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1 Introduction

Migration decisions are important economic decisions. Migration allows individual agents

to evade adverse shocks to their income and it is an important way of macroeconomic

adjustment (Blanchard and Katz, 1992, and Decressin and Fatas, 1995). Many factors

influence the decision to migrate and there is a vast empirical literature that links migra-

tion decisions to economic incentives (see Greenwood, 1975, 1985, and 1997 and Cushing

and Poot, 2004 for survey articles). At the same time, most of this literature has re-

mained relatively silent about the actual costs of migration to individual agents. Albeit,

migration costs are a structural parameter of high interest, both at an individual level as

well as from an aggregate perspective (Sjaastad, 1962), for example since more generous

unemployment insurance schemes will receive more political support in countries where

migration costs are high, see Hassler et al. (2005).

While the literature has in general remained silent about migration costs, a small

number of recent studies does report estimates, despite their estimation being technically

demanding. For example, Davies, Greenwood, and Li (2001) report a cost estimate of

about US$ 180,000 for each migration between US states, and Kennan and Walker (2003,

2006) conclude that, for a typical move, migration costs are between US$ 176,000 and

US$ 270,000.1 This magnitude of migration costs corresponds to roughly 4-6 average

annual household incomes. Such an estimate appears very high.

Kennan and Walker (2003) suggest that some kind of omitted variable problem may

drive the high cost estimate. In particular, they suggest that an unobservable wage

component is correlated to the decision to stay. We argue that the endogeneity of the

location choice will always lead to such correlation between unobserved idiosyncratic

wage components and location. This endogeneity problem, put in simple words, refers

to the fact that agents are in a certain region most likely because they moved there in

the past for the reason that they are better off living there. If all observable things are

equal, it must be some unobserved component of their preferences that is in favor of the

place in which they actually live.

These considerations motivate us to develop a microeconomic structural model of

migration which can be aggregated and used to describe the simultaneous evolution

of unobservable migration incentives and migration rates at an aggregate level. Our

modelling strategy follows Caballero and Engel’s (1999) paper on investment, which

highlights the interaction of lumpy investment and the evolution of investment incentives.

1These estimates do not yet include mark-ups for distance and other factors that influence the psychic
costs of migration. Return migration is usually associated with lower, but still substantial costs.
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For migration, the evolution of incentives is driven by income shocks and past mi-

gration. Say a household living in one region is earning a low current income, but

faces a substantially higher potential income in an other region. This household is very

likely to migrate. As a result, the number of households facing large income differen-

tials strongly decreases after migration decisions have been taken, while the number of

households facing a smaller income differential changes less. Unless income differentials

are fully observable, the resulting distribution of unobserved migration incentives will

be endogenous. In particular, it will take a non-standard, unknown form, it will not

be symmetric, and it will change over time. Only making explicit this simultaneous

evolution in a simulation approach allows us to avoid the problem of unobservability of

incentives.

While we can use our structural model to do so, i.e. to express and to track the

dynamic evolution of migration incentives at the macroeconomic level, we are constrained

to a bi-regional setup for numerical feasibility. This constraint arises because simulating

the dynamic evolution of migration incentives is numerically intense. For the same

reason, we have to focus exclusively on the migration-income relation, excluding other

factors that may be important to migration decisions and shape the heterogeneity of

the population in terms of their migration behavior.2 Nonetheless, our focus allows

us to analyze the importance of the aforementioned dynamic self-selection problem in

modelling and analyzing migration behavior. Migration costs are found to be about US$

18,500, less than one-half of an average annual household income. This cost estimate is

substantially lower than the cost estimates reported by previous studies. Moreover, we

show that applying the techniques used in other papers, we would obtain higher cost

estimates also from data generated by a simulation of our structural model.

Not only that we estimate substantially lower migration costs when taking into ac-

count dynamic self-selection, but we also document a migration dynamics at the micro

level that differs from a model which does not keep track of the incentive distribution.

For example, agents who have recently migrated are more likely to migrate again over

the next years in our model, a fact which has frequently been documented by studies

using micro data (e.g. Kennan and Walker, 2006). In our model, this effect is only due

to the incentive dynamics, but not because there is any fundamental "mover-stayer" het-

erogeneity. Taking into account dynamic self-selection, our approach hence complements

the structural approaches of Davies, Greenwood, and Li (2001) and Kennan and Walker

(2006), who neglect self-selection but account for a richer set of factors that influence

2This research strategy links our paper to Coen-Pirani’s (2006) island-economy model of regional
migration.
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migration decisions.3

Overall, we conclude that keeping track of the distribution of migration incentives

over time has an important influence on the estimation of migration costs. This finding

extends the role of self-selection problems to a dynamic setup, which so far have been

highlighted in static frameworks (see for example Borjas, 1987, Borjas, Bronars, and

Trejo, 1992, Tunali, 2000, and Hunt and Mueller, 2004).

The remainder of this paper is organized as follows: Section 2 gives a brief discussion

of the difficulties of estimating structural migration models when the population dynam-

ically self-selects into its preferred region. The section develops the main motive of our

paper and illustrates why migration costs are hard to estimate by standard (discrete

choice) estimation techniques. Motivated by these considerations, Section 3 presents a

dynamic microeconomic model of the migration decision which assumes that an agent

maximizes future expected well-being by location choice. In Section 4, we show how to

aggregate this model. We derive the contemporaneous law of motion of the distribution

of migration incentives and aggregate migration rates. Section 5 confronts the model

with aggregate data on migration between US states and presents the estimates of the

structural parameters of the model, in particular the estimates of migration costs. Sec-

tion 6 investigates in more detail the role of self-selection for our estimation, both for the

biases in static estimation and for the micro structure of migration. Section 7 concludes

and an appendix provides detailed proofs as well as details on the data employed.

2 What makes migration costs so hard to measure?

Most micro studies and now also more macro studies on migration link the individual

migration decision to a probabilistic model in which agent i migrates at time t if the

gain in utility terms obtained by migration,³
umoveit − ustayit

´
= γxit + νit, (1)

is large enough and exceeds some threshold value c̄, see for example Davies, Greenwood,

and Li (2001), Hunt and Mueller (2004), or Kennan and Walker (2006). This threshold

value c̄ can be interpreted as migration costs in utility terms. The vector of covariates xit
is composed of information that describes economic incentives to migrate, i.e. the gains

from migration. The vector of parameters γ measures the sensitivity of the migration

3Kennan and Walker’s (2006) as well as our model are based on the real-options approach to migration
suggested by Burda (1993) and Burda et al. (1998). However, the latter two papers only look at migration
as a once and for all decision, so that they preclude return migration. Moreover, they do not study the
evolution of migration incentives, to which past migration decisions feed back.
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decision to these economic incentives. The stochastic component νit reflects differences

across agents, omitted migration incentives, and/or some variability of migration costs.

Typically, we are interested in the structural parameters γ and c̄ and hence would es-

timate some version of (1) to infer these parameters. Unfortunately, such direct approach

is very difficult as potential migration gains are unobservable to the econometrician.

To illustrate this difficulty, suppose that an agent only cares about the difference in

income between home and destination region, regions A and B in the following. In such

setting, xit would be simply a measure of relative income potentials for an agent which

she can realize by location choice. A rational agent then moves to the region where she

earns the most, provided that her migration costs are covered by the discounted present

value of the differences in future incomes.

However, the econometrician can only observe the income that an agent realizes

in the region in which she is currently living. Therefore, the other, the unobserved,

potential income has to be proxied. Typically, it is proxied by an income a similar agent

realizes in the other region. One example for this approach is the paper by Hunt and

Mueller (2004), which applies Mincer-type wage regressions to obtain the unobservable

potential income. A similar example can be found in Burda et al. (1998) or Kennan

and Walker (2006). At a macro level, this approach often means replacing agent-specific

income differences by average income differences across regions, see for example Davies,

Greenwood, and Li (2001).

If we proxy the unobservable income difference xit for individual i in equation (1) by

the average income difference x̄.t between source and destination region, then we obtain³
umoveit − ustayit

´
= γx̄.t + γ (xit − x̄.t) + νit| {z }

composed error term

. (2)

The composed error term γ (xit − x̄.t)+νit now also includes the idiosyncratic component

of income differences ηit := (xit − x̄.t). In a microeconomic interpretation of (2), x̄.t is

the income component that is explained by all observable characteristics of the agent in

a Mincer-type wage regression and ηit is the unexplained residual. Our argument applies

to this microeconomic interpretation too.

Since we do not want to base our argument on a classical measurement error or omit-

ted variable problem, assume that the idiosyncratic component to the income difference

ηit is orthogonal to the average income difference x̄.t. For the ease of exposition, sup-

pose in addition that the agent really just cares about income, so that the true stochastic

component is actually identical to zero, νit ≡ 0.
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Under these assumptions, we can rewrite (2) as³
umoveit − ustayit

´
= γx̄.t + γηit. (3)

In this equation, the regression residual only captures the distribution of idiosyncratic

potential income differences around the mean.

While the migration decision is deterministic to the individual in this setting, it is

stochastic to the econometrician due to his lack of knowledge of ηit. If the econometrician

were to know the distribution of the unobserved component ηit, he would nonetheless

be able to estimate γ with a suitable probabilistic discrete choice model. However, it is

problematic to assume one of the standard distributions for ηit, e.g. a probit distribution.

Suppose agents are heterogeneous with respect to their potential incomes, so that the

idiosyncratic component ηit has a non-degenerated distribution. In particular, assume

that ηit is initially normally distributed as displayed in Figure 1 (a), so that in the initial

situation a probit model would be appropriate. The figure displays the distribution of

migration incentives, i.e. potential incomes, xit = x̄.t + ηit. Low values of this sum

imply that income in region A is favorable, high values of this sum imply better income

prospects in region B. Correspondingly, all agents with x̄.t + ηit < 0 decide to live in

region A and they decide to live in region B otherwise if we assume zero migration costs

for the moment. In other words, agents self-select into the region that is favorable for

them.4

As a result of this self-selection, the distribution of income differences changes for

the next period. No agent who lives in region A prefers to live in region B. This means

that for those agents who live in region A the distribution of income differences is as

displayed in Figure 1 (b). Effectively, the right-hand part of the distribution in Figure 1

(a) has been cut because all agents with higher income in region B have actually chosen

B as the region to live in.

It can be seen that migration incentives x̄.t + ηit are no longer normally distributed

conditional on a household living in region A. Since the estimation residual γηit in our

setup results from a linear transformation of the migration incentive x̄.t + ηit, also the

estimation residual γηit is no longer normally distributed. Accordingly, the distributional

assumptions to estimate (1) by standard maximum likelihood techniques are no longer

fulfilled.

Even adding a normally distributed idiosyncratic income shock does not reestablish a

4This self-selection is driven directly by the heterogeneity of agents with respect to potential incomes,
but it does not reflect immanent and fixed differences of the regions as in Borjas (1987) and Borjas,
Bronars, and Trejo (1992).
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Figure 1: Distribution of potential incomes in region B relative to A
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normal distribution of income differences if income differences are sufficiently persistent.

Figure 1 (c) displays how mild idiosyncratic shocks alter the distribution displayed in

Figure 1 (b) . Again, the distribution is different from the standard distributions assumed

in the estimation of discrete-choice models. The colored-in region indicates the set of

agents that will migrate from A to B after the idiosyncratic shocks.

Besides idiosyncratic shocks, also aggregate shocks to the average income difference

x̄.t influence the migration decisions of agents. Figure 1 (d) shows the distribution of

migration incentives as in Figure 1 (c), but after an adverse shock to region A. By

comparing Figures 1 (c) and 1 (d), one can see that the shape of the distribution after

migration (the not colored-in region) differs between both figures. In consequence, the

distribution of migration incentives will not be strictly stationary, it will evolve over

time, and it will depend on the history of aggregate shocks.

Now, how does this correspond to an unreasonable estimate of migration costs?

If the parameter c̄ in (1) is normalized to 1, the parameter γ has a straightforward

interpretation. It measures the sensitivity of migration decisions to income incentives

and its inverse 1
γ is exactly the income differential at which an average agent is just

indifferent between moving and not moving. Or to put it differently, c̄
γ is the money

measure of average migration costs.

In turn, this implies that any bias in the estimate of c̄ or γ directly translates into a

bias in estimated migration costs c̄
γ . With the distribution of migration incentives mis-

specified, c̄ and/or γ will be estimated with a bias most probably. The mis-specification

of the distribution of migration incentives has two aspects. One is that the distribution

will always be non-standard, i.e. neither normal nor logistic. The second aspect is that

the distribution also changes over time as a result of aggregate shocks to income and

the triggered migration decisions. Accordingly, one needs to keep track of the evolution

of the incentive distribution and standard techniques to deal with self-selection cannot

be applied in a straightforward way. Therefore, we develop a model based on dynamic

optimal migration decisions in the presence of persistent shocks to income. This model

can then be aggregated and used to simulate the evolution of migration and its incentives

over time.

3 A simple stochastic model of migration decisions

We consider an economy with two regions, A and B. This economy is assumed to be

inhabited by a continuum of infinitely lived agents of measure 1. We model the economy

in discrete time and at each point in time an agent has to decide in which region to

live and work. First, we consider the decision problem of an individual agent i living in
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region j = A,B. Thereafter we discuss aggregation and the dynamics of the distribution

of migration incentives.

Living in region j at time t gives the agent utility w̃ijt. Although w̃ijt could be

understood as a catch-all variable for migration incentives, which can be interpreted as

wage income, employment prospects, amenities, utility from social networks and so on,

we restrict ourselves to an interpretation of w̃ijt as income.

Migration incentives (incomes) are stochastic in our model. We assume them to be

composed of a permanent (autocorrelated) component w̃ijt and a transitory (i.i.d.) com-

ponent ϕijt.
5 These components vary over time and across individuals. For simplicity,

we assume that only the permanent component is observed before the migration decision.

Consequently, in describing migration behavior, we can focus exclusively on the effect of

permanent variations in potential incomes. Changes in the transitory component realize

after migration and hence do not affect migration choice. However, when confronting our

model to data, including data on aggregate income, we need to take transitory income

fluctuations into account. This means that the microeconomic model does not need to

include the transitory income component, while we have to take it into account in the

aggregation of realized incomes.

Moving from one region to the other is not costless to an agent. When an agent

moves, she is subject to a disutility c that enters additively in her utility function.

Therefore, the instantaneous utility function uit(j, k) is given by

uit (j, k) = w̃ijt − Ij 6=kc (4)

for an agent that has lived in region k in the preceding period and now lives in region j.

Here, I denotes an indicator function, which equals 1 if the agent has moved from region
k to j and 0 if the agent already lived in region j before.

The agent discounts future utility by factor β < 1 and maximizes the discounted sum

of expected future utility by location choice. The agent knows the distribution of the

permanent component of income w̃ijt and forms rational expectations. With w̃ijt being

stochastic, the potential migrant waits for good income opportunities. In her migration

decision the agent thus takes into account the option value to wait and learn more about

future incomes.

The distribution of migration incentives, w̃ijt, is assumed to be log-normal. In partic-

ular, we assume that log income, wijt, follows an AR(1) process with normally distributed

5See the evidence on transitory income fluctuations provided by Storesletten, Telmer, and Yaron
(2004) for instance.
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innovations ξijt and autoregressive coefficient ρ :

ln (w̃ijt) =: wijt = μj (1− ρ) + ρwijt−1 + ξijt, j = A,B. (5)

This process holds for the whole continuum of agents and each agent draws her own series

of innovations ξijt for both regions. The expected value of log income in region j is μj .

The innovations ξijt are composed of aggregate as well as idiosyncratic components.

They have mean zero, are serially uncorrelated, but may be correlated across regions

A,B (see Section 4.2.2).6

Income and cost distributions, together with the utility function and the discount

factor define the decision problem for the potential migrant. This is an optimization

problem, which is described by the following Bellman equation:

V (k,wiAt, wiBt) = max
j=A,B

©
exp (wijt)− I{k 6=j}c+ βEtV (j, wiAt+1, wiBt+1)

ª
. (6)

In this equation, Et denotes the expectations operator with respect to information avail-
able at time t.7

The optimal policy is relatively simple. The agent migrates from region k to region j

if and only if the costs of migration are lower than the sum of direct benefits of migration

expwijt − expwikt and the expected value gain

∆V (wiAt, wiBt) := βEt [V (B,wiAt+1, wiBt+1)− V (A,wiAt+1, wiBt+1)] . (7)

This means that the agent migrates if and only if

c ≤ exp (wijt)− exp (wikt) +∆V (wiAt, wiBt) =: c̄ (wA, wB) . (8)

This gives a critical level of costs c̄ (wA, wB) at which an agent living in region A is

indifferent between moving and not moving to region B. A person moves from A to B if

and only if

c ≤ c̄A := c̄ (wA, wB) .

Conversely, a person living in region B moves to region A if and only if

c ≤ c̄B := −c̄ (wA, wB) .

6For technical reasons, we assume boundedness of ξijt, so that ξijt is in fact only approximately
normal.

7Existence and uniqueness of the value function is proved in the appendix.
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Note that c̄ can be positive as well as negative. If c̄ is positive, region B is more attractive.

If it is negative, region A is more attractive and a person living in region A would only

have an incentive to move to region B if migration costs were negative.

4 Aggregate migration and the dynamics of income distributions

4.1 Aggregate migration

Given this trigger rationale for migration, the hazard rate

Λj (wA, wB) :=

(
1 if c ≤ c̄j (wA, wB)

0 otherwise
, j = A,B

defines whether a person in region j moves to the other region if she faces the potential

incomes (wA, wB).

Now, consider the distribution Ft of (potential) incomes (wA, wB) and household

locations. Suppose this joint income and location distribution is the distribution after

the income shocks ξijt have been realized, but before migration decisions have been

taken. Let fjt denote the conditional density of this distribution, conditional on the

household living in region j at time t. Then, the actual fraction Λ̄jt of households living

in j that migrate to the other region evaluates as

Λ̄jt :=

Z
Λj (wA, wB) · fjt (wA, wB) dwAdwB. (9)

The aggregate migration hazard can be thought of as a weighted mean of all microeco-

nomic migration hazards Λj (wA, wB), weighted by the density of income pairs (wA, wB)

from distribution Ft.

4.2 Dynamics of income distributions

The distribution Ft itself (and hence fjt) evolves over time and is a result of direct

shocks to income just as it is a result of past migration. We need to characterize the law

of motion for Ft to close our model and to obtain the sequence of aggregate migration

rates.

4.2.1 The effect of migration on income distributions

In order to follow the evolution of Ft we need to characterize both the evolution of

the fraction Pjt of households living in each region and the conditional distribution of

incomes fjt (conditional on a household actually living in a specific region j).

The proportion of households living in region j at time t+ 1 is a result of migration

11



decisions at time t. The law of motion for Pjt is thus given by

Pjt+1 =
¡
1− Λ̄jt

¢
Pjt + Λ̄−jtP−jt. (10)

The first part of the sum reflects the fraction of households that remain in region j,

where
¡
1− Λ̄jt

¢
is the probability to stay in region j. The second part is the fraction of

households that migrate from region −j to region j.

Since the microeconomic migration hazard depends on (wA, wB) , different potential

incomes result in different propensities to migrate. In consequence, migration changes

not only the fraction Pjt of households living in region j at time t, but also the conditional

distribution of income, fjt. For example, households living in region A, earning a low

current income, wA, but facing a substantially higher potential income in B, wB, will

probably migrate. As a result, the number of those households will drop to zero in region

A after migration decisions have been taken, while the number of households facing a

smaller income differential might not change, recall Figure 1.

The distribution of migration incentives is thus a function of past migration decisions,

and we can express the new density of households with income (wA, wB) in region j after

migration, f̂jt, by

f̂jt (wA, wB) = [1− Λjt (wA, wB)]
fjt(wA,wB)Pjt

Pjt+1
+ Λ−jt (wA, wB)

f−jt(wA,wB)P−jt
Pjt+1

. (11)

The probability [1− Λjt (wA, wB)] is again the probability to stay in region j. The

term fjt (wA, wB)Pjt weights this probability and is the unconditional income density

for region j before migration has taken place. To obtain the conditional density after

migration, the unconditional income density, fjt (wA, wB)Pjt, is divided by Pjt+1, which

is the fraction (or probability) of households living in region j after migration (i.e. in

time t+ 1). Analogously, the second part of the sum is constructed.

4.2.2 The effect of income shocks on the income distribution

Besides migration, also shocks to income change the distribution of income pairs, Ft.

The shocks to income can be differentiated along two dimensions: One dimension is

aggregate vs. idiosyncratic, the other one is region-specific vs. economy-wide. For a

single agent we can decompose the total shock ξijt to her potential income in region

j (see equation 5) into an aggregate regional-component θjt and an individual-specific
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regional-component ωijt : 8

wijt=μj (1− ρ) + ρwijt−1 + ξijt

ξijt= θjt + ωijt, j = A,B.

The aggregate shock θjt for region j hits all agents equally and changes their potential

income for region j. Note that this shock does not depend on the actual region the agent

is living in. For example, a positive shock θAt > 0 increases the potential income in

region A for agents that are currently living in this region as well as for agents that are

currently living in region B. They realize this potential income by deciding to actually

live in region A. The importance of economy-wide business cycles relative to the size of

region-specific aggregate fluctuations is reflected by the correlation ψθ between aggregate

shocks θAt and θBt.

Such aggregate shocks are typically only a minor source of income variation for an

agent, though. Agents differ in various personal characteristics that result in different

income profiles over time. Individuals differ in their skills and while the demand may

grow for the skill of one person, demand may deteriorate for another person’s skills.

This heterogeneity is captured by the idiosyncratic shocks (ωiAt, ωiBt) . If ωiAt is pos-

itive, income prospects of the individual agent i increase in region A. The correlation

ψω between ωiAt and ωiBt reflects economy-wide demand shifts for a person’s individual

skills. Since we assume aggregate and idiosyncratic shocks to be independent, the vari-

ance of the total shock to income, ξijt, is the sum of the variances of idiosyncratic and

aggregate shocks: σ2ξ = σ2ω + σ2θ.

Persistency in incomes is captured by the autoregressive parameter ρ in equation (5) .

We abstain from the inclusion of permanently fixed individual differences (fixed effects)

primarily because this makes the model numerically more tractable.9

Together, aggregate and idiosyncratic shocks to income as well as income persistency

determine the transition from f̂jt to fjt+1, details are provided in the appendix. The

latter density now determines migration decisions in time t+ 1, starting the cycle over

8Note that this is equivalent to assuming that both aggregate and idiosyncratic (deviations from
aggregate) potential incomes follow AR-1 processes with the same autocorrelation ρ to which θ and ω
are the respective innovations.

9While the solution of the restricted dynamic programming problem of the agent can be obtained
quickly, the simulation of the distribution of migration incentives is numerically much more involved.
The compuatation time for the estimation amounts to ca. 24h on a Xeon 3GHz machine.
If we were to include fixed effects that reflect different types of agents, the model had to be solved for

each different type of agent in the way it is now solved for the single type of agent. Thus, any modelling
of k heterogeneous types of migrants would mean an time need of k days for the estimation.
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again. As a result it is both past income shocks and past migration decisions that drive

the incentives to migrate. Making this explicit and keeping track of the distributional

dynamics of migration incentives is the key element of our model, as it distinguishes our

approach from other empirical models of migration.

4.3 Aggregate Income

To link our model to aggregate data, we finally need to describe the evolution of aggregate

regional realized incomes. For region j, the fraction of income which is persistent and

realized after migration reads as the conditional expected value of exp (wijt)Z
exp (wj) f̂jt (wA, wB) dwAdwB.

Besides persistent income also transitory components (orthogonal to the persistent part)

add to the fluctuations of income in observed data, so that we obtain for log aggregate

income w̄jt

w̄jt = ln

µZ
exp (wj) f̂jt (wA, wB) dwAdwB

¶
+ ϕjt.

The transitory income component ϕjt measures fluctuations in income at a high fre-

quency that are irrelevant to the migration decision. More generally, it captures in the

empirical approach the idea that in reality income measures migration incentives im-

perfectly. One reason is that the empirical income concept is noisy as such. Personal

income–the income concept we use–comprises labor income as well as some compo-

nents of capital incomes. Whether each of these elements is too widely or too narrowly

defined as a migration incentive is not clear a priori. The inclusion of ϕjt reflects this

agnostic view.

5 Estimation

5.1 Estimation technique

We rely on an indirect inference procedure in order to find the parameters of our model

that allow us to match closest the observed patterns of migration that are in the data.

In particular, we apply a method of simulated moments (MSM) as has been proposed by

Gourieroux, Monfort, and Renault (1993) to obtain estimates of structural parameters

when the likelihood function of the structural model becomes intractable, as in our

setting. This estimator relies on numerical simulation of the model, details on the

numerical simulation are provided in the appendix.

The idea behind indirect inference is to choose a set of moments that captures the
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characteristics of the data, and then to calibrate and simulate the structural economic

model such that the moments are best replicated by the simulation. Accordingly, we

have to 1) discuss how to use our model of two regions to address migration between

a richer set or regions, 2) decide which parameters of our model shall be estimated

and which are treated as fix, 3) decide on an informative set of moments along which

simulated and real-world data are compared, and 4) decide how to measure the closeness

of the simulated and actual moments.

A simulation of our model yields migration and income data for two regions. Of

course, the actual migrant faces a more complex decision problem than the one simulated

in our model of two regions. Including D.C. as a destination region, an agent has to

decide between 50 possible alternatives states where she can move to. To make this

comparable to our model, the 50 alternatives in the data have to be aggregated to a

single complementary region.10 The average income of the alternative region is proxied

by the population-weighted average income over all alternative 50 states.11 With these

assumptions, we can use our model to simulate a dataset for migration that has the

same size as the Internal Revenue Service (IRS) migration data, which is our empirical

benchmark. This database contains annual area-to-area migration flow data for US

states for the period 1989-2004.12 Accordingly, we simulate our model for 51 pairs of

regions and 81 years, but we drop the first 55 years for each region to minimize the

influence of our initial choice of F0. In order to minimize simulation uncertainty, we

replicate each simulation 5 times and use the averages over the simulations.

Naturally, we cannot estimate all parameters of the model, since this would be nu-

merically infeasible since every dimension added to the parameter search increases the

estimation time exponentially. Our primary interest is to estimate migration costs. Be-

sides migration costs, we restrict ourselves to the estimation of those parameters of

our model which cannot be inferred from raw data alone. One such set of estimated
10Generating artificial bi-regional data means that we assume technically that the best income oppor-

tunity over all alternative regions follows the log-normal distribution assumed in our model. Note that
an approximation of this sort cannot be avoided by assuming an extreme value distribution for incomes.
This would only work if migration incentives were serially uncorrelated.
11 Income data is taken from the REIS database, CPI deflated, and in logs.
12A detailed data description of both IRS and REIS data can found in the data appendix. Alternative

migration data for the US, such as the Census, are less appropriate for our analysis as we focus on the
effect of income dynamics. While the Census reports changes in the place of residence over a period
of 5 years and is only available once every decade, the IRS data are available on a yearly basis. The
Census data suggests an approximate annual migration rate of 2%, which is significantly lower than the
migration rate of 3.9% documented in the IRS data. This difference may stem from the fact that the
Census data cannot take into account return migration over a 5 year period, which can be expected to
be of sizable importance (see the discussion in Coen-Pirani, 2006 or the results of Kennan and Walker,
2006).
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parameters is the correlation of shocks to permanent income across regions, ψω and

ψθ. Another is the correlation of income shocks across individuals, i.e. the fraction of

aggregate shocks, φ. These correlations refer to potential incomes and are therefore in-

herently unobservable. We assume that aggregate and individual correlation coefficients

are equal, i.e. ψω = ψθ, so that we only need to estimate one common parameter, ψ.

Since migration smooths income, the counterparts to φ and ψ in terms of a covariance

structure in realized incomes are substantially influenced by the magnitude of migration

costs. At the same time, we also expect φ and ψ to have a significant influence on the

behavior of aggregate migration itself. Consequently, we can neither estimate them from

raw realized income data, nor fix them to arbitrary values.

The transitory shock is irrelevant to the migration decision, and hence its effect on

realized incomes cannot be smoothed by migration. For this reason, we fix the correlation

of the transitory income shock, ψϕ, to the value of the observed correlation of incomes

in the REIS data, taking fixed effects and a linear time trend into account. However,

the variance of the transitory shock, σ2ϕ, is estimated. The transitory component does

not only capture purely transitory fluctuations in income, but also various forms of

measurement error. Since we find it difficult to guess their quantitative importance, we

abstain from fixing its variance or estimating it outside the model. Our complete set of

estimated parameters is Θ =
¡
migration costs, ψ, φ, σ2ϕ

¢
.

In turn, all other parameters
³
β, ρ, μ, σ2ξ , ψϕ

´
in our model have to be fixed to take

reasonable values. As we work with annual data, we choose the discount factor β = 0.95.

In order to characterize the process for income, we need to specify the autocorrelation

parameter ρ, the mean μ, and the long-run variance of income. We take these parameters

from the recent paper by Storesletten, Telmer, and Yaron (2004). They estimate the

dynamics of idiosyncratic labor market risk for the US based on the Panel Study of

Income Dynamics. Thus the paper conveys information on both income variances and

autocorrelation of log household income. Besides, the paper reports a mean household

income of US$ 45,000. To approximately match this figure, we choose the mean of the log

income to be μA = μB = 10.5. Storesletten, Telmer, and Yaron (2004) find an annual

autocorrelation of incomes of roughly 0.95 and a standard deviation of idiosyncratic

income shocks ranging from 0.09 to 0.14 for business cycle expansions and from 0.16 to

0.25 for business cycle contractions (see Storesletten, Telmer, and Yaron 2004, Table 2).

They report a frequency weighted average of 0.17 for those standard deviations in their

preferred specification (Storesletten, Telmer, and Yaron, 2004, pp. 711). Since we do not

model different variances of idiosyncratic shocks to income along the business cycle, we

use their preferred average value of 0.17 for the estimation. Combining both elements,
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the autocorrelation and the variance of idiosyncratic shocks to income, we calculate the

long-run variance of income to be σ2ω
1−ρ2 = 0.30.

13

A next step is to decide on an informative set of moments, .We select the standard

deviation of migration rates, the standard deviation of average incomes, and the corre-

lation of average incomes across regions as the first three moments to be matched. To

this set of moments we add the estimated parameters from a reduced form regression of

migration rates on the incomes of the destination and the source region. To make the

regression scale-invariant with respect to incomes, we use log-deviations from average

incomes as the income variables, i.e. we estimate

mit = α0 + α1 (wit − w̄i) + α2 (w−it − w̄−i) + uit.

The parameters α1 and α2 reflect income sensitivities of migration. The intercept α0
captures the average of migration rates.

We simulate our model for a given vector of model parameters Θ and calculate the

distance between the moments obtained from this simulation ˆ (Θ) and the sample mo-

ments S . We use the covariance matrix of S obtained by 10000 bootstrap replications

as a weighting matrix so that our distance and goodness-of-fit measure is

L = ( S − ˆ (Θ))0 cov ( S)
−1 ( S − ˆ (Θ)) .

The actual estimation is carried out by minimizing the distance measure L numeri-

cally by using a direct search algorithm.

5.2 Estimation results

Table 1 displays the point estimates of the matched moments calculated from the IRS

and REIS data and the corresponding moments obtained from the simulation of our

model with the estimated parameters. In particular the column "All Moments Matched"

refers to the estimation results from our baseline specification. The last two columns

report robustness checks discussed in the next subsection. Overall our model is able to

replicate the observed moments closely. In fact, the χ2 (2)-distributed overidentification

test reported at the bottom of the table does not reject our model.

13The choice to fix σ2ξ is somewhat problematic, but it arises as a necessary restriction from the
use of macro data. The realized fluctuation of income is a function of migration costs. Still we use
statistics calculated from realized income fluctuations to calibrate a parameter for potential income
fluctuations. Yet, the standard deviation of idiosyncratic potential income can be understood as a
pure scaling parameter and even at zero migration costs, realized income inherits 89% of the standard
deviation of potential income. Consequently, at most we underestimate costs by 15% due to this.
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Table 1: Simulated moments estimation: moments estimates

Moment Actual Data Simulated Moments
Moments

All Moments w/o Average CRRA
Matched Migration Rate (log utility)

Migration Rates

standard deviation 0.0036 0.0038 0.0037 0.0033

Aggregate Regional Income

standard deviation 0.0299 0.0294 0.0298 0.0283

correlation across regions 0.5807 0.5714 0.5762 0.5686

Reduced Form Regression

intercept (∅ migration rate) 0.0393 0.0394 (0.0386)1 0.0383

sensitivity to income
of destination region 0.0603 0.0663 0.0633 0.0494

sensitivity to income
of source region -0.0624 -0.0627 -0.0598 -0.0504

Overidentification test χ2(2) 3.3583 1.6522 56.90
p-value 0.1865 0.19869 0.000

1 Not matched; 2 Only one degree of freedom.
The column ‘Actual Data Moments’ refers to the moments estimated from the combined
REIS/IRS data set, with data on 50 US states and D.C. over the period 1989-2004. The
columns ‘Simulated Moments’ refer to the moments estimated from the simulation of the model
using the parameters given in Table 2. Both actual and simulated data are within-transformed
and linearly de-trended. The simulations generate a panel of 51 region-pairs and a 81-year
history of migration and income data. The first 55 years of simulated data are dropped in order
to minimize the influence of initial values. Each simulation is repeated 5 times and data
moments are compared to the average over the 5 replications of the simulation.
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Table 2: Simulated moments estimation: structural parameter estimates

Parameter All Moments w/o Average CRRA
Matched Migration Rate (log utility)

Migration Costs 18,2851 18,5711 0.47622

(2, 211) (6756) (0.6863)

Correlation of Income Shocks 0.2482 0.2178 0.1286
Across Regions Ψ (0.1947) (0.2446) (0.1852)

Fraction of Income Shock 0.0041 0.0040 0.0035
due to Aggregate Fluctuations φ (0.0011) (0.0034) (0.0011)

Standard Deviation of 0.0266 0.0265 0.0262
Transitory Income Shock σϕ (0.0012) (0.0020) (0.0012)

1Migration cost estimate ĉ in US$ terms. 2 exp (ĉ)− 1 measures the relative income gain
necessary to offset migration costs.
Standard errors in parenthesis. Estimation is carried out using the simulated moments
estimator by Gourieroux, Monfort, and Renault (1993), which chooses structural model
parameters by matching the moments from a simulated panel of regions with data moments as
displayed in Table 1. The simulations generate a panel of 51 region-pairs and a 81-year history
of migration and income data. The first 55 years of simulated data are dropped in order to
minimize the influence of initial values. Each simulation is repeated 5 times and data moments
are compared to the average over the 5 replications of the simulation.

Table 2 presents the estimates of the model parameters. The estimated migration

costs are US$ 18,285. This is a substantially smaller number than the estimates reported

in previous contributions such as Davies, Greenwood, and Li (2001) or Kennan and

Walker (2006).

The estimated correlation of income shocks across regions is 24.82%. This is signif-

icantly smaller than the observed correlation of realized incomes (58.07%, see Table 1).

The realized incomes co-move more strongly than the shocks to income because mi-

gration ties together more closely the average incomes in both regions than they were

tied together without migration. This drives a wedge between the correlation of income

shocks and the correlation of average realized incomes, the latter being larger than the
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former.

The estimated fraction of income shocks that is aggregate amounts to 0.41%. To

put this number into perspective, we calculate the long-run variance of per capita state

income, accounting for a linear time trend and fixed effects, and set this number relative

to the variance of household incomes as reported by Storesletten et al. (2004). While

this benchmark ratio is with 0.6% somewhat larger, it also points towards aggregate

income shocks being very small compared to idiosyncratic ones.

There is a significant transitory income component (measurement error) in the ag-

gregate income fluctuations, which has an estimated standard deviation of 0.0266. This

means that transitory fluctuations in aggregate income add a variance term that has

about 36.5% of the long-run variance of the sum of potential incomes and measurement

error. However, migration smooths realized income so that transitory shocks make up

82% of the aggregate variance in realized incomes (again the sum of persistent and tran-

sitory fluctuations). As outlined before, the transitory income component of our model

relates to two sources: to truly transitory fluctuations in incomes and to the fact that

income does not measure migration incentives perfectly.

5.3 Robustness checks

One might argue that our relatively low migration-cost estimate is driven by the fact

that we attribute all migration to be driven by the income incentive. Correspondingly,

the average migration rate our model should match had to be lower. The downside of

such an argument is that it would be hard to tell which was the right migration rate to

match. Therefore, taking an agnostic view on this point, we provide a robustness check

of our estimation results, excluding the average migration rate from the set of moments

our model is calibrated to. The estimation results are reported in the corresponding

columns of Tables 1 and 2. As one can see, the point estimate for migration costs

changes only slightly. Since we drop one moment condition, the standard errors of the

estimates increase.

As an additional robustness check, we replace the assumption of a risk-neutral agent

and assume constant relative risk aversion instead. Instead of linear utility from income,

we now assume logarithmic utility. While one can interpret the risk-neutrality assump-

tion as a short cut for modelling an agent who has access to perfect capital markets,

the assumption of logarithmic utility from income can be thought of as a model of re-

stricted capital market access. The respective last column of Tables 1 and 2 report the

corresponding estimation results. The estimated cost parameter c is no longer readily

interpretable as a US$ value, instead it reflects the relative income gain necessary to
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offset the costs of migration. This means that the money measure of migration costs at

average income is obtained by multiplying exp (c)−1 with average income. Our estimate
of c = 0.4762 implies an estimated migration cost of US$ 32,738.

6 Behind the Scenes & Further Aspects

A simulation based estimation technique like a method of simulated moments is, by

construction, somewhat of a black box. Therefore, we try to shed some light on our

estimation results by running counterfactual simulations, by comparing the estimation

to static estimation techniques, and by investigating the properties of the individual

(micro) migration data our model generates.

6.1 Zero migration costs

We start with a simulation of the model with migration costs set to zero. In a situation in

which unobservable migration incentives are serially uncorrelated, i.e. drawn completely

anew every period, migration rates would be 50% on average in the absence of migration

costs. In such situation of zero costs and i.i.d. incentives, every period half of the

population in one region is better off living in the other one. By contrast, this is no

longer true if there is serial correlation of incentives. Agents self-select into the region

where they are better off, and only those agents that have been on the margin, on the

verge of moving, in the previous period are likely to migrate in the current period. To

illustrate this point we simulate our model for the counterfactual case of zero migration

costs, setting all other parameters to their estimated values. In Table 3 we report some

summary statistics for this experiment.

The most important result of this simulation experiment concerns the average mi-

gration rate. Only 10.2% of the population migrates each year even if migration costs

are zero. This shows why a dynamic view on migration incentives leads to much lower

estimates of migration costs.

Besides we see that in a world with costless migration, realized incomes are more

strongly correlated, they vary less and are significantly higher (+23.7%) than without

any migration. Compared to the simulation results under the estimated migration costs

(log average income: 10.876, i.e. +22.6%), the increase is only mild, however. Only

moves that lead to small income gains are added by setting migration costs to zero.

6.2 Cost estimates from static models

The evidence from the zero cost specification suggests that it is indeed the dynamic

nature of the problem, with agents sorting themselves into their preferred region, that
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Table 3: Simulation results: Zero Migration Costs

Moment Data Simulated Moment Data Simulated
Moment Moment Moment Moment

Migration rates Reduced form regression3

standard deviation 0.0036 0.0074 intercept
(∅ migration rate) 0.0393 0.1017

Income
sensitivity of migration

log average income1 10.654 10.887 to income of:
destination region 0.0603 0.0577

standard deviation 0.0299 0.0294
source region -0.0624 -0.0542

correlation across 0.5808 0.6390
regions2

1 Cross-sectional average income of a region; 2 Partial correlation controlling for a linear time
trend and fixed effect; 3 Coefficients of a reduced form regression of migration rates on incomes
in both regions; 4 Value used for simulation

¡
μ+

σξ
2

¢
. Original data has been rescaled to have

this mean value after de-trending.
The zero cost specification assumes one US$ of migration costs for numerical feasibility. We
simulate data on 51 region-pairs and a 81 year history of migration and income data. The first
55 years of simulated data are dropped in order to minimize the influence of initial values. The
simulation is repeated 5 times. The table reports averages over the 5 repetitions.
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changes the estimation of migration costs substantially. To provide further evidence, we

run three alternative estimation experiments.

• First, we re-estimate our model, setting the autocorrelation of income to zero,
keeping fixed the long term variation of income. This experiment tells us which

role it plays in our model and estimation to keep track of the distribution of

migration incentives.

• Second, we apply a static random utility model to data generated from a simulation
of our model using the previously estimated parameters. In this setup, we know

the exact size of migration costs by construction. Hence, we can obtain an idea

about the bias introduced by static modelling.

• Third, we estimate an approximate version of our model, where the dynamic self-
selection that shapes incentive distributions is ignored. In this experiment, we

replace the conditional density in (9) by its unconditional counterpart. If self-

selection played no role, this replacement was innocent. The former place of

residence was of no informational content for unobservable migration incentives

and conditional and unconditional distributions coincided. Hence we should ob-

tain similar estimation results as in our baseline estimation specification, if self

selection was of no concern.

As we will see, all three versions that ignore the dynamic setup will lead to higher

estimated migration costs.

6.2.1 Estimation with zero autocorrelation

As first experiment is to estimate the model from real data, but setting the autocorrela-

tion of income to zero. Effectively this makes our model a static model, as the expected

value in the Bellman equation (6) becomes independent of the current state of migration

incentives. Table 4 reports the estimation results from this experiment. Migration cost

estimates are with US$ 57,713 substantially higher in this setting than in the setting with

autocorrelated income. Moreover, the model is no longer able to match the observed

data moments, so that the model specification test now rejects our model. Compared to

the estimates reported in the literature, estimated migration costs are still on the low

side. However, two aspects need to be taken into account: First, with assumed zero au-

tocorrelation of gains from migration, the net present value of these gains is very limited.

In fact, the (naive) net-present value gain from a once and for all location decision is
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Table 4: Simulated moments estimation: Estimation results for zero autocorrelation

Parameter Risk-Neutrality, Risk-Neutrality,
No Autocorrelation Autocorr. = 0.95

Migration Costs 576251 18,2851

(3601) (2, 211)

Correlation of Income Shocks 0.1494 0.2482
Across Regions Ψ (0.1349) (0.1947)

Fraction of Income Shock 0.0001 0.0041
due to Aggregate Fluctuations φ (0.0007) (0.0011)

Standard Deviation of 0.0283 0.0266
Transitory Income Shock σϕ (0.0017) (0.0012)

p-value, χ2 (2) overident. test 0.0000 0.1865

1Migration cost estimate ĉ in US$ terms.
Standard errors in parenthesis. Estimation is carried out using the simulated moments
estimator by Gourieroux, Monfort, and Renault (1993), which chooses structural model
parameters by matching the moments from a simulated panel of regions. See Table 1 for
further details. The simulations generate a panel of 51 region-pairs and a 81-year history of
migration and income data. The first 55 years of simulated data are dropped in order to
minimize the influence of initial values. Each simulation is repeated 5 times and data moments
are compared to the average over the 5 replications of the simulation.

about 10 times smaller with no autocorrelation than in our baseline specification. Sec-

ond, we estimate substantial measurement error in the no-autocorrelation specification,

which dampens the increase in estimated migration costs. Under zero autocorrelation,

the estimated measurement error is with a standard deviation of 0.0283 substantially

larger, making up 96% of the sum of the long-run variances of potential income and

measurement error..

6.2.2 Random static utility model

To corroborate our conclusion in an alternative way, we simulate our model to generate

a data set that comprises 51 pairs of regions and 16 years of data. The parameters
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of the model are fixed to their estimated values reported in the column "All Moments

Matched" in Table 2. Then we estimate a static random utility model of migration from

this data.

In particular, we apply a conditional-probit approach similar to Davies, Greenwood,

and Li’s (2001) conditional logit model to describe the migration decision. Simplifying

Davies, Greenwood, and Li’s (2001) model and adapting it to our bi-regional framework

with normally distributed errors, the likelihood of the conditional probit model becomes

lnL =
X
t

X
i=1,2

Pit

"
Λ̄it ln [Φ (γ (exp w̄it − exp w̄−it)− c)]

+
¡
1− Λ̄it

¢
ln [1−Φ (γ (exp w̄it − exp w̄−it)− c)]

#
, (12)

where Φ is the cumulative distribution function of a normal distribution.

While Davies, Greenwood, and Li (2001) include a set of other variables to describe

the utility gains from location choice, our simulated model just allows for log income

as an explanatory variable. This means that the form of the likelihood function in (12)

assumes that utility is composed of an income component (with sensitivity γ > 0) and a

disutility from migration c > 0. The estimated money measure of this disutility is ĉ
γ̂ .
14

Since our argument is not based on the classical measurement error that we addition-

ally took into account in our estimation, i.e. migration incentives being only imperfectly

measured by income, we run two versions of the static random utility experiment. In

the first version, we set all parameters to their estimated values except for the variance

of the measurement error, which is set to zero instead. In the second version, we also

include the measurement error into the estimation. This allows us to decompose the

total bias into two sources, classical measurement error and dynamic self-selection.

Throughout, the migration costs taken from our estimation are US$ 18,285. For the

version without measurement error the conditional-logit estimation suggests a cost of

US$ 40,576, a number that is substantially higher than the costs used in the simulation.

In comparison, ’true’ and estimated costs correspond to 0.3 and 0.77 average annual

incomes, respectively. This comparative exercise shows that the estimation of structural

parameters is likely to be subject to a bias if the unobserved dynamics of the distribution

of incentives is not taken into account. Adding measurement errors to the simulated

income data drives the cost estimate up to US$ 99,457. These numbers suggest that

while the bias from self-selection is not exactly as important as the bias from classical

measurement error, still it is substantial.

14Since our model is composed of two regions only, we cannot estimate γ and c from a cross-section
as Davies, Greenwood, and Li (2001) do, but have to pool the simulated data instead.
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Table 5: Simulation results: comparison to cost estimate based on a static random utility
model

Simulation
without with

classical measurement error

Migration Cost (from estimation, used for simulation) 18,285 18,285

Average Annual Income 53,060 53,041

Migration Cost Estimate
Based on a Static Random Utility Model
- in terms of annual incomes 76.5% 187.4%
- in US $ 40,576 99,457

Figure 2 displays the cost estimates from the static random utility model as a function

of costs used in the simulation. There are two sources of bias linked to the static random

utility model in this setup. One is the dynamic self-selection bias we highlighted, the

other is a bias from misspecification as the static model assumes no autocorrelation in

income differences. The latter bias stems from the fact that the static model considers

current incomes instead of net present values of income streams; it disregards future

income gains as a result of location choice.

We see that the bias from self-selection becomes more important, the lower the true

costs of migration are. If migration costs are very high, there is simply little migration

each year and hence not much self-selection. Instead, the mis-specification (downwards)

bias of a static model dominates the bias from self-selection.

For comparison we plot static cost estimates from a simulation of our model with

autocorrelation ρ set to zero. In this setup the static random utility model is correctly

specified and leads to almost unbiased estimates if we assume income to be observed

before migration.15

15At very high costs the static random utility model ceases to estimate the costs used in the simulation
correctly, but this is most likely the case because the approximation quality of the income process becomes
weak in the then relevant domain of income fluctuations. In fact, migration rates are already very low
when the static model ceases to estimate the cost parameter well, see Figure 2.

26



Figure 2: Comparison of cost estimate based on a static random utility model
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6.2.3 Estimation with fixed distribution of migration incentives

As a final experiment, we estimate the model with autocorrelated income, but use the

unconditional distribution of migration incentives to evaluate migration rates. This esti-

mation therefore ignores dynamic self-selection, but leaves the parameters of the problem

unchanged otherwise. For example, from the micro perspective, the decision problem is

still dynamic and, naive net-present values of location choices remain unaltered.

Though this model is inconsistent, one could be persuaded by the logic that mi-

gration rates are small each year, making it innocent to approximate the conditional

incentive distribution (conditional on the place of residence) in (9) by the unconditional

distribution. Table 6 reports the estimation results. The parameter estimates from the

‘consistent’ model with dynamic self-selection are repeated for comparison.

Neglecting self-selection seems all but harmless. The point estimates of all model

parameters change substantially. Most importantly–and in line with our argument–the

estimated migration costs are with US$ 363,300 substantially larger. The bias in this last

experiment is largest since there is no offsetting downwards bias from a misrepresentation

of the income process, i.e. of implied expected income streams.

Hence, treating migration as a dynamic decision problem at the micro level without

taking care of dynamic self-selection in the aggregation may lead to a more severe bias

than ignoring the dynamic structure of the migration decision altogether.

6.3 Implied micro characteristics & mover patterns

So far, we focused exclusively on the estimation of migration costs and the fact that

dynamic self-selection plays an important role for this estimation. However, current

contributions to the empirical study of migration behavior go beyond the representative

agent assumption of our homogeneous migration cost model (with heterogeneous incen-

tives). They argue on the basis that individual migration behavior displays a significant

autocorrelation that there should be a mover-stayer dichotomy in the population. Some

agents would then have permanently lower migration costs than others due to some

deeper psychological factors.

However, inferring serially correlated migration costs from the observation of serially

correlated migration behavior may be hasty. High serial correlation of migration incen-

tives, implies on the one hand that those agents which have a strong incentive to remain

in state j in period t most likely keep this strong incentive also in period t+ 1. On the

other hand, it also implies that those agents which have recently migrated can only be

mildly in favor of their new place of residence, otherwise they had moved earlier–at

least if migration costs are not too large. These considerations as a whole suggest that
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Table 6: Simulated moments estimation: Model ignoring dynamic self selection

Ignoring Dyn. With Dynamic
Parameter Self-Selection Self-Selection

Migration Costs 363,3001 18,2851

(9750) (2, 211)

Correlation of Income Shocks 0.40524 0.2482
Across Regions Ψ (0.0367) (0.1947)

Fraction of Income Shock 0.014 0.0041
due to Aggregate Fluctuations φ (0.0015) (0.0011)

Standard Deviation of 0.0000 0.0266
Transitory Income Shock σϕ (0.0891) (0.0012)

p-value, χ2 (2) overident. test 0.0000 0.1865

1Migration cost estimate ĉ in US$ terms.
Standard errors in parenthesis. Estimation is carried out using the simulated moments
estimator by Gourieroux, Monfort, and Renault (1993), which chooses structural model
parameters by matching the moments from a simulated panel of regions. See Table 1 for
further details. The simulations generate a panel of 51 region-pairs and a 81-year history of
migration and income data. The first 55 years of simulated data are dropped in order to
minimize the influence of initial values. Each simulation is repeated 5 times and data moments
are compared to the average over the 5 replications of the simulation.
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Table 7: Comparison of Dynamic incentives model and Binomial model of migration:
Mover-Stayer Heterogeneity

Migration Stayers Single 2 or More 3 or More
Characteristics Movers Moves Moves

Dynamic Model (D) as % of population 47.7% 32.8% 19.5% 5.1%
as % of movers 62.7% 37.3% 9.8%

Binomial Model (B) as % of population 44.5% 36.7% 18.7% 4.3%
as % of movers 66.2% 33.8% 7.8%

D relative to B as % of population 1.078 0.894 1.043 1.186
as % of movers 0.946 1.105 1.256

Frequencies of migration behavior over a 20 period interval. The frequencies are obtained by
simulating the behavior of a cross-section of 50000 households for 70 years, using the migration
behavior of the households over the time interval [t+ 1, t+ 20], 20 < t ≤ 50. Reported
frequencies are obtained by averaging over all overlapping subintervals and 5 repeated
simulations.

our model should be able to reproduce at least some "mover-stayer heterogeneity" in

migration data, even though agents are homogeneous with respect to their (psychic)

costs of migration.

Table 7 provides evidence on this. We simulate a sample of 50000 households over 70

years and track their migration behavior. We calculate migration probabilities over the

[t+1, t+20] year interval for those who migrated in year t and those who did not move

in year t, for 20 < t ≤ 50. We compare the migration probabilities from our model to

the migration probabilities generated from a binomial model of migration that assumes

a constant migration probability equal to the average migration rate in the sample.16

Table 7 displays the probability of a household to never migrate ("Stayer"), migrate

exactly once ("Single mover"), migrate at least twice, and migrate at least three times

over the 20 year period. As one can see, substantially more households than predicted by

16As a side result of this experiment, we see that average migration rates (when starting with the
ergodic distribution of potential income) reach their normal levels quickly, after about 3 periods. Conse-
quently, we can expect our results to carry over to a finite time framework as well, which is technically
much more difficult to analyze though, since income distributions for each age group of agents would
need to be simulated.
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the binomial model do not move. At the other extreme, more households than predicted

by the binomial model move more than two or three times. Observing only the data in

Table 7, one might conjecture that our model exhibits a "mover-stayer heterogeneity",

which is not the case though. Yet, compared to the micro evidence provided for example

by Kennan and Walker (2006), our model–and hence dynamic self-selection–is unlikely

to explain all of the mover-stayer heterogeneity documented.

7 Conclusion

We have provided a tractable model of aggregate migration with a sound microeconomic

foundation. The paper is a contribution to the recently evolving literature on structural

models of migration. We explicitly deal with the problem that potential gains from

migration are unobservable and display a dynamic character. This dynamic character of

migration incentives has two aspects: First, the individual gains from migration evolve

stochastically over time, but will typically be highly persistent. Second, at an aggregate

level, the distribution of migration incentives is a result of past migration decisions

themselves.

Starting from the microeconomic decision problem allows us to keep track of the dy-

namics of the incentive distribution. This dynamics is driven by (dynamic) self-selection.

Neglecting this self-selection results in biased estimates of structural parameters, such

as migration costs. In our application to US interstate migration, we estimate migration

costs to be substantially lower than those reported in previous studies. The estimated

migration costs amount to about US$ 18,500, which corresponds to less than one-half of

an average annual income.

Our analysis calls for a careful treatment of the self-selection problem when economic

incentives are not fully observable. What makes this issue particularly relevant for the

analysis of migration is that unobservable incentives are highly autocorrelated though not

perfectly persistent. Rather than being drawn every period anew, migration incentives

have a long memory. One example of this long memory of migration incentives is the

persistency that income displays. We integrated the persistency of unobserved migration

incentives in a structural dynamic microeconomic model of the migration decision. This

consequently allowed us to simulate the joint behavior of the observed migration rates,

of the unobserved migration incentives, and of their observable proxies, i.e. incomes.

Addressing the partial unobservability of migration incentives may not only be im-

portant to macro-studies of migration. Even at a micro level, potential incomes are

typically unobservable and have to be proxied. However, such approximation regularly

neglects self-selection. If households live in their preferred place of residence as a result
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of their location choice, and if all observable things are equal, then it must be the unob-

served component of their preferences that is in favor of the place where they actually

live in. Besides unobservable parts of income, this unobservable component of prefer-

ences can also comprise different valuations of different amenities and social networks.

Even these factors can be expected to exhibit persistency.

Future research calls for a more complex microeconomic model that integrates more

information into the macroeconomic analysis, for example labor market conditions and

amenities. Additionally, it would be desirable to extend our bi-regional approach to

the case of multiple regions, as in Davies, Greenwood and Li (2001), and Kennan and

Walker (2006). Further aspects, such as the interaction of migration and local labor

markets, could be analyzed in a general equilibrium framework as in Coen-Pirani (2006),

but our results call for an explicit treatment of the dynamic structure and persistency

of migration incentives. However, all this goes beyond what is currently numerically

feasible, in particular if the model is meant to be estimated. Beyond the application

to migration decisions, our treatment of the dynamic self-selection problem may also be

applicable to other important discrete choices in an economy, for example labor-market

participation or product switching.

32



8 Appendix

8.1 Existence and uniqueness of the value function

We begin with proving existence and uniqueness of the value function. Notation is as in

the main text throughout this appendix, unless stated otherwise.

For the ease of exposition, we assume that the income process is only approximately

log-normal. In particular, we assume that income has a finite support.

Definition 1 Let W =
£
W,W

¤
be the support of w.

Definition 2 Define a mapping T according to the migration problem of a household,

that is

T (u) (k,wiAt, wiBt) = max
j=A,B

©
exp (wijt)− I{k 6=j}c+ βEtu (j, wiAt+1, wiBt+1)

ª
. (13)

The mapping T is defined on the set of all real-valued, bounded functions B that are
continuous with respect to wA,B and have domain D = {A,B} ×W2.

Lemma 3 The mapping T preserves boundedness.

Proof. To show that T preserves boundedness one has to show that for any bounded

function u also Tu is bounded. Consider u to be bounded from above by ū and bounded

from below by u. Then, Tu is bounded, because

Tu = max
j=A,B

©
exp (wijt)− I{k 6=j}c+ βEtu (j, wiAt+1, wiBt+1)

ª
≤ exp

¡
W̄
¢
+ βū <∞,

(14)

and

Tu= max
j=A,B

©
exp (wijt)− I{k 6=j}c+ βEtu (j, wiAt+1, wiBt+1)

ª
(15)

≥ max
j=A,B

©
exp (wijt)− I{k 6=j}c+ βu

ª
≥ exp (W ) + βu > −∞. (16)

Lemma 4 The mapping T preserves continuity.

Proof. Since Tu is the maximum of two continuous functions, it is itself continuous.

Lemma 5 The mapping T satisfies Blackwell’s conditions.

Proof. First, we need to show that for any u1 (·) < u2 (·) the mapping T preserves

the inequality. Since both the expectations operator and the max operator preserve the
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inequality, also T does so. Second, we need to show that T (u+ a) ≤ Tu + γa for any

constant a and some γ < 1. Straightforward algebra shows that

T (u+ a) = Tu+ βa. (17)

Since β < 1 by assumption, T satisfies Blackwell’s conditions.

Proposition 6 The mapping T has a unique fixed point on B, and hence the Bellman-
equation has a unique solution.

Proof. Follows straightforwardly from the last three Lemmas.

8.2 Effect of Income Shocks on the Distribution of Income

Idiosyncratic shocks, aggregate shocks, and the persistency of the income process de-

termine the transition of the distribution of income incentives after migration to the

distribution of migration incentives before migration in the next period. The income

distribution at the beginning of period t+1, Ft+1, results from adding idiosyncratic and

aggregate shocks to the distribution of income after migration in period t, F̂t, of which

f̂jt (wA, wB) is the conditional density, see (11). This means that a household having

an income wijt+1 in period t + 1 can result from any possible combination of wijt and

ξijt+1 = θjt+1 + ωijt+1 for which

wijt+1 = μj (1− ρ) + ρwijt + θjt+1 + ωijt+1 (18)

holds. Solving this equation for wijt, we obtain

w∗j (wijt+1, θjt+1, ωijt+1) := wijt =
wijt+1 − (θjt+1 + ωjt+1)

ρ
− μj

(1− ρ)

ρ
. (19)

This w∗j (wijt+1, θjt+1, ωijt+1) is the time-t potential income in region j that is consistent

with a future potential income of wijt+1 and realizations of shocks θjt+1 + ωijt+1 at

the beginning of period t + 1. Now suppose that both kinds of shocks, θ and ω, have

been realized. Then, w∗A,B is a one-to-one mapping of future incomes (wiAt+1, wiBt+1)

to current income (wiAt, wiBt) .

The conditional density of observing the future income pair (wiAt+1, wiBt+1) can thus

be obtained from a retrospective. The income pair (w∗A, w
∗
B) of past incomes corresponds

uniquely to a future income pair (wiAt+1, wiBt+1) . Consequently, we can express the

density of the income distribution at time t + 1 using the income distribution after
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migration F̂t, and its conditional density f̂jt. The density of the income distribution

Ft+1 conditional on the region and the vector of shocks is given by

fjt+1 (wA, wB|θAt+1, θBt+1, ωiAt+1, ωiBt+1)
= f̂jt (w

∗
A (wA, θAt+1, ωiAt+1) , w

∗
B (wB, θBt+1, ωiBt+1)) . (20)

Weighting this density with the density of the idiosyncratic shocks h (ωiAt+1, ωiBt+1)

yields the density of observing the future income pair (w∗A, w
∗
B) together with the idio-

syncratic shocks (ωiAt+1, ωiBt+1) :

f̂jt (w
∗
A (wA, θAt+1, ωiAt+1) , w

∗
B (wB, θBt+1, ωiBt+1)) · h (ωiAt+1, ωiBt+1) .

Integrating over all possible idiosyncratic shocks (ωiAt+1, ωiBt+1) yields the density

fjt+1 of the income distribution before migration in period t+1 for a certain combination

of aggregate shocks (θAt+1, θBt+1):

fjt+1 (wA, wB|θAt+1, θBt+1) =Z
f̂jt (w

∗
A (wA, θAt+1, ωA) , w

∗
B (wB, θBt+1, ωB)) · h (ωA, ωB) dωAdωB, j = A,B. (21)

For given aggregate shocks, this new distribution determines migration from region j to

region −j according to equation (9) for period t+ 1.

The evolution of income distributions can thus be summarized as follows. Between

two consecutive periods, the conditional distribution of potential incomes first evolves

as a result of migration decisions, moving the density from fjt to f̂jt. Thereafter, the

distribution is again altered by aggregate and idiosyncratic shocks to income, moving

the density from f̂jt to fjt+1. The latter density now determines migration decisions in

period t+ 1, starting the cycle over again. In other words, migration incentives are not

only a result of past income shocks, but also a result of past migration decisions.

8.3 Invariant distribution

We prove that migration decisions and idiosyncratic shocks to income imply that poten-

tial income follows an ergodic Markov-process if there are no aggregate shocks. There-

fore, there is an invariant distribution the sequence of income distributions converges

to. For simplicity, we present the proof for an arbitrary discrete approximation of the

model with a continuous state-space for income.

Lemma 7 Assume an arbitrary discretization of the state space with n points for the
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potential income in each of the regions. Then, we can capture the transition from ft to

ft+1, which are the unconditional densities of the distribution of households over both

regions and potential incomes, in a matrix Γ =

Ã
Π (I −DA) ΠDB

ΠDA Π (I −DB)

!
∈ R2n

2×2n2 .17

In this matrix, Π denotes the transition matrix that approximates the AR(1)-process for

income by a Markov-chain, see Adda and Cooper (2003, pp. 56) for details. Matrix Dj ,

j = A,B is the n2 × n2 diagonal matrix with the migration hazard rates for each of the

n2 income pairs of the income grid.

Proof. First, we take a discrete state-space of n possible incomes for each region,

wA1...wAn and wB1...wBn. Second, we denote the vector of probabilities that describes

the distribution of potential incomes and household locations in the following form

f =
³
f (A,wA1, wB1) ... f (A,wAn, wB1) ... f (A,wAn, wBn) f (B,wA1, wB1) ... f (B,wAn, wBn)

´0
.

(22)

Analogously, we define the distribution after migration but before idiosyncratic shocks,

f̂ . Taking our law of motion from (21) , we obtain as a discretized analog

ft+1 =

Ã
Π 0

0 Π

!
f̂t. (23)

Now, define dh ∈ {0, 1} as the fraction of households that migrate and are in the h-th
income and location triple given our vectorization of the income grid. This means that

dh = Λj (wAk, wBl) , h = 1...2n
2, where (j, wAk, wBl) is the h-th element in the vectorized

grid. Moreover, define D = diag (d) as the diagonal matrix with migration rates on the

diagonal and DA and DB as the diagonal matrices with only the first n2 and the last n2

elements of d, respectively. Then, we can describe the transition from ft to f̂t by

f̂t =

Ã
I −DA DB

DA I −DB

!
ft (24)

Combining the last two equations, we obtain

ft+1 =

Ã
Π (I −DA) ΠDB

ΠDA Π (I −DB)

!
ft. (25)

17Since we work with a discretization, strictly speaking f is not a density, but a vector of probabilities
for drawing a location-income possibility vector from a given element of the grid.
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Lemma 8 For any distribution of idiosyncratic shocks with support equal to W2, matrix

Π has only strictly positive entries.

Proof. If the idiosyncratic shocks have support equal to W2, then every pair of potential

incomes can be reached from every other pair of incomes as a result of the shock, because

we assume the shocks to income to be approximately log-normal. Thus, all entries of Π

are strictly positive.

Lemma 9 Γ2 has only positive entries.
Proof. Due to c̄A = −c̄B, we can assume an ordering of states such that we can write

DA =

Ã
Ina 0

0 0

!
and DB =

Ã
0 0

0 Inb

!
, without loss of generality, where Iz is a z×z unit

matrix. Accordingly, we define partitions of Π such that

Π=

Ã
A1A2

A3A4

!
=

Ã
B1B2

B3B4

!

=

Ã
C1 C2

C3 C4

!
=

Ã
D1D2

D3D4

!
,

where A1 ∈ R(n
2−na)×(n2−na), B1 ∈ Rnb×nb , C1 ∈ Rna×na ,D1 ∈ R(n

2−nb)×(n2−nb).

This yields for Γ2 after some tedious algebra

Γ2 =

⎛⎜⎜⎜⎜⎝
B2C3 A2A4 B2C4 A2B4

B4C3 A4A4 B4C4 A4B4

D1C1 C1A2D1D1 C1B2

D3C1 C3A2D3D1 C3B2

⎞⎟⎟⎟⎟⎠ .

Each entry of this matrix is positive, since Π and hence its partitions are positive.

Proposition 10 Under the assumptions of the above Lemmas, migration and idiosyn-
cratic shocks define an ergodic process with a stationary distribution F0 = limn→∞Bnei.

Proof. The above Lemma directly implies the ergodicity of the Markov chain.

8.4 Data

Data on migration between US federal states is provided by the US Internal Revenue

Service (IRS). The IRS uses individual income tax returns to calculate internal migration

flows between US states. In particular, the IRS compiles migration data by matching
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Table 8: Descriptive statistics

Mean Std. Dev. Min Max

Migration Rate .0393 .0178 .0144 .1146

Migration Rate Filtered .0393 .0036 .0234 .0629

Income per Capita 10.71 .1644 10.39 11.27

Income per Capita Filtered 10.71 .0312 10.61 10.82

Complementary Income per Capita 10.76 .0624 10.67 10.86

Complementary Income per Capita Filtered 10.76 .0239 10.73 10.80

the Social Security number of the primary taxpayer from one year to the next. The IRS

identifies households with an address change since the previous year, and then totals

migration to and from each state in the US to every other state. Given these bilateral

migration flows, we compute aggregate gross immigration for the 50 US states and the

District of Columbia as the sum of all immigrations from other US states to a particular

state. Migration rates are calculated by expressing gross immigration as proportions

of the number of non-migrants reported in the IRS dataset. The IRS state-to-state

migration-flow data is available for the years 1989 - 2004.

Income per capita data is taken from the Regional Economic Information System

(REIS) compiled by the Bureau of Economic Analysis (BEA). We personal income as the

relevant income concept. The REIS data is available online at www.bea.gov/bea/regional/reis/.

The income-per-capita figure for the alternative region is computed as the population-

weighted mean of all per capita incomes outside a specific state.

We remove a linear time trend from all data and express all variables as deviations

from their unit-specific means (re-scaled by their overall mean), i.e. we apply a within-

transformation. Table 8 reports descriptive statistics for the original as well as for the

transformed data.

In order to examine the time-series properties of the data employed, we perform a
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unit-root analysis for migration rates and income data. In a sample of size T = 16 and

N = 51 either a Breitung and Meyer (1994) or a Levin, Lin, and Chu (2002) unit-root

test is most appropriate. For the Breitung and Meyer (1994) test, we determined the

optimal augmentation lag length by sequential t−testing. Taking into account three
augmentation lags and time-specific effects, we can reject the null hypothesis of a unit

root at the 5% level of significance. Similarly, the Levin, Lin, and Chu (2003) test rejects

the null hypothesis of a unit root taking a linear time trend into account.

8.5 Numerical aspects

The first step in solving the model numerically is to obtain a solution to (6) . We do so

by value-function iteration.18 For this value-function iteration, we first approximate the

bivariate process of potential incomes for an individual agent in regions A and B

wijt = μj (1− ρ) + ρwijt−1 + ξijt (26)

by a Markov chain. Because wA and wB are correlated through the correlation structure

in ξ, it is easier to work with the orthogonal components
¡
w+A , w

+
B

¢
of (wA, wB) in the

value function iteration.

We evaluate the value function on an equi-spaced grid for the orthogonal components

with a width of ±3.5σ+A,B around their means, where σ
+
A,B denote the long-run standard

deviations of the orthogonal components. The grid is chosen to capture almost all move-

ments of the income distribution F later on.19 Given this grid, we use Tauchen’s (1986)

algorithm to obtain the transition probabilities for the Markov-chain approximation of

the income process in (26) .

We apply a multigrid algorithm (see Chow and Tsitsiklis, 1991) to speed up the

calculation of the value function. This algorithm works iteratively. It first solves the

dynamic programming problem for a coarse grid and then doubles the number of grid

points in each iteration until the grid is fine enough. In between iterations the solution

for the coarser grid is used to generate the initial guess for the value-function iteration

on the new grid by spline interpolation. The initial grid has 16×16 points (income A ×
income B) and the final grid has 128×128 points.
18See for example Adda and Cooper (2003) for an overview of dynamic programming techniques.
19The choice of ±3.5σ+A,B is motivated as follows. We obtain in the estimation that about 99%

of the income shocks is due to the idiosyncratic component. Therefore, we can expect 99.9% of the
mass of the income distribution to fall within ±3.29 ·

√
0.99σ+A,B

∼= ±3.27σ+A,B around the mean of the
distribution for any given year. Additionally, the mean income for each year moves within the band
±3.29 ·

√
0.01σ+A,B

∼= ±0.33σ+A,B in again 99.9% of all years. Since the sum of both components is
±3.6σ+A,B, a grid variation of ±3.5σ+A,B should not truncate the income distribution.
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The solution of (6) yields the optimal migration policy and thus the microeconomic

migration hazard rates Λj . With these hazard rates, we can obtain a series of aggregate

migration rates for a simulated economy as described in detail in Section 4.2 for any

realization of aggregate shocks (θjt)
j=A,B
t=1...T and an initial distribution F0.

This means that we need an initial distribution of income F0 to solve the sequential

problem. Following Caballero and Engel’s (1999) suggestion, we use the ergodic distrib-

ution of income F̄ that would be obtained in the absence of aggregate income shocks.20

This ergodic distribution F̄ is a natural starting guess for F0 as Caballero and Engel

(1999) argue.

To simulate a series of migration rates which correspond to the aggregate migration

hazards
¡
Λ̄At,Bt

¢
t=1...T

, we draw a series of aggregate shocks (to the orthogonal basis)¡
θ+At, θ

+
Bt

¢
t=1...T

from a normal distribution with variance φ ·
³
σ+A,B

´2
, φ ∈ [0, 1] . The

weight φ measures the relative importance of aggregate shocks, relative to idiosyncratic

shocks, i.e. σ2ω = (1− φ)σ2ξ and σ
2
θ = φσ2ξ . Correspondingly, the orthogonal components

of the idiosyncratic shocks have variance (1− φ) ·
³
σ+A,B

´2
.

As we did to approximate the microeconomic income process for value function iter-

ation, we also discretize the distribution of migration incentives over the chosen grid of

income to simulate its evolution. Accordingly, we replace the conditional density in (9)

by discrete probabilities. This means that for grid points x̄jk, j = A,B; k = 1...64, (k

being the index of grid points) with a distance of 2h in between points, we calculate the

probabilities initially (for t = 0) as

p̄k,0 =

Z x̄A,k+h

x̄A,k−h

Z x̄B,k+h

x̄B,k−h
f0 (x1, x2) dx1dx2.

An aggregate shock θj now implies that the off-grid pair (x̄A,k + θA, x̄B,k + θB) oc-

curs with probability p̄k,0. To re-obtain on-grid probabilities, we use spline interpolation

methods to find pk,1, restricting p to take values between 0 and 1. That is, for each t we

define a function z with z (x̄A,k + θA,t+1, x̄B,k + θB,t+1) := p̄k,t and obtain p̄k,t+1as

p̄k,t+1 = ẑ (x̄A,k, x̄B,k)

where ẑ is the interpolation of z. Idiosyncratic shocks are accounted for by multiplying

after-aggregate-shock, on-grid income probabilities with the transition probability ma-

trix obtained from Tauchen’s algorithm. The effect of migration on the distribution of

20This distribution is calculated by assuming that idiosyncratic shocks ω have the full variance of ξ.
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migration incentives is captured by using a discretized version of (11) .

We calculate aggregate migration rates this way, i.e. by directly simulating the

evolution of the incentive distribution instead of using a Monte Carlo method based on

drawing a sample of agents, for the reason that the latter is not adequate in our case.

We focus on aggregate behavior, but aggregate shocks turn out to be relatively small

(being responsible for less than 1% of the total variation in income, see the discussion

in Section 5.2). Hence sampling variation would exceed the true aggregate variation of

income most likely if we applied a Monte Carlo approximation.
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