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Résuḿe:
Le retour versune politique fiscale“raisonnable”apr̀es les déficits budǵetaires
élevésdesanńees1980et du début desanńees1990a ét́e acclaḿe parbeaucoup
commela réalisationla plus importantede l’administrationClinton. Danscet
article, nousévaluonsla politique fiscaledesÉtats-Unisd’apr̀es-guerreen uti-
lisant uneextensiondu mod̀ele de lissagedesimpôts de Barro (1979),mod̀ele
géńeraliśe pour permettredesvariationsstochastiquesdestaux d’intér̂et et des
tauxdecroissance.Nousmontronsquel’ évolutionderatiodette/PIBaméricaina
ét́e remarquablementconśequentavecle paradigmedelissagedesimpôts,même
durantlesanńees1980.Le seulécartimportanta eulieu durantla fin desanńees
1990,lorsquele ratiodette/PIBesttomb́eplusrapidementquecequ’auraitprédit
un lissageoptimaldesimpôts.

Abstract:
Thereturnto “sound” fiscalpolicy afterthehigh budgetdeficitsof the1980sand
early1990shasbeenhailedby many astheClinton administration’smostimpor-
tantachievement.In this article,we evaluatepost-war, US fiscalpolicy usingan
extensionof Barro’s (1979)tax-smoothingmodel,generalizedto allow for stoch-
asticvariationin interestratesandgrowth rates. We show that the evolution of
the US debt-GDPratio hasbeenremarkablyconsistentwith the tax-smoothing
paradigm,evenduring the1980s.Theonly majordepartureoccurredduring the
late1990s,whenthedebt-GDPratio fell morerapidly thanpredictedby optimal
taxsmoothing.
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1 Introduction

In a seminal paper, Barro (1979) develops a positive theory of debt determination which gener-

ates the classic tax smoothing result and implications for the evolution of the public debt. He

demonstrates that between 1916 and 1976 government debt policy in the UK and the US, was

surprisingly consistent with his simple theory. Recently however, many have argued that the

debt experiences of the US (and other OECD economies) in the 1980s were seriously at odds

with the predictions of the tax smoothing paradigm.1 The basic theory implies that the budget

deÞcit should only increase temporarily in response to shocks to government spending and growth,

whereas the budget deÞcits in the 1980s and early 1990s were persistently high (see Figure 1).

In a recent assessment of US Þscal policy, Alesina (2000) states: �While the mediocre growth

performance in the period 1979-1982 contributes to the increase in deÞcits, the rest of the 1980s

clearly show a radical departure from tax smoothing, as budget deÞcits accumulated in a period of

peace and sustained growth.� He concludes that �the Þscal policy of the 1980s was unsound from

the point of view of tax smoothing.�2

In 1993, perhaps heeding economists� criticisms, the US congress passed the Omnibus Budget

Reconciliation Act that included a variety of tax increases and spending cuts. As Figure 1

illustrates, this policy measure along with strong GDP growth contributed to dramatic reductions

in budget deÞcits and debt in the late 1990s. The reduction in the public debt has been widely

hailed in many corners and is viewed as a major achievement of the Clinton administration. In

this article, we argue that the high budget deÞcits and rising public debt in the 1980s were caused

mainly by shocks to the interest rate and GDP growth, rather then any signiÞcant departure from

sound Þscal policy. Taking these shocks into account, we show that US Þscal policy in the 1980s

was perfectly consistent with tax smoothing. Rather, we contend that it is the recent budget cuts

and the rapid reduction of the US public debt that represents a departure from the principle of

tax smoothing.

� FIGURE 1 GOES HERE –

Figure 2 illustrates the primary deÞcit along with the overall budget deÞcit. While on average
1See, among others, Roubini and Sachs (1989), Alesina and Tabellini (1990), and Alesina and Perotti (1995).
2Underlines added by the authors.
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the primary deÞcits in the late 1970s and early 1980s were higher than those in the period before

1975, this was mainly because of two drastic but temporary increases in the primary deÞcit

during the two big recessions: 1974�1976 and 1981�1983. The reason that the budget deÞcits

were persistently high is that interest payments on the debt as a percentage of GDP increased

signiÞcantly during those years (see Figure 3). This increase was mainly due to the high interest

rates in the 1980s. Figure 4 illustrates how the debt�GDP ratio would have evolved if the growth�

adjusted effective interest rate3 had remained at a constant level equal to the pre�1980 average.

It is obvious from this counter factual that the high interest rates and low growth rates of the

late 1970s and early 1980s largely account for the rising debt�GDP ratio.4

� FIGURE 2 GOES HERE –

Should the Reagan and Bush administrations have signiÞcantly raised the tax rate to offset

the impact of rising interest rates on the debt? What is the optimal tax response to interest

and growth rate shocks implied by the tax smoothing theory? Barro�s (1979) model cannot be

used to address these questions because it assumes deterministic interest and growth rates. In

this paper, we generalize Barro�s tax smoothing model to allowing for these sources of variation

and use it to assess the usefulness of the tax smoothing theory in accounting for US Þscal policy

during the post war period. We characterize the optimal tax policy in this model and show that

the optimal marginal response of the tax rate to the debt�GDP ratio is almost the same as the

optimal marginal response of the tax rate to a pure transitory government expenditure shock.

When we calibrate the parameters of our model to match post�war US data, we Þnd that the

optimal marginal response of taxes to both the debt and temporary government spending shocks

turn out to be quantitatively small, and that the debt�GDP ratio implied by the tax smoothing

theory matches the actual data remarkably well.

If a sustained increase in debt occurs because of a sustained increase in government expen-

ditures, then taxes should be increased. However, the sustained increase in the debt during the

1980s was largely due to a signiÞcant and persistent increase in the interest rate rather than a
3The growth-adjusted effective interest rate equals the average nominal interest rate the federal government

pays on its debt minus the nominal GDP growth rate.
4The interest rate and GDP growth rate also played important roles prior to 1975. Despite budget deÞcits for

most of the years between 1955 and 1974, the debt�to�GDP ratio declined sharply because the interest rate on
debt was signiÞcantly below the GDP growth rate.
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signiÞcant increase in the permanent component of government expenditures. As we show in this

paper, the optimal tax response to an increase in debt due to an interest rate shocks should be

very modest � of the same order of magnitude as the response to a transitory expenditure shock.

The intuition behind these results follow directly from the basic principles of tax�smoothing. The

contribution to the government�s liability of a one dollar increase in gross debt (including inter-

est payment) is the same as the contribution of a one dollar temporary increase in government

expenditure. Note that this argument does not depend on the persistence of the interest rate.5

Throughout our analysis, we (like Barro) take the interest rate faced by the government

to be independent of Þscal policy. We justify this assumption on three grounds. First, since

the main purpose of this paper is to study the quantitative response to interest rate shocks,

we need a model that generates a realistic distribution of such shocks. Standard equilibrium

business cycle models have difficulties in generating a realistic interest rate process. To mimic

the interest rate movements in the data we would still have to introduce some exogenous interest

rate shocks in a general equilibrium model. Second the assumption allows us to analyze optimal

taxation without state�contingent debt. Although there exist several general equilibrium analyses

of optimal taxation (e.g. Lucas and Stokey 1983, Zhu 1992 and Chari, Christiano and Kehoe

1994), they all assume that the government uses state�contingent debt. This has the unrealistic

implication that the debt�GDP ratio increases during periods when government expenditures

are temporarily high and decreases when government expenditures are temporarily low, purely

because of the state contingency.6 Moreover, as pointed out by Marcet, Sargent and Seppala

(1999), the persistence of the optimal debt�GDP ratio implied by these models are signiÞcantly

lower than is observed in the data. Imposing the restriction that the government can only issue

risk�free debt can generate more realistic debt dynamics. However, analyzing the optimal taxation

problem in a general equilibrium model with risk�free borrowing is compositionally very difficult.7

Finally, empirical studies Þnd at most a small effect of budget deÞcits on interest rates (Plosser

1982 and Evans 1987). So an exogenous interest rate process may not be a bad assumption

empirically.

The rest of the paper is organized as follows: Section 2 develops the model and section 3
5However, the distribution and persistency of the interest rate marginally (but only marginally) affects the

response to both transitory expenditure shocks and interest rate shocks.
6We thank Larry Christiano for pointing this out to us.
7See Chari, Christiano and Kehoe (1995, p.366). Sargent, Marcet and Seppala (1999) is the only one that we

know of that tackles such a problem. But they do not consider interest rate shocks.
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characterizes the optimal tax policy under stochastic interest rates. Section 4 provides several

analytically tractable examples to illustrate the main qualitative implications of the model. Sec-

tion 5 studies the quantitative implications for the debt�GDP ratio that result when the model

is calibrated to US data, and section 6 provides some concluding remarks. Technical details are

relegated to the Appendix.

2 The Model

We extend Barro�s (1979) tax�smoothing model by allowing for stochastic interest and GDP

growth rates. In this model, output, interest rate, and government expenditures are taken as

exogenous, and the government can Þnance its expenditures through taxation or by issuing nom-

inally risk-free debt.

Let Yt denote GDP, Pt the price level, Gt government expenditures, and τ t the tax rate in

period t. Let Bt be the stock of public debt at the beginning of period t and rt−1 the risk�free

nominal interest rate paid on the debt in period t, which is determined in period t−1. Normalizing

gives us the debt�GDP ratio, bt = Bt/Pt−1Yt−1, expenditure�GDP ratio gt = Gt/PtYt, and the

growth rate of nominal GDP: vt = ln(PtYt/Pt−1Yt−1). The government�s period�by�period budget

constraint can therefore be expressed in GDP units as8

bt+1 = exp(rt−1 − vt)bt + gt − τ t. (1)

Taxes impose a deadweight loss on the economy in period t that is proportional to GDP and a

quadratic function of the tax rate:

γ(τ t, Yt) =
1

2
τ2
tYt. (2)

The government�s objective is to choose the optimal tax policy that minimizes the present dis-

counted expected deadweight losses9

V (b0) = max
{τ t}t≥0

− 1

M0

∞X
t=0

E0Mt
1

2
τ2
tYt (3)

subject to the dynamic budget constraint (1) and the no�Ponzi game restriction

lim
j→∞EtMt+jbt+j+1Yt+j ≤ 0. (4)

8The gross interest on the debt is 1 + r0, where r0 is the ratio of interest payments to debt. However, we deÞne
the effective interest rate as r = ln(1 + r0), so that the gross interest is er. This transformation is for analytical
convenience only.

9This is the same assumption used by Barro (1979).
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Here, we assume that the government uses the market stochastic discount factor, Mt, to discount

future deadweight losses. For the postwar period, the average GDP growth rate exceeded the

average one-year interest rate. If we use the average one-year interest rate as the discount rate

for the government, the government�s objective function would be unbounded and the optimal

policy would not be well deÞned. However, with a stochastic discount factor, this is not a problem

provided that the risk�premium associated with GDP growth shocks is sufficiently large.10 In

addition, when tax rates, interest rates and GDP growth rates are deterministic, discounting

using the stochastic discount factor is equivalent to discounting using one-year interest rate.

The government�s problem can be written as a dynamic programing problem:

V (bt) = max
τ t
{−1

2
τ2
tYt +

1

Mt
Et [Mt+1V (bt+1)]} (5)

subject to the constraint (1). The Þrst order and envelope conditions for the dynamic program-

ming problem yield the following Þrst�order condition

τ tYt = Et

·
Mt+1

Mt
exp(rt − νt+1)τ t+1Yt+1

¸
. (6)

If we deÞne the nominal stochastic discount factor as:

MP
t = Mt/Pt, (7)

then the Þrst�order condition (6) can be rewritten more succinctly as

τ t = Et [qt+1τ t+1] , (8)

where

qt+1 =
MP
t+1

MP
t

exp(rt). (9)

Since rt is the risk�free nominal interest rate, the no�arbitrage condition implies that

Et[qt+1] = Et

"
MP
t+1

MP
t

exp(rt)

#
= 1. (10)

Let zt represent a vector of exogenous shocks in period t, which include rt, vt, gt and any

shocks to MP
t , and let z

(t) be the history of the shocks up to t. Assume that z(t) has a well

deÞned probability density function πt(z(t)). Then, (10) implies that

bπt(zt+1|z(t)) = qt+1πt(zt+1|z(t)) (11)
10 In the literature, authors have side�stepped this problem by using the interest rate on long�term bonds rather

than one�year interest rate on debt. But there is no justiÞcation for using a long�term interest rate to discount
annually.
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is also a conditional density function, which we call the risk�adjusted probability density function.

Under this risk�adjusted probability density function, (8) can be written as

τ t = cEt [τ t+1] . (12)

Proposition 1: The optimal tax rate follows a martingale process under the risk�adjusted prob-

ability distribution.

If both the interest rate rt and the growth rate vt are constant, and the government uses

the interest rate as its discount rate, then, qt+1 ≡ 1, and we have Barro�s tax smoothing result

that the optimal tax rate follows a martingale process under the original probability distribution.

Proposition 1 is simply a generalization of Barro�s result to the case of a stochastic interest rate

and a stochastic GDP growth rate. The key implication of Barro�s model, that tax rate follows

a martingale process, remains valid in the generalized model under the risk-adjusted probability

distribution. In the next section, we turn to characterizing the optimal tax policy in the presence

of shocks to interest rate, GDP growth rate, and government expenditures.

3 Characterizing the Optimal Tax Policy

In this Section, we specify more explicitly the shock processes and the stochastic discount factor.

This allows us to generate sharper characterizations of the optimal tax policy for use in our

quantitative analysis of Section 4. However, as we show in the appendix, the nature of the solution

remains the same under much more general conditions. We adopt the following speciÞcations:

The stochastic discount factor : We directly specify a parametric process for the stochastic dis-

count factor:

− ln

Ã
MP
t+1

MP
t

!
= rt +

1

2
σ2
m + εm,t+1, (13)

where εm,t+1 is an i.i.d. variable with distribution N(0,σ2
m). This speciÞcation ensures that the

no�arbitrage condition (10) for the nominal interest rate is always satisÞed. This approach has

recently been used by several authors to study the term�structure of interest rates and to analyze

the optimal portfolio allocation problem.11 It has the advantage of being able to generate realistic
11See, for example, Campbell, Lo and MacKinlay (1997) and Campbell and Viceira (1998).
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distributions of interest rates and asset returns, which is important for our analysis of optimal

policy under stochastic interest rates.

For any risky nominal return ri,t+1, the following no�arbitrage condition must hold

Et

"
MP
t+1

MP
t

exp(ri,t+1)

#
= 1. (14)

If we assume that the unexpected return εi,t+1 = ri,t+1 − Et [ri,t+1] has a normal conditional

distribution, then, substituting (13) into (14) implies that

Et[ri,t+1 − rt] +
1

2
Vart (εi,t+1) = Covt (εi,t+1, εm,t+1) . (15)

That is, the expected excess return of asset i (after adjusting a variance term for log�returns)

equals the conditional covariance between the asset return and the innovation in the stochastic

discount factor, which measures the risk-premium on asset i. We assume that εm,t+1 is propor-

tional to the unexpected return of the market portfolio. So, our model implies that the expected

excess return to asset i equals the conditional covariance between the asset return and the unex-

pected return of the market portfolio, which is the same implication of the standard capital asset

pricing model (CAPM).

The shock processes: The interest rate is assumed to follow a Þrst�order Markov process, and

the processes for GDP growth rates and government expenditures are given by the following

equations:

vt+1 = v +
1

2
σ2
ν + εv,t+1, (16)

gt+1 = (1− ρg)g + ρggt + εg,t+1, (17)

where 0 < ρg < 1, and εv,t+1, and εg,t+1 are independent i.i.d. variables with distributions

N(0,σ2
v) and N(0,σ2

g), respectively. We further assume that {rt}t≥0 is independent of {εv,t}t≥0

and {εg,t}t≥0.

Growth risk�premium: We assume that innovations to the stochastic discount factor {εm,t}t≥0

are independent of {rt}t≥0 and government expenditure shocks {εg,t}t≥0, but are correlated with

shocks to GDP growth {εv,t}t≥0. We also assume that the random vector (εm,t, εv,t) is i.i.d. and

has a joint normal distribution with a constant covariance given by

γ = Cov(εv,t, εm,t). (18)
7



From (??) we know that γ may be interpreted as the risk�premium associated with shocks to the

GDP growth rate.

Given these assumptions, a fairly straightforward characterization of the optimal tax policy

is possible:

Proposition 2: If there exists a unique function φ(.) and a constant φ∗ > 0 such that 0 < φ∗ ≤
φ(rt) < 1 and

φ(rt) =
ert−v+γEt [φ(rt+1)]

1 + ert−v+γEt [φ(rt+1)]
, (19)

then, the optimal tax rate is given by

τ t = g + φ(rt)e
rt−1−vtbt + ψ(rt)(gt − g), (20)

where ψ(rt) is the unique bounded solution to the linear functional equation

ψ(rt) = (1− φ(rt))ρgEt [ψ(rt+1)] + φ(rt), (21)

and where φ(rt) and ψ(rt) are increasing functions of rt.

Proof: To verify that this is a solution, Þrst use (20) to substitute for τ t into (1). This yields

bt+1 = (1− φ(rt))e
rt−1−vtbt + (1− ψ(rt))(gt − g). (22)

Leading (20) forward one period and using (22) to substitute for bt+1 yields

τ t+1 = g + φ(rt+1)ert−vt+1
£
(1− φ(rt))e

rt−1−vtbt + (1− ψ(rt))(gt − g)
¤

+ ψ(rt+1)(gt+1 − g) (23)

Substituting (20) and (23) into the Þrst�order condition (8) gives

φ(r)te
rt−1−vtbt + ψ(rt)(gt − g) = Et[qt+1φ(rt+1)ert−vt+1 [(1− φ(rt))e

rt−1−vtbt + (1− ψ(rt))(gt − g)]]
+Et[qt+1ψ(rt+1)(gt+1 − g)] (24)

where we have used the fact that Et [qt+1] = 1. It follows that for (20) and (21) to be a solution

to the problem, it is sufficient that

φ(rt) = (1− φ(rt))Et
£
qt+1φ(rt+1)ert−vt+1

¤
(25)

and

ψ(rt)(gt − g) = Et
£
qt+1φ(rt+1)ert−vt+1

¤
(1− ψ(rt))(gt − g) +Et [qt+1ψ(rt+1)(gt+1 − g)] . (26)

8



Substituting for vt+1 using (16) and noting that qt+1 = e−
1
2
σ2

m−εm,t+1 , Cov(rt+1, εm,t+1) =

Cov(rt+1, εv,t+1) = 0 and Cov(εν,t+1, εm,t+1) = γ, (25) simpliÞes to

φ(rt) = (1− φ(rt))e
rt−v+γEt [φ(rt+1)] . (27)

Rearranging (27) yields (19). Notice that this solution is consistent because the function φ that

solves it depends only on rt and no other variable. Using (25) to substitute forEt [qt+1φ(rt+1)ert−vt+1 ]

in (26) and rearranging yields

[ψ(rt)− φ(rt)] (gt − g) = (1− φ(rt))Et [qt+1ψ(rt+1)(gt+1 − g)] (28)

From (17), gt+1 − g = ρg(gt − g) + εg,t+1, and since Cov(rt+1, εm,t+1) = Cov(rt+1, εg,t+1) = 0, it

follows that (26) simpliÞes to the linear functional equation in (21). Observe that if there exists a

strictly positive unique solution to (19) then (1− φ(rt))ρg < 1. It follows that (21) can be solved

forward to get the unique function

ψ(rt) = φ(rt) +
∞X
i=1

ρigEt

"
φ(rt+i)

iQ
j=1

(1− φ(rt+j−1))

#
. (29)

QED

In the appendix we show that a unique function φ(·) satisfying the conditions in Proposition
2 exists provided that

rt − v + γ ≥ δ almost surely (30)

for some constant δ > 0. Condition (30) is non�trivial. In the US, the average interest rate during

the post�war period was below the average GDP growth rate, so that r− v < 0.12 For condition

(30) to hold, the risk�premium on shocks to the growth rate, γ, must be sufficiently large.13

Thus, if the risk premium is sufficiently large, Proposition 2 implies that the optimal tax

rate can be decomposed into three parts: the long�term mean of government expenditures, g,

the tax response to debt, φ(rt) exp(rt−1− vt)bt, and the tax response to government expenditure
shocks, ψ(rt)(gt−g). Shocks to the interest rate and the GDP growth rate affect the optimal tax
policy through their impacts on the debt�GDP ratio and through their impacts on the marginal

responses of the tax rate to debt and government expenditure shocks.
12Note that the term σ2

v is very small.
13Condition (30) is only a sufficient condition. Even for a value of γ such that the condition does not hold, there

may still exists a uniformly bounded solution.
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Let θt = φ(rt) exp(rt−1 − vt) denote the marginal tax response to the debt, and let Rt =

ert−v+γ − 1 denote the growth�adjusted interest rate on the debt. Then, the evolution of the

debt�GDP ratio implied by the optimal tax policy is described by

bt+1 − bt = [1− ψ(rt)](gt − g) + (Rt − θt)bt. (31)

Since ψ(rt) < 1, the debt�to�GDP ratio will increase if there is a positive shock to government

expenditures. Starting from a positive level, the debt�GDP ratio will also increase in the absence

of government expenditure shocks whenever the marginal tax response to debt, θt, is less than

the growth�adjusted interest rate, Rt.

4 Some Illustrative Examples

In Section 5, we numerically characterize the quantitative implications of our tax�smoothing

model calibrated to US data. However, in order to develop some intuition for the nature of our

results it is useful to consider a number of special cases that can be solved analytically.

Example 1 – Constant Interest Rate: In this example, we show that whenever the GDP

growth rate is far enough below its average level, the optimal debt�GDP ratio rises, even in the

absence of government expenditure shocks .

Suppose that rt = r for all t, , and that inßation is zero. This case is almost identical to

Barro�s original model except that the nominal GDP growth rate is stochastic. It follows that

the solution to equation (19) is given by

φ(r) = 1− e−(r−v+γ), (32)

and the solution to (29) by

ψ(r) =
φ(r)

1− (1− φ(r))ρg
. (33)

The optimal tax policy is identical to that in Barro�s original model if we replace the interest rate

r with the risk�adjusted interest rate r+γ. Note that, even this special case permits the average

one-year interest rate to be lower than the average GDP growth rate (as is the case for post-war

US data), provided that the growth risk-premium, γ, is sufficiently large.

In the absence of spending shocks, the optimal growth in the debt�GDP ratio is then given

by

Rt − θt = ev−vt−γ − 1, (34)
10



so that the average growth is

E[Rt − θt] = e−γ − 1. (35)

Since γ > 0, the marginal tax response to debt, θt, exceeds the effective interest rate, Rt on

average and, as a result, the optimal debt�GDP ratio declines on average in the absence of shocks

to government expenditure (as a percentage of GDP). However, whenever the realized growth

rate is lower than average, so that vt < v̄ − γ, then θt < Rt and the optimal debt�GDP ratio

grows.

Example 2 – Zero Persistence in Government Spending. This example illustrates that

the optimal marginal tax response to the gross debt�GDP ratio is of the same order of magnitude

as would be the response to transitory spending shocks.

Suppose that ρg = 0, so that gt follows an i.i.d. process. It follows from (29) that ψ(rt) = φ(rt),

so that the optimal tax policy is given by

τ t = g + φ(rt)[exp(rt−1 − vt)bt + gt − g]. (36)

Thus, in this case, the marginal tax response to the gross debt�GDP ratio, exp(rt−1 − vt)bt, is
identical to the marginal response to pure transitory shocks to government expenditures.14 The

optimal tax response to purely transitory expenditure shocks is relatively small � indeed, the

key idea of tax�smoothing is that the tax should not fully respond to non�permanent increases

in spending. This example therefore implies that we should not expect a signiÞcant increase in

the optimal tax rate due to a rise in public debt caused by an increase in the growth�adjusted

interest rate. The intuition behind this result is as follows: An increase in the growth�adjusted

interest rate is like a pure transitory increase in government expenditures in that it increases the

stock of government debt as a percentage of GDP with no direct impact on future government

expenditures. The optimal tax response, then, is to have a small but permanent increase in the

tax rate that will pay off the increase in the stock of debt gradually over time.

Example 3 – Zero growth, no spending shocks, two—state interest rate. This exam-

ple illustrates that, holding GDP constant, as long as interest rate shocks are not permanent,

then the optimal debt�GDP ratio rises whenever interest rates are higher than average.
14 Increasing ρg raises the responsiveness of the tax rate to spending shocks, but has no effect on its responsiveness

to the gross debt�GDP ratio. Thus, in general, the reponsiveness to the gross debt�GDP ratio is less than to
spending shocks.
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Suppose that the GDP growth rate is zero, that gt = g ∀ t, and that σ2
m = 0. Then,

θt = φ(rt)ert−1 and τ t = g + φ(rt)ert−1bt. Equation (19) becomes

φ(rt) =
ertEt [φ(rt+1)]

1 + ertEt [φ(rt+1)]
. (37)

Assume further that the interest rate rt follows a two-state Markov process with a state space

{rl, rh}, where rl < rh. Let Pr[rt+1 = rl|rt = rl] = pl and Pr[rt+1 = rh|rt = rh] = ph be the

transition probabilities, where 0 < pl < 1 and 0 < ph ≤ 1. Then, φ can take on two values,

φl = φ(rl) and φh = φ(rh), which are determined by the following equations:

φl =
erl [plφl + (1− pl)φh]

1 + erl [plφl + (1− pl)φh]
, (38)

and

φh =
erh [phφh + (1− ph)φl]

1 + erh [phφh + (1− ph)φl]
. (39)

As long as rl > 0, there exist unique solutions to the above two equations and they satisfy the

conditions in proposition 2. In addition, let φ∗s = 1− e−rs , s ∈ {l, h}. Then, it is straightforward
to verify that the solutions to (39) and (40) satisfy

φ∗l < φl < φh ≤ φ∗h, (40)

and that φh = φ∗h if and only if the transition to the high�interest state is permanent, ph = 1.

If rt = rt−1 = rl, then

θt = φl exp(rl) > φ
∗
l exp(rl) = Rt (41)

and therefore the debt�to�GDP ratio decreases. On the other hand, if rt−1 = rt = rh, we have

θt = φh exp(rh) ≤ φ∗h exp(rh) = Rt (42)

and the equality holds if and only if ph = 1. Thus, tax�smoothing implies that the optimal

debt�GDP ratio declines in the low interest rate state and is non-decreasing in the high interest

rate state. If the economy stays in the high interest rate state permanently, then the debt�GDP

ratio will be a constant. If the economy stays in the high interest rate state only temporarily,

then the debt�GDP ratio rises when the interest rate is high. Therefore, the optimal tax response

to a positive interest rate shock depends crucially on the persistency of the shock. If the shock is

permanent, than the optimal tax response is to fully respond to the shock so that the debt�GDP

ratio stays constant. If the shock is temporary, however, the optimal tax response is such that
12



the debt�GDP ratio increases since it is expected that the interest rate will decline and therefore

that debt�GDP ratio will decline in the future.

Example 4 – Two—state interest rate with high persistence. This example illustrates

that, even if interest rate increases are expected to be permanent, the optimal debt�GDP ratio

still rises during periods of lower than average GDP growth.

To see this, suppose that everything is the same as in example 3 except vt is an i.i.d. variable

and ph = 1, so that an increase in the interest is permanent. Then, φh is given by

φh = 1− exp (−(rh − v)) , (43)

and φl is determined by the following equation:

φl =
exp(rl − v) [plφl + (1− pl)φh]

1 + exp(rl − v) [plφl + (1− pl)φh]
. (44)

If rt−1 = rt = rh, then the growth in the debt�GDP ratio is given by

Rt − θt = exp(v − vt)− 1 (45)

which is positive if vt < v, in which case the debt�to�GDP ratio increases (assuming bt > 0).

Thus, even if there is a permanent positive shock to the interest rate, the debt�GDP ratio still

increases if the GDP growth rate is temporarily low. Since shocks to the GDP growth rate are

generally not persistent, the optimal tax response to negative shocks to GDP growth rate is such

that the debt�GDP ratio increases.

The Qualitative Implications of Tax Smoothing for Debt Dynamics:

From these examples, we can see why the tax�smoothing policy implies that the debt�GDP ratio

would decline prior to the 1980s and increase in the 1980s. Prior to the 1980s, the real interest

rate was low and the GDP growth rate was high so that the effective interest rate was well below

its long-term average. In this period, the optimal marginal tax response to debt should be higher

than the effective interest rate on debt, which implies that the debt�GDP ratio should decline. In

the 1980s, the real interest rate increased signiÞcantly and the GDP growth rate dropped. These

shocks to the interest rate and the GDP growth rate pushed the effective interest rate above

its long-term average and, in this period, the tax response to the debt should optimally be less

than the effective interest rate on debt. This, along with the temporary shocks to government

expenditure, imply that the debt�GDP ratio should have optimally increased during this period.
13



So qualitatively, at least, the dynamics of the US debt appear to have been consistent with that

predicted by the tax smoothing theory.

Of course, this does not imply that the tax�smoothing model predicts an increase in the debt�

GDP ratio of the magnitude that was observed in the 1980s. To address this issue it is necessary

to compare the quantitative predictions of the model with the data.

5 Quantitative Implications of Tax Smoothing

In this section we study the dynamics of the US public debt implied by the optimal tax policy

characterized above. To do so we estimate the shock processes and calibrate the risk�premium

parameter γ.

5.1 Estimating the Shock Processes:

We assume that the interest rate also follows an AR(1) process:

rt+1 = (1− ρr)r + ρrrt + εr,t+1, (46)

where εr,t is an i.i.d. variable with distribution N(0,σ2
r). We estimate equations (16), (17), and

(46) using OLS. The estimated results are reported in Table 1. To solve the functional equations

(19) and (21), however, we need to discretize the process for the interest rate rt. We do so using

a 10�state Markov chain to approximate the estimated AR(1) process of rt speciÞed in (46). The

details of the approximation are given in the appendix.

5.2 Calibrating the Risk—Premium Parameter γ:

We allow the market portfolio to consist of both Þnancial and human capital, and approximate

the return on human capital by the per capita GDP growth rate. Thus, we have:

εm,t+1 = β [λεe,t+1 + (1− λ)εv,t+1] , (47)

where β is the ratio of εm,t+1 to the unexpected return on the market portfolio, εe,t+1 is the

unexpected return on a market index and λ is the weight of Þnancial capital in the market

portfolio. We assume that εe,t+1 is distributed normally: N(0,σ2
e). This speciÞcation follows

that of Jagannathan and Wang (1996) who show that allowing for human capital to be part
14



of the market portfolio can signiÞcantly improve the Þt of the CAPM in accounting for the

cross�section of expected returns on the NYSE.15 They argue that aggregate loans against future

human capital (e.g. mortgages, consumer credit and personal bank loans) account for as much

wealth in the US as equities. Moreover, there are also active insurance markets for hedging the

risk to human capital (e.g. life insurance, UI and medical insurance). In the calibration exercise

below, we use the traditional CAPM with no human capital in the portfolio (i.e., λ = 1), as the

benchmark, but we also investigate the sensitivity of our results to other choices of λ.

For any given value of λ, we use the no�arbitrage condition to calibrate the value of β. From

(15) and (47), we have

Et [re,t+1 − rt] +
1

2
σ2
e = β

h
λσ2

e + (1− λ)σev
i
. (48)

Taking unconditional expectation on both sides of the equation and solving for β yields

β =
E [re,t+1 − rt] + 1

2σ
2
e

λσ2
e + (1− λ)σev

. (49)

Since both the variance of the unexpected market return, σ2
e, and the covariance between the

market return and GDP growth, σve, can be estimated from the data, we compute β from (49) by

replacing the expectation E [re,t+1 − rt] with the sample mean, re−r. The growth risk�premium
is given by

γ = β
h
λσev + (1− λ)σ2

ν

i
(50)

which can be computed by substituting for the value of β using (49). The calibration results for

the benchmark case are reported in Table 1.

Given the estimated shock processes and the calibrated parameter for the stochastic discount

factor, we solve the functional equation (19) numerically. Given the solution to (19), φ(rt), we

then numerically solve the functional equation (21) to get ψ(rt). Given φ(rt), ψ(rt) and the

initial level of the debt�GDP ratio b0, we calculate the optimal tax rate and the debt�GDP ratio

iteratively using to equations (20) and (1).

Table 1 — Benchmark Parameter Values
15Jagannathan and Wang (1996) proxy the market return to human capital using the growth in labor income.
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Parameter 1955-1999
r 0.074706
ρr 0.953118
v 0.070729
σ2
v 0.00042086
σev 0.0013757
σ2
e 0.0201
re 0.11562
g 0.17594
ρg 0.827396
λ 1
β 2.535489
γ 0.003488

5.3 Results

Figure 5 compares the actual taxes and debt and those predicted by the tax smoothing policy for

the benchmark case. In the data we follow Barro by computing the actual effective tax rate as tax

revenues as a percentage of GDP. The volatility of the predicted tax rate is somewhat less than the

volatility of the actual tax rate. However, it is remarkable how well the time�average of optimal

tax rate predicted by the model matches that in the data. The average level from the model is

determined solely by the government�s intertemporal budget constraint, so this implies that on

average during the postwar period tax revenues have been quite consistent with intertemporal

budget balance.

Despite the relative smoothness of the predicted tax rate, it can be seen that the predicted

debt tracks the dynamics of the actual debt well for the period up to 1994 and especially in the

1980s. In other words, the excess volatility of the actual tax rate is neither great enough nor

persistent enough to make much difference to the evolution of the debt. Given that the optimal

tax is extremely smooth, it is not surprising that the implied�GDP debt is very sensitive to the

shocks to government expenditures and the growth�adjusted interest rate. The sharp increase in

the US debt�GDP ratio in the 1980s resulted from the fact that adverse interest rate and growth

shocks were not offset by tax rate movements. Our results demonstrate that this is perfectly

consistent with the tax smoothing theory.

Since 1994, however, the actual debt�GDP ratio declined faster than that predicted by the tax

smoothing theory. This rapid reduction in debt has been associated with a signiÞcant increase in
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taxes as a percentage of GDP, partly due to the new tax increases enacted in the 1993 Omnibus

Budget Reconciliation Act.

� FIGURE 5 GOES HERE –

We now consider the sensitivity of our results to changes in the model�s parameter values.

The Persistence of Interest Rate Shocks, ρr:

Example 3 shows that the optimal tax response to debt is sensitive to the persistence of

interest rate shocks. In particular, a higher ρr implies a larger marginal tax response to debt

and therefore a smaller effect of interest rate shocks on debt. Figure 6 shows the tax rates and

debt�GDP ratios implied by the tax smoothing policy for ρr = 0, 0.953118, and 1, respectively.

While it is true that the tax rates are higher for higher value of ρr, the quantitative difference is

fairly small. As example 4 shows, the marginal tax response to debt depends on the persistence

of both the interest rate and the GDP growth rate. Since we have assumed that the GDP growth

rate is i.i.d., the persistence of the growth�adjusted interest rate is quite low even if the interest

rate itself follows a random walk. As a result, the debt dynamics implied by the tax smoothing

theory is not very sensitive to our assumptions regarding the persistence of interest rate shocks.

The Composition of the Market Portfolio, λ:

Although Jagannathan and Wang (1996) show that the assuming that wealth consists of human

and not just Þnancial wealth improves the Þt of the CAPM to US market data, the appropriate

value of λ is unknown.16 We therefore consider the sensitivity our results to changes in the value

of λ. This parameter enters the model only via the risk�premium parameter γ. Using (49) and

(50), it is straightforward to show that

sign
·
dγ

dλ

¸
= sign

h
σ2
ev − σ2

vσ
2
e

i
, (51)

and for our benchmark parameters in Table 1 it can be veriÞed that dγdλ < 0. Thus, reducing the

value of λ increases the growth risk�premium, which implies that the marginal tax response to

debt is larger and the debt implied by tax smoothing is lower. Figure 7 shows the tax rates and

the debt�GDP ratios implied by tax smoothing for λ = 1, 0.3, and 0 respectively. The results
16Kandel and Stambaugh (1995) argue that even if stocks constitute a small fraction of total wealth, the stock

index portfolio return could be a good proxy for the return on the portfolio of aggregate wealth.
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are quantitatively very similar for λ = 1 and 0.3. For λ = 0, the implied growth risk premium

is signiÞcantly higher and therefore the optimal tax rates are signiÞcantly higher, which implies

that the predicted debt is signiÞcantly below the actual debt. However, this case represents a

very extreme market portfolio consisting of no Þnancial wealth.

6 Concluding Remarks

The movement of the US public debt has been inßuenced greatly by the variations in the interest

rate and GDP growth rate. In this paper we extend Barro�s (1979) tax�smoothing theory to

allow for stochastic movements in the interest rate and the GDP growth rate. We show how the

optimal response of the tax rate to increases in the debt�GDP ratio and to transitory government

expenditure shocks depend on movements in the interest rate, the GDP growth rate and the

risk�premium associated with GDP growth variability. The optimal tax policy implies that the

response to increases in the debt�GDP caused by non�permanent increases in the growth�adjusted

interest rate are of the same order of magnitude as the response to transitory spending shocks.

As a result, during periods of higher than average interest rates and lower than average growth,

an increase in the debt�GDP ratio arises as part of an optimal tax�smoothing policy, even in the

absence of spending shocks.

When we calibrate our model to post�war US data, we Þnd that the optimal tax rate and

debt dynamics predicted by our model closely resemble those of the actual debt. In particular,

we Þnd that the sharp increases in the US debt�GDP ratio in the 1980s, with no large increase

in tax rates, was quite consistent with the tax smoothing paradigm. Indeed the only signiÞcant

departure from the principle of tax�smoothing occurred during the Clinton administration when

the debt�GDP ratio fell more rapidly than predicted by the model.

It should be recognized that the tax�smoothing paradigm is about the optimal method of

Þnancing (i.e. taxation or debt) taking as given the process for government expenditures. Our

estimated process for spending is based on past US experience. The fact that the recent debt�

GDP ratio has fallen more rapidly than predicted by the model implies that taxes were too high,

given the estimated process for spending. It does not necessarily imply that taxes should be

cut if spending is anticipated to be persistently high in the near future. In particular, if it is

anticipated that the cost of social security payments will rise substantially and that this increase

will be unusually persistent, then the current level of taxes may be warranted. This caveat does
18



not, however, affect the main message of this paper: US Þscal policy during the 1980s was not

unsound from the point of view of tax�smoothing.

Although, our analysis demonstrates that our generalization of Barro�s (1979) model provides

a reasonable characterization of post war US policy, this need not be the case for other countries.

In particular, some countries (e.g. Belgium, Canada and Italy) experienced much larger increases

to their debt�GDP levels during the 1980s than did the US, and these increases may well reßect the

political constraints suggested by Alesina and Tabellini (1990) and Alesina and Perotti (1995).

In a related paper we assess the extent to which the Þscal policies of other OECD economies

conform to our extended tax�smoothing model.
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Appendix A

In this appendix we derive general conditions that ensure that an optimal tax policy like the

one described by Proposition 2 exists and is unique, and characterize the general nature of the

tax�smoothing policy. Instead of the speciÞc processes given in the text, we assume only that

the state can be fully described by the vector {zt}t>0 which contains r , g, and v and follows a

Þrst�order Markov process.

Proposition 3: DeÞne the mapping T as follows:

(Tφ)(z) =
exp(r)Ez[q

0 exp(−v0)φ(z0)]
1 + exp(r)Ez[q0 exp(−v0)φ(z0)]

, (52)

where T is a monotone operator on the space of positive measurable functions. If there exists an

ω > 0 such that

exp(r)Ez[q
0 exp(−v0)] ≥ ω, (53)

then T is a contraction on the space of measurable functions of z, with a unique Þxed point φ.

Proof: Let µ = 1 − ω−1 > 0, and let D be the space of measurable functions of z such that

1 ≥ φ(z) ≥ µ for all z. Then D is a complete norm space with the sup�norm. For any φ ∈ D, we
have, from the condition in the proposition,

(Tφ)(z) ≥ exp(r)Ez[q
0 exp(−v0)]µ

1 + exp(r)Ez[q0 exp(−v0)]µ ≥
ωµ

1 + ωµ
= µ. (54)

So T (D) ⊆ D. We now prove that T is a contraction mapping on D by verifying Blackwell�s

discounting condition. Using the intermediate value theorem, for any a > 0, and φ ∈ D, we have

(T (φ+ a))(z) = (Tφ)(z) +
exp(r)Ez[q

0 exp(−v0)]
(1 + exp(r)Ez[q0 exp(−v0)] + ea exp(r)Ez[q0 exp(−v0)])2a (55)

for some ea ∈ [0, a]. Again, from the condition in the proposition, we have

exp(r)Ez[q
0 exp(−v0)]

(1 + exp(r)Ez[q0 exp(−v0)] + ea exp(r)Ez[q0 exp(−v0)])2

≤ exp(r)Ez[q
0 exp(−v0)]

(1 + exp(r)Ez[q0 exp(−v0)])2 ≤
1

1 + exp(r)Ez[q0 exp(−v0)]
≤ 1

1 + ω
< 1. (56)

So, we have

(T (φ+ a))(z) ≤ (Tφ)(z) +
1

1 + ω
a. (57)
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That is, the discounting condition is satisÞed. Thus, T is a contraction, which implies that it has

a unique Þxed point φ in D. By deÞnition we know that φ < 1. Q.E.D.

Remark: In the special case described in the text the sufficient condition in Proposition 3 is

ertEt[e
− 1

2
σ2

m−εm,t+1e−v̄−
1
2
σ2

v−εv,t+1] = ert−v̄+γ ≥ ω (58)

Letting δ = lnω, yields (30).

Proposition 4: The Þxed point φ of T is strictly increasing in rt and γ.

Proof: From Proposition 3 we know that the mapping T is a contraction. Let φ be the unique

Þxed point. We know that it is the limit of Tnφ0 for an arbitrary function φ0 ∈ D. Let φ0 be

an increasing function of rt and γ, then, it can be easily shown that so are Tnφ0 for any n ≥ 1.

So is φ. Finally, since φ is increasing in rt and γ, from the functional equation we know that it

must be strictly increasing in rt and γ. The properties of ψt can be proved using standard the

dynamic programming argument. Q.E.D.

Appendix B: The Data
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Figure 1: US Budget Deficit and Debt (% of GDP)
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Figure 2: Budget Deficit and Primary Deficit (% of GDP)
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Figure 4: Interest Shocks and Debt GDP Ratio
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Figure 3: Effective Interest Rate on Debt
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Figure 5a: Actual and Predicted Debt (% of GDP)
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Figure 5b: Actual and Predicted Taxes (% of GDP)
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Figure 6a: Persistency of Interest Rate Shocks and Debt
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Figure 6b: Persistency of Interest Rate Shocks and Taxes
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Figure 7a: Growth Risk Premiums and Debt

10%

20%

30%

40%

50%

60%

70%

55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Actual lambda=1 (benchmark) lambda=.3 lambda=0

Figure 7b: Growth Risk Premiums and Taxes
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