then there exists some
� � 0 such thatp(t) > 1 for t � � , a contradiction to (45). It follows immediately
thatp(t) = 0 for t � 0. This completes the proof.

LEMMA 1: Let A;B;C;D and a; b; c; d be arbitrary nonnegative real nume-
brs. Then,

1
2(1+�)

B + 1
2
C + �

2(1+�)
D

1
2(1+�)

A+ 1
2
B + �

2(1+�)
C

>

1
2(1+�)

b+ 1
2
c+ �

2(1+�)
d

1
2(1+�)

a+ 1
2
b+ �

2(1+�)
c

(48)

if one of the following three conditions holds:
(i) D

C
� d

c
; C

B
� c

b
; B

A
� b

a
; with at least one strict inequality,

(ii) D = d = c = 0; C
B
� c

b
; B

A
� b

a
; with at least one strict inequality,

(iii) C = D = b = c = d = 0; B
A
> b

a
;

where all variables are strictly positive unless specified otherwise.

PROOF: We first prove (48) under (i). Cross multiplying the terms on both
sides of (48) and expanding the resulting expressions show that (48) is equivalent
to the following inequality:

1

4(1 + �)2
Ba+

1

4(1 + �)
Bb+

�

4(1 + �)2
Bc+

1

4(1 + �)
Ca+

1

4
Cb+

�

4(1 + �)
Cc(49)

+
�

4(1 + �)2
Da+

�

4(1 + �)
Db+

�2

4(1 + �)2
Dc

>
1

4(1 + �)2
Ab+

1

4(1 + �)
Ac+

�

4(1 + �)2
Ad+

1

4(1 + �)
Bb+

1

4
Bc+

�

4(1 + �)
Bd

+
�

4(1 + �)2
Cb+

�

4(1 + �)
Cc+

�2

4(1 + �)2
Cd

Using (i) to compare the two sides of (49) term by term leads to a conclusion that
the terms on the left-hand side are always larger than or equal to the corresponding
terms on the right-hand side, except for those terms involvingBc andCb. We thus
need to show that

�

4(1 + �)2
Bc+

1

4
Cb �

1

4
Bc+

�

4(1 + �)2
Cb;

or, by collecting terms, that

1

4

�
1�

�

(1 + �)2

�
(Bc� Cb) � 0:
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The above inequality holds since0 < � < 1 andBc � Cb by (i). Since there is
at least one strict inequality in (i), (49) holds, and so does (48). The proof of (48)
under (ii) or (iii) is similar, with the specified zero terms imposed in (49). This
completes the proof.

LEMMA 2: For any positive real numbers A;B;C;D and a; b; c; d, the condi-
tions B

A
> b

a
; C
B
> c

b
; and D

C
> d

c
imply that

1
2(1+�)

B + 1
2
C + �

2(1+�)
D

1
2
A+ 1

2
B + �

2(1+�)
C

>

1
2(1+�)

b+ 1
2
c+ �

2(1+�)
d

1
2
a+ 1

2
b+ �

2(1+�)
c

;

and
1

2(1+�)
B + �

2(1+�)
C

1
2
A+ �

2(1+�)
B

>

1
2(1+�)

b+ �

2(1+�)
c

1
2
a+ �

2(1+�)
b

:

PROOF: (Similar to the proof of Lemma 1).

LEMMA 3: In the perfect foresight equilibrium, the inequalities

1� �pN+1(t)

1� �pN+1(t� 1)
>

1� �pN (t)

1� �pN (t� 1)
; 1 � t � N;

hold for N = 1; 2; 3.

PROOF: Equations (12), (14), and (15) together withp1(�1) = 0 imply that

�p1(0) =
1

2
; �p1(t) = 1; t � 1:

Using the above solutions and repeatedly applying (30) result in the following so-
lutions:

�p2(0) =
1 + 2�

4(1 + �)
; �p2(1) =

3 + 4�

4(1 + �)
; �p2(t) = 1; t � 2;

�p3(0) =
1 + 4�

8(1 + �)
; �p3(1) =

4 + 13� + 8�2

8(1 + �)2
;

�p3(2) =
7 + 16� + 8�2

8(1 + �)2
; �p3(t) = 1; t � 3;

�p4(0) =
1 + 9� + 17�2 + 8�3

16(1 + �)3
; �p4(1) =

5 + 29� + 41�2 + 16�3

16(1 + �)3
;
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�p4(2) =
11 + 44� + 48�2 + 16�3

16(1 + �)3
; �p4(3) =

15 + 48� + 48�2 + 16�3

16(1 + �)3
;

�p4(t) = 1; t � 4:

It is then straightforward to verify the claimed inequality by direct substitutions.
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NOTES

1. Therefore the multi-stage production structure creates a “real rigidity” in the
sense of Ball and Romer (1990). It is also important to recognize that, the
meaning of “inflation persistence” here is different from that in, for example,
Fuhrer and Moore (1995). By “inflation persistence,” they mean that disin-
flation causes an output loss (see also Ball (1994, 1995)), while here we refer
to the high serial correlation in the response of inflation to a monetary shock
(see also Nelson (1998)).

2. Under a state-dependent pricing rule, our results will hold as long as firms at
some stages of production face heterogeneous menu costs. Casual observa-
tions suggest that many firms do face different costs of price adjustment.

3. In our closed-economy model with no capital or government spending, real
GDP corresponds to aggregate consumption.

4. We derive the equilibrium conditions and report the log-linearization process
in a Technical Appendix, which is available upon request.

5. To see why this measure corresponds to the first order auto-correlation, con-
sider an arbitrary AR(1) processx(t) = �x(t � 1) + e(t), where, under
perfect foresight, the residual terme(t) = 0 . Thus, the ratiox(t)=x(t � 1)
measures the magnitude of persistence.

6. For a quantitative model of nominal wage rigidity with micro-foundations,
see, for example, Huang and Liu (1998).

7. Proposition 4 in fact holds even in the case without discounting, i.e., with
� = 1. To see this, note that in this case (46) implies thatp(t) = tp(0) for
all t � 1. Therefore, the only value thatp(0) can take is0. If otherwise
p(0) > 0, thenp(t) > 1 for all t � 1=p(0), a contradiction to (45). It then
follows immediately thatp(t) = 0 for all t � 0.
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TABLE I
RESPONSE OFPRICE INDICES

�pn(t) n = 1 n = 2 n = 5 n = 10 n = 20

�pn(0) 0:50 0:37 0:24 0:17 0:12
�pn(1) 1:00 0:87 0:65 0:49 0:36
�pn(2) 1:00 1:00 0:89 0:73 0:56
�pn(3) 1:00 1:00 0:98 0:88 0:72

TABLE II
OUTPUT PERSISTENCE

N = 1 N = 2 N = 5 N = 10 N = 20

Contract Multiplier 0:00 0:20 0:46 0:62 0:73
Half Life 0:50 0:63 0:93 1:41 2:01
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Figure I.—Chain structure of the economy
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Figure II.—Price adjustments across stages (N = 2, � = 1)
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