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Abstract

Long times series on production of gold and the value of gold,

taken from Jastram’s book The Golden Constant, are used to estimate

a Cagan-type demand function that relates the real total value of

gold to its expected rate of return. The model assumes that gold

production and a latent scale variable (income or consumption) are

jointly exogenous and that the data are measured with error. The

data reject the model: the estimates imply that the real value of

gold varies a great deal relative to the expected return and depends

negatively, rather than positively, on the expected return.
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1 Introduction

A Cagan demand function for money posits that its real value depends pos-

itively on its expected return. Here, we attempt to estimate such a function

for gold using data for 1561-1913. The initial date is determined by the

available data, while the terminal date is chosen in accord with our view

that World War I marks the beginning of a period of turmoil regarding the

role of gold in private portfolios and in the world’s monetary system. The

data we use are from The Golden Constant by Roy Jastram [6]: a time series

on the price of gold in terms of consumption (Table 3, The Index of Pur-

chasing Power of Gold: England 1560-1976, pages 34-37) and a time series

on gold production (Appendix C, The index of World Production of Gold,

1493-1972, pages 221-225).1 Because the data describe world production of

gold, we view our demand function to be one for the world as a whole.

The main challenge, of course, is modeling the expected return. Our ap-

proach is simple–perhaps, too simple. Measurement error aside, we assume

that there are two exogenous random processes. One is a process for gold

production and the other is a latent (unobserved by us) process for a scale
1Jastram describes how he came to produce the volume from which we take the data:

“My interest in gold began in 1936 for a pragmatic reason. As the most junior member of
the Stanford University Department of Economics, I was chosen to volunteer to do some
research commissioned by Mr. C.O.G. Miller, an industrialist and gentleman scholar ([6],
page vii).”
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variable like total income or consumption. We assume that the processes and

the current state are known and that an expected return is formed based on

that information and on the true demand function.2

It turns out that our model is rejected by the data in the following senses:

our estimates imply that the real value of gold varies a great deal relative

to the expected return and depends negatively, rather than positively, on

the expected return. We hope that our effort will inspire others to consider

alternative models of these time series.

2 The data

The gold production data are shown in Figure1. The data prior to 1851 are

averages: 20-year averages before 1811 and 10-year averages during 1811-

1850. As described below, we use those averages and part of the model to

interpolate the missing annual data on gold production.

In Figure 2 we plot the logarithm of the purchasing power of gold; that is,

the logarithm of the price of gold. Notice that, in contrast to gold production,

there does not seem to be a trend in the purchasing power of gold. As Jastram

says, the title of his book refers to the absence of such a trend.
2Therefore, our model is part of a large literature on “rational expectations” specifica-

tions of the Cagan model. See, for example, [2], [4], [5], [7], [8], and [9].
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3 The model

We treat the data on gold production and the price of gold as measured with

error. The following is our model for the true values. The demand function

is

lnGt + ln pt = lnYt + α[Et ln pt+1 − ln pt], (1)

where Gt is the stock of gold, pt is the price of gold, Yt is a latent (scale) vari-

able, α is a constant, and Et denotes mathematical expectation conditional

on information up through date t.

As noted above, there are two exogenous random processes, the date-t

realization of which is denoted (Gt, Yt). We assume that the process for Gt

is subject to temporary and permanent shocks, according to

lnGt = ln(G
∗
tγt) and lnG

∗
t = ln(G

∗
t−1µt), (2)

where γt (the temporary shock) and µt (the permanent shock) are realiza-

tions of independent finite-state Markov processes with positive supports and

where the supports for µt and for γt are equally spaced and where that for

γt is symmetric around unity. We choose a process for Yt to be consistent

with a stationary process for pt. That, in turn, requires that the permanent
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components of Yt and Gt be related. We assume that

lnYt = ln(Y
∗
t ηt) and lnY

∗
t = ln(G

∗
t/θt), (3)

where ηt and θt are finite-state Markov processes. (The second of these is

the cointegrating relationship between Y ∗t and G
∗
t that permits there to be a

stationary equilibrium.) It follows that

lnYt = lnG
∗
t + ln ηt − ln θt ≡ lnG∗t − ln ςt, (4)

where ς t ≡ (θt/ηt) is a realization of an independent finite-state Markov

processes with a positive support that is equally spaced.

Using (2)-(4), we can rewrite (1) as

ln pt = − 1

1 + α
(ln ς t + ln γt) +

α

1 + α
Et ln pt+1. (5)

To give a definition of equilibrium, we need additional notation for the

Markov processes; namely,

random variable support transition probability
γt (γ1, γ2, ..., γMγ) πγ

ij

µt (µ1, µ2, ..., µMµ) πµij
ςt (ς1, ς2, ..., ςMς ) πς

ij

Then we have the following definition of a stationary equilibrium.
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Definition 1 A function p : RMγ × RMς → R++ (with generic element phl,

which denotes the price when (γt, ς t) = (γ
h, ς l)) is a stationary equilibrium if

it satisfies

ln phl = − 1

1 + α
(ln ς l + ln γh) +

α

1 + α

MγX
i=1

MςX
j=1

πγ
hiπ

ς
lj ln pij (6)

for each (h, l) ∈ {1, 2, ...,Mγ} × {1, 2, ...,Mς}.

This system of linear equations can be written as x = a0 + a1πx, where

x is an MγMς × 1 vector, a1 = α
1+α
, and π is the Kronecker product of πγ

and πς , the transition matrices for γ and ς, respectively. Provided that the

matrix I−a1π is nonsingular, an equilibrium exists and is unique. Obviously,

that is the case if α ≥ 0. In any case, nonsingularity of the matrix I − a1π

is generic.

Our basic approach to estimation follows Cosslett S. and Lee [3]. We

specify magnitudes for Mγ, Mµ, and Mς and assume that the data are mea-

sured with multiplicative errors. Our version of the estimation procedure

has two stages.3 First, we estimate the process and realization for gold pro-

duction using only the data on gold production. This gives estimates of the

parameters for the γt and µt processes and for the measurement error for

gold production, for the initial stock of gold, and for the realizations of the
3See appendix 2 for a description of joint estimation of the entire model.
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γt and µt processes. Second, taking those as given, we estimate the rest of

the model: the parameters for the ς t process and for the measurement error

in pt, the realization for the ς t process, the initial value of Yt, and α.

4 Estimating the stock of gold

Our model of the stock-of-gold for t = 1, 2, ..., T is

Gt = G

Ã
tY
i=1

µi

!
γt exp

¡
εGt
¢
, (7)

where G, a parameter to be estimated, is the stock of gold at t = 0 and

εGt ∼ N(0,σ2G), the measurement error, is i.i.d. and is independent of γt, µt,

and ςt.

We estimate some features of the Markov processes for γt and µt and

impose others. Because scaling the support of γt by one factor and scaling

the support µt by its inverse leaves the true process for gold unaffected, we

normalize γt by assuming that the support of γt is symmetric around unity.

We do not estimate the number of elements in the supports. We use Mγ = 3

and Mµ = 5, which yield a reasonably good fit.4 And, finally, for both

supports, we assume equally spaced elements; that is, γj+1 = γj + ∆γ and
4We arrived at these choices as follows. We began with Mγ = 3 and Mµ = 1, which fit

poorly. And we found that increasing Mγ while maintainingMµ = 1 did not substantially
improve the fit. Then we tried Mγ = 3 and Mµ = 3 and Mγ = 3 and Mµ = 5. The latter
fit substantially better than the former; as we show later, the implied measurement error
εGt is less than 1% of the gold stock G̃t.
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µj+1 = µj +∆µ. Given the normalization imposed on the support of γt, that

leaves us to estimate only ∆γ for the support of γt. For the support of the

µt process, we estimate the lower endpoint of the support, µ
1, and ∆µ. To

estimate πγ and πµ, we use a logit representation for each row (distribution)

of the transition matrices, i.e.:

πij =

(
ewij

1+
P
ewij

if i 6= j
1

1+
P
ewij

if i = j
. (8)

We impose additional bound constraints on wij, which ensure that the esti-

mated transition matrices are ergodic. The latter helps us to avoid the incon-

venience of having to deal with multiple stationary distributions implied by

πγ and πµ during the course of estimation. Thus, κ = (G,∆γ,π
γ, µ1,∆µ,π

µ,σG)

are the parameters to be estimated for this part of the model.

Letting γ = {γt}Tt=1 and µ ≡ {µt}Tt=1 denote possible realizations for the

γt and µt processes, the likelihood function is:

L1 =

"
TY
t=1

Ψ[lnGt − lnG−
tX
i=1

lnµi − ln γt;σG]
#
P (γ)P (µ), (9)

where Ψ(x;σG) is the density of the normal distribution,

Gt = G+
tX
i=1

Zi, (10)

where Zi is the date i datum for gold production, and where P (γ) and P (µ)

are the probabilities of the sequences γ and µ implied by the transition
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matrices πγ and πµ.

Because the number of γ and µ sequences is large and the state space is

discrete, we use a genetic algorithm as part of our procedure for maximizing

L1. In particular, we proceed as follows.

Step 1. Generate a population of pairs of sequences which determine

γ and µ, but only by their order in the respective domains. That is, the

sequences corresponding to γ are drawn from the set {1, 2, 3}T and those for

µ are drawn from the set {1, 2, 3, 4, 5}T .

Step 2. For each pair of sequences in the population of step 1, find

the parameters κ that maximize the objective L1. (Notice that for given

parameters that completes the description of the domains for γt and µt–

∆γ, µ
1,∆µ–a pair of sequences in the step 1 population determine γ and

µ. Those realizations and the remaining parameters in κ–G,πγ,πµ,σG–

determine a magnitude for L1. Given the logit representation of the transition

matrices πγ and πµ, the maximization problem is a standard constrained

maximization problem with bound constraints. However, the objective is

not concave, so there may be many local maxima.

3. Apply standard genetic operators to amend the population of step 1

sequences.
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4. Repeat step 2 until the best pair γ, µ is found.

5. Compute confidence intervals for the estimated parameters, bG, b∆γ, bµ1,
b∆µ, bσG, using a Monte Carlo procedure.
Because our concern about the post-1913 data does not apply to gold

production, we use the entire data set, 1561 to 1972, for gold production.

However, prior to 1851, the gold production data reported in Jastram [6]

(and in the original source) are averages: twenty-year averages prior to 1811

and ten-year averages during 1811-1850. Therefore, we use an interpolation

procedure, one which is consistent with the maximum likelihood estimation

procedure that we carry out. Given a vector κ of parameters and a γ and

µ, the likelihood function (9) is concave with respect to the gold production

data Zi. Consequently, if some annual data are missing, then maximum

likelihood interpolation of the missing data implies that the data should be

interpolated in order to keep the terms,

lnGt − lnG−
tX

ι=0

lnµι − ln γt, (11)

in the likelihood function (9) constant over all sample periods for which we

must interpolate. This requirement implies an interpolation procedure, one

that makes the interpolated terms dependent on the γ and µ realizations and

on the parameters. Therefore, each evaluation of the likelihood function has
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its own interpolation of the missing data. The details appear in appendix 1.

Figure 3 contains the interpolated production series (before 1851) and the

actual series (after 1851). Given the sparse parametrization (3 points in the

support of γt and 5 points in the support of µt), a change in the state gives

rise to large production changes. And because our interpolation procedure

is sensitive to both permanent and temporary components (see expression

16), a change in the state creates spikes in the interpolated gold production

series.

The estimated parameters for the gold process are given in Table 1. The

estimated initial stock of gold (in year 1560) equals 28.5 times the year 1930

gold production. Measured as percentages, the support of the temporary

shock is approximately {−2.5, 0, 2.5}. The support of the permanent com-

ponent is roughly {−0.1, 0.3, 0.7, 1.1, 1.5}, so that gold stock growth rates

range from -0.1% to 1.5% per year. Given our model for the gold stock (7),

εGt measures the percentage deviation of the gold stock implied by the data

from that implied by the model. The estimate bσG = 0.002328 means that

the standard deviation of the discrepancy is about one quarter of one per-

cent. In fact, for almost all of the sample, the difference between the data

and the model is less than 1% and for all of the sample this difference is less
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than 1.3%. We show the plot of bεGt in Figure 4. Notice that large spikes in
interpolated production data before 1851 are consistent with small errors bεGt
during that period.

We use the following Monte Carlo procedure to obtain the confidence

intervals in Table 1. First, we use bσG to generate a sequence of simulated
errors eεGt from the normal distribution with zero mean and variance bσ2G. After
that, we use bγ, bµ, and bG to compute a simulated gold stock series; namely,

eGt = bGÃ tY
i=1

bµi
!bγt exp ¡eεGt ¢ . (12)

Then, we treat eGt as “data” and obtain new estimates of γ, µ, G, and σG.

In doing this we keep constant the estimated sequences of states for γ and µ

by order described in step 1 above.

A more complete procedure would reestimate the sequences of states for

γ and µ by order. Such a procedure would yield larger confidence intervals.

However, our estimates of the ratios b∆γ/bσG ≈ 11 and b∆µ/bσG ≈ 1.7 (see Table
1) imply that only a small part of the simulated data would differ from the

actual data enough to produce changes in the sequences for γ and µ by order.

Given (12), the ratios b∆γ/bσG and b∆µ/bσG are effectively the t-ratios for the
null hypothesis that the data distinguish between the two adjoining points in

the supports of γ and µ, respectively. The ratio b∆µ/bσG, approximately equal
12



to 1.7, implies that under the more complete procedure only about 10% of

the sequence for µ by order would differ from the estimated sequence for µ.

Thus, it did not seem worthwhile to undertake the more complete procedure,

which would require a large amount of additional computational time.5

The 5% confidence intervals are reported in the two rightmost columns

in Table 1. Notice that the estimates bG, b∆γ, bµ1, b∆µ, bσG are not midpoints
of those intervals. Given our procedure, the true gold stock series Gt can

be viewed as implied by the sequence of measurement errors, bεGt , which is
drawn from the normal distribution with zero mean and variance bσ2G. There
is no prior reason to expect that that drawing yields the estimates bG, b∆γ, bµ1,
b∆µ, and bσG which fall exactly in the middle of their 5% confidence intervals.
And, as one can see, that is not the case.

The estimated transition matrices are:

bπγ =

 0.9749 0.0251 0
0.1140 0.7170 0.1690
0 0.0223 0.9777


and

bπµ =

0.9264 0.0736 0 0 0
0.1074 0.8406 0.0520 0 0
0.0273 0.1131 0.7612 0.0984 0
0 0 0.1047 0.7398 0.1555
0 0 0 0.0814 0.9186

 .
The plots of the estimated sequences bγ and bµ are given in Figures 5 and 6.

5See appendix 3 for further details.
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The estimates are consistent with high persistence in the gold stock process,

so that the most likely state next year is the current state. However, when

the transition occurs, the state does not change much; almost all changes are

changes to an adjoining state. Furthermore, consistent with a considerable

increase in gold production during the course of history (see Figure 1), the

estimated sequence bµ starts out low and transits to the upper end of the

support.

5 Estimating the rest of model

Our model of the gold price data is

pt = p(ςt, γt) exp (ε
p
t ) , (13)

where p(·, ·) is the equilibrium price function and where εpt ∼ N(0,σ2p) is

i.i.d. and is independent of γt, µt, ςt, and of ε
G
t . As above, we interpret

εpt as measurement error. We take Mς = 3 and assume an equally-spaced

support for ς t, (ςj+1 = ςj + ∆ς). We also treat as known the estimated

stage-1 parameters and the realizations for the γt and µt processes. These

are denoted κ̂, bγ and bµ. The remaining parameters are:
ρ = (α, ς1,∆ς ,π

ς ,σp). (14)
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Letting ς = {ς t}Tt=1 denote a realization for the ςt process, the likelihood

function is:

L2 =

"
TY
t=1

Ψ[ln pt − ln(p(ς t,bγ; ρ, κ̂));σp]#P (ς), (15)

where Ψ(x;σp) is the density of the normal distribution, p(·, ·; ρ, κ̂) is the

solution for the equilibrium price function corresponding to the parameters

(κ̂, ρ), and P (ς) is the probability of the sequence ς implied by the transition

probabilities πς .

Our procedure is similar to what we did when estimating the production

process.

1. Generate a population of sequences which determine ς, but only by

order in the respective domain. That is, the sequences corresponding to ς

are drawn from the set {1, 2, 3}T .

2. For each sequence in the population of step 1, find the parameters ρ

that maximize the objective L2. This involves the following steps. Pick ρ.

This ρ and a step-1 sequence imply a corresponding sequence ς. Solve for the

equilibrium prices. Together, these imply a magnitude for L2. Search over

values of ρ. Given a logit representation for the transition probabilities in πς ,

search over ρ is a standard constrained maximization problem with bound
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constraints.

3. Apply standard genetic operators to amend the population of step 1

sequences.

4. Repeat step 2 until the best ς is found.

5. Compute confidence intervals using a Monte Carlo procedure.

As noted above, we here use the sample period from 1561 to 1913. The

estimates bα, bς1, b∆ς , bσp are given in Table 2 and the estimated transition
matrix is

bπς =

 0.9922 0.0040 0.0038
0.0032 0.9930 0.0038
0.0038 0.0037 0.9925

 .
The confidence intervals in Table 2 are computed using the same proce-

dure we used above. In particular, we kept the order sequence corresponding

to bς fixed during the Monte Carlo simulation of the confidence intervals. Be-
cause the change in the equilibrium price function associated with a change in

the discrete order sequence for ς, is about 21%, i.e. roughly 2bσp, only a small
part of the simulated price data would differ from the actual series enough

to produce changes in the discrete sequence for ς if we let the sequence by

order change in the course of simulations. Thus, as above, it did not seem

worthwhile to undertake the more complete procedure.6

The estimated α is large, significant, and has the wrong sign. Because
6Again, see appendix 3 for further details.
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the number of states Mς is relatively small, we have not obtained a close fit

of the price data; the standard deviation bσp of the error is quite large (about
11%). We show the actual and the fitted price in Figure 7.

The estimated sequence bς is persistent, so that the implied price pt is
persistent as well. Persistence means that the most likely price tomorrow is

the current price. In other words, high persistence implies that the expected

rate of return on gold is often zero.

We present the plot of the net expected rate of return on gold in Figure

8 along with the actual return from the data, the first difference of the (log-

arithm of the) series in Figure 2. At no time does the net expected rate of

return implied by the model exceed 0.3% in absolute value. Given the erratic

pattern of actual returns, it is, perhaps, not surprising that our model gives

rise to little variation in the expected return.

In Figures 9 and 10, we present two scatter plots. Figure 9 is the data

on the value of the stock of gold (except that we use for the gold stock

the interpolated stock [see figure 3] prior to 1850) and the return on gold.

Figure 10 is the analogue using the predictions of the model. It is evident

from Figure 10 that the model implies huge sensitivity of the value of the gold

stock to the rate of return, sensitivity which happens to be of the wrong sign.
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However, even if it were the right sign, its magnitude would be implausible.

6 Concluding remarks

Cagan, of course, fitted his demand function to periods of hyperinflation,

when there were large “predictable” variations in the return on money–

variations, which he argued, would swamp any changes in a scale variable

like total income or consumption and any changes in the yields on alterna-

tive assets like the real return on capital. We cannot make that argument.

Instead, we use his approach mainly because we do not have data on a scale

variable or on the yields of alternative assets.

7 Appendix 1. Interpolation of gold produc-
tion

Let {tn + 1, tn + 2, ..., tn+1} be a list of years in the sample period for which

only aggregate gold production datum bZn+1 is available. Constancy of all
terms (11) implies that

lnGt+1 − lnGt = lnµt+1 + ln γt+1 − ln γt,

18



for t = tn + 1, ..., tn+1. Taking (10) into account, the interpolated sequence

of gold production data satisfies

eZt+1 = (Υt+1 − 1)
Ã
Gtn +

tX
ι=0

eZι

!
,

where

Υt+1 ≡ µt+1
γt+1
γt
.

Because the sequence of interpolated data eZt must sum to bZn+1, we have
Gtn + bZn+1 = ³Gtn + eZtn+1´ tn+1−tnY

i=2

Υtn+i.

It follows that

eZtn+1 = Gtn + bZn+1
tn+1−tnQ
i=2

µtn+i
γtn+1
γtn+1

−Gtn ,

and

eZtn+s = ³Gtn + bZn+1´ µtn+s
γtn+s

γtn+s−1
− 1

tn+1−tnQ
i=s+1

µtn+i
γtn+1

γtn+s−1

, (16)

for all s = 2, 3, ..., tn+1.

Notice that because the states γt and µt are discrete, a switch in the

estimated state can cause a large change in the interpolated data. In partic-

ular, if there is a downward switch in the state γt, then the corresponding

interpolated datum eZt can be negative. This can formally be interpreted as
a loss of gold occurring at the respective dates.
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8 Appendix 2. A one-stage estimation pro-
cedure

We could estimate the entire model jointly. Let

L3 =
TY
t=0

Ψ[lnGt − lnG−
tX

ι=0

µι − ln γt;σG]Ψ[ln pt − ln(p(ςt, γt));σp] (17)

Then, given a triplet of sequences µ, γ, and ς, we could search for the (κ, ρ)

that maximizes

L3P (µ)P (γ)P (ς).

Then, we could apply the genetic algorithm to find the optimal triplet of

sequences µ, γ, and ς. Because some parameters–e.g. γt–appear in both

parts of L3, this joint procedure would not give the same estimates and would

seem to be more efficient. However, the joint estimation is harder to carry

out because of the larger set of parameters that must be searched over.

9 Appendix 3. Confidence intervals

Taking the logarithm of (12) yields:

ln eGt = ln bG+ tX
i=1

ln bµi + lnbγt + eεGt , (18)

which is our “data” generating process. Then, given bκ, and the estimated
pair of sequences for γ and µ by order, the (logarithm of the) fitted gold
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stock series is:

ωt ≡ ln bG+ tX
i=1

ln bµi + lnbγt.
Then, conditional on bκ the test between the two alternatives H0 : (γ, µ)
and H1 : (γ0, µ0) is the test between the sequence ω ≡ {ωt}Tt=1 of fitted gold

stock implied by (γ, µ) , and the sequence ω0 ≡ {ω0t}Tt=1 implied by (γ0, µ0).

Given normality of eεGt the test of the alternative against the null is the test
of H1 : ω0 against H0 : ω, which is an F-test, while for every given date t the

test that ω0t differs from ωt is a t-test. Given (18) the t-statistics for the test

that one can distinguish between the two adjoining states bµj and bµj+1 is
btµ = ln bµj+1 − ln bµjbσG =

ln
³bµ1 + j b∆µ

´
− ln

³bµ1 + (j − 1)b∆µ

´
bσG ≈

b∆µbσG .
The value of b∆µ/bσG ≈ 1.7 implies that there is a roughly 10% chance that

simulations alter a single entry in the sequence for µ by order. Thus, one

should expect that about 10% of that sequence will differ if one allows for

the more complete procedure.

As regards confidence intervals in the second stage, the “data” generating

process is:

ln ept = ln bpt + eεpt ,
where

bpt ≡ p(bς t,bγt),
21



is the estimated equilibrium price function. Notice that by definition (see 6)

the equilibrium price function p(ςt, γt) is not necessarily a monotone function

of ς. Consequently, the t-statistics for the test that one can distinguish

between the two adjoining values (pertaining to distinct points in the support

of ς) of the equilibrium price function is:

btp = ln bpj+1 − ln bpjbσp ≈
bpj+1bpj − 1bσp .

Given the estimates in Table 2, the value of btp is approximately equal to
2, which implies that there is a roughly 5% chance that simulations alter a

single entry in the estimated equilibrium price function. Thus, one should

expect that about 5% of the sequence for ς will differ if one allows for the

more complete procedure in the second stage.
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Table 1. Estimated parameters of the gold process.

Parameter Estimate 5% confidence interval
Lower end Upper end

G 28.5639 28.5085 29.0073
∆γ 0.024643 0.024313 0.024835
µ1 0.999139 0.999137 0.999142
∆µ 0.004043 0.004014 0.004048
σG 0.002328 0.002151 0.002471
L1 2048.33

Table 2. Estimated parameters for the rest of the model.

Parameter Estimate 5% confidence interval
Lower end Upper end

α −90.791 −90.907 −88.881
ς1 8.9507 · 10−3 8.8387 · 10−3 9.0606 · 10−3
∆ς 1.7431 · 10−7 6.3120 · 10−8 2.9184 · 10−7
σp 0.11244 0.10323 0.12014
L 557.68

25



Figure 1: The Index of World Production of Gold, 1492-1972.

Figure 2: Logarithm of the purchasing power of gold, 1561-1913.
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Figure 3: Gold production: interpolated up to 1850, actual after 1850.

Figure 4: Estimated Gold Measurement Error bεGt , 1561-1972.
27



Figure 5: Estimated sequence for the permanent component of the gold stock,bµ, 1561-1972.

Figure 6: Estimated sequence for the temporary component of the gold stockbγ, 1561-1972.
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Figure 7: Purchasing power of gold: actual and fitted: 1561-1913.

Figure 8: Actual and expected rates of return on gold, 1562-1913.
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Figure 9: The value of the gold stock and the realized rate of return on gold.
Actual data, 1562-1913.

Figure 10: The value of the gold stock and the expected rate of return on
gold. Fitted data, 1561-1913.
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