
Centre de recherche sur l’emploi et les fluctuations économiques (CREFÉ)
Center for Research on Economic Fluctuations and Employment (CREFE)

Université du Québec à Montréal

Cahier de recherche/Working Paper No. 53

Do the Hodrick-Prescott and Baxter-King Filters Provide a Good
Approximation of Business Cycles?*

Alain Guay
Département de sciences économiques and CREFÉ, Université du Québec à Montréal

Pierre St-Amant
Département des relations internationales, Banque du Canada**

August 1997

Guay : (514) 987-3000, e-mail: guay.alain@uqam.ca
St-Amant: (613) 782-7386, e-mail: pstamant@bank-banque-canada.ca

* We would like to thank Paul Beaudry, Alain DeSerres, Pierre Duguay, Robert Lafrance, John
Murray, Alain Paquet, Louis Phaneuf, and Simon van Norden for useful comments and
discussions. Of course, since we are solely responsible for the paper’s content, none of the above
mentioned are responsible for any errors.

** The views expressed in this study are those of the authors and do not necessarily represent
those of the Bank of Canada.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7145976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT

In this paper, the authors examine how well the Hodrick-Prescott filter (HP) and
the band-pass filter recently proposed by Baxter and King (BK) extract the
business-cycle component of macroeconomic time series. The authors assess these
filters using two different definitions of the business-cycle component. First, they
define that component to be fluctuations lasting no fewer than six and no more
than thirty-two quarters; this is the definition of business-cycle frequencies used
by Baxter and King. Second, they define the business-cycle component on the basis
of a decomposition of the series into permanent and transitory components. In
both cases the conclusions are the same. The filters perform adequately when the
spectrum of the original series has a peak at business-cycle frequencies. When the
spectrum is dominated by low frequencies, the filters provide a distorted business
cycle. Since most macroeconomic series have the typical Granger shape, the HP
and BK filters perform poorly in terms of identifying the business cycles of these
series.

RÉSUMÉ

Dans la présente étude, les auteurs cherchent à évaluer l’efficacité avec laquelle le
filtre de Hodrick-Prescott (HP) et le filtre passe-bande récemment proposé par
Baxter et King (BK) permettent d’isoler la composante cyclique des séries
macroéconomiques. Ils utilisent deux définitions du cycle économique pour
comparer la performance de ces filtres. Selon la première définition (celle que
retiennent Baxter et King), la composante cyclique correspond à des fluctuations
d’une durée minimale de six trimestres et maximale de trente-deux trimestres.
L’autre définition du cycle consiste dans la décomposition de la série en deux
composantes, l’une permanente et l’autre transitoire. Les auteurs parviennent
aux mêmes conclusions peu importe la définition utilisée. Les filtres donnent des
résultats satisfaisants lorsque le spectre de la série initiale atteint un sommet au
voisinage des fréquences comprises entre six et trente-deux trimestres. Lorsque le
spectre est dominé par les basses fréquences, le cycle économique obtenu donne
une image faussée de la réalité. Comme la forme spectrale de la plupart des séries
macroéconomiques ressemble à celle que Granger a mise en lumière, les filtres HP
et BK réussissent mal à isoler la composante cyclique de ces séries.
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1. INTRODUCTION

Identifying the business-cycle component of macroeconomic time series is
essential for applied business-cycle researchers. Since the influential paper of
Nelson and Plosser (1982), which suggested that macroeconomic time series could
be better characterized by stochastic trends than by linear trends, methods for
stochastic detrending have been developed. In particular, this has led to the
increasing use of mechanical filters to identify permanent and cyclical components
of a time series. The most popular filter-based method is probably that proposed
by Hodrick and Prescott (1980). More recently, Baxter and King (1995) have
proposed a band-pass filter whose purpose is to isolate certain frequencies in the
data. This filter has already been used in empirical studies.1

The use of the HP filter has already been criticized. King and Rebelo
(1993) provide examples of how it alters measures of persistence, variability, and
comovement when it is applied to observed time series and series simulated with
real business-cycle models. Harvey and Jaeger (1993) and Cogley and Nason
(1995a) show that spurious cyclicality is induced when the HP filter is applied to
the level of a random walk process. Osborn (1995) reports a similar result for a
simple moving average detrending filter. The above results were obtained by
comparing the cyclical component obtained by applying the filters for the level of
the series with the component corresponding to the business-cycle frequencies of
time series in difference.

The objective of this paper is to examine how well the Hodrick-
Prescott (HP) and Baxter-King (BK) filters extract the business-cycle component
of macroeconomic series. In particular, we seek to characterize the conditions
necessary to obtain a good approximation of the cyclical component with the HP
and BK filters. To evaluate the performance of the HP filter, previous papers have
focused on specific processes and used unclear definitions of the business-cycle
component. Our aim is to obtain general results that can be applied to a large class
of time series processes and to provide clear indications on the appropriateness of
the HP and BK filters in applied macroeconomic work. We also hope that our
findings could shed some light on results obtained in previous studies.

To do this, we need to define the business-cycle component of
macroeconomic series. In the first part of this paper, we retain the definition of
business-cycles proposed by N.B.E.R. researchers and adopted by Baxter and King
which is based on the method put forward by Burns and Mitchell (1946). These

1. See Baxter (1994), King et al. (1995), and Cecchetti and Kashyap (1995). Other types
of band-pass filters have also been proposed. For example, see Hasler et al. (1994).
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authors define the business-cycles as fluctuations lasting no less than 6 and no
more than 32 quarters. An ideal filter should extract this specific range of
periodicities without altering the properties of the extracted component. To assess
the performance of the HP and BK filters on the basis of this criteria, we compare
the spectrum of the unfiltered series at these frequencies with that of their filtered
counterpart for several processes.

Our main conclusion is the following. The HP and BK filters do well
in terms of extracting business-cycle frequencies of time series whose spectra have
a peak at those frequencies. Unfortunately, the peak of the spectral density of most
macroeconomic series is at lower frequencies. Indeed, it is well known that
macroeconomic series have the typical spectral shape identified by Granger
(1966). Such series have most of their power at low frequencies and their spectra
decreases sharply and monotonically at higher frequencies. For such series, the
HP and BK filters perform poorly in terms of extracting business-cycle
frequencies. The intuition behind this result is simple. The problem is that much
of the power of typical macroeconomic time series at business-cycle frequencies is
concentrated in the band where the squared gain of the HP and BK filters differs
from that of an ideal filter. Moreover, the shape of the squared gain of those filters,
when applied to typical macroeconomic time series, induces a peak in the
spectrum of the cyclical component that is absent from the original series. Two
consequences of applying the HP and BK filters are then that they induce spurious
dynamic properties and that they extract a cyclical component that fails to capture
a significant fraction of the variance contained in business-cycle frequencies.

However, macroeconomic time series are often represented as an
unobserved permanent component containing a unit root and an unobserved
cyclical component. While the HP and BK filters do not provide a good
approximation of the business-cycle frequencies for the series in level, they might
still provide a good approximation of an unobserved cyclical component if this
component were characterized by a peak in its spectrum at business-cycle
frequencies. We explore this possibility through a simulation study. The data-
generating process is a structural time-series model composed of a random walk
plus a cyclical component. Both components are uncorrelated and the cyclical
component can have a peak in its spectrum at business-cycle frequencies. The
filters perform adequately when the spectrum of the original series (including the
permanent and cyclical components) has a peak at business-cycle frequencies.
However, when the series are dominated by low frequencies, the HP and BK filters
provide a distorted cyclical component. The series is dominated by low frequencies
when the permanent component is important relative to the cyclical component
and/or when the later has its peak at zero frequencies. Since most macroeconomic
series have the typical Granger shape, the application of these filters is likely to
provide a distorted cyclical component. Our result holds also for more general
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specifications of the permanent component and for a specification containing a
cyclical component correlated with the permanent component.

These results allow us to understand the findings of King and Rebelo
(1993) for simulated series obtained with a R.B.C. model. It is now well known that
this model has few internal propagation mechanisms.2 Indeed, the dynamic of
output for this model corresponds almost exactly to the dynamic of exogenous
shocks. King and Rebelo report persistence, volatilities and comovement of
simulated series for the cases where the exogenous process is a first order
autoregressive process with coefficient equal to 0.9 and 1. For these processes, the
spectral densities of output, consumption and investment in level are dominated
by low frequencies. Applying the HP filter to these simulated series provides
distorted cyclical properties. The same argument explains the findings of Harvey
and Jaeger (1993) and Cogley and Nason (1995a) for a random walk process.

The paper is organized as follows. In Section 2, we present the HP and
BK filters and briefly discuss the existing literature on the HP filter. In Section 3,
we examine how well the HP and BK filters extract frequencies corresponding to
fluctuations of between 6 and 32 quarters. In Section 4, we present a simulation
study to assess how well these filters retrieve the cyclical component of a time
series composed of a random walk and a transitory component. We compare, in
Section 5, the cyclical component resulting from the application of the HP and BK
filters with those obtained with the detrending methods proposed by Watson
(1986) and Cochrane (1994) for U.S. output. We then present our conclusions and
propose alternative methods to identify the business-cycle component.

2. See King, Plosser and Rebelo (1988), Watson (1993), Cogley and Nason (1995b), and
Rotemberg and Woodford (1996) for a discussion of this point.
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2. THE HP AND BK FILTERS

2.1 THE HP FILTER

The HP filter decomposes a time series  into an additive cyclical component ( )
and a growth component ( ),

.

Applying the HP filter involves minimizing the variance of the cyclical component
 subject to a penalty for the variation in the second difference of the growth

component ,

,

where , the smoothness parameter, penalizes the variability in the growth
component. The larger the value of , the smoother the growth component. As
approaches infinity, the growth component corresponds to a linear time trend. For
quarterly data, Hodrick and Prescott propose to set . King and Rebelo
(1993) show that the HP filter can render stationary any integrated process of up
to the fourth order.

A number of authors have studied the HP filter’s basic properties. As
shown by Harvey and Jaeger (1993) and King and Rebelo (1993), the infinite
sample version of the HP filter can be rationalized as the optimal linear filter of
the trend component for the following process:3

,

where  is an  irregular component and the trend component, , is
defined by

,

3. That is, the filter that minimizes the mean square error ,
where  is the true cyclical component and  is its estimate.
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,

with .  is the slope of the process and  is independent of the
irregular component. Note that this trend component is integrated of order two,
i.e., stationary in second differences.

The use of the HP filter to identify the cyclical component of most
macroeconomic time series cannot be justified on the basis of optimal filtering
arguments since the following assumptions are unlikely to be satisfied in practice.

(1) Transitory and trend components are not correlated with each other. This
implies that the growth and cyclical components of a time series are
assumed to be generated by distinct economic forces, which is often
incompatible with business-cycle models -- see Singleton (1988) for a
discussion.

(2) The process  is integrated of order 2. This is often incompatible with priors
on macroeconomic time series. For example, it is usually assumed that real
GDP is integrated of order 1 or stationary around a breaking trend.

(3) The transitory component is white noise. This is also questionable. For
example, it is unlikely that the stationary component of output is strictly
white noise. King and Rebelo (1993) show that this condition can be
replaced by the following assumption: an identical dynamic mechanism
propagates changes in the trend component and innovations to the cyclical
component. However, the latter condition is also very restrictive.

(4) The parameter controlling the smoothness of the trend component, , is
appropriate. Note that  corresponds to the ratio of the variance of the
irregular component to that of the trend component. Economic theory
provides little or no guidance as to what this ratio should be. While attempts
have been made to estimate this parameter using maximum-likelihood
methods -- see Harvey and Jaeger (1993) or Côté and Hostland (1993) -- it
appears difficult to estimate  with reasonable precision.

Moreover, for the finite sample version of the HP filter, the user
should not be interested in data points near the beginning or the end of the
sample. This is simply a consequence of the fact that the HP filter, a two-sided
filter, changes its nature and becomes closer to a one-sided filter as it approaches
the beginning or the end of a time series. Indeed, after studying the properties of
the HP filter at those extremities, Baxter and King (1995) recommend that three
years of data be dropped at both ends of a time series when the HP filter is applied
to quarterly or annual data.4

Despite these shortcomings, Singleton (1988) shows that the HP filter
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can nevertheless be a good approximation of a high-pass filter when it is applied
to stationary time series. Here we need to introduce some elements of spectral
analysis. A zero-mean stationary process has a Cramer representation such as:

.

where  is a complex value of orthogonal increments, i is the imaginary
number ( ) and  is frequency measured in radians, i.e.,  (see
Priestley (1981) chapter 4). In turn, filtered time series can be expressed as

,

with

,  (1)

Equation (1) is the frequency response (Fourier transform) of the filter. That is,
 indicates the extent to which  responds to  at frequency  and can be

seen as the weight attached to the periodic component . In the case of
symmetric filters, the Fourier transform is also called the gain of the filter.

An ideal high-pass filter would remove low frequencies or long cycle
components and allow high frequencies or short cycle components to pass through,
so that  for , where  has some predetermined value and

 for . Chart 1 shows the squared gain of the HP filter. We see that
the squared gain is 0 at zero frequency and is close to 1 from around frequency

 and up. Thus, the HP filter appears to be a good approximation of a high-
pass filter in that it removes low frequencies and passes through higher
frequencies.

4. This is clearly a problem for policy makers hoping to use the HP filter to estimate
current potential output. This is discussed in Laxton and Tetlow (1992) and van
Norden (1995).
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Chart 1: Squared gain of the HP filter

An important problem is that most macroeconomic time series are
either integrated or highly persistent processes, so that they are better
characterized in small samples as non-stationary rather than stationary
processes. In their study of the implications of applying the HP filter to integrated
or highly persistent time series, Cogley and Nason (1995a) argue that the HP filter
is equivalent to a two-step linear filter that would initially first-difference the data
to make them stationary and then smooth the differenced data with the resulting
asymmetric filter. The filter tends to amplify cycles at business-cycle frequencies
in the detrended data and to dampen long-run and short-run fluctuations. Cogley
and Nason conclude that the filter can generate business-cycle periodicity even if
none is present in the data. Harvey and Jaeger (1993) make the same point.5 To
better understand this result, consider the following I(1) process

,  (2)

where  is zero-mean and stationary. King and Rebelo (1993) show that the HP
cyclical filter can be rewritten as . We define  as the squared

5. Classic examples of filter-induced cyclicality in the context of stationary time series are
Slustsky (1937) and Howrey (1968). These examples are discussed in Chapter 11 of
Sargent (1987).
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gain corresponding to the HP cyclical filter where  is the Fourier transform
of  at frequency . When the HP filter is applied to the level of the
series , the spectrum of the cyclical component is defined as

,

where  is the Fourier transform of  and  is the spectrum
of , which is well defined since  is a stationary process. Obviously,

 is not defined for . The expression  is
often called the pseudo-spectrum of  (see Gouriéroux and Monfort (1995)).

Cogley and Nason (1995a) and Harvey and Jaeger (1993) calculate
the squared gain of the HP cyclical component for . In such case, the
squared gain is equal to , since .
By the Fourier transform, the squared gain corresponding to the filter applied to

 is . The dashed line in Chart 2 represents this
squared gain. These authors then conclude that applying the HP filter to the level
of a random walk produces detrended series that have the characteristics of a
business cycle. When this squared gain is compared with the ideal squared gain
for the series in difference, we can see that the filter amplifies business-cycle
frequencies and produces spurious dynamics.

Now suppose that  in equation 2 is a white-noise process with
variance equal to , so that the spectrum of  is equal to 1 at each frequency. We
choose this example because the squared gain calculated by Cogley and Nason
corresponds to the cyclical component extracted by the HP filter in this specific
case. Chart 2 presents the pseudo-spectrum of  and the spectrum of the cyclical
component identified by the HP filter for business-cycle frequencies. We can see
that the effect of the HP filter is quite different depending on whether we are
interested in retrieving the component corresponding to business-cycle
frequencies for the level of the series  or for the series in difference .6

Indeed, if one is to judge the performance of the HP filter by how well it does in
extracting a specified range of periodicities, which is the first of the six objectives
that Baxter and King (1995) try to meet in constructing their band-pass filter, the
spectrum of the extracted component should be compared to the spectrum (or
pseudo-spectrum) for the series in level. The conclusion then differs from that of
Cogley and Nason (1995a) and Harvey and Jaeger (1993). We still find that the
spectrum of the cyclical component identified by the HP filter has a peak

6. The fact that we are interested in extracting business-cycles frequencies from the level
of integrated series may appear problematic. Note that we could also consider an AR(1)
process with a coefficient of 0.95 and obtain the same result.
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corresponding to a period of 30 quarters which is absent from the spectrum of the
original series. However, we also find that the filter in fact dampens the business
cycle fluctuations so that business-cycle frequencies are relatively less important.
Thus, the conclusion is sensitive to the definition of the business-cycle component.
Moreover, the conclusion of Cogley and Nason (1995a) and Harvey and Jaeger
(1993) may not hold if one is interested in the cyclical component of other processes
than random walks. We consider these points respectively in Sections 3 and 4.

CHART 2: Spectrum of yt and of that series HP filtered
(at frequencies between 6 and 32 quarters)

2.2 THE BK FILTER

While an ideal high-pass filter removes low frequencies from the data, an ideal
band-pass filter removes both low and high frequencies. Baxter and King (1995)
propose a finite moving-average approximation of an ideal band-pass filter based
on Burns and Mitchell’s (1946) definition of a business-cycle, the BK filter is
designed to pass through components of time series with fluctuations between 6
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and 32 quarters while removing higher and lower frequencies.

When applied to quarterly data, the band-pass filter proposed by
Baxter and King takes the form of a 24-quarter moving average

.

where L is the lag operator. The weights  can be derived from the inverse
Fourier transform of the frequency response function -- see Priestley (1981), p.
274. Baxter and King adjust the band-pass filter with a constraint that the gain is
zero on the zero frequency. This constraint implies that the sum of the moving
average coefficients must be zero. When using the BK filter, 12 quarters are
sacrificed at the beginning and the end of the time series, seriously limiting its
usefulness for analyzing contemporaneous data.

To study some time and frequency domain properties of the BK filter,
assume the following data-generating process for :

,  (3)

where  determines the order of integration of  and  is a zero mean stationary
process. Baxter and King show that their filter can be factorized as

,

so that it is able to render stationary those time series that contain up to two unit
roots.
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CHART 3a: Autocorrelations corresponding to the BK filter

Chart 3b: Autocorrelations corresponding to the HP filter
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Chart 3a shows the autocorrelation functions for the BK-filtered
version of a white-noise process and a random-walk process. In both cases, the
cyclical component identified by the BK filter possesses strong positive
autocorrelations at shorter horizons. The result for the random walk is similar to
what Cogley and Nason (1995a) find for the HP filter (shown in Chart 3b).
However, in contrast with the HP filter, the cyclical component identified by the
BK filter displays strong dynamics for a white-noise process. One important
implication of this result is that it precludes using the autocorrelation functions
resulting from this band-pass filter to evaluate the internal dynamic propagation
mechanism of business-cycle models.

The spectrum of the cyclical component obtained via applying the BK
filter is

,

where  is the squared gain of the BK filter and  is the spectrum of
. The squared gain  is equal to , where  denotes the Fourier

transform of  at frequency . The pseudo-spectrum of  is equal to

(sin2 )-r

for  (see Priestley (1981), p. 597), where  is the spectrum of the process
, which is well defined since  is stationary.

Chart 4a presents the squared gain of the BK filter and compares it
with the squared gain of the ideal filter. The BK filter is designed to remove low
and high frequencies from the data. This is basically what is obtained. The filter
passes through most components with fluctuations of between 6 and 32 quarters
(respectively  and ), while removing components at higher and lower
frequencies. However, the BK filter does not exactly correspond to the ideal band-
pass filter (also shown on the graph) because it is a finite approximation of an
infinite moving-average filter. In particular, at lower and higher frequencies we
observe a compression effect, so that the squared gain is less than one.
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CHART 4a: Squared gain of the BK filter

As in Section 2.1, we now assume that r=1 and that  is white noise
with variance equal to  in equation (3). The spectrum of  is then equal to 1 at
all frequencies and the cyclical component obtained with the BK filter corresponds
exactly to the squared gain of the BK filter as calculated by Cogley and Nason
(1995a) and Harvey and Jaeger (1993) for the HP filter:

(sin2 )-1.

Chart 4b presents the pseudo-spectrum of  and the spectrum of the cyclical
component identified by the BK filter at business-cycle frequencies. The
conclusion once again depends on whether we are interested in retrieving the
component corresponding to business-cycle frequencies for the level of the series

 or for the series in difference . In the latter case, as noted by Cogley and
Nason and by Harvey and Jaeger for the HP filter, the BK filter greatly amplifies
business-cycle frequencies and creates spurious cycles when compared with the
ideal squared gain for the series in difference. For example, it amplifies by a factor
of ten the variance of cycles with a periodicity of around 20 quarters ( ). Also,
as in the case of the HP filter, business-cycle frequencies of the BK filtered series
are less important than those of the original series in level and the cyclical
component identified by the BK filter has a peak corresponding to a period of 20
quarters (compared with 30 quarters in the case of the HP filter), which is absent
from the spectrum of the level of the series .
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CHART 4b: Squared gain of the BK filter
(Case of a random-walk process)

3. ABILITY OF THE FILTERS TO EXTRACT CYCLICAL PERIODICITIES

In this section, we examine how well the BK and HP filters capture the cyclical
component of macroeconomic time series. Baxter and King’s (1995) first objective
is to adequately extract a specified range of periodicities without altering the
properties of this extracted component. We use the same criteria to assess the
performance of the HP and BK filters. We show that when the peak of the spectral-
density function of these series lies within business-cycle frequencies, these filters
provide a good approximation of the corresponding cyclical component. If the peak
is located at zero frequency, so that the bulk of the variance is located in low
frequencies, those filters cannot identify the cyclical component adequately.

To show this, we consider the following data-generating process
(DGP),

,  (4)

where . A second-order autoregressive process is useful for our purpose
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because its spectrum may have a peak at business-cycle frequencies or at zero
frequency. The spectrum of this process is equal to

and the location of its peak is given by

.

Thus,  has a peak at frequencies other than zero for

 and .  (5)

Then  has its peak at = cos-1  -- see Priestley (1981). For
other parameter values, the spectrum has a trough at non-zero frequencies if

 and .

Charts 5 and 6 show the spectrum of autoregressive processes and
the spectrum of the cyclical component identified with the HP and BK filters.
When the peak is located at zero frequency (i.e., most of the power of the series is
located at low frequencies) the spectrum of the cyclical component resulting from
the application of both filters is very different from that of the original series,
especially at lower frequencies (Chart 5). In particular, the HP and BK filters
induce a peak at business-cycle frequencies even though it is absent from the
original series and they fail to capture a significant fraction of the variance
contained in the business-cycle frequencies. On the other hand, when the peak is
located at business-cycle frequencies, the spectrum of the cyclical component
identified by HP and BK filtering matches fairly well the true spectrum at these
frequencies (Chart 6). This result is robust for different sets of parameters  and

. It is interesting to note that the BK filter does not perform as well as the HP
filter at frequencies corresponding to around 6 to 8 quarters cycles. Indeed, the BK
filter amplifies cycles of around 8 quarters but compresses those of around 6
quarters. This results from the shape of the squared gain of the BK filter at those
frequencies (see Chart 4a). The absence of a peak at business-cycle frequencies
does not imply that macroeconomic series do not feature business-cycles -- see
Sargent (1987) for a discussion. In fact, while most macroeconomic series feature
the typical Granger shape, the growth rate of these series is often characterized
by a peak at the business-cycle frequencies. King and Watson (1996) call this “the
typical spectral shape of growth rates.”
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CHART 5: Series having the typical Granger shape
(AR(2) coefficients: 1.26 -0.31)

CHART 6: Series with a peak at business-cycle frequencies
(AR(2) coefficients: 1.26 -0.78)
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To examine this question in more detail, we perform the following
exercise. First, we set a DGP by a choice of  for the second-order
autoregressive process of equation (4). Second, we extract the corresponding
cyclical component with the HP or BK filters. Third, we search among second-
order autoregressive processes for the parameters  and  that minimize the
distance, at business-cycle frequencies, between the spectrum of this process and
the spectrum of the HP- or BK-filtered true second-order autoregressive processes.
The problem is the following

,

where , ,  is the spectrum of the filtered DGP (where
 is the vector of true values for the parameters  and ), and  is the

spectrum of the evaluated autoregressive process. Thus, in the case where the HP
and BK filters extract adequately the range of periodicities corresponding to
fluctuations of between 6 and 32 quarters (respectively,  and ),

 will be equal to the true vector . Otherwise, the filter will extract a cyclical
component corresponding to a second-order autoregressive process differing from
the true one.

Table 1 presents our results for a DGP where the autoregressive
parameter of order 1 is set at 1.20 while the parameter of order 2 is allowed to vary.
Using the restrictions implied by (5), the peak of the spectrum lies within
business-cycle frequencies when .43. Although we report results only for
the HP filter, these are almost identical to those obtained with the BK filter.7

Results from this exercise corroborate those obtained from visual inspection. The
second-order autoregressive process which minimizes the distance between its
spectrum at business-cycle frequencies and that of the business-cycle component
identified by the HP and BK filters for the true process is very different from the
true second-order autoregressive process when the peak of the DGP is located at
zero frequency. When the peak is located at business-cycle frequencies, the
resulting second-order autoregressive process is close to the true second-order
autoregressive process.

7. These results are robust to the use of alternative values for , so that the restrictions
are respected.
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The spectrum of the level of macroeconomic time series typically looks
like that of the unfiltered series shown on Chart 5. The spectrum’s peak is located
at zero frequency and the bulk of its variance is located in the low frequencies.
This is what is called Granger’s typical shape. Charts 7, 8, 9 and 10 display the
estimated spectra of U.S. real GDP, real consumption, consumer price inflation,
and the unemployment rate, as well as the spectra of the filtered counterparts to
these series.8 It is clear that the filters perform badly in terms of capturing
business-cycle frequencies in these cases.

8. We use a parametric estimator of the spectrum. An autoregressive process was fitted
and the order of that process was determined on the basis of the Akaike criteria.

TABLE 1: Fitted values for the HP filter

DGP ( ) HP ( )

1.20 -0.25 -0.09 0.72

1.20 -0.30 0.12 0.40

1.20 -0.35 0.48 -0.15

1.20 -0.40 0.87 -0.20

1.20 -0.45 1.09 -0.41

1.20 -0.50 1.16 -0.50

1.20 -0.55 1.19 -0.56

1.20 -0.60 1.20 -0.61

1.20 -0.65 1.20 -0.66

1.20 -0.70 1.20 -0.70

1.20 -0.75 1.20 -0.75

1.20 -0.80 1.20 -0.80

θ0 θ̃

φ1 φ2 φ1 φ2
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The intuition behind this result is simple. Charts 1 and 4a (Section 2)
show that the gains of the HP and BK filters at low business-cycle frequencies are
significantly smaller than that of the ideal filter. Indeed, the squared gain of the
BK filter is 0.34 at frequencies corresponding to 32-quarter cycles, while that of
the HP filter is 0.49. In the case of the HP filter, the squared gain does not reach
0.95 before frequency  (cycles of 16 quarters). The problem is that a large
fraction of the power of typical macroeconomic time series at business-cycle
frequencies is concentrated in the band where the squared gains of HP and BK
filters differ from that of an ideal filter. Also, the shape of the squared gain of those
filters when applied to typical macroeconomic time series induces a peak in the
spectrum of the cyclical component that is absent from the original series. In short,
applying the HP and BK filters to series dominated by low frequencies results in
the extraction of a cyclical component that does not capture an important fraction
of the variance contained in business-cycle frequencies of the original series and
that induces spurious dynamic properties.

One could argue that macroeconomic time series are really made of a
permanent component and a cyclical component, so that the peak of the spectrum
of the series would be at zero frequency while the peak of the spectrum of the
cyclical component would be at business-cycle frequencies. For example, the
permanent component could be driven by a random-walk technological process
with drift, while transitory monetary- or fiscal-policy shocks, among others, would
generate the cyclical component with a peak in its spectrum at business-cycle
frequencies. If this is true, then the HP and BK filters might be able to adequately
capture the cyclical component. We examine this issue in the next section.

π 8⁄
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CHART 7: Spectrum of the logarithm of U.S. real GDP

CHART 8: Spectrum of the logarithm of U.S. real consumption
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CHART 9: Spectrum of U.S. consumer price inflation

CHART 10: Spectrum of U.S. unemployment rate
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4. A SIMULATION STUDY

Consider the following DGP:

,  (6)

where

and

, .

Equation (6) defines  as the sum of a permanent component, , which in this
case corresponds to a random walk, and a cyclical component, .9 The dynamics
of the cyclical component are specified as a second order autoregressive process so
that the peak of the spectrum could be at zero frequency or at business-cycle
frequencies. We assume that  and  are uncorrelated.

Data are generated from equation (6) with  set at 1.2 and different
values for  to control the location of the peak in the spectrum of the cyclical
component. We also vary the standard-error ratio for the disturbances  to
change the relative importance of each component. We follow the standard
practice of giving the value 1,600 to , the HP filter smoothness parameter. We
also follow Baxter and King’s suggestion of dropping 12 observations at the
beginning and at the end of the sample. The resulting series contains 150
observations, a standard size for quarterly macroeconomic data. The number of
replications is 500.

The performance of the HP and BK filters is assessed by comparing
the autocorrelation function of the cyclical component of the true process to with
that obtained from the filtered data. We also calculate the correlation between the
true cyclical component and the filtered cyclical component and report their
relative standard deviations ( ). Table 2 presents the results for the HP filter

9. This is Watson’s (1986) specification for U.S. real GDP.
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and Table 3 those for the BK filter.

Table 2 shows that the HP filter performs particularly poorly when
there is an important permanent component. Indeed, for high  ratios, in
most cases the correlation between the true and the filtered components is not
significantly different from zero. The estimated autocorrelation function is
invariant to the change in the cyclical component in these cases (the values of the
true autocorrelation functions are given in parentheses in the tables). When the
ratio  is equal to 0.5 or 1 and the peak of the cyclical component is located
at zero frequency ( .43), the dynamic properties of the true and the filtered
cyclical components are significantly different, as indicated by the estimated
parameter values. In general, the HP filter adequately characterizes the series
dynamics when the peak of the spectrum is at business-cycle frequencies and the
ratio  is small. However, even when the ratio of standard deviations is equal
to 0.01 (i.e. the permanent component is almost absent), the filter performs poorly
when the peak of the spectrum of the cyclical component is at zero frequency.
Indeed, for .25, the dynamic properties of the filtered component differ
significantly from those of the true cyclical component, the correlation is only
equal to 0.66, and the standard deviation of the filtered cyclical component is half
that of the true cyclical component.

It is interesting to note that the HP filter does relatively well when
the ratio  is equal to 1, 0.5, or 0.01 and the spectrum of the original series
has a peak at zero frequency and at business-cycle frequencies (i.e. the latter
frequencies contains a significant part of the variance of the series). This is
reflected in Chart 11, which shows the spectrum for the case where  = 1 and

 = -0.75. Consequently, the conditions required to adequately identify the
cyclical component with the HP filter can be expressed in the following way: the
spectrum of the original series must have a peak located at business-cycle
frequencies, which must account for an important part of the variance of the
series. If the variance of the series is dominated by low frequencies, which is the
case for most macroeconomic series in levels, the HP filter does a poor job of
extracting the cyclical component.

σε ση⁄

σε ση⁄
φ2 0–>

σε ση⁄

φ2 0–=

σε ση⁄

σε ση⁄
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CHART 11
Spectrum for  = 1 and  = -0.75

The results for the BK filter are similar to those for the HP filter,
although the dynamic properties of the filtered cyclical component seem to be
invariant (or almost invariant) to the true process. For example, when

.01, , and , which corresponds to the case where the
cyclical component is white noise and dominates the permanent component, the
filtered cyclical component is a highly autocorrelated process. Thus, the BK filter
would appear to be of limited value as a way to identify the cyclical dynamics of a
macroeconomic time series with any confidence. As noted previously, this result
precludes the use of the BK filter to assess the internal dynamic properties of a
business-cycle model, since the filter produces a series with dynamic properties
that are almost invariant to the true process.
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TABLE 2: Simulation results for the HP filter

DGP Estimated values

Autocorrelations
correlation

1 2 3

10 0 0 .71[0]
(.59,.80)

.46[0]
(.30,.60)

.26[0]
(.08,.43)

.08
(-.07,.21)

12.96
(10.57,15.90)

10 1.2 -.25 .71[.96]
(.61,.80)

.47[.90]
(.31,.61)

.27[.84]
(.08,.44)

.08
(-.11,.28)

4.19
(2.77,6.01)

10 1.2 -.40 .71[.86]
(.60,.80)

.46[.63]
(.30,.60)

.26[.41]
(.08,.44)

.13
(-.12,.36)

6.34
(4.82,8.07)

10 1.2 -.55 .71[.77]
(.60,.80)

.46[.38]
(.29,.60)

.26[.03]
(.06,.43)

.14
(-.08,.33)

6.93
(5.36,8.70)

10 1.2 -.75 .71[.69]
(.60,.78)

.46[.27]
(.30,.59)

.25[-.19]
(.07,.41)

.15
(-.01,.31)

6.37
(4.79,7.95)

5 0 0 .69[0]
(.58,.78)

.45[0]
(.30,.58)

.26[0]
(.09,.41)

.15
(.02,.27)

6.50
(5.28,7.85)

5 1.2 -.25 .71[.96]
(.61,.80)

.46[.90]
(.32,.61)

.26[.84]
(.08,.43)

.16
(-.01,.36)

2.11
(1.43,3.04)

5 1.2 -.40 .72[.86]
(.61,.80)

.46[.63]
(.31,.60)

.25[.41]
(.08,.42)

.23
(-.01,.45)

3.26
(2.47,4.15)

5 1.2 -.55 .71[.77]
(.61,.80)

.46[.38]
(.30,.59)

.24[.03]
(.06,.41)

.24
(.01,.44)

3.60
(2.83,4.52)

5 1.2 -.75 .70[.69]
(.61,.79)

.43[.27]
(.26,.57)

.20[-.19]
(.00,.38)

.29
(.11,.44)

3.30
(2.53,4.17)

1 0 0 .43[0]
(.27,.57)

.28[0]
(.11,.42)

.20[0]
(-.02,.31)

.59
(.49,.70)

1.61
(1.41,1.85)

1 1.2 -.25 .76[.96]
(.67,.83)

.51[.90]
(.37,.62)

.29[.84]
(.11,.44)

.51
(.33,.68)

.66
(.44,.91)

1 1.2 -.40 .75[.86]
(.67,.81)

.44[.63]
(.28,.55)

.16[.41]
(-.03,.33)

.71
(.56,.82)

1.02
(.83,1.22)

1 1.2 -.55 .72[.77]
(.66,.78)

.34[.38]
(.21,.47)

.01[.03]
(-.17,.19)

.76
(.56,.82)

1.15
(.83,1.22)

1 1.2 -.75 .68[.69]
(.63,.72)

.15[.27]
(.04,.27)

-.27[-.19]
(-.44,.10)

.83
(.75,.89)

1.16
(1.04,1.29)

.5 0 0 .16[0]
(.01,.32)

.10[0]
(-.04,0.24)

.04[0]
(-.10,.18)

.82
(.75,.88)

1.16
(1.07,1.27)

.5 1.2 -.25 .79[.96]
(.71,.85)

.53[.90]
(.38,.65)

.30[.84]
(.11,.46)

.61
(.41,.79)

.55
(.37,.76)

.5 1.2 -.40 .77[.86]
(.69,.81)

.43[.63]
(.29,.54)

.13[.41]
(-.05,.29)

.84
(.73,.92)

.87
(.74,.99)

.5 1.2 -.55 .72[.77]
(.67,.78)

.28[.38]
(.17,.39)

-.10[.03]
(-.25,.06)

.89
(.83,.94)

.98
(.89,1.07)

.5 1.2 -.75 .67[.69]
(.63,.71)

.07[.27]
(-.03,.18)

-.42[-.19]
(-.57,-.27)

.94
(.90,.96)

1.02
(.97,1.08)

σε ση⁄ φ1 φ2 σ̂c σc⁄

(continued)
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TABLE 2: (Continued)

DGP Estimated values

Autocorrelations
correlation

1 2 3

.01 0 0 -.08[0]
(-.21,.06)

-.06[0]
(-.21,.06)

-.06[0]
(-.19,.06)

.98
(.96,.99)

.97
(.94,.99)

.01 1.2 -.25 .80[.96]
(.72,.86)

.54[.90]
(.38,.67)

.30[.84]
(.11,.48)

.66
(.45,.83)

.51
(.34,.69)

.01 1.2 -.40 .78[.86]
(.72,.83)

.43[.63]
(.30,.55)

12[.41]
(-.05,.28)

.90
(.82,.96)

.81
(.71,.90)

.01 1.2 -.55 .73[.77]
(.67,.77)

.26[.38]
(.15,.37)

-.14[.03]
(-.30,.01)

.96
(.91,.99)

.92
(.86,.96)

.01 1.2 -.75 .67[.69]
(.62,.71)

.02[.27]
(-.08,.13)

-.50[-.19]
(-.61,-.35)

.99
(.97,1.0)

.97
(.95,.99)

TABLE 3: Simulation results for the BK filter

DGP Estimated values

Autocorrelations
correlation

1 2 3

10 0 0 .90[0]
(.87,.93)

.65[0]
(.52,.75)

.33[0]
(.13,.51)

.03
(-.11,.16)

11.55
(9.05,14.38)

10 1.2 -.25 .90[.96]
(.87,.93)

.65[.90]
(.55,.74)

.34[.84]
(.17,.49)

.08
(-.13,.32)

3.71
(2.34,5.45)

10 1.2 -.40 .90[.86]
(.87,.93)

.64[.63]
(.54,.73)

.33[.41]
(.16,.48)

.11
(-.16,.36)

5.67
(4.19,7.18)

10 1.2 -.55 .90[.77]
(.87,.93)

.64[.38]
(.53,.73)

.33[.03]
(.14,.48)

.12
(-.12,.33)

6.23
(4.71,7.93)

10 1.2 -.75 .90[.69]
(.86,.92)

.63[.27]
(.52,.73)

.31[-.19]
(.13,.48)

.16
(-.04,.36)

5.69
(4,37,7.16)

5 0 0 .90[0]
(.87,.90)

.64[0]
(.53,.73)

.33[0]
(.14,.49)

.05
(-.09,.20)

5.80
(4.54,7.16)

5 1.2 -.25 .90[.96]
(.87,.93)

.65[.90]
(.54,.73)

.34[.84]
(.16,.49)

.17
(-.05,.38)

1.94
(1.25,2.74)

5 1.2 -.40 .90[.86]
(.87,.93)

.64[.63]
(.53,.74)

.32[.41]
(.14,.49)

.23
(-.03,.47)

2.93
(2.15,3.76)

5 1.2 -.55 .89[.77]
(.87,.92)

.62[.38]
(.52,.72)

.30[.03]
(.12,.46)

.26
(.03,.46)

3.19
(2.45,3.98)

5 1.2 -.75 .88[.69]
(.85,.92)

.60[.27]
(.47,.70)

.26[-.19]
(.06,.44)

.28
(.09,.45)

2.97
(2.24,3.77)

1 0 0 .89[0]
(.85,.92)

.61[0]
(.48,.71)

.27[0]
(.06,.45)

.19
(.05,.32)

1.21
(.96,1.43)

1 1.2 -.25 .90[.96]
(.87,.93)

.65[.90]
(.53,.74)

.34[.84]
(.15,.50)

.53
(.36,.71)

.60
(.39,.84)

σε ση⁄ φ1 φ2 σ̂c σc⁄

σε ση⁄ φ1 φ2 σ̂c σc⁄
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The results of our simulation study provide clear indications
concerning the performance of the HP and BK filters when these are applied to
more general decompositions between permanent and cyclical components than
equation (6). For instance, the trend component can be an I(1) process with
transient dynamic (e.g. ).10 Also, the cyclical component can be
correlated with the permanent component. For example, the decomposition
proposed by Beveridge and Nelson (1981) implies permanent and transitory
components that are perfectly correlated. However, to reproduce the Granger
typical shape, any decomposition must have a permanent component which is

TABLE 3: (Continued)

DGP Estimated values

Autocorrelations
correlation

1 2 3

1 1.2 -.40 .88[.86]
(.85,.91)

.58[.63]
(.47,.68)

.22[.41]
(.03,.39)

.70
(.55,.81)

.95
(.78,1.12)

1 1.2 -.55 .85[.77]
(.81,.89)

.48[.38]
(.36,.60)

.05[.03]
(-.15,.24)

.73
(.61,.83)

1.06
(.89,1.23)

1 1.2 -.75 .79[.69]
(.75,.83)

.27[.27]
(.14,.40)

-.26[-.19]
(-.45,-.06)

.79
(.69,.87)

1.08
(.96,1.20)

.5 0 0 .86[0]
(.81,.89)

.50[0]
(.35,.63)

.10[0]
(-.12,.30)

.36
(.25,.47)

.77
(.63,.91)

.5 1.2 -.25 .90[.96]
(.87,.93)

.65[.90]
(.55,.74)

.34[.84]
(.16,.50)

.63
(.45,.78)

.51
(.34,.71)

.5 1.2 -.40 .88[.86]
(.84,.91)

.56[.63]
(.43,.66)

.17[.41]
(-.02,.34)

.81
(.71,.88)

.81
(.67,.93)

.5 1.2 -.55 .83[.77]
(.80,.87)

.41[.38]
(.30,.53)

-.06[.03]
(-.24,.12)

.85
(.78,.91)

.91
(.81,1.01)

.5 1.2 -.75 .76[.69]
(.72,.79)

.17[.27]
(.06,.29)

-.42[-.19]
(-.57,-.25)

.89
(83,.93)

.96
(.89,1.03)

.01 0 0 .79[0]
(.75,.83)

.29[0]
(.16,.42)

-.22[0]
(-.40,-.03)

.55
(.48,.63)

.51
(.43,.58)

.01 1.2 -.25 .91[.96]
(.88,.93)

.66[.90]
(.57,.74)

.35[.84]
(.20,.50)

.68
(.52,.82)

.48
(.32,.64)

.01 1.2 -.40 .87[.86]
(.84,.90)

.54[.63]
(.44,.64)

15[.41]
(-.03,.31)

.86
(.79,.92)

.76
(.65,.86)

.01 1.2 -.55 .83[.77]
(.79,.86)

.39[.38]
(.27,.49)

-.11[.03]
(-.29,.06)

.90
(.85,.94)

.86
(.78,.92)

.01 1.2 -.75 .74[.69]
(.71,.78)

.13[.27]
(.03,.23)

-.48[-.19]
(-.61,-.34)

.93
(.89,.96)

.92
(.86,.97)

σε ση⁄ φ1 φ2 σ̂c σc⁄

εt d L( )ζt=
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important relative to the cyclical component or a cyclical component dominated by
low frequencies. In both cases, the HP and BK filters provide a distorted cyclical
component.11

5. COMPARISON WITH OTHER APPROACHES

In this section, we compare the cyclical component obtained using the HP and BK
filters with those of other approaches. Watson (1986) proposes an unobserved
stochastic trend decomposition into permanent and cyclical components. His
model for U.S. real GDP corresponds to equation (6) presented in the previous
section.

It would be interesting to see whether the HP or BK filter is able to
capture the cyclical component of the above DGP. Using Kuttner’s (1994)
estimates (  = 1.44,  = - 0.47,  = 0.0052, and  = 0.0069),12 we simulated
data on the basis of this DGP, filtered it, and compared the dynamic properties and
the correlation of the true and the filtered components. The results are shown in
Table 4. Both the HP and BK filters produce cyclical components with dynamic
properties significantly different from the true one. Notably, the cyclical
components identified by both filters are much less persistent than the true one.
Also, the correlation is rather small. These results are not surprising given that
the spectrum of the cyclical component has its peak at zero frequency and the bulk
of the variance is located in the low frequencies.

10. Lippi and Reichlin (1994) argue that modeling the trend component in real GNP as a
random walk is inconsistent with the standard view concerning the diffusion process
of technological shocks. Blanchard and Quah (1989) and King, Plosser, Stock and
Watson (1991) used a multivariate representation to obtain a trend component having
an impulse function with a short-run impact smaller than the long-run impact. Thus,
the effect of the permanent shock gradually increases to its long-run impact.

11. The results of complementary similations with different processes are available on
request. For brevity these are not shown here.

12. We chose Kuttner’s estimates because he uses a larger sample than Watson. The use
of Watson’s estimates would not change our conclusions, however.

φ1 φ2 σε
2 ση

2
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Cochrane (1994) proposes a simple detrending method for output
based on the permanent-income hypothesis. This implies (for a constant real
interest rate) that consumption is a random walk with drift that is cointegrated
with total income. Thus, any fluctuations in GDP with unchanged consumption
must be transitory. Cochrane uses these assumptions to decompose U.S. real GDP
into permanent and transitory components. Chart 12 presents the spectra for U.S.
real GDP, for the same series when it is HP-filtered, and for Cochrane’s cyclical
component.

Using Cochrane’s measure for comparison, the HP cyclical component
greatly amplifies business-cycle frequencies. Also, while the peak of the spectrum
of the HP-filtered cyclical component is located at business-cycle frequencies, the
peak of Cochrane’s measure is at zero frequency. The correlation between the two
cyclical components is 0.57. To the extent that Cochrane’s method provides a good
approximation of the cyclical component of U.S. real GDP, the HP-filtered measure
appears inadequate.

TABLE 4

Autocorrelations
Correlation

1 2 3

Theoretical values 0.98 0.94 0.89 --

BK filter 0.92
(0.89-0.94)

0.70
(0.60-0.78)

0.42
(0.25-0.56)

0.47
(0.30-0.67)

HP filter 0.84
(0.78-0.89)

0.61
(0.48-0.73)

0.38
(0.20-0.54)

0.56
(0.35-0.76)
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CHART 12: spectrum of U.S. real GDP

6. CONCLUSIONS

This paper shows that the HP and BK filters do relatively well when
applied to series having a peak in their spectrum at business-cycle frequencies.
However, most macroeconomic time series have the typical Granger shape, i.e.,
most of their power is at low frequencies and their spectrum decreases
monotonically at higher frequencies. Consequently, the conditions required to
obtain a good approximation of the cyclical component with the HP and BK filters
are rarely met in practice.

What are the alternatives for a business-cycle researcher interested
in measuring the cyclical properties of macroeconomic series? In the case of the
evaluation of business-cycle models, researchers are often interested only in the
second moments of the cyclical component. In that case, there is no need to extract
a cyclical series. King and Watson (1996) show how we can obtain correlations and
cross autocorrelations without filtering the observed and simulated series. The
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strategy consists in calculating these moments from the estimated spectral
density matrix for business-cycle frequencies. We can obtain an estimator of the
spectral density matrix with a parametric estimator, such as that used by King
and Watson, or a non parametric estimator. The cyclical component can also be
obtained in a univariate or a multivariate representation with the Beveridge-
Nelson (1981) decomposition. Economic theory also provides alternative methods
of detrending. For example, Cochrane’s method (1994) based on the permanent
income theory or the Blanchard and Quah (1989) structural decomposition can be
used.13 The authors are currently investigating the properties of these alternative
methodologies.

13. Cogley (1996) compares the HP and BK filters with the univariate Beveridge-Nelson
decomposition and Cochrane’s method using a R.B.C. model with different exogenous
processes.
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