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1 Introduction
The first attempt toward developing an expected utility theory for incomplete
preferences was the paper of Aumann [2]. In this work, the author showed
that if a binary relation defined on a finite dimensional mixture set satisfies
all axioms other than the completeness axiom of the classical expected utility
theory, there is an expected utility function that extends the relation. Kannai [8]
gave necessary and sufficient conditions for possibility of such a representation
for the case of relations defined on infinite dimensional vector spaces. Two
recent contributions are those of Shapley and Baucells [11] and Dubra et al.
[3]. In these works, the authors obtain a set of expected utility functions that
completely characterize a relation instead of a single function that extends it.
In the present paper we shall follow this recent approach.
Before explaining the contribution of this paper, let us briefly discuss rep-

resentation results of Shapley and Baucells [11] and Dubra et al. [3]. In their
second representation theorem, Shapley and Baucells [11] show that a preorder
on a mixture set can be represented by a set of linear utility functions provided
that it satisfies the standard independence axiom in addition to an algebraic
continuity axiom. Another crucial assumption in this representation result is
a more technical “properness” condition1. Unfortunately, apart from difficul-
ties associated with identification of primitive restrictions on preferences that
can guarantee this technical condition, a further problem with the “properness”
assumption is that it is a sufficient but not a necessary condition for repre-
sentability (see Example 3.5). It is clear that if a mixture set contains non-
simple lotteries2 , linear utility functions obtained by the theorem Shapley and
Baucells [11] do not necessarily posses an expected-utility form. Dubra et al. [3]
show that if the domain of a preorder is the set of all countably additive Borel
probability measures on a compact metric space, and if a stronger topological
continuity axiom is satisfied, these linear utility functions will indeed posses an
expected utility form. The topological approach of Dubra et al. [3] also allow
the authors to drop the “properness” condition of Shapley and Baucells [11]
for a preorder defined on this particular set, so that the representation theorem
can be expressed solely in terms of the conventional primitive assumptions of
independence and continuity.
The purpose of the present paper is to amplify the scope of the topological

approach of Dubra et al. [3], so that several other cases of particular importance
within the domain of the classical expected utility theory can be included. To
this end, at the first step, we provide a topological characterization of repre-
sentability of a preorder defined on a convex subset of an arbitrary vector space
(see Lemma 2.4). Then, we focus on preorders defined on specific lottery spaces

1For a definition of this condition see Subsection 3.2.
2By a “lottery” we mean a roulette lottery: a device, say, a course of action, that pro-

duces random outcomes (prizes) with known or estimated probabilities. With mathematical
terminology, a lottery on a set X is a random variable with values in X. As usual, we assume
that all lotteries having the same probability distribution are indistinguishable as far as pref-
erences are concerned, and treat a lottery and its distribution as if they are the same objects.
A “simple lottery” refers to a lottery that obtains finitely many different values.
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that are outside the scope of the main theorem of Dubra et al. [3], and pro-
vide necessary and sufficient primitive conditions for representability of these
relations in specific forms.
To put more concretely, let us denote by X an arbitrary non-empty set of all

prizes, and letA be an algebra of subsets ofX. It will be shown that any preorder
% on the set of all probability measures that belong to a Riesz subspace of the
Riesz space of all finitely additive signed measures on A can be represented by a
set of linear utility functions, provided that % satisfies the independence axiom
as well as a continuity axiom with respect to (w.r.t.) the total variation norm
(see Theorem 3.2). Let us emphasize that the topological continuity axiom used
in this result is quite weak and plausible, but naturally still stronger than that of
the classical algebraic approach. We leave a formal statement and a discussion
of this axiom to Subsection 3.2. The reader should notice that, in this result,
the utility functions do not necessarily possess an expected utility form. Hence,
in fact, this theorem is a restricted version of the second representation theorem
of Shapley and Baucells [11]. The main advantage of the present approach is
that it replaces “properness” condition with a plausible continuity condition. It
is also worth to note that this “properness” condition becomes a real problem
only if X is infinite, and hence, our contribution concerns only this case.
As an immediate consequence of the above theorem, we obtain an expected

multi-utility theorem for a preorder defined on the set of all simple lotteries on
X. We shall also show that such a representation is still possible for a preorder
on the set of all discrete lotteries3 on X. A comparison of these expected-multi
utility theorems with that of Dubra et al. [3] reveals their importance. First,
we do not make any assumption on X so that sets of prizes that cannot be com-
pactified in a natural manner are included. For instance, the case of monetary
or physical prizes available at different points of an infinite time horizon fall into
this category. Another point is that these theorems rely on a weaker continuity
axiom than the continuity notion of Dubra et al. [3]. Most importantly, these
theorems show that unless inclusion of non-discrete lotteries is necessary, one
can dispense with the assumption that preferences are defined on the set of all
Borel probability measures on X, which may be an extremely large set even if
X is a compact metric space.
A major difficulty with a large set of lotteries as the domain of a prefer-

ence relation is that it may contain lotteries of extremely complex forms.4 As
Aumann [2] points out, one of the main motivations behind relaxation of com-
pleteness axiom is that a decision problem might be too complex for an indi-
vidual and the decision maker might prefer to stay indecisive in such problems.
Allowing incompleteness itself may not solve the problem since continuity prop-
erties implied by the intended form of representation may require that a great
many of lotteries are comparable with each other, no matter how complex they

3By a “discrete lottery” we mean a lottery that obtains countably many different values.
4 Suppose for example that X is the interval [0, 1] , and let µ be the Lebesgue measure.

Take any µ-measurable, bounded and non-negative real function f on X that takes positive
values on a set of positive µ-measure. Then the set function that assigns to a Borel set E the
number

R
E fdµ/

R
X fdµ is a countably additive Borel probability measure on X.
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are; comparability of lotteries of very simple forms may lead to comparability
of lotteries of very complex forms.5 Of course, the most natural way to avoid
such a problem is to assume that preferences are defined on the smallest of all
suitable lottery sets. Since many decision making problems involve only simple
or discrete lotteries rather than a continuous probability distribution over the
set of all outcomes, our contribution in this direction is of importance.6 For
example, in cases where an agent is supposed to make a proposal that might be
materialized or rejected, each offer x of the agent defines a simple lottery that
yields x with some (known) probability px, and the null outcome with proba-
bility 1− px. If the agent is given the opportunity to revise her offer once the
previous offer is rejected, in a model with infinite time horizon where the time of
materialization matters, a strategy consisting of a sequence of proposals would
define a discrete lottery. Another good example of a simple lottery is an insur-
ance contract offered to a consumer that produces two different outcomes: the
cost of insurance in case loss does not take place, and the net payment in case
of loss. More generally, in any situation that can be expressed as an extensive
form game and that involves finitely many uncontrollable random parameters
each obtaining finitely many different values, a profile of pure strategies would
define a simple lottery determined by the (objective) distribution of parameters.
The main shortcoming of our expected multi-utility theorems is that, even

if X is a compact metric space, in contrast to the main theorem of Dubra et al.
[3], Bernoulli utility functions are not necessarily continuous on X. Since con-
tinuity of these functions might be important for existence and identification of
alternatives that are maximal w.r.t. a preorder, this is a notable disadvantage.7

Despite the associated problems indicated above, it is of interest to know
whether one can provide expected multi-utility theorems for relations contain-
ing non-discrete lotteries in their domain. After all, domain of a relation is a
primitive of the theory, and a decision making problem may involve lotteries
of non-discrete form, say, in a model with continuous time, a monetary lottery
that obtains random values over time. By employing a continuity axiom w.r.t.
the topology induced by the set of all bounded A-measurable mappings, we
shall present an expected multi-utility theorem for preorders defined on the set
of all finitely additive probability measures on A. Since, as far as we know, a
topological approach within the context of this theorem has never been used in
the standard theory (for a detailed exposition see Fishburn [5, Chapter 10]), we
should stress that the mentioned continuity axiom is a necessary condition. A
far more interesting case is the case of a binary relation defined on the set of all
countably additive probability measures on A, for finitely additive measures are
unnatural objects that can hardly arise in economic problems. Unfortunately,

5See the weak*-continuity axiom in Subsection 3.3 and a classical monotonicity assumption
given in Footnote 16. Even after the completeness axiom is relaxed, these conditions are
necessary for representation in expected multi-utility form.

6Note, however, our expected-multi utility theorems do not function on an arbitrary convex
set of lotteries. Since even the inclusion of all simple lotteries will rarely be necessary, an inter-
esting open question is whether, under a set of plausible primitive restrictions, a generalization
in this direction would be possible.

7 See Footnote 13.
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this case turns out to be much more difficult to handle than those mentioned
previously. Even without imposing the restriction of continuous Bernoulli utility
functions, we could not obtain a direct extension of the main theorem of Dubra
et al. [3] to more general spaces of prizes. More specifically, since the case of
discrete probability measures is already covered by one of the theorems intro-
duced above, the problem arises when the space of certain prizes is uncountable
and is not a compact metric space.
The organization of the paper is as follows. In Section 2, we introduce the

axioms to be used in a general format and state a topological characterization
of representability. In Section 3, we present our representation theorems and
give a general uniqueness theorem in the sense of Dubra et al. [3].

2 Axioms and a Technical Characterization
The purpose of this section is to formulate the axioms and the problem in a
general setting where the set of lotteries is a subset of an arbitrary (real) vector
space. We also give a topological characterization of representability.
Throughout the section, % denotes an arbitrary binary relation on a convex

set P contained in a vector space Y. The sets {γ (p− q) : γ > 0, p % q} ⊂ Y and
{(p, q) : p % q} ⊂ P × P will be denoted by cone(%) and Gr(%), respectively.
Following the terminology of Dubra et al. [3], the term “preference relation”
is used instead of the term “preorder” which, as usual, refers to a reflexive
and transitive binary relation. The reader should notice that, in contrast to
the standard theory, completeness is omitted in this definition of a preference
relation.
Given a linear, Hausdorff topology τ on Y, (P, τ) will denote the topological

space obtained by endowing P with its topology relative to the topological vector
space (t.v.s.) (Y, τ).8 Given another vector space Y 0 and a bilinear functional
(y, y0)→ hy, y0i on Y × Y 0, hY, Y 0i is said to be a dual pair if

for any y in Y \ {0} there exists a y0 in Y 0 such that hy, y0i 6= 0,

for any y0 in Y 0\ {0} there exists a y in Y such that hy, y0i 6= 0.

For any dual pair hY, Y 0i, σ (Y, Y 0) will denote the topology on Y induced by
Y 0.9 (Y, τ)0 stands for the topological dual of the t.v.s. (Y, τ). We denote the
algebraic dual of Y by Y ∗. For a set C contained in a vector space, cone(C)
stands for the convex cone generated by C, that is, cone(C) :=

S
γ≥0 γ co(C),

where co(C) is the convex hull of C.
Next, starting with the standard independence axiom, we introduce the ax-

ioms to be used throughout the study.

8By a t.v.s. (Y, τ) , we always mean a vector space Y endowed with a linear, Hausdorff
topology τ .

9Under the topology σ (Y, Y 0), a net {yλ}λ∈Λ in Y converges to y ∈ Y if and only if
limλ hyλ, y0i = hy, y0i for all y0 ∈ Y 0.
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Independence axiom. For all p, q, r ∈ P and for all α ∈ (0, 1) ,

p % q implies αp+ (1− α) r % αq + (1− α) r.

The following continuity condition plays a central role in [11].

Weak continuity axiom. {α ∈ [0, 1] : αp+ (1− α) q % αr + (1− α)w} is a
closed subset of [0, 1] for all p, q, r, w ∈ P.

In what follows, we shall use the weak continuity axiom only to obtain a
technical characterization of representability, and work almost exclusively with
the two stronger continuity axioms given below. These axioms are asserted for
a linear, Hausdorff topology τ on Y.

Sequential τ-continuity axiom. Gr (%) is sequentially τ×τ -closed in P×P.
That is, for any pair of convergent sequences {pn} and {qn} in (P, τ) ,

pn % qn for all n imply lim
n
pn % lim

n
qn.

In one of our results we will have to employ the following stronger form
of continuity condition.

τ-continuity axiom. Gr (%) is τ × τ -closed in P × P. That is, for any pair of
convergent nets {pλ}λ∈Λ and {qλ}λ∈Λ in (P, τ) ,

pλ % qλ for all λ ∈ Λ imply lim
λ
pλ % lim

λ
qλ.

It should be emphasized that this paper relies purely on exploitation of
topological continuity axioms given above. In contrast to the classical theory,
though in our expected utility theorems continuity properties of the Bernoulli
utility functions are out of consideration, we work with continuity axioms w.r.t.
appropriately chosen topologies instead of an Archimedean axiom. We believe
that even if a continuity axiom is a necessary condition for a desired form of
representation, it is of importance to know whether one can replace it with
a weaker continuity axiom. After all, this might be considered as an evidence
supporting plausibility of the intended form of representation. Of course, results
to be presented below do not constitute an exception, and it is of interest to
know whether the same or similar results can be obtained with weaker continuity
axioms.
The representation notion to be used throughout the paper is given next.

Definition 2.1 Let T be a set of linear functionals on Y. We say that T is a
set of utility functions that represents % if, for all p, q ∈ P,

p % q if and only if T (p) ≥ T (q) for all T ∈ T. (1)

The following lemma is due to Shapley and Baucells [11].
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Lemma 2.2 Let % be a preference relation on a convex subset P of a vector
space Y . Assume further that % satisfies independence and weak continuity
axioms. Then for any p, q ∈ P,

p % q if and only if (p− q) ∈ cone(%).

The reader should notice that if % is a preference relation that satisfies
the independence axiom, then the set cone(%) is a convex cone. Proofs of
representation results of both [11] and [3] are based on applications of well
known separation theorems to separate points outside the set cone(%) from this
set. Following the topological approach of [3] in a more general framework,
in the next section, we will endow a vector space Y of signed measures with a
topology τ and try to obtain a non-empty set of utility functions T ⊂ (Y, τ)0 that
satisfies (1). Here, the choice of a particular topology τ will determine the form
of the functionals in T. Dubra et al. [3] show that τ -closedness of cone(%) is a
sufficient condition for this idea to be applicable.10 The next lemma states that
the converse of this observation is also true. Since it is of particular importance,
we repeat their sufficiency proof.

Lemma 2.3 Let P be a non-empty, convex subset of a locally convex t.v.s.
(Y, τ) , and let % be a preference relation on P . Assume further that % satisfies
the weak continuity and independence axioms. Then there exists a non-empty,
σ
¡
(Y, τ)0 , Y

¢
-closed and convex set of utility functions T ⊂ (Y, τ)0 that repre-

sents % if and only if

cone(%) ∩ [P − P ] ⊂ cone(%), (2)

where cone(%) is the τ -closure of cone(%).

Proof. First assume that (2) holds. Put

T :=
©
T ∈ (Y, τ)0 : T (µ) ≥ 0,∀µ ∈ cone(%)

ª
.

Obviously, T is a non-empty, σ
¡
(Y, τ)0 , Y

¢
-closed and convex set.

We shall now show that T represents %. For any pair of points p and q in P
with p % q, p − q belongs to cone(%), and so, by definition of T, T (p) ≥ T (q)
for all T ∈ T.
To see that the converse is also true, suppose to the contrary that for a pair

of points p and q in P with p ² q we have T (p) ≥ T (q) for all T ∈ T . Then, by
(2) and Lemma 2.2, p − q does not belong to cone(%). Since % is a preference
relation that satisfies independence axiom and since P is non-empty, clearly,
cone(%) is a non-empty, convex and τ -closed set. Now, as τ is locally convex,
by Hahn-Banach separation theorem [10, Theorem 3.4], there is a functional
T ∈ (Y, τ)0 and a number δ such that

T (p− q) < δ ≤ T (µ) for all µ ∈ cone(%).
10They prove this fact for a particular topology on a particular space of measures, yet their

proof is applicable in a more general framework.
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Since cone(%) is a cone that contains 0, clearly, this implies that δ ≤ 0 ≤ T (µ)
for all µ ∈ cone(%). Thus, T belongs to T, and in fact, T (p− q) < 0, which is
a contradiction. So, indeed, the set T represents % .
Now suppose that there exists a set of utility functions T ⊂ (Y, τ)0 that rep-

resents %, and let µ := p− q be an arbitrary point in cone(%)∩ [P − P ] where p
and q are elements of P. Then there exists a τ -convergent net {γλ (pλ − qλ)}λ∈Λ
in cone(%) such that γλ > 0, pλ % qλ for all λ ∈ Λ, and

lim
λ

γλ (pλ − qλ) = p− q. (3)

Now, as T represents %, we must have T (γλ (pλ − qλ)) ≥ 0 for all λ ∈ Λ, and
for all T ∈ T. So, since each functional in T is τ -continuous, from (3) it follows
that T (p− q) ≥ 0 for all T ∈ T. Obviously, this implies that p % q, and hence,
µ ∈ cone(%). This completes the proof.
The dual of the question answered in Lemma 2.3 is the following: given a

subspace Y 0 of Y ∗, what are the necessary and sufficient conditions for existence
of a non-empty set T ⊂ Y 0 that represents a relation? We close this section with
the following lemma which answers this question provided that Y 0 is sufficiently
large so that hY, Y 0i constitutes a dual pair under the duality mapping (p, T )→
T (p) . It is worth to note that hY, Y ∗i is always a dual pair.

Lemma 2.4 Let P be a non-empty, convex subset of a vector space Y, and let
Y 0 be a linear subspace of Y ∗ such that hY, Y 0i is a dual pair. Let furthermore %
be a preference relation on P that satisfies the weak continuity and independence
axioms. Then there exists a non-empty, σ (Y 0, Y )-closed and convex set of utility
functions T ⊂ Y 0 that represents % if and only if

cone(%) ∩ [P − P ] ⊂ cone(%),

where cone(%) is the σ (Y, Y 0)-closure of cone(%).

Proof. By a well known duality theorem we have (Y,σ (Y, Y 0))0 = Y 0 [1,
Theorem 4.69], and the proof follows from Lemma 2.3.

3 Expected Multi-utility Theorems

3.1 Preliminaries

Throughout the rest of the paper, X denotes a non-empty set of all prizes,
and A stands for an arbitrary algebra of subsets of X. If no additional infor-
mation is given, a measure on A should be considered as finitely additive and
signed. For a measure p on A, the total variation of p over E ∈ A is defined as
v (p | E,A) := sup

Pn
i=1 |p (Ei)| , where the supremum is taken over all finite se-

quences {E1, ..., En} of disjoint sets in A such that Ei ⊂ E for all i ∈ {1, ..., n}.
It is well known that the set function v (p | ·,A) defines a measure on A, and
the function v (· | X,A) defines a norm on the vector space of all measures p
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on A such that v (p | X,A) < ∞. We denote this normed space by ba (X,A) .
Instead of v (p | X,A) we will write kpkA . Since our analysis will be closely re-
lated to order structure of ba (X,A) , let us recall the terminology of the theory
of ordered vector spaces.
An ordered vector space Y is a vector space equipped with a partial order

(antisymmetric preorder) ≥ such that, for all p, q, r ∈ Y, and for all real numbers
α ≥ 0,

p ≥ q implies αp ≥ αq and p+ r ≥ q + r.

An ordered vector space Y is said to be a Riesz space if any pair of points p
and q in Y have a supremum. In an ordered vector space Y, an element r ∈ Y
is said to be the supremum of {p, q} ⊂ Y if

r ≥ p, q and,

for any w in Y, w ≥ p, q imply w ≥ r.

For any Riesz space Y and for any pair of elements p, q ∈ Y, the supremum of
{p, q} will be denoted by p ∨ q. p+, p− and |p| will stand for p ∨ 0, (−p) ∨ 0
and p ∨ (−p), respectively. It can easily be seen that, for any element p of a
Riesz space, we have p = p+− p−. A Riesz subspace L of a Riesz space Y is a
linear subspace of Y that satisfies “p∨ q ∈ L whenever p, q ∈ L.” A Riesz space
equipped with a norm k·k is said to be a normed Riesz space if |p| ≤ |q| implies
kpk ≤ kqk . A norm complete normed Riesz space with the property “p, q ≥ 0
imply kp+ qk = kpk+ kqk” is known as an AL-space.
It is well known that ba (X,A) is an AL-space with the ordering ≥ which is

defined as, for any r, q ∈ ba (X,A), r ≥ q if and only if r (E) ≥ q (E) for all
E ∈ A [1, Theorem 8.70]. Moreover, for any pair of points r, q ∈ ba (X,A) , the
supremum of r and q is given by

r ∨ q (E) = sup {r (B) + q (E\B) : B ⊂ E,B ∈ A} for all E ∈ A.

With this convention, for any measure r ∈ ba (X,A), r+ and r− are nothing
but the well known positive and negative variations obtained from the Jordan
decomposition.
We denote the set of all finitely additive probability measures on A by

Pa (X,A) . Pca (X,A) will stand for the set of all countably additive probability
measures on A. A probability measure p on 2X is said to be simple if p (F ) = 1
for some finite set F ⊂ X, where 2X denotes the σ-algebra of all subsets of
X. Similarly, we say that a countably additive probability measure p on 2X

is discrete if p (F ) = 1 for some countable set F ⊂ X. The point mass of a
point x ∈ X will be denoted by δx. Clearly, a probability measure p on 2X is
discrete if and only if p =

P
x∈F αxδx for a countable set F ⊂ X, and for a

set of numbers {αx : x ∈ F} ⊂ [0, 1] such that
P

x∈F αx = 1; and similarly for
simple probability measures. The set of all simple probability measures on X
and the set of all discrete probability measures on X will be denoted by Ps (X)
and Pd (X) , respectively. We define S (X) and D (X) to be the span of Ps (X)
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and of Pd (X) , respectively. ca (X,A) will stand for the subspace of ba (X,A)
that consists of all countably additive measures on A.
Let Y be a Riesz subspace of ba (X,A) , and let us denote the set of all

probability measures that belong to Y by PY , that is, PY := Pa (X,A)∩Y. The
reader should notice that the span of the set PY equals to Y. Our analysis is
restricted to relations defined on a set of the form PY . Though this restriction
narrows the domain of our results considerably, in many cases of special impor-
tance this condition will be satisfied. In particular, with some simple algebra it
can be verified that S (X) and D (X) are Riesz subspaces of ba

¡
X, 2X

¢
. It is

also true that ca (X,A) is a Riesz subspace of ba (X,A), but the proof of this
fact requires some work (see [1, Theorem 8.73]).
For a set E ∈ A we denote the characteristic function of E by 1E. A

function u is said to be A-simple if it is of the form u =
Pn
i=1 αi1Ei , where

{αi : i = 1, ..., n} ⊂ R and {Ei : i = 1, ..., n} ⊂ A. The integral of an A-
simple function u :=

Pn
i=1 αi1Ei w.r.t. p ∈ ba (X,A) is defined by

R
E
udp :=Pn

i=1 αip (E ∩Ei) (E ∈ A) . The Banach-space (normed by the sup-norm) of all
uniform limits of A-simple functions will be denoted by Mb (X,A) . The reader
should notice that if A is a σ-algebra, then u belongs to Mb (X,A) if and only
if u is bounded and u−1 (B) ∈ A for each Borel subset B of the real line. For
u ∈Mb (X,A), the integral of u w.r.t. p ∈ ba (X,A) is given by

R
E
udp := limnR

E
undp (E ∈ A) where un is a sequence of A-simple functions that uniformly

converge to u (for a proof of the fact that this integral is well defined see [4,
Lemma III.2.16]). It is also worth to note that Mb

¡
X, 2X

¢
is nothing but the

Banach space of all bounded real functions on X.
In our expected multi-utility theorems, the following representation notion

of Dubra et al. [3] will be used.

Definition 3.1 Let U be a subset ofMb (X,A) , and let % be a binary relation
defined on a set P ⊂ Pa (X,A) . We say that U is a set of Bernoulli utility
functions that represents % if, for all p, q ∈ P,

p % q if and only if
Z
X

udp ≥
Z
X

udq for all u ∈ U.

The reader should contrast the above definition with Definition 2.1, and
notice the distinction between our use of the terms “Bernoulli utility function”
and “utility function.” Now, we are ready to proceed.

3.2 Representation with Norm-continuity Axiom

Throughout the subsection, % stands for a binary relation defined on a set of
the form PY for some Riesz subspace Y of ba (X,A). Representation results of
this subsection rely on the following sequential continuity axiom.

Norm-continuity axiom. For any pair of convergent sequences {pn} and {qn}
in (PY , k·kA) ,

pn % qn for all n imply lim
n
pn % lim

n
qn.
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We would like to stress that since convergence under the norm-topology is
a particularly strong form of convergence, norm-continuity axiom is a notably
weak form of topological continuity condition. To demonstrate the strength
of norm-convergence criterion let us note that, in this topology, a sequence of
degenerate lotteries {δxn} converges to another degenerate lottery δx if and
only if xn = x for all sufficiently large n. Hence, norm-continuity axiom does
not impose any restriction to preferences over degenerate lotteries. To illus-
trate the same point for the case of discrete lotteries, let us consider a norm-
convergent sequence of discrete lotteries

©
pn :=

P
x∈Fn α

n
xδx

ª
with limn pn :=

p :=
P

x∈F αxδx. It can easily be seen that this can be true if and only if
limn

P
x∈Fn\F αnx = 0 and limn

P
x∈F |αnx − αx| = 0. This simply means that,

as n becomes large, the lottery pn yields the certain prizes which are not likely
to occur under lottery p with a very small total probability, and yields the prizes
offered by p with probabilities so close to those assigned by p that even the sum
of their absolute differences is near 0. It is also worth to note that for any
sequence {pn} in ba (X,A) if limn kpn − pkA = 0 for some p ∈ ba (X,A), then
limn

R
X
udpn =

R
X
udp for all u ∈ Mb (X,A). Thus, norm-continuity axiom is

weaker than any other topological continuity condition that could be imposed in
terms of the bounded, integrable functions on X.11 With such a strong conver-
gence criterion, of course, the postulate “limn pn % limn qn whenever pn % qn
for all n” is plausible.
As we noted earlier, since their spans are Riesz subspaces of ba (X,A) , the

sets Ps (X) , Pd (X) , Pca (X,A) , and Pa (X,A) are covered by the main theorem
of this subsection, which comes next.

Theorem 3.2 Let A be an algebra of subsets of a non-empty set X, and let Y
be a Riesz subspace of ba (X,A) with PY 6= ∅. Then a binary relation % on PY
is a preference relation that satisfies independence and norm-continuity axioms
if and only if there exists a non-empty, σ

¡
(Y, k·kA)

0 , Y
¢
-closed and convex set

of utility functions T ⊂ (Y, k·kA)
0 that represents % .

The proof of Theorem 3.2 will be based on the following obvious lemma.

Lemma 3.3 Let (Y, k·k) be an AL-space, and let {pn} be a convergent sequence
in (Y, k·k) with limn pn := p. Then limn p+n = p+ and limn p−n = p−.

We proceed with a proof of Theorem 3.2.
Proof of Theorem 3.2. Since the “if” part is obvious, we shall prove

the “only if” part. Let % be a preference relation on PY that satisfies norm-
continuity and independence axioms. If we can show that cone(%) is a norm-
closed subset of Y, the proof will follow from Lemma 2.3. To this end, let
{µn} be a convergent sequence in cone(%) with limn µn := µ ∈ Y. Since PY
11Continuity axioms w.r.t. topology of weak convergence used in [6] and [3] fall into this

category. However, since in these papers X is equipped with a topology, and continuity of
the Bernoulli utilities is a central issue, this observation does not imply that norm-continuity
condition can replace or is superior than these continuity axioms.
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is non-empty and since % is reflexive, 0 belongs to cone(%). Hence, without
loss of generality, we may assume that µ 6= 0 and µn 6= 0 (n ∈ N). Note that
by definition of cone(%), we have µn (X) = 0 for all n ∈ N, and therefore,
µ (X) = 0. Set c := µ+ (X) = µ− (X) > 0 and cn := µ+n (X) = µ−n (X) > 0
(n ∈ N). Now, as ba (X,A) is an AL-space, by Lemma 3.3, we must have
limn kµ+n − µ+kA = limn kµ−n − µ−kA = 0. From this it follows that limn cn = c,
and hence,

lim
n

°°°°µ+ncn − µ
+

c

°°°°
A
= lim

n

°°°°µ−ncn − µ
−

c

°°°°
A
= 0. (4)

Observe that as Y is a Riesz subspace of ba (X,A) , the points µ+/c, µ−/c,
µ+n /cn, µ

−
n /cn belong to PY (n ∈ N). Thus, by Lemma 2.2, µ+n /cn % µ−n /cn

for all n ∈ N. So, from (4) and from norm-continuity of %, it follows that
µ+/c % µ−/c. Hence, we conclude that the point µ = c (µ+/c− µ−/c) belongs
to cone(%).
The following expected multi-utility theorem for simple probability measures

is a consequence of Theorem 3.2.

Theorem 3.4 (Simple measures) Let X be a non-empty set and let % be a
binary relation on Ps (X). Then the following are equivalent.

1. % is a preference relation that satisfies independence and norm-continuity
axioms.

2. There exists a non-empty set U of bounded Bernoulli utility functions on
X that represents % .

Proof. (1=⇒2) Since S (X) is a Riesz subspace of ba
¡
X, 2X

¢
, by Theorem

3.2, there exists a non-empty set T ⊂ (S (X) , k·k2X )
0 that represents %. For

each T ∈ T, define the function uT : X → R by uT (x) := T (δx) for all x ∈ X,
and observe that, as the image of a bounded set under a norm-continuous linear
functional, the set {uT (x) : x ∈ X} is a bounded subset of the real line [10,
Theorem 1.18]. Finally, note that

R
X
uTdp = T (p) for all T ∈ T, and for all

p ∈ Ps (X). Thus, the set U := {uT : T ∈ T} represents % .
(2=⇒1) Norm-continuity of % follows from the discussion that precede The-

orem 3.2. The remaining implications are obvious.
As we noted earlier, if X is a finite set, the above expected multi-utility

theorem follows from the second representation theorem of Shapley and Baucells
[11]. However, their theorem is based on a properness assumption which, by
definition, postulates that the relative algebraic interior12 of cone(%) is non-
empty. Unfortunately, as Dubra et al. [3] also observe, if X is infinite, it is not
easy to see what sort of a primitive axiom on preferences would guarantee this
technical condition. Moreover, as we shall show in the following simple example,

12The relative algebraic interior of cone(%) is the set of all points µ ∈ cone(%) that satisfy
the following property: for any ν ∈ cone(%), there exists a number α > 1 such that the point
ν + α (µ− ν) belongs to cone(%).
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properness is not a necessary condition for representability in expected multi-
utility form.

Example 3.5 Let X be an infinite set and let X 0 be an arbitrary infinite subset
of X with X 0 6= X. Define the binary relation % on Ps (X) as, for any pair
of points p, q ∈ Ps (X) , p % q if and only if p ({x}) ≥ q ({x}) for all x ∈
X 0. Note that, by definition, % is represented by the set of bounded Bernoulli
utility functions

©
1{x} : x ∈ X 0ª. However, relative algebraic interior of the set

cone(%) is empty. To illustrate this point, let us take an arbitrary element µ of
cone(%). Now, obviously, the set Z := {x ∈ X 0 : µ ({x}) 6= 0} is finite. So, as
X 0 is infinite, we can pick a point x0 ∈ X 0\Z. Now, take a point y0 ∈ X\X 0,
and observe that δx0− δy0 ∈ cone(%). Let α > 1, and set µα := (δx0 − δy0) +
α (µ− (δx0 − δy0)) . Then, µα ({x0}) = 1 − α < 0, and hence, µα /∈ cone(%).
Thus, indeed, µ does not belong to relative algebraic interior of the set cone(%).

Next, we give an expected multi-utility theorem for discrete probability mea-
sures.

Theorem 3.6 (Discrete measures) Let X be a non-empty set and let % be
a binary relation on Pd (X). Then the following are equivalent.

1. % is a preference relation that satisfies independence and norm-continuity
axioms.

2. There exists a non-empty set U of bounded Bernoulli utility functions on
X that represents % .

Proof. Since the other implication is obvious, we shall prove that “1” im-
plies “2”. Assume that “1” holds. SinceD (X) is a Riesz subspace of ba

¡
X, 2X

¢
,

by Theorem 3.2, there exists a non-empty set T ⊂ (D (X) , k·k2X )
0 that rep-

resents %. For each T ∈ T, define the bounded real function uT on X as
in the proof of Theorem 3.4. We will complete the proof by showing thatR
X
uTdp = T (p) for all T ∈ T, and for all p ∈ Pd (X) . To this end, let T

be an element of T, and let p :=
P∞
i=1 αiδxi be a discrete probability mea-

sure, where {xi : i ∈ N} is a countable subset of X, and the set {αi : i ∈ N} ⊂
[0, 1] is such that

P∞
i=1 αi = 1. Then, the sequence {pn :=

Pn
i=1 αiδxi} con-

verges in norm-topology to p. Thus, from norm-continuity of T it follows that
limn

Pn
i=1 αiuT (xi) = limn T (pn) = T (p) . Moreover, as we noted earlier, we

have limn
R
X
udpn =

R
X
udp for any bounded real function u onX. So, in partic-

ular, limn
Pn
i=1 αiuT (xi) = limn

R
X
uTdpn =

R
X
uTdp. Hence,

R
X
uTdp = T (p)

as we claimed.
The reader should notice that if X is a countable set, the set of all discrete

probability measures on X coincides with the set of all countably additive prob-
ability measures on 2X . Hence, for this particular case, Theorem 3.6 provides
an extension of the main theorem of [3].

12



As we mentioned in Section 1, in contrast to the main theorem of Dubra et al.
[3], our approach does not yield a set of continuous Bernoulli utility functions.13

Even if X is a compact metric space, neither Theorem 3.4 nor Theorem 3.6
can be strengthened to read as, under the same assumptions, there is a set of
Bernoulli utility functions U ⊂ Cb (X) that represents %, where Cb (X) is the
set of bounded continuous functions on X. The problem is fairly clear: the
norm-continuity axiom together with additional standard assumptions do not
guarantee the continuity condition of [3], and failure of this condition prevents
existence of continuous Bernoulli utilities.14 Indeed, in Example 3.5 if we set
X := [0, 2] and X 0 := [1, 2] , continuity condition of [3] would fail since the
sequence

©
δ1−1/n

ª
converges to δ1 in the topology of weak convergence and the

lotteries δ2 and δ1 are incomparable, but we have δ2 % δ1−1/n for each n ∈ N.
We should emphasize that, at least without imposing some further condi-

tions, it is not possible to drive expected multi-utility theorems from Theorem
3.2 for probability spaces that contain non-discrete measures. Here, the prob-
lem is that the norm-dual of ba (X,A) (or ca (X,A)) is, in general, too rich and
contain functionals other than those of the form p→

R
X
udp (for a description

of the norm-dual of ca (X,A) see [7]). Therefore, richness of the norm-topology,
which enabled us to prove that under the hypotheses of Theorem 3.2 cone (%)
is a closed set, is at the same time a problematic factor that leads to continuous
linear functionals of undesirable forms. Though it is possible to give a concrete
example which shows that linear utility functions in Theorem 3.2 do not neces-
sarily take an expected utility form, we shall not do so here, and simply stress
that hypotheses of Theorem 3.2 are not strong enough to guarantee even the
well known mild monotonicity conditions discussed in [5, Chapter 10] (see also
Footnote 16). Hence, in the next subsection, we focus on a stronger continuity
axiom to obtain an expected multi-utility theorem for non-discrete probability
measures.

3.3 Representation with a Stronger Continuity Axiom

The purpose of this subsection is to provide an expected multi-utility theorem
for preference relations defined on the set Pa (X,A). To obtain this result, we
will follow the main idea of the proof of the expected multi-utility theorem of
[3] in a different framework, and exploit the well known fact that the norm-
dual of Mb (X,A) is isometrically isomorphic to ba (X,A) [4, Theorem IV.5.1].

13One useful implication of the continuity properties of the Bernoulli utilities is related to
existence of maximal alternatives. Let X be a compact metric space and let A be the Borel σ-
algebra of X. Dubra et al. [3] show that if % is a binary relation on a set P ⊂ Pca (X,A) that
admits a set of continuous Bernoulli utilities, then there is a continuous function u : X → R
such that the functional p →

R
X udp represents % in the sense of Aumann [2]. That is, for

all p, q ∈ P , we will have p Â (∼) q =⇒
R
X udp > (=)

R
X udq. Since u is continuous and X is

compact, some x maximizes u over X. Now, it is easy to check that δx is maximal w.r.t. %.
14 In [3], the authors focus on a preorder defined on the set Pca (X,A), where X and A are

as in Footnote 13. In our terminology, the continuity axiom they employ is the (sequential)
τ -continuity axiom, where τ is the topology of weak convergence. Under this topology, a
sequence {pn} in ca (X,A) converges to a point p in ca (X,A) if and only if

R
X udpn →

R
X udp

for each continuous real function u on X.
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Compared to Archimedean axiom of classical theory, the continuity axiom em-
ployed in this result is extremely strong, yet it is still a necessary condition. The
topology we shall work with is the weak*-topology15 of ba (X,A) . Under this
topology, a net {pλ}λ∈Λ in ba (X,A) converges to a point p ∈ ba (X,A) if and
only if limλ

R
X
udpλ =

R
X
udp for all u ∈ Mb (X,A). The following continuity

axiom is asserted for a binary relation % on a set P ⊂ Pa (X,A) that is endowed
with (relative) weak*-topology.

weak*-continuity axiom. 16 ,17The set Gr (%) is weak*×weak* closed in the
set P × P. That is, for any pair of weak*-convergent nets {pλ}λ∈Λ and
{qλ}λ∈Λ in P,

pλ % qλ for all λ ∈ Λ imply lim
λ
pλ % lim

λ
qλ.

We are now ready to give the promised expected multi-utility theorem. The
proof we provide consists of straightforward generalizations of sequential argu-
ments of the main theorem of [3] to arbitrary nets, and applications of some
well known theorems.

Theorem 3.7 (Finitely add. measures) Let X be a non-empty set and let
A be an algebra of subsets of X. A binary relation % on Pa (X,A) is a preference
relation that satisfies the weak*-continuity and independence axioms if and only
if there exists a closed, convex and non-empty set U ⊂Mb (X,A) that represents
%.

Proof. The “if” part is obvious. For the “only if” part, by Lemma 2.4,
it suffices to show that cone(%) is weak*-closed in ba (X,A). Since ba (X,A)
is the norm dual of the Banach space Mb (X,A), by Krein-Šmulian theorem,
the convex set cone(%) is weak*-closed if and only if for each k > 0 the set
cone(%) ∩ kB is weak*-closed, where B := {µ ∈ ba (X,A) : kµkA ≤ 1} (see [9,
Theorem 2.7.11]).
First, notice that Pa (X,A) is a weak*-closed subset of B. Hence, by Banach-

Alaoglu theorem, both Pa (X,A) and B are weak*-compact (see [9, Theorem
2.6.18]).
15To avoid the awkward notation σ (ba (X,A) ,Mb (X,A)) , we depart from our previous

notations.
16 If {x} ∈ A for each x in X, it can be shown that the set of all simple probability measures

is weak*-dense in Pa (X,A) . Hence, this continuity axiom together with the independence
axiom also imply the following strong form of a classical monotonicity assumption:
(p (E) = 1, δx % q for all x ∈ E) =⇒ p % q, (p (E) = 1, q % δx for all x ∈ E) =⇒ q % p.

In the classical theory, this assumption together with additional standard axioms turn out to
be sufficient for representation of complete preference relations in expected utility form. So,
a natural question is whether one can dispense with the weak*-continuity axiom by coupling
the norm-continuity condition with this mild monotonicity assumption. At the moment we
do not know the answer of this question.
17Another notable point is that, under the weak*-topology, a net {pλ}λ∈Λ in Pa (X,A)

converges to a point p if and only if pλ (E) = p (E) for all E ∈ A. Hence, this continuity
condition can be expressed entirely in terms of convergence of the probabilities of the events.
This fact follows from norm-density of the set of all A-simple functions in Mb (X,A) , and
norm-boundedness of Pa (X,A) .
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Now let k > 0, and let {γλ (pλ − qλ)}λ∈Λ be a convergent net in cone(%)
such that γλ > 0, pλ % qλ, and

kγλ (pλ − qλ)kA ≤ k for all λ ∈ Λ. (5)

Put µ := limλ γλ (pλ − qλ) . Clearly, it suffices to show that µ ∈ cone(%). If
there is an index λ0 ∈ Λ such that γλ (pλ − qλ) = 0 for all λ ≥ λ0, then
µ = 0, and we are done by reflexivity. Therefore, assume that for each λ ∈ Λ
there exists a ϕ (λ) ∈ Λ such that ϕ (λ) ≥ λ and γϕ(λ)

¡
pϕ(λ) − qϕ(λ)

¢
6= 0. Set

µλ := γϕ(λ)
¡
pϕ(λ) − qϕ(λ)

¢
for each λ ∈ Λ. Then {µλ}λ∈Λ is a subnet18 of the

net {γλ (pλ − qλ)}λ∈Λ.
For each λ ∈ Λ, set wλ := µ+λ /cλ, and rλ := µ−λ /cλ, where cλ > 0 is the

common value of µ−λ (X) and µ
+
λ (X) . Then µλ = cλ (wλ − rλ) and kµλkA =

cλ (wλ (X) + rλ (X)) = 2cλ (λ ∈ Λ) . Hence, by (5), cλ ≤ k/2 for each λ ∈ Λ.
Note that the set [0, k/2] × Pa (X,A) × Pa (X,A) is compact with its product
topology. So, the net {(cλ, wλ, rλ)}λ∈Λ has a convergent subnet [1, Theorem
2.29]. Let (c, w, r) be the corresponding limit point of the net {(cλ, wλ, rλ)}λ∈Λ.
Then, clearly, c (w − r) is a limit point the net {µλ}λ∈Λ. A net in a topological
space converges to a point if and only if every subnet converges to that same
point [1, Lemma 2.14]. So, a subnet of the net {µλ}λ∈Λ converges to both µ
and c (w − r). Thus, as the weak*-topology is Hausdorff, we must have µ =
c (w − r) . Now note that, by Lemma 2.2, we have wλ % rλ for all λ ∈ Λ. So, by
weak*-continuity axiom, w % r, and this completes the proof.
Unfortunately, due to lack of duality relations that enabled us to prove the

above theorem, even by employing the weak*-continuity axiom, we could not
obtain an expected multi-utility theorem for a relation defined on Pca (X,A) .
It should be noted that for a relation % satisfying the hypotheses of Lemma 2.4,
such a representation is possible if and only if the set cone(%) is weak*-closed
in ca (X,A) . However, apart from the particular cases covered by the main
theorem of [3] and Theorem 3.6, we do not know under what circumstances this
condition can be satisfied.

3.4 Uniqueness

In this subsection, we give a straightforward generalization of the uniqueness
theorem of Dubra et al. [3]. This general form will cover all of our representation
theorems.
Let Y be a Riesz subspace of ba (X,A) and let Y 0 be a subspace of the

algebraic dual of Y such that hY 0, Y i is a dual pair (under the duality mapping
(T, p) → T (p)). We denote the linear functional p → p (X) =

R
X
1Xdp bye1X . Now, if the functional e1X belongs to Y 0 and if T is a subset of Y 0, the

σ (Y 0, Y )-closure of the convex cone
n
θe1X : θ ∈ Ro + cone (T) will be denoted

by hTihY 0,Y i .

18{yα}α∈A is said to be a subnet of a net {zλ} λ∈Λ if there exists a function ϕ : A→ Λ such
that: yα = zϕ(α) for each α ∈ A; for each λ0 ∈ Λ there exists an α0 ∈ A such that α ≥ α0
implies ϕ (α) ≥ λ0.
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Similarly, let M 0 be a subspace of Mb (X,A) and suppose that hM 0, Y i is a
dual pair (under the duality mapping (u, p) →

R
X
udp). Assume further that

1X ∈ M 0. Then, for any U ⊂ M 0, we define hUihM 0,Y i to be the σ (M
0, Y )-

closure of the convex cone {θ1X : θ ∈ R}+ cone (U) .
As a slight difference from the approach of Dubra et al. [3], the following

uniqueness theorem focuses on the algebraic dual of the span of the domain of the
relation % instead of focusing on the space Mb (X,A). We present this version
since it covers Theorem 3.2 as well. The proof we provide is a straightforward
generalization of the uniqueness theorem of [3].

Theorem 3.8 (Uniqueness of utility functions) Let Y be a Riesz subspace
of ba (X,A) , where A is an algebra of subsets of a non-empty set X. Let fur-
thermore, Y 0 be a linear subspace of Y ∗ such that e1X belongs to Y 0 and hY 0, Y i
is a dual pair. Then two non-empty sets T and K in Y 0 satisfy

T (p) ≥ T (q) for all T ∈ T ⇐⇒ K (p) ≥ K (q) for all K ∈ K,

for each p, q ∈ PY , if and only if hTihY 0,Y i = hKihY 0,Y i .

Proof. Since the “if” part is obvious, we omit it. To prove the “only if” part,
suppose to the contrary that the set hTihY 0,Y i \ hKihY 0,Y i is non-empty. Then,
clearly, we can pick a point T from the set T\ hKihY 0,Y i. As dual pairs are weakly

dual [1, Theorem 4.69], we have (Y 0,σ (Y 0, Y ))0 = Y . So, since hKihY 0,Y i is a
σ (Y 0, Y )-closed, non-empty convex cone, as in the proof of Lemma 2.3, we can
apply a separating hyperplane theorem to obtain a point µ ∈ Y \ {0} such that

T (µ) > 0 ≥ K (µ) for all K ∈ hKihY 0,Y i . (6)

Now, as
n
θe1X : θ ∈ Ro ⊂ hKihY 0,Y i , we must have 0 ≥ θµ (X) for all θ ∈ R.

Thus, µ (X) = 0, and hence, µ+ (X) = µ− (X) > 0. Since Y is a Riesz subspace
of ba (X,A), it follows that the points µ+/c and µ−/c belong to PY , where c is
the common value of µ+ (X) and µ− (X) . So, by (6), we see that T (µ+/c) >
T (µ−/c) and K (µ+/c) ≤ K (µ−/c) for all K ∈ K, which gives the desired
contradiction.
We conclude the paper with a direct analog of the uniqueness theorem of

Dubra et al. [3].

Theorem 3.9 (Uniqueness of Bernoulli utility functions) Let Y be a Ri-
esz subspace of ba (X,A) , where A is an algebra of subsets of a non-empty set
X. Let furthermore, M 0 be a linear subspace of Mb (X,A) such that 1X belongs
to M 0 and hM 0, Y i is a dual pair. Then two non-empty sets U and V in M 0

satisfy Z
X

udp ≥
Z
X

udq ∀u ∈ U ⇐⇒
Z
X

vdp ≥
Z
X

vdq ∀v ∈ V,

for each p, q ∈ PY , if and only if hUihM 0,Y i = hV ihM 0,Y i .
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The proof of Theorem 3.9 is obvious: we simply define the functional eu ∈ Y ∗
as eu (p) := R

X
udp (p ∈ Y, u ∈M 0) , and then use the linear operator u → eu to

embed the space M 0 into Y ∗, so that Theorem 3.8 can be applied.
The reader should notice that all the expected multi-utility theorems pre-

sented so far are included within the scope of Theorem 3.9 since, in each of
these results, points of Mb (X,A) can be separated by the domain of the rela-
tion % under the duality mapping (u, p) →

R
X
udp. In this theorem, we took

subspaces ofMb (X,A) into consideration so that the expected multi-utility the-
orem of Dubra et al. [3], which functions on the space of all bounded continuous
mappings of a metric space X, is also included.

References
[1] Aliprantis, C. and K. Border, Infinite Dimensional Analysis, Berlin:

Springer-Verlag, 1994.

[2] Aumann, R. J., “Utility Theory without the Completeness Axiom,” Econo-
metrica, 30 (1962), 445-462.

[3] Dubra, J., F. Maccheroni and E. A. Ok, “Expected Utility Theory without
the Completeness Axiom,” Journal of Economic Theory, 115 (2004), 118-
133.

[4] Dunford, N. and J. T. Schwartz, Linear Operators: Part I, Wiley Classics
Library Edition, New York: Wiley-Interscience, 1988.

[5] Fishburn, P. C., Utility Theory for Decision Making, New York: Wiley,
1970.

[6] Grandmont, J-M., “Continuity Properties of a von Neumann-Morgenstern
Utility,” Journal of Economic Theory, 4 (1972), 45-57.

[7] Graves, W. H. and D. Sentilles, “The Extension and Completion of the
Universal Measure and the Dual of the Space of Measures,” Journal of
Mathematical Analysis and Applications, 68 (1979), 228-264.

[8] Kannai, Y., “Existence of a Utility in Infinite Dimensional Partially Or-
dered Spaces,” Israel J. Math., 1 (1963), 229-234.

[9] Megginson, R. E., An Introduction to Banach Space Theory, New York:
Springer-Verlag, 1998.

[10] Rudin, W., Functional Analysis, 8th reprint, New Delhi: Tata McGraw-
Hill, 1985.

[11] Shapley, L. and M. Baucells, “Multiperson Utility,” mimeo, UCLA, 1998.

17


