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I. Introduction

A common goal of empirical work is to assess the impact of a non-randomized program on a subpopulation

of interest. Empirical estimates of program impacts are often based on matching or reweighting using an

estimate of the propensity score, or the conditional probability of treatment given baseline characteristics.1

Empirical literatures, particularly in economics, but also in medicine, sociology and other disciplines,

feature an extraordinary number of program impact estimates based on these estimators. Propensity score

matching is particularly popular and has been described by Smith and Todd (2005) as “the estimator du

jour in the evaluation literature.”

Perhaps surprisingly, large sample properties of these estimators have only recently been documented

(e.g., Heckman, Ichimura and Todd 1998, Hirano, Imbens and Ridder 2003, Lunceford and Davidian 2004,

Abadie and Imbens 2006). Because there are many competing estimators, all of which are consistent,

the theoretical literature has also considered which estimators are efficient, in the sense of achieving the

efficiency bound established by Hahn (1998) for this problem.

Among other important findings, the large sample literature has established two results that are relevant

here. First, a suitable reweighting estimator is asymptotically efficient (Hirano, Imbens and Ridder 2003).

Second, pair matching is asymptotically inefficient (Abadie and Imbens 2006).2

In a recent article in the Review of Economics and Statistics, Frölich (2004) extends the large sample

work on this topic and examines the finite sample properties of several propensity score matching and

reweighting estimators. To the best of our knowledge, this is the only paper in the literature explicitly

comparing reweighting and propensity score matching.3 The focus of this note is a puzzling feature of

Frölich (2004): in the data generating processes (DGPs) he studies, he finds the reverse of what is suggested

by the large sample results. Summarizing his findings, Frölich (2004) states that the “the weighting

estimator turned out to be the worst of all [estimators considered in terms of mean-squared error]... it is

far worse than pair matching in all of the designs” (p. 86).

In this note, we resolve this puzzle. We show that the negative conclusions of Frölich (2004) regarding

reweighting stem from three specific choices, each of which we argue are undesirable. First, a correct

implementation of reweighting normalizes the weights involved so that they sum to one. This is the

standard empirical implementation; software typically normalizes weights to sum to one automatically.4

1Imbens (2004) provides a review of these methods.
2Distributional results are available for kernel-based matching estimators, but efficiency has not been considered in the

literature.
3The dim view Frölich (2004) takes of reweighting, however, has been echoed recently by Freedman and Berk (2008).
4For representative empirical applications using normalized weights see DiNardo, Fortin and Lemieux (1996), Bell and Pitt
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Frölich (2004) leaves the weights unnormalized. Second, reweighting using the estimated propensity score

is more efficient than reweighting using the true propensity score (Hirano et al. 2003), and the resulting

efficiency loss can be practically important. Frölich (2004) uses the true propensity score. Third, the

consequences of these two choices for the relative MSE of reweighting and pair matching are magnified by

the small variance of the outcome equation error used by Frölich (2004) in his simulations. We argue that

this variance is too small to be of relevance to empirical practice.

We show that these three choices drive the conclusion of Frölich (2004) that reweighting performs worse

than pair matching. Indeed, we show a stronger result: in DGPs more repesentative of the microeconomic

settings in which these estimators are typically used than the ones considered in Frölich (2004), a suitable

version of reweighting performs at least as well as and usually better than all the propensity score matching

estimators considered in Frölich (2004).

The remainder of the paper is organized as follows. In Section II, we define notation, estimands,

efficiency bounds, and estimators, and we review and extend the large sample theory of reweighting and

pair matching estimators. In Section III we use large sample theory to provide intuition for the finite

sample results of Frölich (2004). Section IV replicates the main findings of Frölich (2004) and presents new

finite sample evidence on the topic. Section V concludes.

II. Background

A. Notation, Estimands and Identification

The starting point for much of the traditional program evaluation literature (e.g., Maddala 1983,

Section 9.2, Heckman and Robb 1985, Maddala 1986, and Heckman, Ichimura and Todd 1998, Section 4)

is the following DGP for the latent variables (Yi(1), Yi(0), T ∗i ):

Yi(1) = µ1(Xi) + εi (1)

Yi(0) = µ0(Xi) + εi (2)

T ∗i = µT (Xi)− ui (3)

where Xi is a vector of baseline characteristics, and ui and εi are mean zero and independent of Xi. Here,

Yi(1) denotes the outcome that would obtain under treatment and Yi(0) the outcome that would obtain

under control. If the latent variable T ∗i exceeds zero, then the unit is assigned to treatment and otherwise is

(1998), Budd and McCall (2001), Biewen (2001), and McCrary (2007).
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assigned to control: Ti = 1(T ∗i > 0). The researcher observes Yi = TiYi(1)+(1−Ti)Yi(0), but never the pair

(Yi(0), Yi(1)). The data observed to the researcher are (Yi, Ti, Xi)ni=1 and are assumed to be independent

and identifically distributed (iid) across i.5 Define the propensity score, or the conditional probability

of treatment, as p(x) ≡ P (Ti = 1|Xi = x). Under equations (1) through (3), we obtain p(x) = F (µT (x)),

where F (·) is the distribution function for ui.

In this framework, there are many possible parameters of interest. Frölich (2004) focuses on the effect of

treatment on the treated, or TOT = E[Yi(1)−Yi(0)|Ti = 1] = E[µ1(Xi)−µ0(Xi)|Ti = 1], and we maintain

that focus here. Traditionally, researchers interested in estimating TOT focused on modeling µ0(Xi) and

µ1(Xi) directly using separate regressions for treatment and control units.6 At the present time, this type

of approach is not in wide use in the empirical literature. However, this may soon change; econometric

analysis of this approach is the subject of an emerging literature (e.g., Chen, Hong and Tarozzi 2008).

In the framework outlined in equations (1) through (3), propensity score matching and reweighting

estimators are
√
n-consistent for TOT and asymptotically normal when ui and εi are independent of

one another conditional on the covariates, and when the distribution of the propensity score satisfies a

condition known as strict overlap.7 Strict overlap maintains that there exists a constant c > 0 such that

c < p(x) < 1 − c for almost every x in the support of Xi. This assumption limits the predictability of

treatment: no value of the covariates can assure or preclude treatment. The distinction between strict

overlap and the weak overlap assumption—that 0 < p(x) < 1 for almost every x in the support of Xi—is

subtle, but important for understanding some aspects of the finite sample performance of these estimators

(See Busso, DiNardo and McCrary 2008).

B . Efficiency

Hahn (1998) establishes the semiparametric efficiency bound (SEB) for TOT under conditional inde-

pendence and weak overlap. The class of estimators to which this bound pertains is the class of regular

estimators which are
√
n-consistent for TOT. This efficiency bound can be understood as the supremum

of the Crámer-Rao lower bounds associated with regular parametric submodels.8 If θ̈ is an estimator that

is regular,
√
n-consistent for TOT, and semiparametrically efficient, then

√
n(θ̈− θ) d−→ N(0, SEB). If θ̇ is

5The iid assumption can be relaxed. We assume it here to maintain the connection to Frölich (2004).
6See, for example, Blinder (1973), Oaxaca (1973), and Maddala (1983, Section 9.2).
7Weaker conditions also suffice. Confusingly, the independence of ui and εi is called different things in the literature.

Heckman and Robb (1985) refer to this assumption as selection on observables; Maddala (1986) refers to it as exogeneity of
switching; and Rosenbaum and Rubin (1983) refer to it as unconfoundedness.

8A regular parametric submodel consists of a parametric specification of the DGP. As noted in Hahn (1998), in the context
of average treatment effects, for a parameter vector η and a set of functions ft(y|x, η), p(x, η), and f(x, η) corresponding to
the conditional density of Yi(t) given Xi = x, the propensity score, and the marginal density of Xi, the data (Yi, Ti, Xi) are
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an estimator that is regular,
√
n-consistent for TOT, and does not utilize (correct) parametric knowledge

of the joint density for (Yi, Ti, Xi), then
√
n(θ̇ − θ) d−→ N(0, V ) with V ≥ SEB.9

The functional form of Hahn’s bound, assuming that the propensity score is not known, is given by

SEB = E
[
σ2

1(Xi)p(Xi)
p2

+
σ2

0(Xi)p(Xi)2

p2(1− p(Xi))
+
p(Xi)
p2

(τ(Xi)− θ)2
]

(4)

where p = P (Ti = 1) and τ(Xi) = µ1(Xi)− µ0(Xi) is the covariate-specific treatment effect.

C . Matching Estimators

Frölich (2004) considers many matching estimators: (1) pair matching, (2) kernel matching, (3) local

linear matching, (4) ridge matching, and (5) nearest neighbor matching. Kernel, local linear, and ridge

matching are implemented using a Gaussian and an Epanechnikov kernel. All take the form

θ̃ =

∑n
i=1 Ti

{
Yi − Ŷi(0)

}
∑n

i=1 Ti
(5)

where Ŷi(0) =
∑n

j=1(1− Tj)W (i, j)Yj is the imputed outcome for unit i, based only on observations in the

control group (cf., Heckman, Ichimura and Todd 1998, Smith and Todd 2005, Abadie and Imbens 2006).

Different matching estimators involve different choices for the function W (i, j). For example, pair

matching on the propensity score sets W (i, j) = 1 if control observation j has the propensity score closest

to that of treatment observation i, and sets W (i, j) = 0 otherwise. Table 1 provides the weighting functions

for the matching estimators studied in Frölich (2004).10 Kernel, local linear, and ridge matching all

require selection of a bandwidth, which is done using cross-validation among control observations.11 Cross-

validation is also used to select the number of neighbors for nearest neighbor matching.

assumed to be a set of n realizations from a distribution with joint density function q(y, t, x, η0), where

q(y, t, x, η) = [f1(y|x, η)p(x, η)]t [f0(y|x, η)(1− p(x, η))]1−t f(x, η)

The supremum is taken over q(·) and is finite under strict overlap and conditional independence (Khan and Tamer 2007).
9For further discussion of the concept of semiparametric efficiency, see Newey (1990) and references therein.

10The notation in the table is as follows: Jm(i) is the set of m estimated propensity scores among the control observations
that are closest to p̂(Xi), where m denotes the number of “neighbors”, Kij = K

`
(bp(Xj)− bp(Xi))

‹
h
´
, where K(·) is a kernel

function and h is a bandwidth, ∆̂i = bp(Xi) − pi and ∆̂j = bp(Xj) − pi, where pi =
P

j(1− Tj)Kijbp(Xj)
‹P

j(1− Tj)Kij is a
kernel average of the propensity scores in the control group that are near bp(Xi), and r is an adjustment factor suggested by
Seifert and Gasser (2000). For a Gaussian kernel, r = 0.3535 and for an Epanechnikov kernel, r = 0.3125.

11There is a small error in Frölich (2004)’s implementation of cross-validation for ridge matching. See Appendix II.
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Table 1. Weights Used for Matching Estimators

Estimator Weighting Function, W (i, j)

Nearest Neighbor 1
m1(p̂(Xj)∈Jm(i))

Kernel Kij

/∑
j(1− Tj)Kij

Local Linear Kij

/∑
j(1− Tj)Kij +Kij∆̂j∆̂i

/(∑
j(1− Tj)Kij∆̂2

j

)
Ridge Kij

/∑
j(1− Tj)Kij +Kij∆̂j∆̂i

/(∑
j(1− Tj)Kij∆̂2

j + rh|∆̂i|
)

D . Reweighting Estimators

The reweighting estimator studied in Frölich (2004) is

θ̂F =
∑n

i=1 TiYi∑n
i=1 Ti

−
∑n

j=1(1− Tj)WjYj∑n
i=1 Tj

(6)

where Wj = Tj + (1− Tj)p(Xj)
/

(1− p(Xj)).12 As noted, Frölich’s version of reweighting is different from

the standard empirical implementation of the reweighting estimator, which is instead given by

θ̂ =
∑n

i=1 TiYi∑n
i=1 Ti

−
∑n

j=1(1− Tj)ŴjYj∑n
i=1(1− Tj)Ŵj

(7)

where Ŵj = Tj + (1− Tj)p̂(Xj)
/

(1− p̂(Xj)).

There are two important differences between equations (6) and (7). First, the weighting function

in the counterfactual mean in equation (6), (1 − Tj)Wj

/∑n
j=1 Tj , does not sum to one, while that in

equation (7), (1−Tj)Ŵj

/∑n
j=1(1−Tj)Ŵj does. As discussed in the literature, it is preferable to normalize

the weights so that they sum to one (e.g., Imbens 2004). Second, the propensity score in equation (6) is

the true propensity score, while that in equation (7) is an estimate of the propensity score. This makes

an investigation of the behavior of equation (6) less practical than an investigation regarding equation (7).

Moreover, as emphasized in Heckman, Ichimura and Todd (1998) and Hirano et al. (2003), there can be

efficiency gains associated with using the estimated propensity score, even when the propensity score is

known.

Thus, in addition to being somewhat exotic, θ̂F is specifically not recommended. Reflecting these

judgements, we refer to θ̂F as “Frölich reweighting” and to θ̂ as “correct reweighting”.

Although reweighting and propensity score matching estimators seem quite different, they share a

common structure as weighted least squares estimators. In particular, for weights V̂j , all of the matching
12This is similar to the estimator Hirano et al. (2003, p. 1176) refer to as bτte, if their series logit first-step estimated

propensity score had been replaced by the known propensity score.
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estimators discussed in Frölich (2004) can be written as

θ̃ =
∑n

i=1 TiYi∑n
i=1 Ti

−
∑n

j=1(1− Tj)V̂jYj∑n
j=1(1− Tj)V̂j

where V̂j =
∑n

i=1 TiW (i, j)
/∑n

i=1 Ti is the average weight received by control observation j, on average

across all treatment observations i. For details on this result, see Appendix I. Careful inspection of the

weights used for matching reveals that they often approximate the weighting function used by reweighting,

in a large sample sense.13 This common structure is consistent with the sense of many applied researchers

that, in many applications, propensity score matching and reweighting estimators yield roughly comparable

estimates of program impacts. This similarity highlights another reason why the claims of poor peformance

of reweighting in Frölich (2004) are puzzling.

E . Distribution Theory for Pair Matching and Reweighting for TOT

Frölich (2004) uses pair matching as a benchmark for the mean-squared error of reweighting and

propensity score matching estimators. It is thus instructive to compare the large sample properties of pair

matching to those of reweighting, particularly with respect to the DGPs studied in Frölich (2004). Using

unpublished results from Abadie and Imbens (2006) and derivations in Appendix I, we have

√
n(θ̃PM − θ)

d−→ N (0, SEB +GPM )
√
n(θ̂ − θ) d−→ N (0, SEB +G−G1 +H1 −H2)

√
n(θ̂F − θ)

d−→ N (0, SEB +GF +H1)

where H1 and H2 pertain to treatment effect heterogeneity and are zero under homogeneity, and

GPM =
1
2

E
[
σ2

0(Xi)
p2

{
1

1− p(Xi)
− (1− p(Xi))

}]
(8)

G = E
[

(µ0(Xi)− E[µ0(Xi)|Ti = 1])2

p2

p(Xi)
1− p(Xi)

]
(9)

GF = E
[
µ0(Xi)2

p2

p(Xi)
1− p(Xi)

]
(10)

are positive terms which can prevent, even under homogenous treatment effects, these estimators from
13This can easily be seen, for example, for kernel and nearest neighbor matching.
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being fully efficient.14,15 The term G1 is also positive and is given by

G1 = C[µ0(Xi), νiZi|Ti = 1]E[ν2
i p(Xi)(1− p(Xi))ZiZ ′i]

−1C[νiZi, µ0(Xi)|Ti = 1] (11)

where Zi = (1, X ′i)
′, νi = F ′(Z ′iβ)

/
(p(Xi)(1−p(Xi))), and F (·) is the distribution function associated with

the first-step propensity score model.16 This is a matrix weighted average of squares and cross-products of

covariances between the covariates included in the propensity score model and the conditional expectation

of the counterfactual outcome under control, or µ0(Xi). This term is related to the famous result of Hirano

et al. (2003), that a nonparametric first-step estimate of the propensity score can lead to semiparametric

efficiency asymptotically. Intuitively, including variables in the propensity score model that are related to

µ0(Xi) apparently can, under suitable conditions, help the G1 term to “knock out” the G term that stands

in the way of efficiency.17

These results can be intuitively summarized as follows:

Result 1. Pair matching is not efficient, in the sense that its asymptotic variance exceeds the SEB.

Result 2. A sufficient condition for the efficiency of correct reweighting is that µ0(Xi) does not depend on
Xi for units in the treatment group, that is, there is no selection problem. Under homogenous treatment
effects, this condition is also necessary.

Result 3. A sufficient condition for the efficiency of Frölich reweighting is µ0(Xi) = 0 for every unit in
the treatment group. Under homogenous treatment effects, this condition is also necessary.

Result 4. The asymptotic distribution of correct reweighting is invariant to additive shifts of the outcome,
while that of Frölich reweighting is not.

The first result follows from the machinery developed in Abadie and Imbens (2006) and is analogous to

their result for the population average treatment effect. The second and third results follow from algebra,

and the fourth result is implied by the second and third results.
14In the main text, Abadie and Imbens (2006) provide explicit large sample characterizations for the case of the population

average treatment effect. To derive results for TOT, see their equation (13) in the main text and equation (A.34) in the
unpublished proofs. Note that while their results pertain to matching on covariates, they can be applied to pair matching
with an estimated propensity score in the context of Frölich (2004)’s study, because Xi is scalar and hence can be derived
from knowledge of bp(Xi) alone.

15The terms H1 and H2 are given by H1 = 2 1
p
C[τ(Xi), µ0(Xi)|Ti = 1] and

H2 = C[τ(Xi), (1− p(Xi))νiZi|Ti = 1]E[ν2
i p(Xi)(1− p(Xi))ZiZ

′
i]
−1C[νiZi, µ0(Xi)|Ti = 1]

Under homogenous treatment effects, τ(Xi) is constant and both of these terms are zero. Generally, however, H1 and H2 are
nonzero and can be either positive or negative.

16Here, β is the probability limit of the first-step coefficients, i.e., p(Xi) = F (Z′iβ). Standard practice in empirical work is
to use a logit model, in which case νi = 1.

17For further discussion of the intuition behind the Hirano et al. (2003) result, see Graham (2008). We pause to note that in
the hybrid case of reweighting with normalized weights that sum to one, but using a known propensity score, the asymptotic
variance is simply SEB +G+H1 (see Appendix I), and hence inefficient unless µ0(Xi) and µ1(Xi) covary in particular ways.
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To get a quick sense of the magnitude of the differences between the variances of the different varieties

of reweighting estimators, Table 2 presents asymptotic variances for six varieties of reweighting, based on

(i) whether the weights are normalized to sum to one (columns (4) through (6)) or are left unnormalized

(columns (1) through (3)) and (ii) whether the first-step propensity score is the true propensity score

(“Known”), estimated parametrically by a correctly specified maximum likelihood routine (“Estd.”), or

estimated nonparametrically using a series logit (“Overfit”). As noted, θ̂F leaves the weights unnormalized

and uses the known propensity score. The Hirano et al. (2003) estimator leaves the weights unnormalized

and uses a nonparametric estimate of the propensity score. Our preferred version of reweighting, θ̂,

normalizes the weights to sum to one and utilizes a parsimonious logit model.

Table 2. Illustrative Variances, Different Varieties of Reweighting

Outcome Equation Weights Left Unnormalized Weights Normalized
Parameters Known, θ̂F Estd. Overfit, θ̂HIR Known Estd., θ̂ Overfit

Intercept Slope σ2 SEB (1) (2) (3) (4) (5) (6)

0 0 0.1 1.1 1.1 1.1 1.0 1.1 1.1 1.0
0 1 0.1 1.1 8.4 3.8 1.6 1.7 1.4 1.1
0 2 0.1 1.1 31.6 12.7 3.1 3.7 2.4 1.3
10 0 0.1 1.1 1,085 286.3 68.5 1.0 1.0 1.0
10 1 0.1 1.1 1,287 322.0 67.1 1.7 1.4 1.1
10 2 0.1 1.1 1,466 479.2 87.6 3.6 2.4 1.3

The asymptotic variances displayed were obtained by simulation using 5,000 estimator replications, with

each estimate based on 1,000 observations. The DGP is based on equations (1) through (3), with µ0(Xi)

an affine function of Xi (“Intercept”, “Slope”), µ0(Xi) = µ1(Xi), µT (Xi) =
√

2Xi, and ui distributed

standard logistic. In light of the sample size, the overfit propensity score model was taken to be a fifth

order polynomial in Xi.

The results in Table 2 show plainly that leaving the weights unnormalized performs terribly, even

with the series logit model suggested by Hirano et al. (2003). This variety of reweighting is particularly

susceptible to the nuisance parameter of the location of the outcome. Normalizing the weights so that

they sum to one eliminates this deficiency. However, both varieties of reweighting suffer from increased

variance when there is a selection problem, i.e., when the slope parameter exceeds zero in this DGP. Using

an overfit logit model reduces the variance in such a situation. However, overfitting also worsens the bias

of the estimator (results not shown).
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III. Large Sample Intuition

A. Data Generating Process

Frölich (2004) considers thirty DGPs in his study. To simplify the discussion we focus on one of the

DGPs (“Frölich’s baseline DGP”) which is a specialized version of equations (1) through (3), with

Yi(1) = θ + 0.15 + 0.7p(Xi) + εi (12)

Yi(0) = 0.15 + 0.7p(Xi) + εi (13)

T ∗i =
√

2Xi − ui (14)

where Xi is distributed standard normal, εi is distributed uniform with mean zero and variance σ2 = 0.01,

and ui is distributed standard logistic, implying F (u) = 1/(1 + exp(−u)) and p(Xi) = F (
√

2Xi). The

treatment effect, θ, is taken to be constant in the population and equal to zero.18 Qualitatively, our

conclusions do not change when we consider other DGPs, as will become clear in Section IV.

This DGP has a homoskedastic outcome equation error and homogenous treatment effects. Thus, the

efficiency bound in equation (4) simplifies to SEB = σ2

p2
E
[

p(Xi)
1−p(Xi)

]
and by standard integration we have

SEB = σ2e
/
p2, where ln(e) = 1. This proves a useful benchmark, both conceptually and numerically.

B . Variance Decompositions

To get a sense of the magnitudes of the variances associated with pair matching and reweighting

estimators, Table 3 presents a decomposition of the variance expressions in the context of Frölich’s baseline

DGP. Like all of the DGPs studied in Frölich (2004), the baseline DGP is homoskedastic and sets σ2 =

0.01. In our view, such a choice for the variance of the outcome equation error limits the relevance of

the simulation results to the microeconomic applications that have motivated the econometric program

evaluation literature. In the context of the DGP in equations (12) through (14), choosing an error variance

of σ2 = 0.01 would be equivalent to a situation where R2 from a regression of Yi on Ti and p(Xi) would be

approximately 0.77 when the treatment is ineffective (θ = 0). If the treatment is effective (say, θ = 0.15),

then the R2 from this regression would be 0.85. In our experience, outcome variables in microeconomic

applications—e.g., labor earnings—are dominated by factors unavailable to the researcher and difficult to

predict. We are unaware of situations in empirical practice where the outcome is so predictable that a
18Strictly speaking, Frölich (2004) does not specify the DGP for equation (1). This is due to his focus on the success of

various estimators in estimating the counterfactual mean under treatment, or E[Yi(0)|Ti = 1]. We prefer to specify the entire
DGP. This amounts to changing the units in which variance is measured. See Appendix II for details and discussion.
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researcher running such a simple regression would achieve an R2 of such a high magnitude. The R2 values

for similar regressions reported in Dehejia (2005), for example, range from approximately 0.1 to 0.3. Taking

the larger of these R2 values as a reference point corresponds to a value of roughly σ2 = 0.1 in Frölich’s

baseline DGP, when the treatment is effective.

Table 3. Decomposing Variance of Estimators: Frölich’s Baseline DGP

Estimator σ2 SEB GPM GF G G1 H1, H2 n Variance

Pair Matching 0.01 0.11 0.06 - - - - 0.17
Frölich Reweighting 0.01 0.11 - 5.83 - - 0 5.94
Correct Reweighting 0.01 0.11 - - 0.35 0.17 0 0.28
Pair Matching 0.10 1.09 0.64 - - - - 1.73
Frölich Reweighting 0.10 1.09 - 5.83 - - 0 6.92
Correct Reweighting 0.10 1.09 - - 0.35 0.17 0 1.26

Table 3 shows that for the small error variance of σ2 = 0.01, pair matching has a much smaller asymp-

totic variance (0.17) than Frölich reweighting (5.94). This result provides a large sample interpretation for

the simulation evidence presented in Frölich (2004). The reason for the enormous difference in variances

is that GF is much larger than GPM . In particular, returning to the characterization of these terms in

equations (8) through (10), we see that GPM is proportional to σ2, whereas GF is not. Thus, when σ2 is

small enough, pair matching performs best, but when σ2 is large enough, reweighting performs best.

Table 3 also presents a decomposition for the empirically more relevant case of σ2 = 0.1. In that case,

Frölich reweighting has larger asymptotic variance than pair matching, which in turn has larger asymptotic

variance than correct reweighting. Pair matching has larger asymptotic variance than correct reweighting

as long as σ2 > 0.028. Table 3 also clarifies the extent to which correct reweighting is preferred to Frölich

reweighting. In Frölich’s baseline DGP, regardless of the value of σ2, the discrepancy between Frölich

reweighting and correct reweighting is a large 5.65.

C . A Graphical View of Efficiency

This background clarifies some conceptual distinctions between matching and reweighting approaches

to estimating average treatment effects. We are now in a position to graphically illustrate how Frölich’s

conclusions about the superiority of matching not at odds with the asymptotic results, but are highly

context-specific.

We begin this discussion by noting that the search for efficient estimators of average treatment effects

can be understood as the search for an appropriate intercept and slope in a figure such as Figure 1. Figure

10



1 presents the asymptotic variance of average treatment effect estimators in a homoskedastic DGP, as

a function of σ2, the homogenous variance of the outcome equation error. An efficient estimator is one

which has a variance curve on top of the SEB, which here is a straight line going through the origin. In

a case with homogenous treatment effects and homoskedasticity of the outcome equation error, matching

estimators tend to have variances that are zero at the origin, but have a steeper slope than that of the

SEB. In such settings, reweighting estimators tend to have variances that are positive at the origin, but

have a slope equal to that of the SEB.

Figure 1 makes this point for the special case of pair matching and Frölich reweighting, in the context

of Frölich’s baseline DGP. As we saw in equations (8) through (10) and then concretely in Table 3, the

intercept for Frölich reweighting is positive and large (5.83), whereas the intercept for pair matching is

zero. In contrast, the slope for Frölich reweighting is that of the SEB, whereas the slope for pair matching

is strictly above that of the SEB. This figure makes it plain that reweighting has the wrong intercept and

that pair matching has the wrong slope.

Figure 2 revisits this picture, but replacing Frölich reweighting with correct reweighting. The inter-

cept for reweighting is now much smaller (0.18 rather than 5.83). It is tempting to conclude that correct

reweighting is efficient for all practical purposes. However, this conclusion must be tempered by the recog-

nition that for very small values of σ2, correct reweighting will have larger variance than pair matching.19

IV. Finite Sample Results

A. Finite Sample Performance

As noted, Frölich (2004) considers thirty DGPs, corresponding to all possible combinations of five

density “designs” and six outcome “curves”. The five designs pertain to the distribution of propensity

scores among treatment and control units, and the six curves pertain to the nonlinearity of the relationship

between the covariates and the outcome.

We turn now to a replication of the main results in Frölich (2004), which pertain to n = 100. Table 4

presents simulation estimates of the bias and variance of pair matching, correct, reweighting, and Frölich’s

preferred matching estimator, ridge matching, for each of the thirty DGPs using 10,000 simulation repli-

cations, as in Frölich (2004). Following our discussion in Section III, we set the variance of the outcome

equation error term to be 0.1.20 For reference, we present the SEB for each DGP, as well as the asymptotic
19Empirical researchers may find it worthwhile to engage in simulation studies tailored to the properties of the data they

study. One could imagine an applied paper where the data were characterized by very strong selection and very high pre-
dictability of the outcome. In such a setting, matching might be expected to outperform correct reweighting.

20See Appendix II for a detailed description of these DGPs. There, we replicate the results of Frölich (2004). We also
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variance for pair matching and correct reweighting.21

Two broad features of these DGPs are relevant to the results in Table 4. First, designs 1 and 5 satisfy

the weak overlap condition, but fail the strict overlap condition. In these two designs, the propensity

score cannot be strictly bounded away from 1. In the remaining designs, the propensity score is strictly

bounded away from 0 and 1. Nonetheless, in all five designs, the SEB can be shown to be finite by direct

integration. Second, in design 1, but in no other design, the propensity score can be reliably estimated

using a parametric maximum likelihood routine. This is because design 1 corresponds to a standard latent

variable model for treatment. Designs 2 through 5 cannot be written in this way. For these designs, even

taking advantage of the knowledge of the DGP, estimation of the propensity score would entail estimating

a maximum likelihood model based on a uniform density whose parameters are in the boundary of the

parameter space, which is unlikely to work well. Instead of estimating a uniform binary choice model, we

choose to use a logit model with a second order polynomial.

Five main results arise from these Monte Carlo simulations. First, correct reweighting and ridge

matching have a variance that is 60% to 80% of pair matching.22 Second, the variance of reweighting is

similar to the variance of ridge matching.23 Third, the variances of pair matching and reweighting are close

to their asymptotic variances in designs 2, 3 and 4, but are different for designs 1 and 5. This seems to

be a general phenomenon, as we have discussed elsewhere (Busso, DiNardo and McCrary 2008). In DGPs

violating strict overlap, finite sample performance can often be quite different from that suggested by the

large sample theory. Fourth, and relatedly, the bias for all three estimators is much larger in designs 1 and

5 than in designs 2, 3, and 4.24 Fifth, in most DGPs the bias of ridge matching is the largest of the three

estimators under consideration.

In order to analyze further the performance of correct reweighting and ridge matching, we explore the

robustness of the results to different values of the variance of the outcome equation error. Figure 3 displays

the results of our analysis for a sample size of 100 and Frölich’s baseline DGP (i.e., design 1 and curve 1).

The top half of the figure graphs the variance. For comparison, we also plot the SEB and the variance

of pair matching. The analysis points again to the specificity of Frölich’s results and the peculiarities of

expand those results in two directions. First, we consider estimation of the TOT rather than the counterfactual mean of the
outcome under treatment. Second, we consider larger values of σ2 than are considered in Frölich (2004). See Appendix Table
A.1.

21Large sample properties of ridge matching are not yet available in the literature.
22The asymptotic variances presented in this table are estimated with a great deal of precision, and have standard errors

based on Wishart (Wishart 1928, Muirhead 2005) and bootstrap approximations of about 0.015 or less.
23The differences observed are nonetheless significant in nearly all the DGPs.
24To the best of our knowledge, no finite sample result regarding unbiasedness exists for these estimators. For all three

estimators, the null hypothesis of zero bias is strongly rejected for nearly all DGPs.
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the DGP. The variance of both reweighting and ridge matching are below the SEB, although reweighting

seems to be always closer to the SEB. The unusual efficiency of both estimators in these DGPs, however,

comes at price: both are biased. For ridge matching, the problem of bias is severe, particularly for DGPs

with noisy outcome measures. Even for the smallest (empirically least plausible) values of the variance

of the outcome equation error, the bias in all estimators exceeds what might be expected for an effective

treatment (say, θ = 0.015). The bias in ridge matching grows the most quickly and approximately triples

in value going from a variance of the outcome equation error of near 0 to 1. Intuitively, the problems with

bias for ridge matching seem likely to arise because of the cross-validation algorithm. When the outcome is

difficult to predict, cross-validation may well choose the largest bandwidth considered, in which case ridge

matching reduces to the raw difference in means between treatment and control units. In larger samples,

or with a more predictable outcome, ridge matching could potentially perform better, as the performance

of cross-validation improves.

V. Conclusion

The existing finite sample literature on semiparametric estimation of average treatment effects is generally

critical of the performance of reweighting and tends to favor matching. The leading paper on this topic,

Frölich (2004), finds that in small samples reweighting estimators tend to perform much worse than many

of the most popular matching estimators (namely, pair, nearest-neighbor, kernel, local linear or ridge

matching). This conclusion is at odds with the findings of the large sample literature. We resolve this

puzzle in this paper and show that reweighting performs much better than suggested in Frölich (2004).

We derive large sample results for reweighting that complement those of Hirano et al. (2003). These

results demonstrate the wisdom of normalizing the weights to sum to one and of using an estimated

propensity score. Frölich (2004) leaves the weights unnormalized and uses the true propensity score. This

skews his findings towards the conclusion that reweighting is not effective. The consequences of these two

choices for the relative MSE of reweighting and pair matching are magnified by the small variance of the

outcome equation error used in his simulations. We argue that this error variance is sufficiently small that

the DGPs studied in Frölich (2004) are of limited relevance to empirical microeconomic practice.

We show that in DGPs with only slightly larger values of the variance of the outcome equation error than

are considered in Frölich (2004), an appropriate implementation of reweighting has much lower variance

than pair matching. This variance reduction appears to come without a cost: the bias of reweighting and

pair matching is near zero in the DGPs we have analyzed here and elsewhere (Busso et al. 2008).
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We also contrast the performance of reweighting and ridge matching—the preferred matching estimator

in Frölich (2004). We find that in small samples the variance of ridge matching and reweighting is usually

comparable. However, the bias of ridge matching is small for some DGPs, but quite large for other DGPs.

The bias of reweighting, in contrast, is small uniformly across DGPs, especially when strict overlap is

satisfied. Generally, the bias of reweighting seems equivalent to that of pair matching, the matching

estimator with the best performance in terms of bias.

If preferences over bias and variance are not lexicographic, then some of the biased matching estimators

may be preferred to reweighting. We caution, however, that the DGPs considered in this paper may not

adequately span those likely to confront empirical researchers. In general, the bias of these estimators in any

given DGP could be of lesser or greater magnitude than documented here. In such a case, the researcher’s

preference ranking over estimators could be different than that suggested by a literal interpretation of the

simulation evidence.25 Our own preference is for estimators that minimize the maximum bias over possible

DGPs (e.g., unbiased estimators), and among those we prefer low variance. The small sample evidence

presented in this paper suggests that reweighting is better than both pair and ridge matching in that sense.

Finally, reweighting has two practical advantages over ridge matching. First, reweighting is easy to

compute, because it is a difference in weighted means by treatment status. Ridge matching is hard to

compute. It requires looping over observations and estimating many different local linear ridge regressions,

even when the bandwidth is known. Since the bandwidth is not known, ridge matching further entails

selection of a bandwidth using cross-validation, which can be extremely time-intensive. Second, accurate

standard errors for reweighting are readily obtained.26 To date, no valid inference procedure for ridge

matching has been proposed. In light of the smoothness of ridge matching, an appropriate bootstrap

algorithm is likely to work, but bootstrapping an estimator that uses cross-validation is unlikely to be

practical in empirical work, particularly in applications with more than 1,000 observations.

25For example, a researcher seeking to minimize the maximum mean squared error across all DGPs would not be comforted
with the knowledge that the bias was small relative to the variance in the DGPs studied here.

26Busso (2008) notes that a sequential GMM approach is highly effective and that, if the sample size is sufficiently large
(n > 500), robust regression standard errors that ignore the estimation error in the weights work well.
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Appendix I

A. Propensity Score Matching is a Weighted Least Squares Estimator

Result. If the weighting function W (i, j) satisfies the property
∑n
j=1(1− Tj)W (i, j) = 1, we have

θ̃ =
∑n
i=1 TiYi∑n
i=1 Ti

−
∑n
j=1(1− Tj)V̂jYj∑n
j=1(1− Tj)V̂j

where θ̃ is defined as in equation (5) and V̂j =
∑n
i=1 TiW (i, j)

/∑n
i=1 Ti is the average weight received by control

observation j, on average across all treatment observations i.

Proof. Define
∑n
i=1 Ti = n1 and write

θ̃ =
1
n1

n∑
i=1

TiYi −
1
n1

n∑
i=1

TiŶi(0) (15)

=
1
n1

n∑
i=1

TiYi −
1
n1

n∑
i=1

Ti

n∑
j=1

(1− Tj)W (i, j)Yj (16)

=
1
n1

n∑
i=1

TiYi −
n∑
j=1

(1− Tj)Yj
1
n1

n∑
i=1

TiW (i, j) (17)

≡ 1
n1

n∑
i=1

TiYi −
n∑
j=1

(1− Tj)Yj V̂j (18)

It remains to show that
∑n
j=1(1− Tj)W (i, j) = 1 implies

∑n
j=1(1− Tj)V̂j = 1. Write

n∑
j=1

(1− Tj)V̂j =
n∑
j=1

(1− Tj)
1
n1

n∑
i=1

TiW (i, j) =
1
n1

n∑
i=1

Ti

n∑
j=1

(1− Tj)W (i, j) (19)

and the result follows. �

The key adding-up property
∑n
j=1(1−Tj)W (i, j) = 1 is satisfied by all of the matching estimators studied in Frölich

(2004). We note that
∑n
i=1 TiW (i, j) is the KM (j) function studied by Abadie and Imbens (2006). Their results can

be used to show that nearest neighbor matching entails a V̂j function that approximates p̂(Xj)/(1− p̂(Xj)). Finally,
the W (i, j) function used by kernel matching implies, for a symmetric kernel, that V̂j is a ratio of kernel regression
estimators and also approximates p̂(Xj)/(1 − p̂(Xj)). There is thus a sense in which some matching estimators
approximate reweighting in specific ways.

B . Derivation of Large Sample Results: Unnormalized True Weights

To economize on space, we adopt the following notations. First, we drop all i subscripts, trusting the reader to
remain aware of which objects are stochastic and which are not. Second, for treatment assignments t = 0, 1, we write
µt = µt(Xi) and σ2

t = σ2
t (Xi), and we let τ = µ1 − µ0 denote the covariate-specific treatment effect and e = p(Xi)

the propensity score.
Using this notation, we can define the non-stochastic terms θ = E[τ |T = 1], α = E[µ0|T = 1], and p = E[e], and

we can write Frölich (2004)’s version of reweighting as

θ̂F = h
/
T (20)

where h is the sample mean of Y T − Y (1 − T )e/(1 − e) and T is the sample mean of T . We will show that
√
n
(
h− pθ, T − p

)
converges in distribution to a bivariate normal distribution with a particular variance matrix Ω.
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We then use Slutsky’s theorem to compute the first order asymptotic distribution of θ̂F .
We will make repeated use of iterated expectations over X and in particular the following facts, valid for treatment

assignments t = 0, 1:

pE[Y (t)|T = 1] = E[µte] and (1− p)E[Y (t)|T = 0] = E[µt(1− e)]

pE[Y (t)2|T = 1] = E[(µ2
t + σ2

t )e] and (1− p)E[Y (t)2|T = 0] = E[(µ2
t + σ2

t )(1− e)]

This type of reasoning shows that the probability limit of h is

E[Y T − Y (1− T )
e

1− e
] = E[µ1e]− E[µ0e] = pθ (21)

The probability limit of T is E[T ] = p, so by continuity of probability limits, θ̂F is consistent for θ.
Turning to the asymptotic variance, we first note that by the Lindeberg-Levy central limit theorem and the

Crámer-Wold device,
√
n
(
h− pθ, T − p

)
converges in distribution to a normal distribution with variance matrix

Ω =

[
V[Y T − Y (1− T )e/(1− e)] C[Y T − Y (1− T )e/(1− e), T ]
C[Y T − Y (1− T )e/(1− e), T ] V[T ]

]
(22)

where we have V[T ] = p(1− p), C[Y T − Y (1− T )e/(1− e), T ] = E[µ1e]− p2θ, and

V[Y T − Y (1− T )e/(1− e)] = E
[
σ2

1e+ σ2
0

e2

1− e

]
+ E

[
µ2

1e+ µ2
0

e2

1− e

]
− (pθ)2 (23)

Then define θ̂F = r(h, T ) where r(h, p) = h/p has gradient evaluated at h ≡ pθ and p of R ≡ p−2 (p,−h). Then by
Slutsky’s theorem, to first order we have

p2nV[θ̂F ] = p2R′ΩR = V[Y T − Y (1− T )e/(1− e)]− 2θC[Y T − Y (1− T )e/(1− e), T ] + θ2V[T ] (24)

= E
[
σ2

1e+ σ2
0

e2

1− e

]
+ E

[
µ2

1e+ µ2
0

e2

1− e

]
− 2θE [µ1e] + pθ2 (25)

= E
[
σ2

1e+ σ2
0

e2

1− e

]
+ E

[
µ2

1e+ µ2
0

e2

1− e

]
− 1
p

E [µ1e]
2 +

1
p

E [µ0e]
2 (26)

= E
[
σ2

1e+ σ2
0

e2

1− e

]
+ E

[
µ2

0

e2

1− e

]
+

1
p

E [µ0e]
2 + pV [µ1|T = 1] (27)

= E
[
σ2

1e+ σ2
0

e2

1− e

]
+ E

[
µ2

0

e

1− e

]
+ pV [µ1|T = 1]− pV [µ0|T = 1] (28)

where we use the fact that E[(τ − θ)2e] = pV[τ |T = 1] = pV[µ1|T = 1] + pV[µ0|T = 1] − 2pC[µ0, µ1|T = 1] and
e2/(1− e) = e/(1− e)− e. Recall that SEB = E

[
σ2
1e
p2

]
+ E

[
σ2
0(1−e)2
p2(1−e)

]
+ 1

pV[τ |T = 1]. Thus, to first order we have

nV[θ̂F ] = SEB− 2
1
p
{V[µ0|T = 1]− C[µ0, µ1|T = 1]}+ E

[
µ2

0e

p2(1− e)

]
(29)

C . Derivation of Large Sample Results: Normalized True Weights

A reweighting estimator using true weights can be rewritten as

θ̈ = g
/
T − f

/
S (30)

where g is the sample mean of Y T , f is the sample mean of Y (1 − T )e/(1 − e), and S is the sample mean of
(1− T )e/(1− e). The probability limit of g is g ≡ E[µ1e], the probability limit of T is p, the probability limit of f is
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f ≡ E[µ0e], the probability limit of S is p, and continuity of probability limits then implies that θ̈ is consistent for θ.
For the asymptotic variance, note that V[θ̈] = V[g

/
T ] + V[f

/
S]. Consider first V[g

/
T ]. By the Lindeberg-

Levy central limit theorem and the Crámer-Wold device,
√
n
(
g − g, T − p

)
converges in distribution to a normal

distribution with variance matrix

Ω =

[
V[Y T ] C[Y T, T ]
C[Y T, T ] V[T ]

]
(31)

where V[T ] = p(1− p) as before and C[Y T, T ] = E[µ1e](1− p) = g(1− p) and

V[Y T ] = E
[(
σ2

1 + µ2
1

)
e
]
− E [µ1e]

2 = E
[(
σ2

1 + µ2
1

)
e
]
− g2 (32)

Define g
/
T = r(g, T ) where r(g, p) = g/p has gradient evaluated at g and p of R ≡ p−2 (p,−g). Then by Slutsky’s

theorem, to first order we have

p2nV
[
g
/
T
]

= V[Y T ]− 2
g

p
C[Y T, T ] +

g2

p2
V[T ] (33)

= E
[
σ2

1e
]

+ E
[
µ2

1e
]
− g2/p = E

[
σ2

1e
]

+ E
[
µ2

1e
]
− 1
p

E [µ1e]
2 (34)

= E
[
σ2

1e
]

+ pV[µ1|T = 1] (35)

Consider next f
/
S. By the Lindeberg-Levy central limit theorem and the Crámer-Wold device,

√
n
(
f − f, S − p

)
converges in distribution to a normal distribution with variance matrix

Ω =

[
V[Y (1− T )e/(1− e)] C[Y (1− T )e/(1− e), (1− T )e/(1− e)]
C[Y (1− T )e/(1− e), (1− T )e/(1− e)] V[(1− T )e/(1− e)]

]
(36)

where V[(1− T )e/(1− e)] = E
[
e2
/

(1− e)
]
− p2, and

V[Y (1− T )e/(1− e)] = E
[(
σ2

0 + µ2
0

) e2

1− e

]
− E [µ0e]

2 = E
[(
σ2

0 + µ2
0

) e2

1− e

]
− f2 (37)

C[Y (1− T )e/(1− e), (1− T )e/(1− e)] = E
[
µ0

e2

1− e

]
− fp (38)

Then redefine f
/
S = r(f, S) where r(f, p) = f/p = α has gradient evaluated at f and p of R ≡ p−2 (p,−f). Then

by Slutsky’s theorem, to first order we have

p2nV
[
f
/
S
]

= V[Y (1− T )e/(1− e)]− 2αC[Y (1− T )e/(1− e), (1− T )e/(1− e)] + αV[(1− T )e/(1− e)] (39)

= E
[
σ2

0

e2

1− e

]
+ E

[
µ2

0

e2

1− e

]
− 2αE

[
µ0

e2

1− e

]
+ α2E

[
e2

1− e

]
(40)

= E
[
σ2

0

e2

1− e

]
+ E

[
(µ0 − α)2

e

1− e

]
− pV[µ0|T = 1] (41)

Putting these results together, we have

p2nV[θ̈] = E
[
σ2

1e+ σ2
0

e2

1− e

]
+ pV[µ1|T = 1]− pV[µ0|T = 1] + E

[
(µ0 − α)2

e

1− e

]
(42)

which implies that to first order

nV[θ̈] = SEB− 2
1
p
{V[µ0|T = 1]− C[µ0, µ1|T = 1]}+ E

[
(µ0 − α)2 e
p2(1− e)

]
(43)
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D . Derivation of Large Sample Results: Normalized Estimated Weights

For the case of the reweighting estimator with a parametric estimate of the propensity score, we use a method
of moments framework to derive large sample properties. Define h = (a, q, b′)′, Z = (1, X ′)′, and F (·) a parametric
distribution function such as the logistic, and define the moment functions

r(h) =

 (Y − a− qT )W (b)
(Y − a− qT )W (b)T
(T − F (Z ′b)) ν(b)Z

 (44)

where W ≡ W (b) = T + (1 − T )F (Z ′b)/(1 − F (Z ′b)) and where we assume that E[r(ḧ)] = E[r(ḣ)] if and only
if ḧ = ḣ and 0 = E[r(η)], where η = (α, θ, β′)′. This condition ensures that α = E[µ0|T = 1] = E[µ0e]

/
p,

θ = E[µ1 − µ0|T = 1] = E[(µ1 − µ0)e]
/
p, and e = F (Z ′β) are defined as before and guarantees unique identification.

The first two moments are scalar and are implied by a weighted regression of Y on T using weights W ; the third
moment is actually a K + 1 vector of moments and incorporates the estimation of e using a binary choice model.
Generally, ν ≡ ν(b) = F ′(Z ′b)

/
(F (Z ′b)(1− F (Z ′b))). For the logit, ν = 1, and among distributions with F (0) = 1/2,

the logit distribution is the only distribution for which ν = 1. This can be shown by solving the differential equation
implied by ν = 1.

Next define η̂ = (α̂, θ̂, β̂′)′ by r(η̂) = 0, where r(h) is the sample mean of r(h). By the Lindeberg-Levy central
limit theorem and the Crámer-Wold device,

√
nr(η) d−→ N(0,Ω), where Ω = V[r(η)]. A Taylor approximation to

r(η̂) centered about η, together with continuity of probability limits and Slutsky’s theorem, then shows that

√
n(η̂ − η) d−→ N

(
0, R−1ΩR−1′

)
(45)

where R is the expectation of the derivative matrix of r(h) with respect to h, evaluated at h = η. One can show that

R = −p

 2 1 −c′

1 1 0′K
0K 0K D

 and R−1 = −1
p

 1 −1 c′D−1

−1 2 −c′D−1

0K 0K D−1

 (46)

where c′ ≡ C[µ0, νZ|T = 1] is a K + 1 row vector, pD ≡ E
[
ν2e(1− e)ZZ ′

]
is Fisher’s information matrix for the

binary choice model, and 0K is a column vector of K zeroes. Next, note that

p2R−1ΩR−1′ = Ω11 − Ω21 + c′D−1Ω31 Ω21 − Ω22 + c′D−1Ω32 Ω′31 − Ω′32 + c′D−1Ω33

−Ω11 + 2Ω21 − c′D−1Ω31 −Ω21 + 2Ω22 − c′D−1Ω32 −Ω′31 + 2Ω′32 − c′D−1Ω33

D−1Ω31 D−1Ω32 D−1Ω33


 1 −1 0′K

−1 2 0′K
D−1c −D−1c D−1


where the (2, 2) element is proportional to the first order approximation to the variance of θ̂. To first order, we have

p2nV[θ̂] = Ω11 + 4Ω22 − 4Ω21 + c′D−1Ω33D
−1c+ c′D−1Ω31 + Ω′31D

−1c− 2c′D−1Ω32 − 2Ω′32D
−1c (47)

= Ω11 + 4Ω22 − 4Ω21 + (2Ω′31 − 4Ω′32 + c′D−1Ω33)D−1c (48)
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Iterated expectations shows that

Ω11 = E[Y 2W 2] + α2E[W 2] + θ2E[TW 2]− 2αE[YW 2]− 2θE[Y TW 2] + 2αθE[TW 2] (49)

= E
[
(σ2

1 + µ2
1)e+ (σ2

0 + µ2
0)

e2

1− e

]
+

1
p2

E[µ0e]2E
[

e

1− e

]
+

1
p2

E[(µ1 − µ0)e]2p (50)

− 2
1
p

E[µ0e]E
[
µ1e+ µ0

e2

1− e

]
− 2

1
p

E[(µ1 − µ0)e]E[µ1e] + 2
1
p2

E[µ0e]E[(µ1 − µ0)e]p (51)

= E
[
σ2

1e+ σ2
0

e2

1− e

]
+ pV[µ1|T = 1] + E

[
(µ0 − α)2

e2

1− e

]
(52)

= E
[
σ2

1e+ σ2
0

e2

1− e

]
+ pV[µ1|T = 1] + E

[
(µ0 − α)2

e

1− e

]
− pV[µ0|T = 1] (53)

Since TW 2 = T , we have Ω22 = Ω21, which means we do not need to calculate either term to approximate V[θ̂].
Finally,

Ω′31 = E[(Y − α− θT )W (T − e)νZ] = pC[µ1, (1− e)νZ|T = 1]− pC[µ0, eνZ|T = 1] (54)

Ω′32 = E[(Y − α− θT )TW (T − e)νZ] = pC[µ1, (1− e)νZ|T = 1] (55)

Ω33 = E[(T − e)2ν2ZZ ′] = E
[
e(1− e)ν2ZZ ′

]
≡ pD (56)

Putting these results together, we have

2Ω′31 − 4Ω′32 + c′D−1Ω33 = −2pC[µ1, νZ|T = 1] + 2pC[τ, eνZ|T = 1] + pC[µ0, νZ|T = 1] (57)

= −pC[µ0, νZ|T = 1]− 2pC[τ, (1− e)νZ|T = 1] (58)

and thus to first order

nV[θ̂] =
1
p2

{
Ω11 +

(
2Ω′31 − 4Ω′32 + c′D−1Ω33

)
D−1c

}
(59)

= SEB− 2
1
p
{V[µ0|T = 1]− C[µ0, µ1|T = 1]}+ E

[
(µ0 − α)2e
p2(1− e)

]
(60)

− C[µ0, νZ|T = 1]E[ν2e(1− e)ZZ ′]−1C[νZ, µ0|T = 1] (61)

− 2C[τ, (1− e)νZ|T = 1]E[ν2e(1− e)ZZ ′]−1C[νZ, µ0|T = 1] (62)

Appendix II

The conclusions reached in Section II, based on what we called “Frölich’s baseline DGP”, are in fact valid for all the
DGPs considered in Frölich (2004). These DGPs can be written as

Yi(0) = m(F (
√

2Xi)) + εi (63)

p(Xi) = α+ βF (
√

2Xi) (64)

Ti = 1(p(Xi) ≤ vi) (65)

where Xi is distributed standard normal, F (·) is a logistic distribution function, vi is distributed standard uniform,
and εi distributed uniform with mean zero and variance σ2 = 0.01. The distribution of F (

√
2Xi) is known as the

Johnson SB distribution.
Frölich (2004) considers thirty DGPs, corresponding to all possible combinations of five density “designs” and six

outcome “curves”. A design refers to the distribution of the propensity score in the treated relative to the nontreated
population. This is manipulated by the parameters α and β in equation (64) which are defined in Frölich (2004)’s
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Table 1. An outcome curve, on the other hand, refers to the function m(·) that controls the dependence of the
outcome on the rescaled propensity score Zi = F (

√
2Xi). The first outcome function is linear in Zi with a positive

slope, while the rest are highly nonlinear. The six functions in question are defined in Frölich (2004)’s Table A1. For
easy reference, we reproduce here both Table 1 and Table A1 of Frölich (2004):

Table 1 of Frölich (2004): Density Designs

Design α β Control-treated Ratio
1 0 1 1:1
2 0.15 0.7 1:1
3 0.3 0.4 1:1
4 0 0.4 4:1
5 0.6 0.4 1:4

Table A1 of Frölich (2004): Outcome Curves

Curve Functional Form of m(zi), zi = F (
√

2Xi)
1 0.15 + 0.7zi
2 0.1 + zi

2 + 1
2 exp

[
−200 (zi − 0.7)2

]
3 0.8− 2 (zi − 0.9)2 − 5 (zi − 0.7)3 − 10 (zi − 0.6)10

4 0.2 +
√

1− zi − 0.6 (0.9− zi)2

5 0.2 +
√

1− zi − 0.6 (0.9− zi)2 +−0.1zi cos (30zi)

6 0.4 + 0.25 sin (8zi − 5) + 0.4 exp
[
−16 (4zi − 2.5)2

]
We replicate the main results of Frölich (2004). In Appendix Table A.1, we focus on three estimators based on

the true propensity score: pair matching, ridge matching and Frölich’s version of reweighting. The first two columns
present the mean squared error (MSE) of reweighting and ridge-matching relative to that of pair-matching, using
the true propensity score, as they were published.27 The first six rows present results for the first density design, the
second six rows those for the second design, and so on. Within each block, each row corresponds to a DGP based
on outcome curves 1 to 6. We are able to replicate these results in columns 3 and 4. The differences between these
columns are small and generally consistent with simulation error.

Frölich provided us with a copy of the code that produces his result. Upon inspecting this code carefully, we
found a small mistake regarding ridge matching. Specifically, the denominator of the second term specified in Table
1, above, should go to infinity as the bandwith h goes to infinity. Instead, rh|∆̂i| is set to 0 when h → ∞, where r
is the ridge parameter, h is the bandwidth, and ∆̂i is as defined in Table 1. This causes the ridge estimator to be
different from the sample mean in cases in which h→∞. Column 5 shows our replication of the results for the ridge
matching estimator using a similar code as the one used in Frölich (2004). The results of column 5 are closer to the
published version than those of column 4. For the rest of the paper we use a ridge estimator that lets rh|∆̂i| → ∞
when h → ∞. This should improve somewhat the performance of ridge matching, relative to that documented in
Frölich (2004), but in these DGPs seems to slightly worsen the MSE.

In light of the conclusions of Section II, we then change the variance of the outcome error to σ2 = 0.1. In such
a DGP, columns 6 and 7 show that the performance of reweighting relative to pair matching improves significantly
in small samples as it did in large samples (although ridge-matching is still better than Frölich reweighting). For
designs 3 and 4 Frölich reweighting dominates pair matching in terms of MSE.

The DGP (64)-(63) does not specify an outcome equation for the observations that received treatment. This is
because Frölich (2004) focuses on the estimation of the counterfactual mean under treatment, or E[Yi(0)|Ti = 1].

27In particular, the first column corresponds to the tenth column of Table 2, and the second column corresponds to the
eleventh column of Table 4 of Frölich (2004). We present here the results of ridge matching using an Epanechnicov kernel; the
conclusions do not change when utilizing a Gaussian kernel.
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As we have already argued, we think it is more natural to analyze the TOT directly. Thus, we need to specify
the (potential) outcome equation under treatment: Yi(1) = θ + Yi(0) + εi. As before, θ = 0. Columns 8-11 of
Appendix Table 1 show the relative MSE of Frolich’s reweighting and ridge matching increase when we change the
estimand. The broad conclusion of Frölich (2004) that pair-matching performs better than reweighting still holds.
As we discussed in Section II this conclusion is basically driven by the choice of a DGP that has an outcome error
term with a small enough σ2.
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Figure 1. Variance of Pair Matching and Reweighting

Note: SEB is the semiparametric efficiency bound. Variance refers to the asymptotic
variance. See text for details.
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Figure 2. Variance of Pair Matching and Reweighting

Note: SEB is the semiparametric efficiency bound. Variance refers to the asymptotic
variance. See text for details.
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Figure 3. Variance and Bias of Reweighting,
Ridge Matching, and Pair Matching: Sample Size 100
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Note: Variance and bias were calculated by simulation with sample size 100. See text for
details.
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Design Curve SEB Pair      
Match

Correct 
Reweight

Pair      
Match

Ridge 
Match

Correct 
Reweight

Pair      
Match

Ridge 
Match

Correct 
Reweight

[1] [2] [3] [4] [5] [6] [7] [8] [9]

1 1 1.09 1.73 1.41 1.36 0.91 1.08 9.95 19.78 9.73
2 1.09 1.73 1.31 1.42 1.11 1.10 4.45 1.45 0.62
3 1.09 1.73 1.20 1.35 1.07 1.03 1.45 6.74 2.41
4 1.09 1.73 1.58 1.40 0.95 1.16 18.78 35.54 11.59
5 1.09 1.73 1.48 1.41 0.99 1.12 11.74 32.37 10.29
6 1.09 1.73 1.28 1.40 1.05 1.11 7.74 5.78 0.71

2 1 0.55 0.92 0.68 0.93 0.63 0.65 2.48 9.33 2.29
2 0.55 0.92 0.75 0.98 0.73 0.76 1.34 6.61 4.59
3 0.55 0.92 0.63 0.93 0.68 0.65 2.69 0.82 2.45
4 0.55 0.92 0.66 0.94 0.67 0.68 4.37 13.86 1.31
5 0.55 0.92 0.65 0.93 0.68 0.65 1.95 11.26 0.19
6 0.55 0.92 0.72 0.94 0.68 0.75 3.42 3.71 3.01

3 1 0.44 0.76 0.55 0.78 0.50 0.48 1.40 4.90 1.38
2 0.44 0.76 0.62 0.78 0.58 0.57 0.14 3.60 3.59
3 0.44 0.76 0.51 0.78 0.53 0.50 1.25 1.40 2.50
4 0.44 0.76 0.50 0.77 0.51 0.50 2.47 4.27 0.24
5 0.44 0.76 0.50 0.75 0.51 0.49 2.50 4.54 0.65
6 0.44 0.76 0.60 0.79 0.57 0.60 0.39 1.98 5.44

4 1 0.68 1.27 0.82 1.36 0.79 0.76 3.94 7.61 0.37
2 0.68 1.27 0.95 1.37 0.87 0.91 1.22 3.24 2.85
3 0.68 1.27 0.78 1.31 0.79 0.77 0.06 1.74 2.12
4 0.68 1.27 0.79 1.31 0.80 0.73 2.70 3.69 1.99
5 0.68 1.27 0.78 1.33 0.81 0.75 1.30 3.04 0.81
6 0.68 1.27 0.92 1.36 0.82 0.92 1.05 3.26 3.70

5 1 1.30 2.01 1.89 1.62 1.29 1.23 14.44 34.09 17.53
2 1.30 2.01 1.72 1.85 1.62 1.41 10.74 14.75 3.80
3 1.30 2.01 1.51 1.60 1.17 1.17 2.65 21.57 9.72
4 1.30 2.01 1.90 1.56 1.03 1.16 21.85 33.43 21.45
5 1.30 2.01 1.79 1.61 1.06 1.20 17.45 28.64 16.94
6 1.30 2.01 1.61 1.63 1.37 1.37 5.10 6.62 4.28

Note: Results based on 10,000 reps. SEB is the semiparametric efficiency bound. Formulas for the estimators and the limiting
variances are given in the text. The limiting variance for ridge matching is unknown in the literature. Ridge uses an Epanechnicov
Kernel and the bandwidth was selected by leave 1 out CV. Correct reweighting is an estimator whose weights are normalize to one
and based on an estimated propensity score. For design 1 we used the correct model for the propensity score. For designs 2-5 we
approximated it by using an overfit logit model (with square terms). 

Table 4: Variance and Bias
DGP assumes Var[e]= 0.1 and n=100

1000 x|Bias|n VarianceLimiting Variance
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Design Curve Frolich Ridge Frolich Ridge Ridge Frolich Ridge Frolich Ridge Frolich Ridge
Reweight Match* Reweight Match Match* Reweight Match Reweight Match Reweight Match

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
1 1 2555 76.2 2603 80.8 76.8 439 62.9 4162 80.5 539 67.9

2 922 70.1 872 74.7 73.9 248 73.8 1854 71.4 344 78.2
3 2528 78.4 2516 78.6 78.8 381 72.9 4283 78.9 492 77.4
4 958 84.6 934 94.0 83.6 209 71.4 2070 98.7 349 76.7
5 1033 87.9 1017 96.8 88.1 221 69.0 2239 102.5 366 74.6
6 1111 81.8 1144 82.7 81.6 261 69.4 2403 80.7 350 75.1

2 1 812 77.2 784 76.7 76.2 171 60.1 2714 72.3 327 67.3
2 435 83.5 433 84.1 83.1 130 68.6 1849 85.7 261 76.0
3 885 73.2 883 73.8 71.7 162 67.9 2946 74.4 337 74.9
4 449 72.9 463 75.3 73.5 106 66.1 2679 79.3 342 75.7
5 475 77.2 475 78.9 75.8 108 67.3 2826 87.0 341 75.7
6 452 79.8 448 79.9 79.5 128 64.3 1878 78.8 253 73.0

3 1 326 77.7 334 76.5 76.3 100 56.4 2395 67.8 288 65.2
2 224 82.5 227 82.2 81.4 86 63.3 1774 79.3 236 73.8
3 371 70.2 354 68.5 69.4 91 58.0 2614 69.0 318 69.8
4 157 70.3 155 71.7 70.6 59 58.8 3039 74.6 365 70.6
5 163 74.1 162 75.6 75.1 61 60.4 3267 82.4 393 72.2
6 210 76.5 198 77.2 77.1 79 59.1 1828 73.5 244 69.4

4 1 198 72.9 201 72.2 72.0 63 38.2 2927 58.4 337 57.6
2 106 76.6 109 76.4 75.9 52 44.0 2309 66.6 279 64.4
3 226 62.4 227 62.8 63.5 62 36.2 3236 61.6 375 60.0
4 126 65.7 125 63.9 65.1 40 37.4 3467 63.0 400 61.1
5 131 62.3 127 64.0 64.1 42 37.7 3450 67.3 413 62.5
6 107 75.8 105 75.3 76.0 46 42.2 2129 65.8 257 61.7

5 1 2243 91.5 2035 101.9 94.0 381 82.3 3167 104.5 475 83.8
2 667 75.1 678 81.5 78.4 247 81.7 1088 84.1 312 84.4
3 2156 97.9 2277 97.8 95.1 325 77.5 3572 101.2 471 79.7
4 771 93.6 738 102.2 93.3 182 68.3 2149 104.6 391 70.9
5 755 89.8 815 100.1 90.4 197 66.8 2088 102.9 398 69.6
6 920 94.1 881 85.3 94.4 240 78.4 1630 87.3 342 81.6

Note: Results based on 10,000 reps. Ridge uses an Epanechnicov Kernel and the bandwidth was selected by leave 1 out CV. Correct reweighting is an estimator
whose weights are not normalized to one. Formulas for the estimators are given in the text. All estimators are based on the true propensity score. * As mentioned
in Appendix II we found a mistake in the cross validation procedure used in Frolich (2004). A * means that the CV was implemented as in the published version.
No * means that the CV was properly implemented.

N=100. Estimation using known p(X). 
Table A.1: MSE Relative to Pair-Matching

Estimand=E[Y0|T=1] 
Var[e]=0.1         
(Extension)

Estimand=TOT 
Var[e]=0.01  
(Extension)

Estimand=TOT 
Var[e]=0.1         
(Extension)

Estimand=E[Y0|T=1] 
Var[e]=0.01          
(Published)

Estimand=E[Y0|T=1] Var[e]=0.01 
(Replication)
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