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ABSTRACT 
 

A Parametric Analysis of Prospect Theory’s Functionals 
for the General Population 

 
This paper presents the results of an experiment that completely measures the utility function 
and probability weighting function for different positive and negative monetary outcomes, 
using a representative sample of N = 1935 from the general public. The results confirm 
earlier findings in the lab, suggesting that utility is less pronounced than what is found in 
classical measurements where expected utility is assumed. Utility for losses is found to be 
convex, consistent with diminishing sensitivity, and the obtained loss aversion coefficient of 
1.6 is moderate but in agreement with contemporary evidence. The estimated probability 
weighing functions have an inverse-S shape and they imply pessimism in both domains. 
These results show that probability weighting is also an important phenomenon in the general 
population. Women and lower educated individuals are found to be more risk averse, in 
agreement with common findings. Unlike previous studies that ascribed gender differences in 
risk attitudes solely to differences in the degree utility curvature, however, our results show 
that this finding is primarily driven by loss aversion and, for women, also by a more 
pessimistic psychological response towards the probability of obtaining the best possible 
outcome. 
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Introduction 
After numerous studies systematically falsified the classical expected utility 

model as descriptive theory of decision making under risk (Allais 1953; 

Kahneman and Tversky 1979), various new descriptive theories of individual 

decision making under risk have been developed (Starmer 2000). The most 

prominent of these non-expected utility models is prospect theory (Kahneman and 

Tversky 1979; Tversky and Kahneman 1992). 

Prospect theory entails two fundamental breakaways from the classical model. 

Instead of defining preferences over wealth, preferences are defined over changes 

with respect to a flexible reference point, often taken as the status quo. Decision 

makers are assumed to be less sensitive to changes in outcomes further away from 

this reference point, which is called diminishing sensitivity, and it is assumed that 

negative changes (losses) hurt more than positive changes (gains), a phenomenon 

called loss aversion. This generalization helps to explain phenomena such as the 

equity premium puzzle (Benartzy and Thaler 1995), downward-sloping labor 

supply (Goette et al. 2004), the End-of-the-day-Effect in horse race betting 

(McGlothlin 1956), and the co-existence of appreciable small stake- and moderate 

large stake- risk aversion (Rabin 2000). Furthermore, linearity in probability is 

replaced by a subjective probability weighting function that is assumed to have an 

inverse-S shape, reflecting increased sensitivity toward changes in probabilities 

near 0 and 1. This accommodates anomalies of the classical model such as the 

Allais paradox (1953), the co-existence of gambling and insurance, betting on 

long-shots at horse races (Jullien and Salanié 2000), and the avoidance of 

probabilistic insurance (Wakker et al. 1997).1 

The generalization that prospect theory entails breaks the one-to-one 

relationship between utility curvature and risk attitudes that holds under expected 

utility. Hence, in the prospect theory framework, risk attitudes are jointly 

determined by utility curvature and subjective probability weighting, where 

outcomes are defined as changes with respect to the status quo. This adds 

complexity to the interpretation of the degree of risk aversion (preferring the 

                                                 
1 For a survey of examples of field phenomena that prospect theory can and expected utility 
cannot explain, see Camerer (2000). 
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expected value of a prospect to the prospect itself), as it can no longer be 

summarized into a single index of curvature (Wakker 1994), and it complicates 

the empirical determination of risk aversion, because of the simultaneous 

confounding effects of utility curvature and subjective probability weighting 

(Tversky and Kahneman 1992). 

In order to test prospect theory’s hypotheses about the specific functional 

forms and to quantify the sources of risk aversion, various authors have attempted 

to empirically determine the prevailing shape for the utility- and probability-

weighting functions. These studies deal with the simultaneity problem by either 

assuming a parametric form for these functions (Tversky and Kahneman 1992; 

Camerer and Ho 1994; Tversky and Fox 1995; Donkers et al. 2001; Harrison and 

Rutström 2009; Abdellaoui et al. 2008) or by exploiting a particular design that 

permits them to be disentangled non-parametrically (Wakker and Deneffe 1996; 

Abdellaoui 2000; Bleichrodt and Pinto 2000; Abdellaoui et al. 2007b). 

Both approaches have their advantages and drawbacks. The parametric 

approaches are easy to estimate and interpret, but they suffer from a 

contamination effect: a misspecification of the utility function will also bias the 

estimated probability weighting function and vice versa (Abdellaoui 2000). For 

instance, in the parametric estimation of prospect theory, Harrison and Rutström 

(2009) assume the one parameter probability weighting function introduced by 

Tversky and Kahneman (1992). This function may be a misspecification if the 

true weighting function exhibits underweighting for intermediate and large 

probabilities, and minimal overweighting of small probabilities. Moreover, the 

authors assume the probability weighting function for gains and losses to be 

equal. This assumption will directly affect the loss aversion measure if the degree 

of pessimism differs between both domains. Donkers et al. (2001) impose the 

same restriction and use a one parameter weighting function due to Prelec (1998). 

Both studies find relatively much utility curvature and a low degree of loss 

aversion compared to the non-parametric approaches, which suggests that the 

probability weighting function may have been mis-specified. Another 

disadvantage of the parametric approach is that allowing for unobserved 

heterogeneity in the model is necessarily parametric which means the results may 

depend on the choice of the stochastic error process (Wilcox 2008, p. 265). 
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The non-parametric methods do not have these problems as no functional 

forms are assumed beforehand and estimation is conducted at the individual level 

allowing for full heterogeneity. This approach, however, requires data that have a 

chained nature which may introduce error propagation leading to less precise 

inference (Wakker and Deneffe 1996; Blavatskyy 2006) and, in theory, an 

incentive compatibility problem (Harrison and Rutström 2008). 

This paper aims at combining the best of both approaches by parametrically 

estimating the complete prospect theory model, thereby allowing for decision 

errors, using a rich dataset that permits the identification of prospect theory’s 

functionals without making stringent parametric assumptions. The results have 

relevance for the empirical issue of whether the utility for losses is convex 

(Currim and Sarin 1989; Tversky and Kahneman 1992; Abdellaoui 2000; Etchart-

Vincent 2004) or concave (Davidson et al. 1957; Laury and Holt 2000 (for real 

incentives only); Fehr-Duhda et al. 2006; Abdellaoui et al. 2008) and also whether 

the prevailing shape of the probability weighting function in the population is 

inverse S-shaped (Kahneman and Tversky 1992; Wu and Gonzales 1996; Fehr-

Duhda et al. 2006), linear (Hey and Orme 1994) or convex (Jullien and Salanié 

2000; Goeree et al. 2002; van de Kuilen et al. 2009). 

The data that are used in this study are obtained from a large representative 

internet survey that consists of 27 matching questions per individual. To reduce 

the dependence on functional form assumptions we use a three stage estimation 

procedure that exploits the (gamble-) trade-off method for the elicitation of 

utilities. This method is robust against subjective probability distortion (Wakker 

and Deneffe 1996) such that the measurement of utility does not depend on the 

estimates of the probability weights. Our stochastic specification allows for 

decision errors, and it naturally accommodates the propagation of errors that is 

introduced by the chaining of the questions that is at the heart the trade-off 

method (Blavatskyy 2006). Furthermore, the data contains background variables 

that can be linked to the obtained preference parameters to shed light on how the 

various components of risk attitudes vary in the population. Finally, a randomly 

assigned scaling-up of the outcomes by a factor 10 allows us to test whether 

utility curvature and probability weighting are sensitive to the magnitude of the 

stakes (Etchart-Vincent 2004). 
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The analysis confirms and complements the study of Booij and van de Kuilen 

(2007), who present non-parametric estimates of utility curvature and loss 

aversion obtained from a subset of the same data. The results re-iterate their main 

finding that utility curvature is close to linear and much less pronounced than 

suggested by classical utility measurements that neglect probability weighting. 

Diminishing sensitivity is also found, as predicted by prospect theory but contrary 

to the classical prediction of universal concavity. Utility for gains and losses is 

found to be closer to linear compared to other parametric studies, suggesting these 

may be mis-specified, while our results are a little more curved compared to the 

non-parametric estimates. This suggests that assuming homogeneity leads to a 

small downward bias, while providing evidence that error propagation is unlikely 

to greatly affect the results in the non-parametric analysis. In addition, we find 

evidence of an inverted-S shaped probability weighting function that is more 

elevated for losses than for gains, suggesting pessimism in both domains. We do 

not find evidence that the shape or the degree of elevation of the probability 

weighting functions depend on the magnitude of the stakes, but the weighting 

function for gains varies with gender and age. The weighting function for losses 

seems unrelated to any background variables. These results confirm the common 

finding that females are more risk averse than males, but contrary to classical 

studies that ascribed this gender difference solely to differences in the degree of 

utility curvature, our results show that this finding is primarily driven by 

subjective probability weighting and loss aversion. 

The remainder of this paper is organized as follows. Section 1 discusses 

prospect theory and summarizes the parametric estimates found in the literature. 

Section 2 presents the experimental method and summary statistics of the data, 

followed by the presentation of the econometric specification in section 3. The 

results are presented in section 4. Section 5 concludes, followed by the appendix 

that provides estimates of sample selection. 
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1 Prospect Theory 

1.1 The model 

We consider decision under risk, with  the set of possible monetary outcomes of 

gains and losses with respect to some wealth level or reference point. The 

reference point is assumed to be the status quo, i.e. the current wealth level. A 

prospect is a finite probability distribution over outcomes. Thus, a prospect 

yielding outcome xi with probability pi (i = 1,…,n) is denoted by (p1:x1,…, pn:xn). 

A two-outcome prospect (p:x, 1−p:y) is denoted by (p:x, y) and the unit of 

payment for outcomes is one euro. In this paper, prospect theory refers to the 

modern (cumulative) version of prospect theory introduced by Tversky and 

Kahneman (1992), that corrected the original ’79 version for violations of 

stochastic dominance and, more importantly, can also deal with uncertainty, i.e. 

the case of unknown probabilities. Prospect theory entails that the value of a 

prospect with outcomes x1 ≤ … ≤ xk ≤ 0 ≤ xk+1 ≤ … ≤ xn is given by: 

 
1 1

U( ) U( )
k n

i i j j
i j k

x xπ π− +

= = +

+∑ ∑ . (2.1) 

Here U:  →  is a continuous and strictly increasing utility function satisfying 

U(0) = 0, and π+ and π– are the decision weights, for gains and losses respectively, 

defined by 

( )π w p− −=1 1 , ( )n nπ w p+ +=  

( ... ) ( ... )i i iπ w p p w p p1 1 1
− − −

−= + + − + +  for 1 < i ≤ k, and (2.2) 

( ... ) ( ... )j j n j nπ w p p w p p1
+ + +

+= + + − + +  for k < j < n. 

Here w+ is the probability weighting function for gains and w– is the probability 

weighting function for losses, satisfying w+(0) = w−(0) = 0 and w+(1) = w−(1) = 1, 

and both strictly increasing and continuous. Thus, the decision weight of a 

positive outcome xi is the marginal w+ contribution of pi to the probability of 

receiving better outcomes, and the decision weight of a negative outcome xi is the 

marginal w−  contribution of pi to the probability of receiving worse outcomes. 

Finally note that the decision weights do not necessarily sum to 1 and that 

prospect theory coincides with expected utility if people do not distort 
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probabilities (i.e. w+ and w− are the identity) and individuals use a fixed reference 

point in terms of wealth.2 

1.2 Parametric specifications 

To make the model empirically tractable, several parametric shapes have been 

proposed for the utility- and probability weighting functions. The utility function 

determines individuals’ attitudes towards additional monetary gains and losses. 

The curvature of this function for gains is often modeled by a power function 

because of its simplicity and its good fit to (experimental) data (Wakker 2008).3 

Tversky and Kahneman (1992) introduced this function for prospect theory, 

written as ( ) ( ) ( ) ( )U 0 0= ≥ − − <x x x x xβα λ  . Here the parameters α  and β  

determine the curvature of the utility for money gains and losses respectively. The 

psychological concept of diminishing sensitivity implies that both 1α <  and 

1β < , i.e. individuals are decreasingly sensitive to changes further away from the 

reference point. Less frequently used parametric specifications of the utility 

function are the exponential and the expo-power utility functions. These functions 

often have a slightly inferior fit. Their properties are described extensively in 

Abdellaoui et al. (2007a). 

Unfortunately, a commonly accepted definition of loss aversion does not exist 

in the literature (Abdellaoui et al. 2007b). The framework that we employ, used 

by Tversky and Kahneman (1992), defines loss aversion implicitly as: 

 ( )
( )

1
1

u
u

λ
−

= − . (3.1) 

This definition can be seen as an approximation of the definition proposed by 

Köbberling and Wakker (2005), who characterize loss aversion as the ratio 

between the left and right derivatives of the utility function at zero, i.e. 

( ) ( )0 / 0KW u uλ ↑ ↓
′ ′≡ . Other definitions that have been proposed, such as 

                                                 
2 There is a debate in the literature on whether the expected utility model presupposes that 
outcomes are defined in terms of final wealth (which precludes reference-dependence) or not. In 
this paper we consider expected utility to be defined over wealth (Wakker 2005). See Cox and 
Sadiraj (2006) and Rubinstein (2006) for an alternative interpretation of expected utility. 
3 The power function is commonly referred to as constant relative risk aversion (CRRA) because, 
under expected utility, it implies that for each level of wealth, an agent is prepared to pay the same 
fraction to avoid risking a fair gamble over percentages of wealth. Under non-expected utility 
models such as prospect theory this designation is no longer appropriate. 
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Kahneman and Tversky’s original formulation of loss aversion as ( ) ( )u x u x− − >  

for all 0x > , or a stronger version formulated by Wakker and Tversky (1993) 

given by ( ) ( )u x u x′ ′− >  for all 0x > , do not define a straight index of loss 

aversion but formulate it as a property of the utility function over a whole range. 

An index can then be constructed by taking the mean or median values of the 

relevant values of x, but this is not an arbitrary choice making comparison 

between measurements difficult. Hence, we have to be careful with comparing 

loss aversion estimates (see Abdellaoui et al. (2007b) for a more extensive 

discussion). 

The probability weighting function captures the degree of sensitivity towards 

probabilities. Two distinct properties of this function have been put forward, that 

can be given a psychological interpretation. The first property refers to the degree 

of curvature of the probability weighting function, which reflects the degree of 

discriminability with respect to changes in probabilities. This property is closely 

linked to the notion of diminishing sensitivity, where the probability of 0 

(impossibility) and 1 (certainty) serve as reference points. According to this 

psychological hypothesis, people’s behavior becomes less responsive to changes 

on the probability scale as they move further away from these reference points. 

This implies an inverse-S shaped weighting function, with relatively much 

curvature near the probability end points and a linear shape in between. The 

second property of the probability weighting function refers to its elevation, 

which determines the degree of attractiveness of gambling (Gonzalez and Wu 

1999). For gains (losses), a highly elevated probability weighting function implies 

that individuals are optimistic (pessimistic), and overweight probabilities relative 

to the objective probabilities of gaining (losing). 

Several parametric functions have been proposed to describe the probably 

weighting function (see Stott 2006 for an overview). The most commonly used 

specification is the linear-in-log-odds specification, introduced by Goldstein and 

Einhorn (1987) (GE-87), and given by: 

( ) ( )( )1w p p p p γγ γδ δ= + − . 

The popularity of this function stems from its empirical tractability and the fact 

that it has two parameters γ  and δ , that separately control for curvature and 

elevation respectively. Hence, both parameters can readily be given a 
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psychological interpretation as indexes of discriminability and attractiveness. 

Another popular specification in which γ  and δ  have a similar interpretation is 

the two parameter specification due to Prelec (1998) (Prelec-2), given by: 

( ) ( )( )exp lnw p p γδ= − − . 

The GE-87 specification has an inverted-S shape when 0 1γ< < . An additional 

(sufficient) condition for the Prelec-2 function is 0 1δ< < . One-parameter 

specifications have also been used to describe the probability weighting function, 

but these cannot set curvature and elevation independently. Estimates of these 

probability weighting functions will lead to biased inferences if curvature and 

elevation do not co-vary accordingly. 

1.3 Empirical evidence 

Table 1 gives the definition and estimates of the power utility function and some 

commonly used one- and two-parameter probability weighting functions. All the 

mentioned studies estimate prospect theory, albeit with varying (parametric) 

assumptions, incentives, tasks and samples. Although the table is not intended to 

be exhaustive, it covers most studies that somehow report a parametric measure of 

utility curvature, loss aversion or probability weighting under prospect theory. 

Studies that do not report such estimates are not included in the table, which 

means that not all studies mentioned in the introduction are listed. If multiple 

measures of loss aversion are reported we take the definition that most closely 

resembles that of Köbberling and Wakker (2005). 
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Table 1: Empirical estimates of prospect theory using different parametric functionals 
Functional Form Estimates Properties** Authors 
Utility α  β  λ   E. T I N  

.88 .88 2.25  md c n 25 Tversky and Kahneman (1992) 

.22    ml c n 1497 Camerer and Ho (1994) 

.50    ml c n 420 Wu and Gonzalez (1996) 

.39 .84   md c n 64 Fennema and van Assen (1998) 

.49    md c y 10 Gonzalez and Wu (1999) 

.89 .92   md c y 40 Abdellaoui (2000) 

.61 .61   ml b n 2593 Donkers et al. (2001) 
  1.43  md c n 45 Schmidt and Traub (2002) 
 .97   md c n 35 Etchart-Vincent (2004) 
.91 .96   md c n 41 Abdellaoui et al. (2005) 
.68 .74 3.2  ml b n 1743 Tu (2005) 

1.01 1.05   md c y 181 Fehr-Duda et al. (2006) 
.72 .73 2.54  md c n 48 Abdellaoui et al. (2007b) 
.81 .80 1.07  ml c y 90 Andersen et al. (2006) 

Power:* 
( )

( )
( ) ( )

U

0

0

x

x x

x x

α

βλ

=

≥

− − <





 

.71 .72 1.38  ml c y 158 Harrison and Rutström (2009) 
 .86 1.06 2.61  md c y 48 Abdellaoui et al. (2008) 
Probability 
weights. 

δ +  γ +  δ −  γ −       

 .61  .69  c n 25 Tversky and Kahneman (1992) 
 .56    c n 1497 Camerer and Ho (1994) 
 .71    c n 420 Wu and Gonzales (1996) 
 .60  .70  c y 40 Abdellaoui (2000) 
 .67    m n 51 Bleichrodt and Pinto (2000) 
 .76  .76  c y 90 Andersen et al. (2006) 

TK-92: 
( )

( )
1

1

w p

p

p p γ

γ

γγ

=

⎡ ⎤+ −⎣ ⎦

 

 .91  .91  c y 158 Harrison and Rutström (2009) 
.84 .68    c n 420 Wu and Gonzalez (1996) 
.77 .69   md c n 40 Tversky and Fox (1995) 
.77 .44    c y 10 Gonzalez and Wu (1999) 
.65 .60 .84 .65  c y 40 Abdellaoui (2000) 
.82 .55    m n 51 Bleichrodt and Pinto (2000) 
  1.10 .84  c n 35 Etchart-Vincent (2004) 
.98 .83 1.35 .84  c n 41 Abdellaoui et al. (2005) 

GE-87: 
( )

( )1

w p

p
p p

γ

γγ

δ
δ

=

+ −

 

.87 .51 1.07 .53  c y 181 Fehr-Duda et al. (2006) 
 .74     c n 420 Wu and Gonzalez (1996) 
 .53    m n 51 Bleichrodt and Pinto (2000) 
 .413  .413  b n 2593 Donkers et al. (2001) 

Prelec-1: 
( )

( )( )exp ln

w p

p γ

=

− −
 

 1.00  .77  b n 1743 Tu (2005) 
1.08 .53     m n 51 Bleichrodt and Pinto (2000) 
2.12 .96   ml m y 80 Goeree et al. (2002) 

Prelec-2: 
( )

( )( )exp ln

w p

p γδ

=

− −
 1.76 1.05   md c y 78 van de Kuilen et al. (2009) 

Notes: Adopted names and notations do not form a convention, and are used for convenience. +/− 
denote gains/losses. 
* The utility functional is specified on the complete real axis, where λ  represents the loss 
aversion coefficient. The displayed utility function is based on the assumption 0α >  and 0β > , 
which is mostly found empirically. The function has a different specification for other parameter 
values (Wakker 2008). 
** Properties: E(estimator): mean; median (md); maximum likelihood (ml); T(task): choice; 
matching; both; I(incentives): yes (random lottery incentive scheme/Becker de Groot-Marschak 
procedure); no (fixed or no payment). 
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With respect to the shape of the utility function the table reveals four notable 

features. First of all, the utility for gains is much closer to linearity (a power equal 

to 1) than what is found in classical utility measurements that do not take 

probability weighting into account. In that literature estimates just below .5 

(Cubitt et al. 2001; Holt and Laury 2002; Harrison et al. 2005; Andersen et al. 

2008) or lower (Barsky et al. 1997; Dohmen et al. 2006) are common. Second, in 

all studies that report utility curvature for gains and losses, losses are evaluated 

more linearly than gains, but utility for losses does display diminishing sensitivity 

( 1β < ) in most studies. This suggests that people become less sensitive towards 

additional gains more rapidly as compared to additional losses. Third, there is 

some variability in the estimates, but the power parameters for both domains are 

always quite close. This suggests that the differences in the estimates between 

studies most likely stem from differences in the elicitation method and the method 

of analysis. Fourth, there is significant variation in the coefficient of loss aversion, 

but it is always estimated to be higher than one. 

The table conveys three other notable features with respect to the estimated 

shape of the probability weighting function. The predominant shape is inverse-S, 

with few studies reporting 1γ > . Also, for studies that report estimates of both 

domains, elevation is higher in the loss domain. This is intuitively plausible 

because it suggests that in both domains individuals display pessimism, i.e. they 

dislike gambling. Finally, the estimates of elevation show a little less variability 

than those of curvature, suggesting that curvature is harder to identify empirically. 

The coefficients of loss aversion reported in Table 1 range from 1.07 to 3.2. 

Hence, all studies find evidence of loss aversion, albeit to varying degrees. This 

may be caused by differing definitions of loss aversion and different elicitation 

contexts. Figure 1 plots a power utility function and a GE-87 probability 

weighting function for gains and losses corresponding to the average of the 

estimates found in Table 1. The next section describes the data that will enable us 

to identify utility curvature and probability weighting for a representative sample. 
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Figure 1: Utility and probability weighting functions for average estimates 

x

u�x�

0.0 0.2 0.4 0.6 0.8 1.0
p

0.2
0.4
0.6
0.8
1.0

w��p�

w��p�

 
 (A) (B) 
Note: Figure based on the average of the estimates from Table 1. ( ) ( ), , .69,.86,2.07α β λ =  and 

( ) ( ), , , .76,.69,1.09,.72δ γ δ γ+ + − − = . 

2 The Data 

2.1 Survey design 

Participants. For the elicitation of both utility curvature and subjective probability 

weighting we used data collected through the CentERpanel, a representative panel 

consisting of about 2000 Dutch households. Every weekend, the participants of 

this panel complete an internet-questionnaire concerning various socio-economic 

and psychological questions. For those households that do not own a computer 

with a connection to the internet, a special box connected to the television is 

provided. The panel has been used by many researchers because of its 

representative nature, randomization possibilities, and the possibility to link the 

obtained data to background characteristics. 
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Figure 2: The Framing of the Prospect Pairs 

Note: Frame A above and B below. The specific parameter values varied between the questions, 
see Table 2. 
 

Procedure. In February 2006 the participants of the panel were asked to balance a 

total of 27 pairs of (hypothetical) two-outcome lotteries by stating the value that 

would make them indifferent between the lotteries in the pair. The respondents 

were given extensive experimental instructions4 and were then asked to answer a 

practice question to familiarize them with the experimental setting. In the 

instructions it was emphasized that there were no right or wrong answers. In the 

first part of the questionnaire (Q1 – Q16) indifference was obtained through 

outcome matching, i.e. in Figure 2.A subjects were asked to report the (missing) 

euro amount that would make them indifferent between the two lotteries, where 

the parameters (L2, R1, R2) differed between questions. The wheel in the middle 

served to explain probabilities to respondents. In the second part (Q17 – Q27) 

indifference was obtained through probability matching, i.e. in Figure 2.B subjects 

were asked to report the (missing) probability that would make them indifferent 

between the two lotteries, where again the parameters (L2, R1, R2) differed 

between questions. After filling in a specific number the areas in the wheel were 

filled accordingly and the respondent was asked to confirm his choice or 

reconsider. 

                                                 
4 Available from the authors upon request. 

 

(A) 

(B) 
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First Part. Table 2 gives a complete description of the structure of the survey 

questions. Following Wakker and Deneffe (1996), the questions in the first part 

were chained, where the answer xi that was given to one question, was used as the 

upper right prize in the next question, holding the other prizes constant (L2=g, 

R2=G). For example, if a subject reported an indifference value x1=€180 for the 

prospects (0.5: x1, €12) and (0.5: €100, €64), this number appeared as the upper 

prize of the right prospect of the next matching question, while the alternative 

prizes of both lotteries remained the same: (0.5: x2, €12)~(0.5: €180, €64). The 

answer x2 was then used in the next question and so on. The first set of six 

questions following the practice question (Q2 – Q7) concern a sequence of gains 

x1,…, x6, followed by a set of six questions (Q8 – Q13) that entail losses y1,…, y6 

(L2=l, R2=L). 

Under prospect theory it can be shown that the outcomes of the obtained 

sequences are equally spaced in terms of utility. Wakker and Deneffe (1996) 

named such a sequence a standard sequence of outcomes. The final three 

questions of the first part (Q14 - Q16) give additional information on utility 

curvature around the zero outcome, and allow for the determination of loss 

aversion.5 

Second Part. The questions of the second part allow for the non-parametric 

determination of the subjective probability weighting functions at the individual 

level if one assumes that no stochastic errors have been made in the elicitation of 

the indifference outcomes (x1,…, x6, y1,…, y6) in the first part. To see this, 

consider the domain of gains and assume that there is no stochastic error 

component in the subjects’ responses. Then, under prospect theory, the reported 

probabilities pi satisfy 0 6 0( ) ((U( ) U( )) ((U( ) U( ))i iw p x x x x= − − . Given that the 

outcomes x0,…, x6 comprise a standard sequence of outcomes, there holds 

U( ) U( )i ix x− =  1U( ) U( )i ix x+ −  for 1,...,5i = . This implies that 

0 6 0((U( ) U( )) ((U( ) U( )) / 6ix x x x i− − = , and hence ( ) / 6iw p i=  (Abdellaoui 

2000). In the presence of error, however,  this correspondence need no longer 

hold because the outcomes x0,…, x6, are then, in general, not equally spaced in 

                                                 
5 See Booij and van de Kuilen (2007) for a more detailed description of the structure of these 
questions. 
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utility units. The econometric specification we use explicitly accounts for this in 

the analysis of the responses to these questions. 

 

Treatments. In order to test whether the elicited shapes of prospect theory’s 

functionals are sensitive to the size of the stakes, respondents were randomly 

assigned to two different treatments. In the low-stimuli treatment the parameter 

values were set at G = 64, g = 12, x0 = 100, L = –32, l = –6, and y0 = –50. In the 

high-stimuli treatment, all parameter values were scaled up by a factor 10. 

 
Table 2: The Obtained Indifferences 
Question Prospect L  Prospect R Question Prospect L  Prospect R 
PART I (p: L1, L2)  (p: R1, R2) PART II (L2)  (p: R1, R2) 
1 (practice) (0.5: a, 10) ~ (0.5: 50, 20) 17 (practice) (250) ~ (r: 750,-100) 
2 (gains) (0.5: x1, g) ~ (0.5: x0, G) 18** (x1) ~ (p1: x6, x0) 
3 (0.5: x2, g) ~ (0.5: x1, G) 19** (y1) ~ (q1: y6, y0) 
4 (0.5: x3, g) ~ (0.5: x2, G) 20** (x2) ~ (p2: x6, x0) 
5 (0.5: x4, g) ~ (0.5: x3, G) 21** (y2) ~ (q2: y6, y0) 
6 (0.5: x5, g) ~ (0.5: x4, G) 22** (x3) ~ (p3: x6, x0) 
7 (gains) (0.5: x6, g) ~ (0.5: x5, G) 23** (y3) ~ (q3: y6, y0) 
8 (losses) (0.5: y1, l) ~ (0.5: y0, L) 24** (x4) ~ (p4: x6, x0) 
9 (0.5: y2, l) ~ (0.5: y1, L) 25** (y4) ~ (q4: y6, y0) 
10 (0.5: y3, l) ~ (0.5: y2, L) 26** (x5) ~ (p5: x6, x0) 
11 (0.5: y4, l) ~ (0.5: y3, L) 27** (y5) ~ (q5: y6, y0) 
12 (0.5: y5, l) ~ (0.5: y4, L)     
13 (losses) (0.5: y6, l) ~ (0.5: y5, L)     
14* (gains) (0.5: b, 0) ~ (0.5: x1, x0)     
15* (losses) (0.5: 0, c) ~ (0.5: y0, y1)     
16* (mixed) (0.5: d, y1) ~ (0.5: x0, y0)     
Note: Underlined outcomes are the matching outcomes/probabilities and questions marked with an 
asterisk were presented in randomized order. 

2.2 Summary statistics 

A total of 1.935 individuals responded to the survey, meaning they logged in to 

the site with their ID number. Not all subjects gave answers to all questions, 

leading to question specific non-response (denoted by NR). Since we did not force 

subjects’ answers to be consistent (the subjects could fill in any number) it comes 

as no surprise that many of them violated dominance, either because of a mistake 

or because of misunderstanding (denoted by IR). In the first part individuals were 

classified as being inconsistent if their sequence of stated outcomes was not 

strictly increasing. This criterion is stringent, punishing random mistakes. For 

those who comply with it, however, we can be confident that they understood the 

questions. 
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Unlike the outcome questions, the order of the probability matching questions 

was completely random, meaning that subjects could not have an easy comparison 

with questions that had outcomes close in magnitude. This increases the 

likelihood of an inconsistent answer. Moreover, these questions are likely to be 

more cognitively demanding for respondents. Hence, in part 2 we allowed for one 

mistake (meaning a violation of dominance) in the subjects answers before 

classifying them as inconsistent. Furthermore, we only considered individuals in 

the second part if they had been classified consistent in the first, because the 

questions in the second part were determined by the first. Of the remaining data 

we removed some outlying answers that clearly indicated either a mistake or lack 

of understanding (denoted by Outlier). 

Although dropping observations is unfavorable, not imposing consistency by 

way of the design of the experiment (recall that the subjects were free to fill in 

any number) has some advantages, especially when using a large representative 

sample. Then individuals with a good understanding of the questions can reveal 

themselves by not making any mistakes. Indeed, there is evidence for university 

students that response variability increases with the complexity of the task 

(Camerer and Hogarth 1999). For the general public this effect is probably 

magnified. Using the same internet panel, Von Gaudecker et al. (2008) 

specifically investigate sample selection for a cognitively demanding (risk 

aversion) task and find that the number of inconsistencies is twice as large for the 

general public compared to the standard student subject pool. Similarly, Guiso 

and Paiella (2003) and Dohmen et al. (2006) dropped 57% and 61% of their 

observations respectively, for risk aversion questions of lesser complexity posed 

to a cross-section of the Italian and German public. Hence, miscomprehension is a 

likely feature of response behavior in our data. Not imposing consistency by 

design of the experiment allows the filtering of those who did not have a good 

grasp of the questions from those who did. 

To control for a potential bias due to selectivity we estimated a sample-

selection equation (see Section 8.1) and used the inverse of the predicted 

probabilities as weights in the econometric analysis. This procedure yields 

unbiased estimates if sample selection is random conditional on the selection 

variables. The coefficients were not greatly affected by this procedure, but it 

increased the obtained standard errors. Hence, we are confident that the results 
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obtained from the selected sample hold for the whole sample as well. In Booij and 

van de Kuilen (2007) we discuss the sample selection process in more detail. 

Table 3 gives the summary statistics of the selected sample. 

 
Table 3: Summary Statistics (unweighted) 

 xi yi pi qi b 
i High Low High Low High Low High Low High Low 
1 € 1993 

(602) 
€ 205 
(94) 

€ −851 
(231) 

€ −86 
(36) 

27.3 %
(15.3) 

31.6 %
(17.1) 

21.5 %
(12.9) 

21.5 % 
(12.2) 

€ 4016 
(1604) 

€ 386 
(150) 

2 € 3000 
(1131) 

€ 319 
(184) 

€ −1243
(431) 

€ −126
(59) 

41.4 %
(17.5) 

41.3 %
(17.4) 

33.1 %
(14.8) 

33.9 % 
(16.3) c 

3 € 4060 
(1692) 

€ 441 
(313) 

€ −1664
(634) 

€ −168
(83) 

51.6 %
(17.4) 

53.0 %
(17.4) 

42.8 %
(16.5) 

43.7 % 
(16.4) 

€ −1569 
(612) 

€ −157
(59.0) 

4 € 5161 
(2311) 

€ 576 
(561) 

€ −2075
(856) 

€ −211
(106) 

62.5 %
(18.7) 

63.0 %
(19.3) 

53.4 %
(20.1) 

53.4 % 
(19.1) d 

5 € 6283 
(2980) 

€ 727 
(865) 

€ −2494
(1069) 

€ −254
(130) 

75.9 %
(19.2) 

74.5 %
(19.9) 

68.6 %
(21.3) 

66.9 % 
(21.7) 

€ 1842 
(833) 

€ 180 
(87.6) 

6 € 7447 
(3713) 

€ 893 
(1244) 

€ −2920
(1297) 

€ −298
(156) 

      

N 383 431 330 360 184 182 147 125 210 228 
NR 187 188 210 212 126 158 112 145 1 1 
IN 388 340 422 389 73 91 71 90 54 69 

Outlier 13 5 9 3     5 8 
Total 971 964 971 964 383 431 330 360 270 306 

Note: Standard deviations in parentheses. 
 

The table readily shows some apparent features of the data. The differences 

between subsequent outcomes of the standard sequence are gradually increasing, 

suggesting mild concavity in the utility for gains and mild convexity for losses. 

Also, the probabilities reported in the gain domain are all uniformly higher than 

the ones in the loss domain suggesting more elevation in the probability weighting 

function for losses. This is consistent with pessimism with respect to gambling in 

both domains. Finally, the outcomes between the high and the low treatments are 

mostly close to a scaling up by a factor 10, suggesting no difference between 

treatments. 

3 The econometric model 
Following Wakker and Deneffe (1996) and Abdellaoui (2000), Booij and van de 

Kuilen (2007) exploit the sequential nature of the questions to analyze the shape 

of the utility function non-parametrically. This approach has the advantage of 

being robust against probability weighting and allowing for full heterogeneity in 

preferences, i.e. they estimate the shape of the utility curve for each individual 

without making any prior parametric assumption. The disadvantage of this 
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approach is that individual error is not explicitly accounted for statistically, and 

potential error propagation is not modeled. Also, if errors that generate 

monotonicity violations are not modeled in the analysis of the elicited 

probabilities in the second part (recall that we allow for one monotonicity 

violation in the second part) we would get uninterpretable weighting functions. 

Moreover, Wilcox (2008, pp. 264-265) shows that individual level estimation can 

suffer from a finite-sample bias leading to biased predictions. By smoothing out 

errors a parametric approach can alleviate these problems (Currim and Sarin 

1989), albeit at the cost of having to make auxiliary assumptions. 

Under prospect theory, as described in section 1.1, the questions in the 

experiment yield the following equations 
1 1

, 1, ,2 2( )(U( ) U( )) (1 ( ))(U( ) U( )) o
i n i n n n i n nw x x w G g e η+ + + +

−− = − − ⋅ ⋅  1,...,6i = , (5.1) 

1 1
, 1, ,2 2( )(U( ) U( )) (1 ( ))(U( ) U( )) o

i n i n n n i n nw y y w L l e η− − − −
−− = − − ⋅ ⋅  1,...,6i = , (5.2) 

( ), 0, , 6, 0, ,U( ) U( ) ( ) U( ) U( ) p
i n n i n n n i nx x w p x x e+ +− = − ⋅  1,...,5i = , (5.3) 

( ), 0, , 6, 0, ,U( ) U( ) ( ) U( ) U( ) p
i n n i n n n i ny y w p y y e− −− = − ⋅  1,...,5i = , (5.4) 

( ) ( ) ( )( ) ( )( ) ( )1 1
1, 0,2 2U U 1 U b

n n n nw b x w x e+ +− = − ⋅ ,  (5.5) 

( ) ( ) ( )( ) ( )( ) ( )1 1
1, 0,2 2U U 1 U c

n n n nw c y w y e− −− = − ⋅ ,  (5.6) 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1
0, 0, 1,2 2U U U U d

n n n n nw d x w y y e+ −− = − ⋅ ,  (5.7) 

where we allow for a multiplicative stochastic error ( ,i nei ), including individual 

specific effects nη i  that capture differences in probability weighting between 

individuals n. In the superscripts, o and p denote outcomes and probabilities 

respectively, and the + and – signs denote the gain and the loss domain. The 

letters b, c, d, refer to the corresponding loss aversion questions (see Table 2).  

The errors are assumed to be independently log-normally distributed with 

different variances, i.e. ( )2
, 0,i n ie LN σi i∼ . This is a Fechner model on the log of 

the value scale, similar to the model employed by Donkers et al. (2001).  

The consequences of specifying different error structures in models of decision 

making under risk has attracted considerable attention since the seminal paper by 

Hey and Orme (1994). There is, however, currently no consensus in the literature 

on what error structure to use (Hey 1995; Loomes and Sugden 1995, 1998; 
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Carbone and Hey 2000; Hey 2005; Blavatskyy 2007). We chose a multiplicative 

specification over an additive one (e.g. Blavatskyy 2006) because it naturally 

satisfies monotonicity. An additive specification would require a truncated error 

distribution to satisfy monotonicity (Blavatskyy 2007), which is numerically 

much more involved. Also, we chose the common Fechner structure over a 

random preference specification or a “trembling hand” specification, two other 

popular stochastic models (Wilcox 2008). In the first stochastic framework it 

would be hard to eliminate individual effects, while it is unclear how to 

implement the second in a continuous outcome context. 

In order to eliminate the probability weighting terms and potential individual 

specific effects, subsequent outcome equations can be divided by one another. To 

make the current study consistent with Booij and van de Kuilen (2007), loss 

aversion is estimated using all questions around the zero outcome. Taking 

logarithms then gives 

1, 1, ,
,

, , 1,

U( ) U( )
ln ln

U( ) U( )

o
i n i n i no

i n o
i n i n i n

e x x
e x x

ε
+

+ ++
+

−

⎛ ⎞ ⎛ ⎞−
≡ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 1,...,5i = , (5.8) 

1, 1, ,
,

, , 1,

U( ) U( )
ln ln

U( ) U( )

o
i n i n i no

i n o
i n i n i n

e y y
e y y

ε
−

+ +−
−

−

⎛ ⎞ ⎛ ⎞−
≡ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 1,...,5i = , (5.9) 

( ) ( ) 6, 0,
, ,

, 0,

U( ) U( )
ln ln

U( ) U( )
n np p

i n i n i
i n n

x x
e w p

x x
ε + + +⎛ ⎞−

≡ = ⎜ ⎟⎜ ⎟−⎝ ⎠
 1,...,5i = , (5.10) 

( ) ( ) 6, 0,
, ,

, 0,

U( ) U( )
ln ln

U( ) U( )
n np p

i n i n i
i n n

y y
e w q

y y
ε − − −⎛ ⎞−

≡ = ⎜ ⎟⎜ ⎟−⎝ ⎠
 1,...,5i = , (5.11) 

( )
( )( )
( )( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

( )
( )

1
0, 1,2 0,

1
0,2 1, 0, 1,

ln /

U U U U1 U
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U1 U U U U

LA d c b
n n n n
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nn n n n

e e e
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yw b x y y

ε

+

−

≡ ⋅ =

⎛ ⎞− −−
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⎜ ⎟− − −⎝ ⎠

, (5.12) 

where LA, denotes loss aversion. Under the assumptions of (5.1)-(5.7), the 

transformed error terms, collected in 

( ), , , ,o p o p LA
n n n n n nε+ + − − ′′ ′ ′ ′=ε ε ε ε ε 1, 5,( ,..., ,o o

n nε ε+ += 1, 5,,..., ,o o
n nε ε− −

1, 5,,...., ,p p
n nε ε+ +  

1, 5,,...., ,p p
n nε ε− − )LA

nε ′ , are normally distributed with zero mean and covariance matrix 

Σ . This matrix has off-diagonal elements equal to zero, except for the outcome 

equations (5.1) and (5.2). The first differencing applied to these equations 
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generates a correlation between the subsequent error terms. For example, 

assuming constant error variance, the covariance matrix for positive outcomes is a 

tridiagonal matrix equal to 

 

1
2

1
2

2
1, 5,

1
2

1
2

1 0 0
1

Σ cov ,..., 2 0 0
1

0 0 1

o o o
n nε ε σ+ + +

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟⎡ ⎤= =⎣ ⎦ ⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

. (5.13) 

In this example the correlation between each subsequent error is 1
2− .6 In general 

the first off-diagonal elements will vary. Hence, we will assume the covariance 

matrices of the outcome domains (Σo+
, Σo− ) to be fully flexible in the empirical 

analysis. Because the questions of the second part are not chained we simply 

assume the matrixes Σ p+
, Σ p−

 to have equal (non-zero) diagonal and equal off-

diagonal elements. By assuming non-zero off diagonal elements, within-subject 

correlation in the answers is accounted for. The mean of the diagonal and off-

diagonal elements are given by σ  and ρ  respectively. 

To estimate the model we assume two popular parametric specifications. For 

utility we take the common power specification, with a loss aversion factor λ , as 

specified by Kahneman and Tversky (1979). For the subjective weighting of 

cumulative probabilities we take the frequently used linear-in-log-odds 

specification as first employed by Goltstein and Einhorn (1987). These parametric 

families have been shown to have a good fit to experimental data (Gonzalez and 

Wu 1999; Abdellaoui 2008).7 The probability weighting functions of both 

domains are allowed to differ as is assumed in the modern version of prospect 

theory. We have 

( )
( )

0
U ; , ,

0

x x
x

x x

α

βα β λ
λ

⎧ ≥⎪= ⎨
− − <⎪⎩

 (5.14) 

                                                 
6 To see this consider the covariance of two subsequent errors in the gain domain: 

1, 2, 1, 0, 2, 1, 1, 2, 1, 1,cov , cov ln ln , ln ln cov ln , ln cov ln , ln+ + + + + + + + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
o o o o o o o o o o

n n n n n n n n n ne e e e e e e eε ε  

0, 2,cov ln , ln+ +⎡ ⎤− ⎣ ⎦
o o

n ne e 2 2
0, 1,cov ln , ln 0 0 0o o

n ne e σ σ+ +⎡ ⎤+ = − − + = −⎣ ⎦ . The correlation then becomes: 

1, 2,corr ,+ +⎡ ⎤ =⎣ ⎦
o o

n nε ε  ( )1, 2, 1, 2,cov , var varo o o o
n n n nε ε ε ε+ + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⋅ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ( )2 2 2 1

22 2σ σ σ− ⋅ = − . 
7 In the context of discrete choice Stott (2006) shows that the more parsimonious one parameter 
specifications often provide a sufficient fit in terms of the Akaike information criterion. 
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This gives the log-likelihood function: 

( ) { }11
2

1
, , , , , , ln 2 2ln ε ε

N

n n
n

α β λ δ γ δ γ π+ + − − −

=

′= − + +∑ Σ Σ . (5.16) 

To estimate the model we split up the likelihood and use a three stage procedure 

(limited-information maximum likelihood, LIML) to estimate utilities, and 

subsequently the probability weighting function and loss aversion. This has two 

advantages. First of all, it will ensure that the estimated utility curve will not 

suffer from a functional-form misspecification bias due to misspecification of the 

probability weighting function. This is precisely what Wakker and Deneffe’s 

(1996) trade-off method is designed for. Using full-information maximum 

likelihood would eliminate this advantage by re-introducing an interaction 

between the estimation of probability weighting and utility curvature. Also, the 

outcome matching questions (Part I) are generally believed to be easier to respond 

to and give higher quality data. Hence we base the estimate of utility only on the 

questions from the first part. In the second stage the probability weighting 

functions are estimated using the estimates of utility from the first stage. Loss 

aversion is estimated in the final stage, taking the estimated utility and probability 

weighting functions as given. Table 4 summarizes the estimation strategy. 

 
Table 4: Estimation Strategy 

 1ST STAGE 
(OUTCOMES) 

2ND STAGE 
(PROBABILITIES) 

3RD STAGE 
(LOSS AV.) 

Gains Obtain α̂  Obtain ( )ˆ ˆ,δ γ+ +  

Losses Obtain β̂  Obtain ( )ˆ ˆ,δ γ− −  
Obtain λ̂  

cov Σo+ , Σo−  Σp+ , Σp−  LAσ  

 

By splitting up the estimation we cannot determine the correlations between the 

errors of the different question modules, i.e. utilities and probabilities, gains and 

losses. This is unfortunate since it would be interesting to know whether there is 
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unobserved heterogeneity that affects the answers in both domains in a structural 

way, but it does bias the results.8 The standard errors in the second and third 

stages are corrected for the uncertainty in the first stage estimates by using the 

adjustment specified by Murphy and Topel (1979).9 

4 Results 
The model as such assumes homogeneity in preferences. A certain degree of 

heterogeneity can be implemented, however, by parameterizing the preference 

parameters ( ), , , , , ,α β λ δ γ δ γ+ + − − ′=φ  by a linear combination of regressors, i.e. 

′=φ Β X . Hence, apart from estimating the average shape of utility and 

probability weighting we can test whether there are significant differences in 

these preferences with respect to variables such as age, gender, education and 

income. The first row of estimates in Table 5 gives the results of the model with 

only a constant, while the second gives the model with the set of demographic 

variables that appear to be associated with prospect theory’s parameters. 

 

                                                 
8 Note that for the same reason we would not be able to estimate any correlation between random 
coefficients if they were specified. This is done in Tu (2005), who is unable to identify most 
correlations, but the ones he does indicate a negative correlation in risk aversion caused by the 
outcome and probability domain. However, Tu’s model is not non-parametrically identified, so it 
is unclear whether this correlation is genuine or stems from non-linearity. 
9 The correction specified by Murphy and Topel (1979) amounts to calculating 

2 2 2 1 1 1 2
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆMTV V V CV C RV C RV R V⎡ ⎤′ ′ ′= + − −⎣ ⎦  where 1̂V  and 2̂V  are the respective first- and second-

stage covariance estimates, and ( )( ) ( )( )2 2

2 1

ln ln
ˆ ˆ1

Ĉ= i in f f

i β β

∂ ∂

′= ∂ ∂∑  and ( )( ) ( )( )2 1

2 1

ln ln
ˆ ˆ1

R̂= i in f f

i β β

∂ ∂

′= ∂ ∂∑ . 
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Table 5: Maximum likelihood estimates 
 Preference parameter 
 Gains Losses Loss. Av. 
 α  δ +  γ +  β  δ −  γ −  λ  
Constant only 0.859*** 0.772*** 0.618*** 0.826*** 1.022*** 0.592*** 1.576***

 (0.018) (0.051) (0.038) (0.018) (0.083) (0.061) (0.098) 
        
Low Amounts −0.071**      0.009 

 (0.032)      (0.147) 
Female  −0.103* −0.074    0.251* 

  (0.065) (0.062)    (0.157) 
Age 0.003*** −0.004 −0.006***    0.003 

 (0.001) (0.004) (0.002)    (0.005) 
High Edu.       −0.318***

       (0.117) 
ln(Income+1

) 
      −0.059* 

       (0.044) 
Constant 0.776*** 0.999*** 0.954*** 0.826*** 1.022*** 0.592*** 1.766***

 (0.053) (0.195)  (0.099)  (0.018)  (0.083)  (0.061)  (0.411) 
2σ  0.188*** 0.267***  0.219*** 0.302**  0.574***

ρ  −0.354*** 0.133***  −0.363*** 0.062   
 −13870.9 −16080.7  −14431.0 −16896.4  −2195.1 

N  814 366  690 272  438 
Note: Murphy-Topel standard errors in parenthesis. Significance levels (one-sided tests) */**/***: 
10/5/1% 

4.1 Utility curvature 

The estimated power for gains ( ˆ 0.859α = ) and for losses ( ˆ 0.826β = ) are 

displayed in the first row of Table 5. Both parameters are significantly below one 

(z = 8.04, p-value = 0.000 and z = 9.87, p-value = 0.000), and they are not 

significantly different from one another (z = 1.39, p-value = 0.166). Our estimates 

are closer to linearity as compared to the parametric studies of Harrison and 

Rutström (2009) and Donkers et al. (2001), who find ˆˆ( , ) (.71,.72)α β =  and 

(.61,.61)  respectively, which suggests that their parametric specifications may be 

inappropriate for separating utility from probability weighting. The estimates 

confirm diminishing sensitivity, both with respect to losses and to gains (Tversky 

and Kahneman 1992; Abdellaoui 2000; Abdellaoui et al. 2007b), and we cannot 

reject equal curvature in both domains in favor of the more recent hypothesis of 

partial reflection (Wakker et al. 2007).  

These results are qualitatively similar to those obtained by Booij and van de 

Kuilen (2007). Their estimates, based on fitting a power function to individual 

level data, are somewhat closer to linearity ( ˆ 0.94α =  and ˆ 0.92β =  are found), 

but still significantly below one, and not significantly different from each other. 
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This suggests that assuming homogeneity in utility curvature may lead to a small 

downward bias in the estimate of the average,10 while also providing evidence that 

any potential bias in the non-parametric analysis due to error propagation is 

unlikely to be of high magnitude. If we compare the coefficients to the average 

estimates of the literature reported in Table 1 ( ˆ 0.69α =  and ˆ 0.86β =  

respectively), we find that the estimated power coefficient for gains is 

significantly higher (z = 9.61, p-value = 0.000) while that of losses is significantly 

different at the 10% level only (z = 1.94, p-value = 0.053). It should be noted that 

most recent estimates of utility curvature are much closer to linearity (Abdellaoui 

2000; Etchart-Vincent 2004; Abdellaoui et al. 2005; Fehr-Duda et al. 2006; 

Abdellaoui et al. 2007b; Andersen et al. 2006; Abdellaoui et al. 2008) than what is 

suggested by the average estimate calculated from Table 1. Hence our estimates 

fall within the range of contemporaneous estimates that find the power of value 

function to be between .8 and 1. Figure 3 plots the estimated utility function 

(dashed line) and the average found in the literature (solid line). Indeed the 

estimated utility curve for losses is very close to the literature average, while that 

of gains is a little more linear. 

Table 5 also shows a significant treatment effect for gains. The low amounts 

treatment for gains (Low Amounts) is associated with a power coefficient that is 

.071 lower than for outcomes that are scaled up by a factor ten, suggesting that 

utility is more pronounced for low outcomes. This is not often found in the 

literature, though Cohn et al. (1975) and Blake (1996) report similar results. The 

effect is driven by the fact that, for gains, the last two mean elements of the 

standard sequence for low amounts are a bit higher than those in the high-amount 

treatment divided by 10 (see Table 3). It should be noted, however, that no 

significant difference was found in the non-parametric estimates. Because both 

approaches diverge, we will not draw strong conclusions with respect to this 

result. 

 

                                                 
10 Effectively the non parametric-estimates of Booij and van de Kuilen (2007) allow for full 
heterogeneity in preferences, while the pooled estimation conducted in this paper, does not. It is a 
priori not evident which method of analysis would yield the highest estimates, but it is clear that, 
because the model is non-linear, taking the average of estimates will yield a different result from 
estimating the average directly. 
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Figure 3: Estimated utility and probability weighting functions 
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Note: The parameters of the solid lines are based on the averages of the estimates in Table 1. The dashed lines 
depict the estimated functions in this study. The loss aversion parameter is assumed to equal the average 
estimate of 2.09λ =  form Table 1. 

4.2 Loss Aversion 

Table 5 shows that we find a loss aversion coefficient of ˆ 1.58λ = , which is lower 

than the parametric estimate of ˆ 2.25λ =  obtained by Tversky and Kahneman 

(1992), and the non-parametric estimate of ˆ 2.54λ =  that was found by 

Abdellaoui et al. (2007b), based on Köbberling and Wakker’s (2005) definition 

(they find values below 2  for the other, global, definitions). Also, the obtained 

loss aversion parameter is lower than the average (non-parametric) estimate of 

ˆ 1.87λ =  obtained by Booij and van de Kuilen (2007), where estimation is 

conducted at the individual level. A similar effect is reported by Abdellaoui et al 

(2008, p. 259) who find a pooled estimate of loss aversion that is lower than the 

average of the individual estimates. The obtained loss aversion is significantly 

larger than one (z = 5.88, p-value = 0.000), and it is consistent with the recent 

estimates of Schmidt and Traub (2002), Gächter et al. (2007), Harrison and 

Rutström (2009) and Abdellaoui et al. (2008, pooled estimate) who find values of 

1.43, 1.63, 1.38 and 1.60 respectively. These and our results provide evidence that 

people weight a particular loss less than twice as heavy as a commensurable gain 

when making decisions. This is an interesting finding because Tversky and 

Kahneman’s (1992) original estimate of 2.25 seems to serve as the focal point 

estimate of loss aversion for many researchers, while many recent estimates find 

values below two. 

Some studies have reported a decrease in the degree of loss aversion with the 

size of outcomes (Bleichrodt and Pinto 2002 (health); Abdellaoui 2007b). Our 
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point estimate of .004 for the Low Amount treatment (Table 5) does not provide 

additional support for this result. 

4.3 Probability weighting 

For both domains we estimated the elevation parameter δ , and the curvature 

parameter γ  of the GE-87 probability weighting function specified in (5.15).11 

The estimated elevation parameters point at pessimism with respect to gambling 

in both domains. For gains we find ˆ 0.772δ + = , which is significantly lower than 

1 (z = 4.46, p-value = 0.000). This implies that a probability of a half is weighted 

by ( )1
2ˆ 0.436w+ = , which points to sizeable underweighting. This is close to 

Tversky and Kahneman’s (1992) original estimate of ( )1
2ˆ 0.421w+ =  and it is not 

significantly different from the average estimate in the literature (z = .23, p-value 

= 0.818). For losses the point estimate is ˆ 1.022δ − =  which is higher than one, 

also suggesting pessimism in the loss domain ( ( )1
2ˆ 0.505 .5w− = > ), but we 

cannot reject the hypothesis that 1δ =  (z = 0.27, p-value = 0.787). The elevation 

of the weighting function for losses is significantly higher than that of gains (z = 

4.54, p-value = 0.000) as was also found by Abdellaoui (2000), Abdellaoui et al. 

(2005) and Fehr-Duda et al. (2006), and we cannot reject the hypothesis that the 

elevation parameter is different from the literature average (Table 1) of ˆ 1.09δ − =  

(z = .81, p-value = 0.418). Contrary to Etchart-Vincent (2004), who find more 

elevation for losses with higher stakes, we did not find any effect of the 

magnitude of the stakes on the degree of pessimism of the respondents. 

The shape of the probability weighting function is primarily determined by γ , 

with 1γ <  generating an inverse-S shape, and 1γ >  a convex shape. Most studies 

that report a parametric estimate of the GE-87 weighting function find evidence of 

an inverse-S shaped weighting function but, as mentioned in the introduction, 

some studies have found a convex shaped weighting function. Interestingly, the 

point estimates for the degree of curvature in both domains are very similar, 

                                                 
11 We find nearly identical results using the Prelec-2 specification (parameter values 

( ) ( )ˆ ˆ, 1.052,0.618δ γ+ + =  and ( ) ( )ˆ ˆ, 0.870,0.653δ γ− − = ). Hence none of the conclusions drawn in 

this paper change if we use this specification in stead of GE-87. 
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ˆ 0.618γ + =  and ˆ 0.592γ − = , and we cannot reject the hypothesis that both are 

equal (z = .12, p-value = 0.907). Linearity, which requires 1γ = , is clearly 

rejected in favor of the hypotheses that both parameters are below one (z = 10.02, 

p-value = 0.000 and z = 6.65, p-value = 0.000), which means that we have found 

significant evidence for an inversely-S shaped weighting function in both 

domains. The degree of curvature we find is slightly higher than the average 

estimate in the literature. For gains the estimate is about .07 lower than the 

literature average ( ˆ 0.69γ + = ), which is significant at the 10% level (z = 1.90, p-

value = 0.058). The estimate for losses is about .13 lower than the literature 

average ( ˆ 0.72γ − = ), which is significant at the 5% level (z = 2.09, p-value = 

0.037). These results are illustrated graphically by the plot in Figure 3, where the 

estimated weighting functions are slightly more pronounced than the literature 

averages for probabilities near 0 and 1, while they are hardly distinguishable from 

the literature averages for intermediate probabilities. 

4.4 Demographics 

The dataset also contains background characteristics of the respondents such as 

their age, gender, education and income. Table 5 gives the results of including 

regressors into the model, where most of the insignificant variables have been 

removed. The significance levels are reported for one-sided tests. Most of the 

variation in the behavioral parameters appears idiosyncratic, in particular for the 

domain of losses, where we do not find a significant effect for any variables. In 

the gain domain, we find a mild associations of age (+0.003) with utility 

curvature, and a substantial gender effect on the elevation (−0.103) of the 

probability weighting function. This last result is interesting because traditionally 

gender differences in risk taking behavior have been ascribed to differences in 

utility curvature (e.g. Barsky et al. 1997). The analysis of Booij and van de Kuilen 

(2007) already showed that loss aversion may explain much of the gender 

differences in risk attitudes, which is also found here (+0.251) and in other studies 

(e.g. Schmidt and Traub 2002). The current analysis further refines this by 

showing that part of this effect is also caused by differences in probability 

weighting. This is consistent with a recent study of Fehr-Duda et al. (2006), who 

report a significant gender difference in the elevation parameter of the GE-87 
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probability weighting function for gains but not for losses. These authors also find 

curvature to differ between the sexes, which we do not. 

Older people seem to value money more linearly, with a 50 year age difference 

being associated with a power that is .15 higher. This effect works to reduce risk 

aversion, but it is countered by more non-linear weighting of probabilities (−.30) 

that, in general, work to increase risk aversion. The total effect of these estimates 

depends on the prospects under study. For prospects that entail a small probability 

of a large gain one may find risk aversion to decrease with age, while in those that 

do not, increasing risk aversion is more likely, which is what is usually found 

(Pålsson 1996; Donkers and van Soest 1999; Halek and Eisenhauer 2001; Hartog 

et al. 2002). 

Education, defined as having a higher vocational or academic education, does 

not affect utility curvature, nor is it associated with a more linear weighting of 

probabilities. This latter effect is surprising if we view expected utility as the 

rational model of choice under risk. From that perspective one may expect higher 

educated individuals to weight probabilities more linearly, which is not what we 

find. Education is associated with a lower degree of loss aversion (−.318), which 

suggest that the reduction in risk aversion with years of schooling that is often 

observed (Donkers et al. 2001; Hartog et al. 2002; Dohmen et al. 2006) stems 

mainly from lower sensitivity to losses (e.g. Gächter et al. 2007). 

Finally, the included (log) income variable showed a mild negative association 

with loss aversion, which is consistent with Gächter et al. 2007. Hence, we 

conjecture that mainly the loss aversion component of risk attitudes is driving the 

decrease in (absolute) risk aversion with income that is often found (Donkers et 

al. 2001; Hartog et al. 2002).  

4.5 Stochastics 

Table 3 shows considerable variability in the answers to the questions, which is 

picked up by the estimated error variances. The estimated covariance-correlation 

matrices for the outcome equations are given in Table 6, where the diagonal 

elements correspond to the estimated variances, and the off-diagonal elements 

correspond to the estimated correlations between the error terms. The average 

variance 2σ  is 0.188 for gains and 0.219 for losses. This means that the 

probability that the subsequent utility difference is twice as high (low) as the 
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previous one is about 5% (5%). This may seem not very much, but it implies that 

in a standard sequence of six elements, there is about a 40% probability that there 

will be two subsequent utility increments that differ by a factor two. Although 

part of this variability is driven by between subject heterogeneity, this result 

suggests that the assumption of a standard sequence without error is questionable. 

Both estimated matrices have a tridiagonal structure, with the one off-diagonal 

correlation coefficients on average equal to 0.35ρ ≈ −  and the other correlations 

equal to zero. The negative correlations are a little weaker than the predicted 

correlation of 1
2−  that follows under the assumption of equal variance, which 

means that not all underlying variances iσ  are equal.  There does not appear to be 

much difference in the average variability of the answers for losses and for gains. 

The variance of the probability weighting questions is a little higher, 0.267 and 

0.302 for gains and losses respectively, which confirms that these questions are 

indeed more demanding for respondents. For gains there appears to be some 

positive correlation between the individual answers ( 0.133ρ = ), but not for 

losses.  
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Table 6: Estimated Variance-Correlation Matrices of outcome sequences 
Gains Losses 

 1
oε +  2

oε +  3
oε +  4

oε +  5
oε +   1

oε −  2
oε −  3

oε −  4
oε −  5

oε −  

1
oε +  0.194***     1

oε − 0.328***     

 (0.017)      (0.035)     

2
oε +  −0.258**

* 0.207***    2
oε − −0.281**

* 0.220***    

 (0.045) (0.022)     (0.045) (0.023)    

3
oε +  −0.006 −0.375**

* 0.203***   3
oε − −0.007 −0.362**

* 0.177***   

 (0.016) (0.064) (0.027)    (0.014) (0.045) (0.018)   

4
oε +  −0.006 −0.006 −0.408**

* 0.188***  4
oε − −0.007 −0.007 −0.380**

* 0.193***  

 (0.016) (0.016) (0.075) (0.026)   (0.014) (0.014) (0.045) (0.021)  

5
oε +  −0.006 −0.006 −0.006 −0.373**

* 0.150*** 5
oε − −0.007 −0.007 −0.007 −0.430**

* 0.176***

 (0.016) (0.016) (0.016) (0.057) (0.015)  (0.014) (0.014) (0.014) (0.052) (0.019) 
Note: The off-diagonal elements are correlation coefficients. Standard errors in parenthesis and significance 
levels */**/***: 10/5/1%. Test on equality of diagonal elements is rejected for both gains (z = 3.15, p-value = 
0.042) and losses (z = 4.67, p-value = 0.000). Equality of the one-off diagonal elements is not rejected for 
gains (z = 1.98, p-value = 0.272), but is rejected for losses (z = 3.09, p-value = 0.023). 

5 Summary and Conclusion 
This study presents the first, representative, large-scale parametric estimation of 

prospect theory’s functionals, the utility function of money gains and losses, and 

the subjective probability weighting functions. Unlike previous large scale 

parametric studies, the richness of the questionnaire allows for estimation of these 

curves without making too restrictive parametric assumptions, while allowing for 

response error in the individual answers. The results qualitatively confirm the 

non-parametric results of Booij and van de Kuilen (2007) and suggest that utility 

is mildly concave for gains and mildly convex for losses, implying diminishing 

sensitivity and suggesting that classical utility measurements that neglect 

probability weighting, are overly concave. A direct comparison with the non-

parametric measures suggests that assuming homogeneity leads to a small 

downward bias, while providing evidence that a potential bias in a non-parametric 

analysis due to error propagation is unlikely to be large. Also our estimates are 

closer to linearity as compared to parametric studies that impose more stringent 

parametric assumptions (e.g. Donkers et al. 2001; Harrison and Rutström 2009), 

suggesting the utilities obtained in these studies may suffer from a contamination 

bias. Further, we find evidence that probabilities are weighted non-linearly, with 

an inverse-S shape, and that both functions display pessimism (low elevation for 
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gains, high elevation for losses). Hence, these results externally validate 

probability weighting that was found in a laboratory context (Wu and Gonzalez 

1996; Abdellaoui 2000). The obtained degree of loss aversion, as operationalized 

by Tversky and Kahneman (1992), is 1.6. This is somewhat lower than their 

estimate of 2.25, but consistent with contemporaneous evidence (Schmidt and 

Traub 2002; Gächter et al. 2007; Abdellaoui 2008). Furthermore, we found that 

neither the degree of utility curvature, nor the degree of loss aversion, is altered 

by scaling up monetary outcomes. The same holds for the probability weighting 

functions, that do not appear to be affected by the magnitude of the stakes, 

contrary to what Etchart-Vincent (2004) finds for the loss domain. 

By including background characteristics our estimation procedure gives more 

background as to what causes risk aversion differences between groups in the 

population. This analysis suggests that the common finding that women are more 

risk averse than males (Byrnes and Miller 1999) stems from differences in 

probability weighting and loss aversion, and not from differences in utility 

curvature. Also, the reduction of risk aversion that is associated with a higher 

level of education (Donkers et al. 2001; Dohmen et al. 2006) does not derive from 

utility curvature but from differences in loss aversion. The robustness of these 

results should be confirmed by further research, but they are indicative of the 

different channels through which risk taking behavior is associated with 

background variables.  

Two disadvantages of the study are the lack of real incentives and the use of 

matching tasks in stead of choice tasks. Hypothetical tasks have been found, in 

some settings, to prime more erratic, and sometimes different behavior, than 

similar tasks involving real stakes (Camerer and Hogarth 1999; Holt and Laury 

2002). Moreover, matching tasks have been found to increase the number of 

inconsistent answers, suggesting that these tasks are more cognitively demanding 

(Luce 2000, Hertwig and Ortmann 2001). This is confirmed by our data, where 

for gains 37% of all individuals gave one or more inconsistent answer. These 

individuals were excluded from the analysis, leading to sample selection. To 

correct for this the analysis were conducted by using the inverse of the probability 

of appearing in the sample as weight. Given that our results blend in well with the 

results from laboratory experiments, providing evidence for diminishing 

sensitivity both with respect to outcomes and to probabilities, and also producing 
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plausible relationships with demographic variables, we are confident that the 

obtained measures give a good representation of the average curvature of prospect 

theory’s functionals. 
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8 Appendix 

8.1 Sample selection probit-equation 

Table 7: Sample Selection Equations 
Variable Frac. Outcomes Probabilities Loss Aversion 
  Gains Losses Gains Losses  
Low Amounts Treatment 50% 0.144** 0.101* 0.0123 −0.092 0.088 
 (0.058) (0.059) (0.18) (1.23) (0.065) 
Female 46% −0.052 −0.079 −0.188** −0.219** −0.116* 
 (0.060) (0.061) (2.65) (2.82) (0.067) 
Lower Secondary Education 26% 0.127 0.029 −0.264 −0.370* 0.218 
  (0.142) (0.143) (1.53) (1.99) (0.177) 
Higher Secondary Education 14% 0.335** 0.148 0.169 0.106 0.507***
  (0.151) (0.152) (0.96) (0.56) (0.182) 
Intermediate Voc. Training 19% 0.046 −0.148 −0.127 −0.291 0.147 
  (0.146) (0.148) (0.73) (1.55) (0.180) 
Higher Vocational Training 25% 0.258* 0.039 0.205 0.0662 0.394** 
  (0.143) (0.144) (1.23) (0.37) (0.175) 
Academic Education 11% 0.488*** 0.305* 0.568** 0.447* 0.681***
  (0.158) (0.158) (3.16) (2.36) (0.187) 
Age 35-44 18% −0.157* −0.202** −0.0621 0.0567 −0.284***
  (0.092) (0.093) (0.61) (0.53) (0.099) 
Age 45-54 22% −0.234*** −0.281*** −0.258* −0.195 −0.325***
  (0.088) (0.089) (2.56) (1.79) (0.095) 
Age 55-64 18% −0.313*** −0.340*** −0.273* −0.418*** −0.524***
  (0.094) (0.096) (2.52) (3.36) (0.106) 
Age 65+ 19% −0.462*** −0.428*** −0.638*** −0.592*** −0.632***
  (0.095) (0.096) (5.44) (4.63) (0.108) 
€ 1.150≤Inc.<€ 1.800 25% 0.196* 0.269** 0.298 0.480* 0.319** 
  (0.118) (0.122) (1.94) (2.52) (0.146) 
€ 1.800≤Inc.<€ 2.600 31% 0.200* 0.253** 0.325* 0.509** 0.381***
  (0.115) (0.119) (2.16) (2.71) (0.143) 
Income≥€ 2.600 35% 0.344*** 0.411*** 0.418** 0.699*** 0.526***
  (0.115) (0.119) (2.80) (3.79) (0.142) 
Catholic 30% 0.014 0.008 0.0128 0.000 −0.007 
  (0.068) (0.069) (0.16) (0.01) (0.077) 
Protestant 20% 0.160** 0.126 0.136 0.083 0.215** 
 (0.077) (0.078) (1.52) (0.85) (0.084) 
Constant −0.503*** −0.510*** −1.024*** −1.280*** −1.199***
 (0.176) (0.179) (4.75) (5.21) (0.217) 
N 1935 1935 1935 1935 1935 
Notes: Standard errors allow for clustering within households. */**/***: significant at the 10/5/1% level. 
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8.2 Experimental instructions [not for publication, available upon 

request] 

[Instructions are translated from Dutch]  

Welcome at this experiment on individual decision making. The experiment is 

about your risk attitude. Some people like to take risks while other people like to 

avoid risks. The goal of this experiment is gain additional insight into the risk 

attitude of people living in the Netherlands. This is very important for both 

scientists and policymakers. If we get a better understanding of how people react 

to situations involving risk, policy can be adjusted to take this into account (for 

example with information provision on insurance and pensions, and advice for 

saving and investment decisions). Your cooperation at this experiment is thus 

very important and is highly appreciated. 

The questions that will be posed to you during this experiment will not be easy. 

We therefore ask you to read the following explanation attentively. In this 

experiment, there are no right or wrong answers. It is exclusively about your own 

preferences. In those we are interested. 

Probabilities (expressed in percentages) play an important role in this experiment. 

Probabilities indicate the likelihood of certain events. For example, you probably 

have once heard Erwin Krol say that the probability that it will rain tomorrow is 

equal to 20 percent (20%). He then means, that rain will fall on 20 out of 100 

similar days. During this experiment, probabilities will be illustrated using a 

wheel, as depicted below. 

Suppose that the wheel depicted in the picture above is a wheel consisting of 100 

equal parts. Possibly you have seen such a wheel before in television shows such 

as The Wheel of Fortune. Now imagine that 25 out of 100 parts of the wheel are 

orange and that 75 out of 100 parts are blue. The probability that the black 

indicator on the top of the wheel points at an orange part after spinning the wheel 

is equal to 25% in that case. Similarly, the probability that the black indicator 

25%

75%
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50%

50%

50%
50% 50%

500E

− 200E− 300E

points at an blue part after spinning the wheel is equal to 75%, because 75 out of 

100 parts of the wheel are blue. The size of the area of a color on the wheel thus 

determines the probability that the black indicator will end on a part with that 

color. 

Besides probabilities, lotteries play an important role in this experiment. Perhaps 

you have participated in a lottery such as the National Postal Code Lottery 

yourself before. In this experiment, lotteries yield monetary prizes with certain 

probabilities, similar to the National Postal Code Lottery. The prizes of the 

lotteries in this experiment can also be negative, however. If a lottery yields a 

negative prize, you should imagine yourself that you will have to pay the about 

amount of money. In the following explanation we will call a negative prize a loss 

and a positive prize a profit. During this experiment, lotteries will be presented 

like the example presented below: 

In this case, the lottery yields a profit of 1000 Euro with probability 50%. 

However, with probability 50%, this lottery yields a loss of 200 Euro. You should 

image that if you participated in this lottery, you would get 1000 Euro with 

probability 50%, and with probability 50% you would have to pay 200 Euro. 

During this experiment you will see two lotteries, named Lottery L (Left) and 

Lottery R (right), on the top of each page. Between these lotteries you will see a 

wheel that serves as an aid to illustrate the probabilities used. You will see an 

example of the layout of the screen on the next page. 

 Lottery L Wheel Lottery R 

50%

50%

1000E

− 200E
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In this example, Lottery R yields a profit of 500 Euro with probability 50% and 

with probability 50% it yields a loss of 200 Euro. You should imagine that, if we 

would spin the wheel once and the black indicator would point at the orange part 

of the wheel, Lottery R would yield a profit of 500 Euro. However, if the black 

marker would point at the blue part of the wheel, Lottery R would yield a loss of 

200 Euro. 

Similarly, Lottery L yields a loss of 300 Euro with probability 50%. However, 

as you can see, the upper prize of Lottery L is missing. During this experiment, 

we will repeatedly ask you for the upper prize of Lottery L (in Euro) that makes 

Lottery L and Lottery R equally good or bad for you. Thus, we will ask you for 

the upper prize of Lottery L for which you value both lotteries equally. 

You could imagine that most people prefer Lottery L if the upper prize of 

Lottery L is very high, say 3000 Euro. However, if this prize is not so high, say 

500 Euro, most people would prefer Lottery R. Somewhere between these two 

prizes there is a “turnover point” for which you value both lotteries equally. For 

high prizes you will prefer Lottery L and for low prizes you will prefer Lottery R. 

The turnover point is different for everybody and is determined by your own 

feeling. To help you a little bit in the choice process, we will report the range of 

prizes in which the answer of most people lies approximately at each question. 

How this works precisely will become clear in the practice question that will start 

if you click on the CONTINUE button below. If something it not clear to you, you 

can read the explanation of this experiment again by pressing the BACK button 

below.  

[Practice question] 

The practice question is now over. The questions you will encounter during this 

experiment are very familiar to the practice question. If you click on the BEGIN 

button below, the experiment will start. If you want to go through the explanation 

of this experiment again, click on the EXPLANATION button. Good luck. 

 

The first part of this experiment has now finished. In the second part of this 

experiment each question will again be presented on a separate page, with two 

lotteries Lottery L (Left) and Lottery R (Right) presented at the top. In between 

the two lotteries you will again be presented with a wheel to illustrate the 

probabilities. In this part of the experiment, however, Lottery L will always yield 



 41 

a fixed amount with certainty. Below the illustrated lotteries, there will again be 

text explaining the question. The next screen will show you an example of a 

question that you could get in the second part of this experiment. 

 Lottery L Wheel Lottery R 

 

As you can see, in this example Lottery L always yields 500 euros. Lottery R on 

the other hand, gives with probability 25% a profit of 1000 euro, and with a 

probability of 75% a loss of 300 euro. You should again imagine that, if we were 

to turn the wheel and the black pointer would be in the orange area, Lottery R 

would yield 1000 euros. In case the black pointer would be in the blue area, 

Lottery R would yield a loss of 300 euros. 

 Lottery L Wheel Lottery R 

 

 

 

 

 

 

In the previous example you may have preferred Lottery L to Lottery R or the 

other way around. In the second part of this experiment, however, the 

probabilities of the prizes in lottery L will be missing, such as in the example 

given above.  

 

In the second part of this experiment we will ask you in each question to state the 

value of the missing probability (in whole percentages, from 0% to 100%) for the 

upper prize of Lottery R that would make you value both equally. 

25%

75%

25%
1000E

− 300E

500E

75%

...% 1000E

500E

300E −1 ...%−
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 Lottery L Wheel Lottery R 

 

 

 

 

 

Imagine that the probability of the upper prize of lottery R is equal to 100%. This 

would give the lotteries presented above. Lottery L will thus always give a profit 

of 500 euro, while Lottery R will always give a 1000 euros. Given that Lottery L 

will always yield less than Lottery R, most people will prefer Lottery R to Lottery 

R. 

 

 Lottery L Wheel Lottery R 

 

 

 

 

 

Imagine now, however, that the probability of the upper prize of lottery R is equal 

to 0%. This would give the lotteries presented above. Lottery L will thus always 

give a profit of 500 euro, while Lottery R will always give a loss of 300 euros. 

Given that Lottery L will always yield more that Lottery R, most people will now 

prefer Lottery L to Lottery R. 

Lottery L Wheel Lottery R 

 

 

 

 

 

 

Hence, there is a value of the missing probability somewhere between 0% and 

100% for which you would value both lotteries equally. In the questions that 

follow we will ask you for which value of the missing probability you value 

100% 1000E

500E 100%

300E −0%

1000E0%

500E 100%

300E −
100%

500E

1000E...%

1 ...%− 300E −
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Lottery L and Lottery R equally, This missing probability can be different for 

everybody and is your own preference. How this works precisely will become 

clear in the practice question that will start if you click on the CONTINUE button 

below. If something it not clear to you, you can read the explanation of this 

experiment again by pressing the BACK button below.  

[Practice question] 

 

The practice question is now over. The questions you will encounter during this 

experiment are very familiar to the practice question. If you click on the BEGIN 

button below, the experiment will start. If you want to go through the explanation 

of the second part of this experiment again, click on the EXPLANATION button. 

Good luck. 

 




