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V. CONCLUSION

The problem of estimating the parameters in continuous-time sto-
chastic signals, represented by CARMA processes, from discrete-time
data has been studied. The suggested solution is to fit the covariance
function, parameterized by the process parameters, to sample covari-
ances. It has been shown that the estimation method gives consistent
estimates, and an approximate covariance matrix for the estimated pa-
rameters has been derived. The validity of the derived expression was
investigated in a numerical study, where it was seen that the variances
are very close to the CRB for certain choices of the sampling interval
and the number of covariance elements used in the criterion function.
One important use of the derived covariance matrix is for choosing the
user parameters of the method; by comparing the variances with the
CRB for different choices of the user parameters, a suitable choice can
be made.
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Abstract—This correspondence addresses the problem of tracking
extended objects, such as ships or a convoy of vehicles moving in urban en-
vironment. Two Monte Carlo techniques for extended object tracking are
proposed: an interacting multiple model data augmentation (IMM-DA)
algorithm and a modified version of the mixture Kalman filter (MKF) of
Chen and Liu [1], called the mixture Kalman filter modified (MKFm).
The data augmentation (DA) technique with finite mixtures estimates
the object extent parameters, whereas an interacting multiple model
(IMM) filter estimates the kinematic states (position and speed) of the
manoeuvring object. Next, the system model is formulated in a partially
conditional dynamic linear (PCDL) form. This affords us to propose two
latent indicator variables characterizing, respectively, the motion mode
and object size. Then, an MKFm is developed with the PCDL model.
The IMM-DA and the MKFm performance is compared with a combined
IMM-particle filter (IMM-PF) algorithm with respect to accuracy and
computational complexity. The most accurate parameter estimates are
obtained by the DA algorithm, followed by the MKFm and PF.

Index Terms—Data augmentation, extended targets, mixture Kalman fil-
tering, sequential Monte Carlo methods.

I. INTRODUCTION

Most of the target tracking algorithms consider a single moving ex-
tended object as a point and estimate its center of mass based on the
incoming sensor data, such as range and bearing. However, recent high-
resolution sensor systems are able to resolve individual features or mea-
surement sources on the extended object. Such an object can be mod-
elled as a rigid or semi-rigid set of point sources, each of which may
be the origin of a sensor measurement [2]. The possibility to addition-
ally make use of the high-resolution measurements is referred to as
extended object tracking. Knowledge of the object shape parameters is
especially important for the object type classification.

The considered problem consists of both state and size parameters
estimation of an extended target when tracking it. Estimation of static
parameters in general nonlinear non-Gaussian state-space models is a
long-standing problem [3]–[5]. Although in the literature there are re-
sults with Monte Carlo (particle filtering) methods, a well-known draw-
back of particle filtering for static parameters estimation is the degen-
eracy, the case when only one particle has a significant weight. Other
solutions based on the expectation-maximization (EM) approach are
also proposed. Some of the problems with the EM-type algorithm are
due to the fact that it is of gradient type, and it can be trapped by local
extremums.

The object extent parameters can be modeled in many different ways
[2], [6]–[8]. The ellipsoidal object model proposed in [7] and [9] is
adopted in our work. We are concerned with objects moving in a plane.
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The lengths of the major and minor axes of the ellipse have to be cal-
culated, based on the measurements of the down-range extent. Shape
parameters are included in [7] in the state vector together with kine-
matic parameters and are estimated by extended, unscented Kalman
filters (EKFs, UKFs) and particle filtering. However, as pointed out
in [7] and [9], the EKF is prone to divergence due to the presence of
high nonlinearities, and the Monte Carlo (MC) approach can avoid this
problem [10]. This motivates us to choose the MC framework and de-
velop strategies that can cope with these problems.

The challenge of the problem under consideration is related with the
complex target–observer geometry. Since the object maneuvers are
giving rise to abrupt changes in the down-range extent measurements,
a filter with augmented (state and static parameters ) vector has longer
transient periods and higher peak dynamic errors. It additionally
decreases the accuracy of the target extent estimate. The influences
of target maneuvers to size parameters evaluation can be reduced
by implementing two different algorithms for state and parameters
estimation.

The main contributions of this correspondence are in the estima-
tion of parameters of nonpoint targets while tracking them. The added
values and innovative aspects of this work as compared to previous in-
vestigations include the following:

i) proposition of two different algorithms for state and parameters
estimation, accounting for specifics of this task;

ii) formulation of the problem for parameter estimation in PCDL
form; this enables us to formulate the problem as parameter es-
timation of linear Markovian jump systems;

iii) estimation of the parameters with a data augmentation (DA)
algorithm, with a mixture Kalman filter modified (MKFm) and
a particle filter (PF).

The performance of the algorithms is assessed in terms of accuracy and
computational complexity. We demonstrate that the DA algorithm out-
performs the MKFm with respect to accuracy but is more computation-
ally expensive. The developed MC techniques can be used in different
tracking problems, where the extended target measurements are non-
linear related to the target parameters of interest, such as maritime and
ground targets’ surveillance.

The first developed technique combines the advantages of an IMM
filter and of the Markov Chain Monte Carlo (MCMC) approach. The
idea of combining the multiple model approach with MCMC for finite
mixture estimation is present in a different application [11] dealing with
joint estimation of system states and transition probabilities of linear
jump Markov systems.

The object kinematic states (position and speed) are estimated in
our correspondence by an IMM filter. The DA algorithm for estima-
tion of finite mixture distributions [5] is proposed for shape parameter
evaluation. Also, a PF for size parameters computation is designed and
implemented with the IMM filtering scheme. In addition, we formulate
the system model in a PCDL form through a measurement coordinate
system conversion and discretisation of the continuous set of object
parameters. As a result, we propose an alternative strategy, based on
the MKF [1], [12] and [13, ch. 11]. The developed MKFm generates
recursively samples of indicator variables and integrates out the linear
and Gaussian state variables conditioned on these indicators. Due to the
marginalization, the MKFm is more accurate than the conventional PF
and performs the state and parameter estimation in a common sequential
MC framework. This is achieved by two latent indicator variables char-
acterizing, respectively, the motion regimes and size type. An additional
statistical model validation scheme is incorporated into the MKFm to
confirm or reject the critical model, based on the measured data.

The correspondence is organized as follows. Section II-C describes
the system dynamics and measurement models. Section III formulates
the problem. The IMM-DA algorithm is presented in Section IV, and
the MKFm is given in Section V. A model validation test is described
in Section VI. A comparative analysis of the developed algorithms is
presented in Section VII. Section VIII summarizes the results.

Fig. 1. Position of the ship versus the position of the observer.

II. SYSTEM DYNAMICS AND MEASUREMENT MODELS

A. System Model—General Form

Consider the following model:

xxxk = fff(mk; xxxk�1; ���;wwwk) (1)

zzzk = hhh(mk; xxxk; ���; vvvk); k = 1; 2; . . . (2)

of a discrete-time jump Markov system, describing the object dynamics
and sensor measurements where xxxk 2 n is the base (continuous)
state vector, with transition function fff; zzzk 2 n is the measurement
vector with measurement function hhh, and ��� 2 � is a vector, containing
unknown static parameters. The noises wwwk and vvvk are independent
identically distributed (i.i.d.) Gaussian processes with characteristics
wwwk � N (0;QQQ) and vvvk � N (0;RRR), respectively. The modal (dis-
crete) state mk 2 f1; 2; . . . ; sg is a first-order Markov chain with
transition probabilities pij Prfmk = j jmk�1 = ig; (i; j 2 )
and initial probability distribution P0(i) Prfm0 = ig; i 2 , such
that P0(i) � 0, and s

i=1
P0(i) = 1; k = 1; 2; . . . is a discrete time.

Consider a base state vector xxxk = (xk; _xk; yk; _yk)
0, where x and

y specify the position of an extended object, namely a ship, with re-
spect to an observer’s position, assumed known; ( _x; _y) is the velocity
in the Cartesian plane, centered at the observer’s location (Fig. 1). All
possible motion regimes s of the maneuvering ship are modeled by the
modal state variable m. The static parameter vector ��� = (`; )0 con-
tains shape parameters: the major axis length ` of the ship ellipse and
the aspect ratio between the minor and major axes . Based on a prior
information about ship types, we assume that ��� takes values from a
known discrete (size type) set ��� 2 f���1; ���2; . . . ; ���tg with known
prior distribution: P��� (i) Prf��� = ���ig; i 2 f1; . . . ; tg.

B. Measurement Equation

Similarly to [7] and [9], we assume that a high-resolution radar
provides measurements of range r, bearing � to the object cen-
troid and the object down-range extent L along the observer–object
line-of-sight (LOS) (Fig. 1). Here, (X0; Y0) is the location of the
observer. The relationship between L and the angle � between the
major axis of the ellipse and the target–observer LOS is given by
L(�) = ` cos2 �+ 2sin2(�). If the target ellipse is oriented so
that its major axis is parallel to the velocity vector ( _x; _y) then the
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along-range target extent L(�) can be written as a function of the state
vector xxxk and ��� [7], [9] so that

L(�(xxxk)) = ���(1) cos2 �(xxxk) + ���(2)2sin2�(xxxk) (3)

where ���(xxxk) = arctan((xk _yk � _xkyk)=(xk _xk + yk _yk)). For the
measurement vector zzzk = (rk; �k; Lk)

0, the measurement function

hhh(xxxk; ���) =

(xk �X0)2 + (yk � Y0)2

arctan((yk � Y0)=(xk �X0))

L(�(xxxk))

(4)

in (2) is highly nonlinear. The considered problem has its own particu-
larities. Since the function fff in (1) depends on the motion regimes only,
the state evolution is a priori independent on ���. The kinematic statesxxxk
and the modal statesmk can be estimated approximately through r and
�, without using measurements ofL. This is the rationale for proposing
a separate algorithm for estimating xxxk and mk , like in the conven-
tional tracking filters. The measurement function (4), and measurement
vector, respectively, are split into two parts: zzzk = ((zzz1k)

0; z2k)
0, where

zzz1k = (rk; �k)
0 is related to the kinematic states and z2k = Lk is related

to the object shape. The shape parameters are estimated by the PF or
DA based on the state estimate and z2k .

C. System Model—Partially Conditional Dynamic Linear Model

The general system model (1) can be presented in the form

xxxk = FFF (mk)xxxk�1 +GGG(mk)wwwk(mk) (5)

zzz1k = HHH(mk)xxxk + vvv1k(mk) (6)

z2k = L (���� ; xxxk) + v2k(�k); k = 1; 2; . . . (7)

where the modal (discrete) state mk 2 can be thought of as a first in-
dicator variable. The second indicator variable �k takes values from
the set t f1; 2; . . . ; tg with probability P (�k = i j�k�1) =
P (�k = i) = 1=t and represents the size type. The noises have
characteristics: wwwk(mk) � N (0;QQQ(mk));vvv

1
k(mk) � N (0;RRR(mk))

and v2k(�k) � N (0; RL(�k)). The matrices FFF ;GGG, and HHH are known,
assuming that the indicator vector �k = fmk; �kg is known. Note
that is the set of the manoeuvring modes, whereas t is the set of
index numbers of the discretized extent parameter. After converting the
measurements from polar (rk; �k) to Cartesian (xk; yk) coordinates:
zzz1k = (rk cos(�k); rk sin(�k))

0, the measurement (6) becomes linear
with a simple measurement matrixHHH and with a covariance matrixRRRc

[14, p. 399].
Conditioned on the modal state mk , (5) and (6) represent the DLM,

and a KF can be applied for state and kinematic likelihood estimation.
Conditioned on the indicator variable �k , the extent measurement like-
lihood can be calculated by (7), using the KF state estimate. A joint
likelihood can be used to determine the most likely mode-size combi-
nation in the MKF framework. The above system (5)–(7) is referred to
as a partially CDLM (PCDLM), since the nonlinear (7) takes part in
the extent likelihood computation.

III. PROBLEM FORMULATION

The goal is to estimate the state vector xxxk and the extent parameter
vector ���, based on measured data ZZZk = fzzz1; zzz2; . . . ; zzzkg. If the pos-
terior joint state-size probability density function (PDF)

p(xxxk; ���jZZZ
k) = p(���jxxxk; ZZZ

k)p(xxxkjZZZ
k) (8)

can be calculated, then the required estimate is given by

Efxxxk��� jZZZ
kg

= xxxk���p(���jxxxk; ZZZ
k)p(xxxkjZZZ

k)d���dxxxk

= ���p(���jxxxk; ZZZ
k)d��� xxxkp(xxxkjZZZ

k)dxxxk

= ����(xxxk)xxxkp(xxxkjZZZ
k)dxxxk � ����(x̂xxk)x̂xxk (9)

where ����(x̂xxk) = E(���jx̂xxk; ZZZ
k) represents the expectation of the pa-

rameter vector ���, and x̂xxk EfxxxkjZZZ
kg. Denote the lth mode his-

tory, realized by a Markovian jump system through time k as ml
k =

fml
0;m

l
1; . . . ;m

l
kg; l = 1; . . . ; sk . The state posterior PDF is ob-

tained as a Gaussian mixture with an exponentially increasing number
of terms [14]

p(xxxkjZZZ
k) =

s

l=1

p xxxkjm
l
k; ZZZ

k P ml
kjZZZ

k : (10)

The exponential growth of computations can be avoided by different
combinations of model histories. The generalized pseudo-Bayesian ap-
proaches (e.g., GPB1 and GPB2) [14] consider all possible models in
the last one (two) sampling periods.

The IMM filter [14], [15] approximates the posterior state PDF

p(xxxkjZZZ
k) �

s

j=1

p(xxxkjmk = j;ZZZk)P (mk = jjZZZk) (11)

by using s working in parallel KFs where each KF utilizes a different
combination of the previous model-conditioned estimates. In the light
of the considered problem, the IMM-DA and IMM-PF algorithms es-
timate the kinematic state based on part of the measurements ~ZZZ

(1;k)
=

fzzz11; zzz
1
2; . . . ; zzz

1
kg. Hence, this kinematic state estimate is obtained as a

sum of mode-conditioned state estimates ���jk;

x̂xximm
k �

s

j=1

���jkP mk = jj~ZZZ
(1;k)

(12)

weighted by mode probabilities where

P mk = j j ~ZZZ
(1;k)

/ p zzz1kjmk = j; ~ZZZ
(1;k�1)

P mk = jj~ZZZ
(1;k�1)

:

The state estimate x̂xximm
k is applied in (9), instead of xxxk , for size param-

eters evaluation

�̂��(x̂xxk) Ef���jx̂xxk; ZZZ
kg = ����(x̂xxk) = ���p(���jx̂xxk; ZZZ

k)d���: (13)

The posterior PDF p(���jx̂xxk; ZZZ
k) in (13) can be approximated in dif-

ferent ways. Let us suppose that the shape parameter ��� is replaced by
���k , which evolves according to the Markovian model ���k = ���k�1+www�

k;
www�
k � N (www�

k; 0;QQQ
�), where www�

k is an artificial noise with covariance
matrix QQQ� . Particle filtering provides a discrete weighted approxima-
tion to the true posterior PDF

p(���kjx̂xxk; ZZZ
k) �

N

j=1

w
(j)
k � ���k � ���

(j)
k ;

�̂��k �

N

j=1

w
(j)
k ���

(j)
k (14)
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where ���(j)k ; j = 1; . . . ; Np is the set of supported points with the asso-
ciated weights w(j)

k / w
(j)
k�1p(z

2
kj���

(j)
k ; x̂xxk); j = 1; . . . ; Np.

From the point of view of the DA, the posterior PDF p(���jx̂xxk; ZZZ
k) is

proportional to the PDF of the extent measurement p(z2kj���; x̂xxk) which
is considered as a t-component Gaussian mixture

p z2kj���; x̂xxk =

t

i=1

�iN z2k;L(���i; x̂xxk); RL (15)

where ��� = (�1; . . . ; �t) is a vector of mixture proportions (con-
strained to be non-negative and sum to unity) and L(���i; x̂xxk) is the
measurement prediction, calculated according to (3). Thus, the task
of size type determination is reduced to the well known finite mix-
ture estimation problem: for the mixture model (15) with known
component PDFs N (z2k;L(���i; x̂xxk); RL), one needs to estimate the
unknown weight vector ��� = (�1; . . . ; �t). At each time step k, the
DA iteratively evaluates weights (���(k) ���), using the joint PDF of
measurements over a sliding window fz2k�ws+1; z

2
k�ws+2 . . . ; z

2
kg,

where ws is the window size. The mixture component with a max-
imum weight identifies the most probable ship type. The estimate of
the extent parameters can be calculated as a sum of the parameter
values ���i (from the discrete set), weighted by mixture proportions:
�̂��k = t

i=1 �i(k)���i.
Unlike the PF and DA algorithms, which are implemented jointly

with an IMM filter (x̂xxk = x̂xximm
k ), the MKFm provides estimates both

of the system states and parameters. In contrast to (11), the MKFm
approximates the posterior state PDF p(xxxkjZZZ

k) by a random mixture
of N Gaussian distributions

p(xxxkjZZZ
k) �

N

j=1

~w
(j)
k N xxx

(j)
k ;���

(j)
k ; PPP

(j)
k (16)

where the weights ~w
(j)
k incorporate the properties of the posterior PDF

of the indicator vector. The Gaussian mixture parameters, (���(j)k ; PPP
(j)
k ),

respectively, the estimated mean���(j)k and state covariance matrixPPP (j)
k ,

are obtained by implementing a Kalman filter for a given mode history,
as a part of the common mode-size type history.

Let ���
(j)

k�1 = �
(j)
1 ;�

(j)
2 ; . . . ;�

(j)
k�1 ; j = 1; . . . ; N be the

set of indicator vectors, representing joint mode and size type his-
tory up to time k � 1. Suppose that at time k, the indicator vector
�
(j)
k = fm(j)

k ; �
(j)
k g is generated based on ~�

(j)
k�1, and the likeli-

hoods of current kinematic and extent measurements. The parameter
estimate �̂��k is closely related to the posterior indicator probability
P (�k = ijZZZk), which can be estimated as

P (�k = ijZZZk) �
N

j=1

1 �
(j)
k = i ~w

(j)
k ; i = 1; . . . t (17)

where 1( � ) is an indicator function such that 1(�k = l) = 1, if �k = l
and 1(�k = l) = 0, otherwise. The state and extent parameter esti-
mates are given by

x̂xxmkf
k �

N

j=1

~w
(j)
k ���

(j)
k ; �̂��k �

t

i=1

P (�k = ijZZZk)���i: (18)

While the PF looks for the solution in the continuous interval of shape
parameters ��� 2 �, the MKF and DA identify it among a discrete set
of values ��� 2 , with a given prior distribution.

The proposed here technique comprises two steps. On receipt of a
new measurement zzzk , first the IMM algorithm (or MKF) is run with the
previous state and mode estimates to update the current estimates, using
the likelihood of kinematic measurements. Next, the current parameter
estimate �̂��k is found based on the previous, �̂��k�1, the current state and
mode estimates and the extent measurement likelihood, respectively,
by the PF, DA scheme, or the MKF.

IV. EXTENT PARAMETERS ESTIMATION BY DA

The mixture model is given by the observation of n independent
random variables y1; . . . ; yn from a t-component mixture [5],

(yk) =

t

i=1

�i i(yk); k = 1; . . . ; n (19)

where the densities i; i = 1; . . . ; t are known or are known up to
a parameter. We consider the special case, where only the weights �i
have to be estimated. The DA algorithm approximates the mixture pos-
terior distribution relying on the missing data structure of the mix-
ture model. According to [5], the mixture model can always be ex-
pressed in terms of missing (or incomplete) data ���(k). The vectors
���(k) = (�1(k); �2(k); . . . ; �t(k)); k = 1; 2; . . . ; n with components
�i(k) 2 f0; 1g; i = 1; 2; . . . ; t are defined to indicate that the mea-
surement yk has density i(yk) [11]. The model is hierarchical with
the true parameter vector ��� of the mixture, on the top level. Hence, the
distribution p(���j���) of the missing data ��� depends on���, i.e., ��� � p(���j���).
The observed data, yyy � p(yyyj���; ���), are at the bottom level.

Starting with an initial value ���(0), the algorithm implements a two-
step iterative scheme:

i) at the iteration u; u = 0; 1; 2; . . ., generate ���(u) � p(���jyyy; ���(u))
from a multinomial distribution with weights proportional to the
observation likelihoods, �(u)i (k) / �

(u)
i i(yk);

ii) then, generate ���(u+1) � p(���jyyy; ���(u)).
Since the conjugate priors on ��� are with Dirichlet distributions
(DD), D(�1; . . . ; �t) [5], ���(u+1) is generated according to the
DDs with parameters, depending on the missing data. Bayesian
sampling produces an ergodic Markov chain (���(u)) with stationary
distribution p(���jyyy). Thus, after u0 initial (warming up) steps, a set
of U samples ���(u +1); . . . ; ���(u +U) are approximately distributed
as p(�jyyy). Due to ergodicity, averaging can be made with respect
to time [5]. In the present implementation, the observation yk co-
incides with the along-range extent measurement z2k � Lk and
i(z

2
k) � N (z2k;L(���i; x̂xxk); RL); k = 1; 2; . . . ; n; . . .. The joint

IMM-DA scheme is given below.

Joint IMM—Data Augmentation Scheme

For k = 1; 2; . . .

— Run the IMM algorithm with the previous state vector
x̂xxk�1, covariance matrix PPP k�1 and mode probabilities
P (mk = j jZZZk�1) to update the current estimate x̂xxk; PPP k and
P (mk = j jZZZk); j = 1; . . . ; s.

— Compute mixture components conditional PDFs

~Gi(k) = exp � z2k � L (���i; x̂xxk)
2
=(2RL) ; i = 1; . . . ; t:

— Implement data augmentation
— Initialization: ���(0) = ���(k � 1);
— Iterations (u = 0; 1; . . . ; u0 + U � 1)

• Missing data conditional probability mass functions

q
(u)
i (l) =

�
(u)
i

~Gi(l)
t

i=1 �
(u)
i

~Gi(l)
;

for l = 1; 2; . . . k; i = 1; 2; . . . t:

• Missing data generation (multinomial sampling)

���(u)(l) = (0; . . . ; 0; 1; 0; . . . ; 0)

� q
(u)
i (l)

t

i=1
; l = 1; 2; . . . k:
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• Weights evaluation (Dirichlet distribution sampling)

���(u+1) � D ���;�1 +

k

l=1

�
(u)
1 (l); . . . ; �t +

k

l=1

�
(u)
t (l) :

— Calculate the output estimates

���(k) =
1

U

U

�=1

���(u +�) and �̂��k =

t

i=1

�i(k)���i:

V. EXTENDED OBJECT TRACKING BY MKFM

When substituting the indicator vectors �k = fmk; �kg; k =
1; 2; . . ., into the PCDLM (5)–(7), all vectors xxxk; k = 1; 2; . . . can be
integrated out recursively by using a standard Kalman filter [1], [13].
If the MC sampling is performed in the space of indicator variables
instead of in the space of the state variables, we obtain the MKF, which
in principle gives more accurate results than the MC filters dealing
with xxxk directly.

Let a collection of N -Kalman filters, KF
(1)
k�1; . . . ;

KF
(j)
k�1; . . . ;KF

(N)
k�1 be run at time k � 1. Each KF

(j)
k�1 is

characterized by the mean state vector ���(j)k�1 and its covariance matrix
PPP

(j)
k�1, i.e., with (���

(j)
k�1; PPP

(j)
k�1). Since the PCDLM (5), (6) is reduced

to a DLM when conditioning on ~���
(j)
k�1 = (�

(j)
1 ;�

(j)
2 ; . . . ;�

(j)
k�1),

the mean vector ���(j)k�1 and the covariance matrix PPP
(j)
k�1, constitute

a sufficient statistics at time k � 1. Each filter is associated with a
weight w(j)

k�1 [1]. The update of the filter statistics KF
(j)
k�1 ! KF

(j)
k

at time k is summarized below.
The first step begins with the computation of a trial sampling density

for mk = i1; i1 2 :

L
(j)
k;i P mk = i1 j ~�

(j)
k�1;ZZZ

k

/p zzz1k jmk= i1; ~�
(j)
k�1;ZZZ

k�1 P mk= i1 j ~�
(j)
k�1;ZZZ

k�1 ;

P mk = i1 j ~�
(j)
k�1;ZZZ

k�1

=p mk = i1 jm
(j)
k�1 = p

m ;i
:

The measurement zzz1k has a Gaussian density

p zzz1k jmk = i1; ~�
(j)
k�1;ZZZ

k�1 = p zzz1k jmk = i1;KF
(j)
k�1

� N zzz1k;HHH���
(j)
k j k�1(mk);SSS

(j)
k (mk) (20)

where ���
(j)
k j k�1(mk) is the predicted state vector and SSS

(j)
k (mk)

is the measurement prediction covariance matrix, calculated
by a filter KF

(j)
k�1, adjusted for mk = i1. Then, the indicator

mk = i1 2 f1; . . . ; sg is imputed with probability, proportional to
L
(j)
k;i . The mean vector ���(j)k and covariance matrix PPP (j)

k are updated
only for the sampled index i1 = `1.

The second step comprises the computation of a trial sampling den-
sity for �k = i2; i2 2 t:

(j)
k;i / p z2k j�k = i2;KF

(j)
k P �k = i2 j ~�

(j)
k�1;ZZZ

k�1

where p(z2k j�k = i2;KF
(j)
k ) � N (z2k;L(�i ; ���

(j)
k ); RL) and

P (�k = i2 j ~�
(j)
k�1;ZZZ

k�1) = P (�k = i2) = 1=t.
Finally, the weights for this updated filter estimate are calculated as

w
(j)
k = w

(j)
k�1L

(j)
k;`

t

i =1

p z2k j�k = i2;KF
(j)
k P (�k = i2):

Based on the normalized weights ( ~w(j)
k ), estimates x̂xxk; �̂��k , and poste-

rior indicator probabilities, we calculate

x̂xxmkf

k =

N

j=1

���
(j)
k ~w

(j)
k ;

�̂��k =

t

i =1

P �k = i2 jZZZ
k ���i ;

P mk = i1 jZZZ
k =

N

j=1

1 m
(j)
k = i1 ~w

(j)
k ; i1 2

P �k = i2 jZZZ
k =

N

j=1

1 �
(j)
k = i2 ~w

(j)
k ; i2 2 t:

Using (9), we modified the first step of the MKF, and the dimension of
the indicator space �k 2 + t is reduced compared with the MKF
[1], [13, ch. 11] . We refer to this algorithm as a MKF modified (MKFm)
and it is given below. The proposed MKFm differs from the MKF of
Chen and Liu [1] in the way of calculating the trial sampling density
P (mk; �k j ~�k�1;ZZZ

k) for the indicator vector�k. The MKF of Chen
and Liu, applied to the extended object tracking, requires quite high-
dimensional indicator sampling space �k 2 � t, which increases
the computational time [1, ch. 11].

MKFm for State and Size Parameters Estimation

1) Initialization, k = 0; For j = 1; . . . ; N :
sample m(j)

0 � fP0(i1)g
s
i =1 and �(j)0 � fP��� (i2)g

t
i =1. Form

~�
(j)
0 = fm

(j)
0 ; �

(j)
0 g. Set KF

(j)
0 = f���

(j)
0 ; PPP

(j)
0 g, where ���(j)0 =

�̂��0 and PPP (j)
0 = PPP 0 are the mean and covariance of the initial state

xxx0 � N (�̂��0; PPP 0). Set the initial weightsw(j)
0 = 1=N . Set k = 1.

2) For j = 1; . . . ; N complete:
• For each i1 2 compute

— one step prediction for each Kalman filter KF
(j)
k�1 :

(���
(j)
k j k�1)

(i ); PPP
(j)
k j k�1)

(i ); (SSS
(j)
k )(i )

— on receipt of a measurement zzz1k , calculate L(j)k;i

— sample m(j)
k � fL

(j)
k;i g

s
i =1; suppose that m(j)

k = `1

— for `1 perform KF
(j)
k update: obtain ���(j)k ;PPP

(j)
k .

• For each i2 2 t and z2k = Lk , calculate (j)
k;i

— sample �
(j)
k � f (j)

k;i g
t
i =1; suppose that �(j)k = `2.

Append �(j)
k = f`1; `2g to ~�

(j)
k�1 and obtain ~�

(j)
k .

• Update the importance weights: w
(j)
k =

w
(j)
k�1L

(j)
k;`

t

i =1
(j)
k;i ;

• Normalize the weights ~w
(j)
k = w

(j)
k = N

j=1 w
(j)
k .

3) Compute the output estimates and posterior probabilities of
indicator variables.

4) Resample with replacement to avoid possible degeneracy of
the sequential importance sampling [15] when an estimate
Ne� = 1= N

j=1( ~w
(j)
k )2 of the effective sample size falls

below a threshold Nthresh. If Ne� < Nthres, resample:
(���

(j)
k ; PPP

(j)
k ; ~�

(j)
k ); j = 1; . . . ; N , according to the weights; set

w
(j)
k = 1=N .

5) Set k  � k + 1 and go to Step 2).

VI. MODEL VALIDATION

The posterior indicator probabilities provide a relative measure for
the most probable behavior mode and size type at each time step k.
When the detection of a particular object size type is important, a model
validation scheme can be incorporated into the MKF framework as an
additional test to confirm or reject the existence of a certain size type.
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Let Z2
k denote the random variable, associated with the scalar obser-

vation z2k . According to [16], under the null hypothesis that the model
M ���k = ���i is the correct one, the sequence fuk : k = 1; . . . ; ng
with uk p(Z2

k � z2k jZZZk�1;M) is a realization of i.i.d. random
variables in the interval [0; 1]. By letting vk = ��1(uk), where � is a
standard normal cumulative distribution function, a sequence of inde-
pendent N (0; 1) random variables is generated. This result holds for
any time series model and can be used to provide a direct statistical test
of the adequacy of the model ���k = ���i. To obtain uk , it is necessary to
integrate out ���k by evaluating

uk = p Z2
k � z2k jZZZk�1; ���k p ���k jZZZk�1 d���k:

For complex models, this integration cannot, in general, be car-
ried out analytically [16], but an estimate of uk can be ob-
tained using a MC test as follows: a) a sample of particles
���
(j)
k ; j = 1; . . . ; N is generated from p(���k jZZZk�1) and b) since
p(z2k jZZZk�1; ���

(j)
k ) = N (z2k;L(���

(j)
k ; x̂xxk); RL), the estimate [16]

p̂ Z2
k � z2k jZZZk�1; ���

(j)
k = 1� 1

2
erfc

� z2k � L ���
(j)
k ; x̂xxk =

p
2RL

can be evaluated analytically, using the complementary error function
erfc( � ). Then, an estimate of uk is given by

ûk =
1

N

N

j=1

p̂ Z2
k � z2k jZZZk�1; ���

(j)
k :

A Kolmogorov–Smirnov test is applied to validate the Gaussianity of
the sequence fvk : k = 1; . . . ; ng. The null hypothesis is that the data
have a standard normal distribution and the alternative hypothesis is
that data does not have that distribution. The null hypothesis is rejected
if the test is significant at the 5% level.

VII. SIMULATION RESULTS

The performance of the designed algorithms is evaluated over
trajectories comprising uniform motions and abrupt maneuvers
[a typical scenario is shown in Fig. 2(a)]. The observer is static,
located at the origin of (x; y) plane. The initial target state is
xxx0 = (10000;�16; 85 000;5:8)0. The object performs two turn
maneuvers with normal accelerations of �3.0 [m/s2]. Its length is
` = 50 [m], and the aspect ratio (between the minor and major
axes) is  = 0:2. The sensor parameters are as follows [9]: sam-
pling interval T = 0.2 [s]; the measurement error covariances
along range, azimuth and along-range extent are respectively:
RRR = diagf52 [m]2; 0:22 [deg]2g and RL = 52 [m]2.

Root-mean squared errors (RMSEs) [14] are chosen as a measure
of the algorithms’ accuracy. Results from 100 Monte Carlo runs are
presented below. The set of modal states contains s = 3 elements,
corresponding to motion models, the first of which is for nearly con-
stant velocity motion. The next two models are matched to nearly co-
ordinated turn maneuvers with turn rates ! = �0:18 [rad/s]. The tran-
sition matrices FFF (m) in (5) have the form given in [14, p. 467], for
the case of known turn rate. We assume that ��� takes values from a
set = f(30;0:15); (50;0:2); (70; 0:25); (100;0:3)g(t = 4), with
equal initial probabilities. Note that ���2 corresponds to the true ���.

The DA design parameters are chosen as follows [5], [10]: the sliding
window size is ws = 160; the number of iterations is 150, and the

Fig. 2. (a) Testing scenario; (b) mixture proportions obtained by DA algo-
rithms; (c) MKF posterior mode probabilities; and (d) MKF posterior size prob-
abilities. In (c), m = 1 corresponds to turn rate ! = 0;! = �0:18 [rad/s]
match tom = 2 andm = 3, respectively, and in (d) � = 2 identifies the actual
size ��� .
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Fig. 3. Estimated extent parameters by DA, MKFm (with N = 200 particles),
and PF (with N = 300 particles). (a) True and estimated length `. (b) True
and estimated  . (c) RMSEs of the estimated ` (d) RMSEs of the estimated  .

“warming up” initial interval is u0 = 70. The mixture proportions
�i; i = 1; . . . ; 4, estimated over a single run, for k = 100 are given in

Fig. 4. PF results for N = 100, 300, 500 and 1000.

Fig. 2(b). It can be seen that DA identifies the true ���2 with a probability
of �2 � 0:7. This result confirms the reliability of the algorithm for
classification tasks.

The MKFm is implemented with a sample size N = 200.
The posterior mode probabilities P (mk = i1 jZZZ

k); i1 =
1; 2; 3; k = 1; . . . ; 300 are given in Fig. 2(c), and those of
P (�k = i2 jZZZ

k); i2 = 1; 2; 3; 4; in Fig. 2(d). The switches be-
tween manoeuvring modes (m = 2 and m = 3) reproduce well the
left and right turns performed by the extended object. The along-range
object extent measurements depend on target–observer geometry and
rapidly change during maneuvering phases. Fig. 2(d) shows that the
posterior size type probabilities change due to the maneuvers, but the
probability P (�k = 2 jZZZk), corresponding to the actual object size
���2, remains maximum over the whole tracking interval.

A PF for extent parameters estimation is designed with Np = 300
particles and Nthresh = Np=10. Initially, Np normally distributed par-
ticles (���(j))

N

j=1 are generated with mean, corresponding to the true ���.
After that the particles are predicted according to the model, presented
in Section III. Then the particle weights are evaluated using likelihoods
of the received extent measurements and the �̂�� estimate is calculated ac-
cording to (14).

Comparative plots of the true and estimated ship parameters, `
and , obtained by the IMM-DA, MKFm, and IMM-PF, are pre-
sented in Fig. 3(a) and (b). The corresponding RMSEs are shown in
Fig. 3(c) and (d). The maximum speed RMSEs are approximately
6.5 [m/s].
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The proposed algorithms produce simultaneously stable tracking
and size estimates converging to the true parameters. The DA procedure
provides the most accurate results, since it processes the cumulative
(in a window) measurement information which increases the computa-
tional time. The relative computational time IMM-DA:MKF:IMM-PF
corresponds approximately to the proportions: 18:6:1. It should be
noted that the PF involves an additional “artificial” noise, necessary
for prediction. The proper choice of noise parameters can lead to a
good result. However, the PF aspect ratio RMSE slowly increases over
time [Fig. 3(d)]. This is observed over various scenarios and different
sample sizes, as shown in Fig. 4. A similar tendency is indicated also
in [9]. Taking this fact into consideration, we may conclude, that the
MKFm provides a reasonable compromise between accuracy and com-
putational time. The model validation scheme, incorporated within the
MKFm, gives an additional size type information: if we are interested
in the size type, which is not the true one, the Kolmogorov–Smirnov
test certainly rejects this hypothesis. For example, if we want to check
the hypothesis ���3 = ���true, the estimated test statistic ktest2 = 8

definitely exceeds a 5% critical value of 1.36, since ���true � ���2.

VIII. CONCLUSION

A suboptimal solution to the problem of extended object tracking
is proposed in this correspondence. MC algorithms (DA, MKFm and
PF) are developed for the object extent parameter estimation, based
on positional and along-range object extent measurements. The kine-
matic states are estimated with an IMM filter and with a MKFm, re-
spectively. The approach of separation of states from parameters is im-
plemented in the IMM-DA and IMM-PF. The overall state vector has a
decreased dimension compared with the joint state-parameter estima-
tion, the type of maneuver can be identified relatively quickly, and the
kinematic states are estimated with small peak dynamic errors. The de-
veloped techniques offer a reasonable trade-off between accuracy and
computational time and successfully deal with the complex target-ob-
server geometry.
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On the Sensitivity of the Transmit MIMO Wiener Filter
With Respect to Channel and Noise Second-Order

Statistics Uncertainties

Despoina Tsipouridou and Athanasios P. Liavas, Member, IEEE

Abstract—We consider the sensitivity of the transmit multiple-input
multiple-output (MIMO) Wiener filter with respect to channel and noise
second-order statistics (SOS) uncertainties. Using results from matrix
perturbation theory, we derive second-order approximations to the excess
mean-square error (EMSE) induced by using the channel or noise SOS
estimates as if they were the true quantities. Assuming optimal training
and sufficiently high signal-to-noise ratio (SNR), we develop simple and
informative approximations to the EMSE, which indicate that the channel
estimation errors are much more significant than the noise SOS estimation
errors. Uncertainties due to channel time variations induce EMSE that
increases with increasing SNR and asymptotically tends to a constant
value.

Index Terms—Multiple-input multiple-output (MIMO) systems,
pre-equalization, Wiener filtering.

I. INTRODUCTION

Joint optimization of transmit and receive filters for combatting
frequency selectivity and/or interstream interference in multiple-input
multiple-output (MIMO) or multiuser systems has been extensively
studied (see, for example, [1] and the references therein). In order to
keep the mobile units as simple as possible, we may consider separate
transmit or receive processing. The transmit matched filter (TxMF),
the transmit zero-forcing filter (TxZF) and the transmit Wiener filter
(TxWF) are three linear pre-equalization (or precoding) structures
that combat frequency selectivity and/or interstream interference and
keep the receivers simple, because the only processing required at the
receiver is a scalar scaling [1], [2].

The TxWF, which outperforms the two other structures in terms of
mean-square error (MSE) and bit-error rate (BER) [1], can be com-
puted if the channel and the input and noise second-order statistics
(SOS) are perfectly known at the transmitter. This may happen, for
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