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Abstract

In a model of Dynamic Evolution–as first popularized by Kandori, Mailath and Rob [14]–there is
an underlying structure that helps determine the long run viability of limit sets, called the emergent seed.
Relative to this structure long run viability is the additive component of the security level–the minimal
distance out of a limit set’s basin of attraction–and the core attraction rate–the cost of evolving from
one particular limit set to the limit set in question.

The usefulness of this approach is shown by characterizing long run viability in all games with two
limit sets, analyzing bargaining and contract games.

JEL codes: C63 C73 C78 C79

1 Introduction

Assuming equilibrium behavior can not be justified by rational learning. This is one of the implications
of Kalai and Lehrer’s study of rational learning [13]. What is an alternative? One is to assume a specific
type of “limitedly rational” behavior; allow players using this behavior to interact in an economy; and then
study the resulting long run behavior. If one part of the model of limitedly rational behavior is that players
occasionally “experiment” or “mutate” in a suboptimal way, then this is a model of dynamic evolution.
Dynamic evolution–which has been called “Noisy Evolution”, and “Evolution with Noise” in various

papers1–was introduced to the economic community by a pair of seminal papers in 1993: Kandori, Mailath

∗Acknowledgments: The author would like to thank Gil Eris and Sudipta Sarangi for their assistance, Peyton Young for his
encouraging comments and Francesco Squintani for his discouraging comments at the appropriate times in this research. It
goes without saying that any remaining errors are the responsibility of the author.

1There is no general terminology for this model in the literature. Samuelson and coauthors ([2] and [18]) have referred to
it as a model of “noisy evolution,” and Ellison [8] as one of “evolution with noise.” However the definition of Evolutionarily
Stable Strategies (Maynard Smith [17]) also requires “noise.” The essential difference is that in that analysis one always stays
in the same state while in this analysis there are multiple state transitions, or this model is dynamic.
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and Rob [14, KMR hereafter] and Young [25]. While these models are intuitively appealing they are often
complicated to solve, and leave the reader with no clear intuition about what makes a strategy evolutionarily
successful.
This intuition can be discovered if the analyst first finds the emergent seed. Relative to this core

structure being evolutionarily successful depends on having a high security level and a low core attraction
rate. Intuitively the security level is the degree that one player’s plans do not need to change if other’s
do; in some interactions it is instead the degree to which they do not need to change in the long run. The
core is a critical subset of strategies in the emergent seed, and the core attraction rate is the speed at which
evolution passes from this subset to the strategy in question.
In contrast, in Peyton Young’s analysis [25] finding strategies which were evolutionarily successful (or

stochastically stable) required finding the least cost way to pass from all other potentially viable strategies
to the given strategy–a tree minimization problem. The complexity of this problem limits the applicability
of dynamic evolution. The results here provide analytic clarity for all problems and for some simplifies the
analysis.
Analysis of the emergent seed is often sufficient to find the evolutionarily successful strategies (or sets

of strategies, formally limit sets). For example in all games with two limit sets–like any two action
interaction–the limit set with maximal security level will survive in the long run. Other games where
analyzing the emergent seed is sufficient are bargaining and contract games first studied by Young [26] and
[27].
Since the seminal papers of Kandori, Mailath and Rob and Young there have been essentially three

branches of the literature: applications, variations of the basic model, and simplification or clarification of
the analysis.
Papers analyzing variations of the basic model have been extremely prolific, for example Bergin and Lip-

man [3], Squintani and Valimaki [24], van Damme and Weibull [5] have shown that the original independent
mutations can be replaced with reasonable “bandwagon” mutations without changing the basic results. An-
other batch of papers analyze the effect of changing the matching rule, these include Ellison [7], [8], Canals
and Vega-Redondo [4] and Ely [9]. Some other papers of note are Amir and Berninghaus [1]; Binmore,
Samuelson, and Vaughan [2]; Nöeldeke and Samuelson [18]; Robson and Vega-Redondo [22]; and Saez-Marti
and Weibull [23].
There have been many applications of the theory as well. Examples are Ellingsen [6]; Johnson, Levine

and Pessendorfer [12]; Kandori and Rob [15] and [16]; Nöeldeke and Samuelson [19]; Robles [21]; and Young
[26] and [27].
The final category–clarification, to which this paper is contribution–has not been widely developed.

Kandori and Rob [15] and [16] both provide some results, but the only paper focusing on this subject is
Ellison [8]. That paper has two goals. The primary goal is to characterize how long evolution will take, to
do this it develops a sufficient characterization of stochastic stability: the radius and (modified) coradius.
A secondary goal is simplification, and while this technique can be applied to many papers in the literature
Ellison states that he is not sure that it would simplify their analysis. The reason might be because he does
not first find the emergent seed. The radius is the security level, the coradius is similar to (but generally
greater than) the core attraction rate, thus his sufficient characterization is not far from the representation
theorem in this paper. The difference is that by understanding the emergent seed the underlying architecture
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of the problem is revealed and sometimes this can simplify analysis. For example, the results in Johnson,
Levine and Pessendorfer’s [12] analyzes of the evolution of cooperation can be generalized using the emergent
seed methodology.
In the next section I will motivate the general model with a specific example: Kandori, Mailath, and

Rob’s coordination game. I will then present the general model, and explain the model in analysis. I close
this section by briefly explaining Young’s key results since they are integral to some proofs in this paper.
In subsection 3.1 of section 3 I then explain my results by first showing a game where the structure I am
looking for is obvious, using this I show how to always find the first level of the emergent seed. For the case
where this first level is completely connected I then present the general result. In the following subsection
I show how to find the general solution, and characterize it. In section 4 I then show the benefits of my
analysis with several applications.

2 The Model.

The model used in the analysis of dynamic evolution is several steps removed from the models that motivate
our analysis. Thus this section is broken into several subsections to clarify these connections. First a
brief exposition of one of the most popular models is given, the coordination game that was first studied by
Kandori, Mailath, and Rob [14]. Next the general model (as first described by Ellison [8]) is presented, and
the links between this model and the model used in analysis are explained.
The model actually used in analysis is described in subsection 2.3 and readers either familiar with the

general model or interested only in tree minimization problems can begin there.

2.1 A Motivating Example–Two Action Coordination.

Consider the following symmetric coordination game:

A B
A 2, 2 −2, 0
B 0,−2 1, 1

Kandori, Mailath, and Rob [14] motivate this game as representing the choice of operating system, but
it has been applied to describe many other interactions. We will assume that there are N players–an even
and large number–who are matched by equal likelihood to play this game an infinite number of periods.
Each period with probability τ a player updates their beliefs about other’s actions. Their new beliefs will be
the current distribution of actions of other players, and they believe it will not change in the future. If their
beliefs are updated there is a small probability, ε, that they experiment by choosing an action at random,
and they will keep playing this action until their beliefs update again. This probability of experimentation
(or mutation) is small, and our analysis focuses on the case where it converges to zero.
From this behavioral model we will develop two analytic tools. The current state of the system will be

Z =
©
α
N

ªN
α=0

where α is the number of players using action A. We also use a cost function:

C (z0|z) =
 The number of experiments needed
to transition from z in period t
to z0 in period t+ 1
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Notice that this cost function is increasing in N , the population size, and our results will be for all N “large
enough.” This dependence is inconvenient but can not always be overcome. If any given state z appears
infinitely often as N goes to infinity then we can normalize these costs. Let Z (N) be the states of the system
given N , and

c (z0|z) = lim
N→∞

½
C (z0|z)
h (N)

| {z, z0} ∈ Z (N)
¾

where h (·) depends on the matching rule and characteristics of the stage game, here h (N) = N . Throughout
the paper a lower case cost function is always independent of N and capitalized cost functions are not.
There are many other formulations of this model. In general there is a large population of players,

being matched to play some stage game. There is a well specified model of how they gather and use
information, and then some noise is added. This noise is sometimes called experimentation, sometimes
mutations, sometimes just mistakes but it is integral that this noise be maintained over time. The system
is then allowed to percolate for a very large number of periods and analysis finds the strategies most likely
to survive in the long run.

2.2 The Formal Model.

The formal model is general enough to characterize all of the games that have been analyzed in the literature
and more. This model is a triplet {Z,M,M (ε)} where:

1. Z is a finite set that characterizes the various states of the system.

2. M is a Markov transition matrix on Z.

3. M (ε) is a family of Markov transition matrixes on Z indexed by ε ∈ [0, ε̄) such that:

(a) M (ε) is ergodic for ε > 0.

(b) M (ε) is continuous in ε with M (0) =M .

(c) There is a cost function C : Z × Z → [0,∞) ∪ ∞ such that for all z, z0 ∈ Z if C (z0|z) < ∞
limε→0

Mz,z0 (ε)

εC(z,z
0) > 0 and the limit exists, if C (z

0|z) =∞ limε→0
Mz,z0 (ε)

ε = 0.

In the example above M is given by the best response dynamic, or all players who update their action
play a best response. M (ε) is the transition matrix when players experiment with probability ε. It is
ergodic since it is strictly positive–any state transition has a positive probability–and it is continuous in
ε. The cost function C (z0|z) is derived from Mz,z0 (ε). For example if B is a best response to z = σ

N , and
z0 = α0

N ,α
0 ≥ α then:

Mz,z0 (ε) =
NX

k=(α0−α)

µ
N

k

¶
(1− τ)

N−k
τk ∗

µ
k

α0 − α

¶³
1− ε

2

´k−(α0−α) ³ε
2

´(α0−α)
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and C (z0|z) = α0−α. The reason for using this cost function is that as ε goes to zeroMz,z0 (ε) is proportional

to
¡
ε
2

¢(α0−α), thus the likelihood of this transition is proportional to α0 − α.
In this model we try to find the limiting distribution of states. This will be independent of initial condition

sinceM (ε) is ergodic; or for any µ0 µ (ε) = limt→∞M (ε)t µ0 is independent of µ0. The fact that we do not
know ε–the experimentation rate–is not problematic since µ (ε) is continuous in ε and we are interested
in the case where ε is small. Thus we analyze limε→0 µ (ε) = µ∗. Note that:

µz (ε) =
P (transitioning to z from all z00 ∈ Z\z)

Σz0∈ZP (transitioning to z0 from all z00 ∈ Z\z0)
and P (transitioning to z from all z00 ∈ Z\z) is essentially a collection of “absorption trees.” In other

words if there are three states in Z then it is the sum over the probability of transitioning from z000 to z00 to
z plus the probability of transitioning from z00 to z000 to z plus the probability of transitioning from z00 to z
and z000 to z. However since each of these transitions is proportional to εC(·|·) as ε gets small only the least
costly absorption tree matters. Thus the likelihood of z in the limiting distribution is proportional to the
cost of it’s least costly absorption tree–we call this z’s stochastic potential–and z will dominate the long
run distribution if it has the least costly stochastic potential–in this case z is stochastically stable.

2.3 The Model in Analysis.

We now have the key elements which we use in analysis, Z and the cost function C (·|·). Our objective will
be to solve the minimal cost absorption tree problem. The problem in the rest of our analysis is essentially
the same as the graph theoretic problem of the “optimal convention center.” You have conventioneers spread
across the globe and want to minimize their cost of coming to a conference–what is the optimal location?
This analysis can also be applied to other problems in this family.
The main object of our analysis will be directed graphs over subsets of Z. Such a graph (g) is a set of

vertices (Z̃ ⊆ Z) and an ordering over the vertices, denoted zg : Z̃ → Z̃ ∪ ∅ , and let the direct resistance of
going to the empty set be zero, or if zg (z) = ∅ then C (zg (z) |z) = 0, thus g = {Z, zg}.2 The connection
with the Markov transition matrix above is that if z0 = zg (z) then in period t we are in state z and in period
t + 1 we are in state z0. We call z0 a direct successor of z in g if z0 = zg (z) and we also call z a direct
predecessor of z0 in this case. If z0 is in the transitive closure of the zg (·) ordering from a given z then we
say that z0 is a successor of z, and we also say that z is a predecessor of z0 in this situation. We will denote
the cost of such a graph C (g) = Σz∈ZC (zg (z) |z), and will use the same notation for other cost functions.
Three types of graph will be mentioned in our analysis. The simplest is a path, g (z0|z) =

neZ, zgo is a

path if z is the predecessor of every ez ∈ eZ and z0 is the successor of every such ez.3 In other words a path
is just a sequence of states, one occurring after the other as is illustrated in graph A in the figure below.
Another simple example is a cycle, g =

neZ, zgo is a cycle if every z ∈ eZ is the successor of every other

z0 ∈ eZ. This is graph B in the figure below. The type of graphs we will be most interested in will be trees
with base z, denoted tχz where χ indicates what subset of Z t

χ
z is over. For example t

0
z will be graphs with

2Notice that we impose that for each z there is a unique zg (z).
3Notice that since zg (·) is a function–not a correspondence–we do not need to make the further restriction that there are

no
nez,eezo such that ez is neither the sucesssor or predecessor of eez
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vertices in Z. In such a graph the only restriction is that z has no successors and is the successor of every
other ez ∈ eZ. A tree looks like an inverted extensive form game; the decision nodes are now states–with z
as the initial “decision node.” The dynamics are reversed as well, instead of starting with z we start from
the ends of the branches and travel back to z–like we are solving the extensive form game by backwards
induction. An example is graph C in the figure below.

z z1

z/z2

z z1

z/z2

A. path B. cycle C. tree

z z1

z/z2

z z1

z/z2

z z1

z/z2

z z1

z/z2

z z1

z/z2

A. path B. cycle C. tree

z z1

z/z2

z z1

z/z2

An arrow from ẑ to z̃ means that z̃ is the direct successor of ẑ in the illustrated graphs.

Let T 0z be the set of t
0
z then the stochastic potential of z is Cz = mint0z∈T0z C

¡
t0z
¢
, and z is stochastically

stable if and only if z ∈ argminz∈Z Cz.
The first difficulty we face is that the solution depends on the cardinality of Z. Z increases with N and

therefore the problem is effectively intractable. The key result in Young [25] is that this excess of complexity
can be simplified to the analysis of limit sets. To find these limit sets it is convenient to find the optimal
cost function, if G (z0|z) is the set of paths from z to z0 then C∗ (z0|z) = ming∈G(z0|z)C (g) is the best way
to transition from z to z0.
A limit set is an ω0 ⊆ Z such that

1. For every z ∈ Z\ω0 C∗ (z|ω0) > 0.
2. For all g = {ω0, zg} , C∗ (g) = 0.

Let the collection of these limit sets be Ω0. In principle there could be a large number of these limit
sets, but in general it is a much smaller set than Z and does not increase with the population size.4 Note
that if z /∈ Ω0 then there is some ω0 ∈ Ω0 such that C∗ (ω0|z) = 0–otherwise z itself would be a limit set.
We call the states z for which C∗ (ω0|z) = 0 ω0’s basin of attraction, denoted B (ω0).
Now consider the trees t1ω0 over Ω0, let

C∗ω0 = mint1ω0

C∗
¡
t1ω0
¢

then Young’s primary results can be summarized in the following lemma.

Lemma 1 Assume C (·|·) ≥ 0, and derive C∗ and Ω0 as above, then:
4As a counter example see the analysis of evolution with matching on a grid in Ellison [8].
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1. For all z ∈ ω0 for some ω0 ∈ Ω0
Cz = C

∗
ω0

2. For all z /∈ Ω0
Cz = min

ω0∈Ω0

©
C∗ (z|ω0) + C∗ω0

ª
The implications of this result are significant. The first claim states that for all limit sets you only have

to consider trees over other limit sets, the second claim implies that you can ignore all other states. There

are currently two proofs of the first part of this claim in the literature. The first in Young [25] uses a “cut

and paste” technique, the second in Kandori and Rob [15] is based on reduced chains. For completeness we

include a third, which also establishes the second part of the claim.
Proof. Let ω00 be such that z0 ∈ B (ω00), t̂1ω0 be the tree that has cost C∗ω0 and t̂0z be the tree that has cost

Cz. First for z ∈ ω0 C
∗
ω0 ≥ Cz since we can always add a path from z0 to ω00 at zero cost. Second, C

∗
ω0 ≤ Cz

since we can represent t̂0z as a graph over Ω0 without losing any vital information. The only difficulty will
be z0’s that are junctures. A juncture is a point where the tree branches, in other words there are an ω000
and ω0000 such that neither is the successor of the other, and z0 is the first successor of both of them. If this
is the case add a path from z0 to ω00 at zero cost, assign at least one of ω000 and ω0000 to this path and ignore
z0. The second claim is proven by noting that otherwise z would be a juncture.

3 The Emergent Seed.

We now define a fundamental underlying graph that–unless there is a good reason not to–the minimal

cost trees will follow. This graph is the emergent seed, or formally:

Definition 1 The emergent seed–E –is a least cost graph such that:

1. Every ω0 ∈ Ω0 has a successor.

2. There exists some ω∗0 ∈ Ω0 that are the successors of all other ω0 ∈ Ω0.

Note that there will always be more than one ω∗0 that satisfy the second part of the definition, and these

ω∗0 will form a cycle; we call this sub-graph of the emergent seed the core. Sometimes there will be multiple

graphs that have the same cost, in this case the analyst can choose the most convenient.

Relative to this fundamental graph there is a clear representation of stochastic potential. This point

will be explained in two steps. In the first subsection the first level of the emergent seed will be constructed

using two examples. This suffices to explain all of the key elements of the representation, and the rela-

tionship between this representation and the radius and modified coradius from Ellison will be discussed.

Unfortunately finding the first level does not always complete the emergent seed. In the subsection 3.2 the

methodology to complete it is presented culminating in the general representation theorem.
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3.1 The First Level, Two Examples.

I will show how to find the first level of the emergent seed by two examples. First consider the stage game:

a b c
a 6,6 0,5 0,0
b 5,0 5,5 0,4
c 0,0 4,0 4,4

I call this the “step” game due to the structure of the row player’s payoffs. Using the convention of writing

“k,”k ∈ {a, b, c}, for the state in which all players play k, then in this game the minimum cost trees are as

follows:

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

An arrow from ω to ω0 means that ω0 is the direct successor of ω in the illustrated graphs.

In this case the emergent seed is obvious, it is the union of all three graphs. Furthermore if we write

each strategies stochastic potential in terms of the emergent seed:

c∗a = c∗ (E)− c∗ (b|a) = c∗ (E)− 1
6

c∗b = c∗ (E)− c∗ (c|b) = c∗ (E)− 1
5

c∗c = c∗ (E)− c∗ (a|c) = c∗ (E)− 2
5

one can immediately see that c is stochastically stable because it is the maximum of c∗ (b|a),c∗ (c|b) , and
c∗ (a|c). Thus for this problem being stochastically stable is equivalent to having the most costly link in the

emergent seed. Finally c∗ (b|a),c∗ (c|b) , and c∗ (a|c) are the security level of a, b, and c; respectively. This
is:

R∗ (ω0) = min
ω00∈Ω0\ω0

C∗ (ω00|ω0)

. The security level can also be easily found from a graph of the basins of attraction:
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r*(b)

a

cb

a

b

c

r*(a)

r*(c)

r*(b)

a

cb

a

b

c

r*(a)

r*(c)

A graph of the probability space over the strategies {a, b, c}. The corner
labeled k ∈ {a, b, c} has probability one that all players play action k. The
region labeled k is the strategy k’s basin of attraction.

As you can see in this example r∗ (ω0) is the shortest distance out of the best response region of ω0. In

general B (ω0) might be larger than the best response region of ω0, but the security level is always easy to

find. Ellison [8] analyzes the same concept but called it the radius. I prefer the term security level because

for many limit sets it has a clear intuitive meaning. In these case the security level is the minimal fraction of

people that must change their actions before other players need to worry about responding. If less than that

fraction changes their plans people can feel “secure” about not changing theirs. If the basin of attraction

is larger than the best response region (like in the Cournot game) it is possible that at a lower level players

might want to change their plans, but in the long run their plans will return to ω0.

Regardless of the terminology used, the security level is all that is needed to find the first level of the

emergent seed.

Definition 2 The first level of the emergent seed–E1–is a graph with vertices Ω0 and

z1 (ω0) = ω∗0 ≡ arg min
ω00∈Ω0\ω0

C∗ (ω00|ω0)

.

Now clearly having a maximal security level is not sufficient for every problem. Consider the following

game:

a b c
a 5, 5 −3,−1 0, 4
b −1,−3 4, 4 1, 2
c 4, 0 2, 1 2, 2

In this game the emergent seed is:
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a

b c

1/6

2/7

1/3

a

b c

1/6

2/7

1/3
An arrow from ω to ω0 means that ω0 is the direct successor of ω in
the illustrated graphs. Beside each arrow is the (normalized) cost
of transition.

Now clearly for b and c all that matters is the maximal security level, but what about a? By analyzing

the emergent seed we know that we must connect either b or c to a (and not both), but which one? The

proper question is what is the relevant cost for connecting b to a instead of c. If we do this we are increasing

the total cost by c∗ (a|b) but reducing the cost by r∗ (b), or the new cost is:

∆1c (a|b) = c∗ (a|b)− r∗ (b) .

Notice that {b, c} form a cycle, we will label all cycles in E1 as ω1’s, with the set being Ω1. The optimal

cost function of going from ω1 to a is:

∆1c∗ (a|ω1) = min
©
∆1c (a|b) ,∆1c (a|c)ª

and the stochastic potential of a then is

c∗a = c
∗ (E)− r∗ (a) +∆1c∗ (a|ω1)

. This representation can be made very general, define the first difference cost function as:

∆1C (z|z0) =
½
C∗ (z|z0)−R∗ (ω0) if z0 ∈ ω0 and z ∈ Ω0\ω0
C∗ (z|z0) else

and ∆1C∗ (·|·) like before. Then if Ω1 has a unique element ∆1C∗ (ω0|ω1) is the core attraction rate, or
Ca (ω0) = ∆

1C∗ (ω0|ω1) and:

Theorem 1 If Ω1 has a unique element then:

C∗ω0 = C
∗ (E)−R∗ (ω0) + Ca (ω0)

This is the general representation but here we only prove it assuming Ω1 has a unique element. Notice

that it is much more common for Ω1 to have a unique element than for there to be one limit set. It is
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necessary that there are more than three limit sets for this to happen. While it might be impossible to

provide a general characterization of all the games where Ω1 has a unique element, it is certainly a large

class.
Proof. Beginning with an arbitrary tree, t1ω, we will reduce it’s cost until it is in the above form. First,

for every ω00 that is not a successor of ω1 in t1ω make ω00’s direct successor it’s direct successor in the emergent
seed. This must reduce the cost of the entire tree. This leaves several unoptimized paths from ω1 to ω0.
Choose one at random and move all others into the emergent seed graph, again this reduces the total cost.
Finally, for the path from ω1 to ω0 note that including a ω00 in this path instead of having it in the (otherwise
optimal) emergent seed graph will increase costs by exactly ∆1C∗ (ω000 |ω00) if ω000 is it’s direct successor in this
path, thus minimizing the cost of the path between ω1 and ω0 with respect to the ∆1C∗ (·|·) cost function
minimizes the total cost of t1ω, the resulting tree has minimal cost and is as above.

At this level the representation in Theorem 1 begs comparison with Ellison [8]. The modified coradius

in that paper is gCR (ω0) = maxω00∈Ω0\ω0
©
∆1C∗ (ω0|ω00) +R∗ (ω00)

ª
and if gCR (ω0) < R∗ (ω0) then ω0 is

stochastically stable. If the emergent seed has one level then there are bounds on gCR (ω0) in terms of
Ca (ω0) .

Corollary 1 If Ω1 has one element then:

Ca (ω0) +R
∗ (ω1) ≤gCR (ω0) ≤ Ca (ω0) + max

ω00∈Ω0\ω0
R∗ (ω00)

and if ω0 is in the core then:

gCR (ω0) = max
ω00∈Ω0\ω0

R∗ (ω00)

This corollary shows the relationship between stochastic potential and the speed of evolution. Ellison

shows that the expected time to reach the long run is no more than ε−gCR(ω0) and this result bounds that
function. Thus for games with one level in the emergent seed finding the stochastically stable strategy also

bounds how quickly evolution occurs.

3.2 The Representation Theorem.

It is now possible to establish the general representation with little further work, and this section is the proof.

The first issue is what to do when there are multiple elements in Ω1. This is immediate from Theorem 1

and Lemma 1. Like we have done before, define t2ω1 as a tree with base ω1 and vertices in Ω1 space, and

∆1C∗ω1 as the minimal cost of such a tree.

Lemma 2 If Ω1 has more than one element then:

C∗ω0 = C
∗ (E1)−R∗ (ω0) + min

ω1∈Ω1

©
∆1C∗ (ω0|ω1) +∆1C∗ω1

ª
Proof. Since∆1C (·|·) ≥ 0 by construction, from Lemma 1 we know that relative to∆1C minω1∈Ω1

©
∆1C∗ (ω1|ω0) +∆

is correct. From Theorem 1 we know that if ω00 is not used in either ∆1C∗ (ω1|ω0) or ∆1C∗ω1 it is optimal
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to have it in the E1 graph, and thus it’s cost is correct. Finally ∆1C∗ (·|·) is the appropriate cost metric for
taking a limit set out of the E1 graph.

There is now a new problem to simplify, the fundamental structure of the trees that give the ∆1C∗ω1 ’s.

This problem seems like it is the same as the original problem, but it is not exactly. We still need to define:

∆1R∗ (ω1) = min
ω01∈Ω1\ω1

∆1C∗ (ω01|ω1)

ω∗1 = arg min
ω01∈Ω1\ω1

∆1C∗ (ω01|ω1)

But we will not want the successor of every ω1 to be ω∗1. The reason is that we are still trying to find a

graph over Ω0, every time we have z (ω1) = ω∗1 the cost of the graph over Ω0 increases. Thus we will drop

connections that cause cycles in Ω1, and the second level of the emergent seed is defined as follows:

Definition 3 The second level of the emergent seed–E2–is a graph over Ω1 found by the following algo-
rithm:
Let L0 = Ω1 and ∀ω1 ∈ Ω1, b0 (ω1) = ∅

Initial Step Find ω1 ∈ argminω1∈L0 ∆1R∗ (ω1). Then z2 (ω1) = ω∗1, b
1 (ω∗1) = ω1, and L1 = L0\ω1

Iterative Step If Lt 6= ∅, find ω1 ∈ argminω1∈Lt ∆1R∗ (ω1). Then

(a) If ω∗1 /∈ bt (ω1), z2 (ω1) = ω∗1, bt+1 (ω∗1) = ω1 ∪ bt (ω∗1), and Lt+1 = Lt\ω1.
(b) Else Lt+1 = L0\ω1.

The ω1’s that have no successors in E2 are labeled ω2, elements of Ω2. The new cost function relative

to E2 only changes on elements of Ω1 that are not elements of Ω2.

∆2C (z0|z) =
½
∆1C∗ (z0|z)−∆1R∗ (ω0) if z ∈ ω1 ∈ Ω1\Ω2 and z0 ∈ (Ω1\Ω2) \ω1
∆1C∗ (z0|z) else

Every ω0’s cost can be represented as:

C∗ω0 = C∗ (E1)−R∗ (ω0)

+ min
ω1∈Ω1

½
∆1C∗ (ω0|ω1) +∆1C∗ (E2)−∆1R∗ (ω1) + min

ω2∈Ω2

©
∆2C∗ (ω1|ω2) +∆2C∗ω2

ª¾
where ∆2C∗ω2 is defined like ∆

1C∗ω1 before, which can be simplified to:

C∗ω0 = C∗ (E1) +∆1C∗ (E2)−R∗ (ω0)
+ min

ω1∈Ω1,ω2∈Ω2

©
∆1C∗ (ω0|ω1)−∆1R∗ (ω1) +∆2C∗ (ω1|ω2) +∆2C∗ω2

ª
. At this point the reader can iteratively define Ωk, ∆kC (·|·), ∆kR∗ (·), and Ek and from the definitions for

Ω2, ∆2C (·|·), ∆2R∗ (·), and E2 . Since there are a finite number of elements in Ω0 there is a finite K + 1

such that ΩK+1 has a single element, call this element ω∗. Then the emergent seed is:

12



Definition 4 The emergent seed–E–is found by projecting {Ek}Kk=1 onto graphs on subsets of Ω0. If ω0
has a direct successor in Ek∗ but not any k > k∗ then that direct successor is ω0’s direct successor in E.

The general definition of the core attraction rate is:

Ca (ω0) = min
ωk∈Ωk,k=1,2,3,...K

(
KX
k=1

£
∆kC∗ (ωk−1|ωk)−∆kR∗ (ωk)

¤
+∆KC∗ (ωK |ω∗)

)

and the representation theorem can now be stated.

Theorem 2 For ω0 ∈ Ω0 :

C∗ω0 = C
∗ (E)−R∗ (ω0) + Ca (ω0)

With proof by construction above. While this representation adds clarity to the analysis of dynamic

evolution, algorithimically it is not better (or worse) than the best alternative in the graph theory literature.

However this approach also generates information at every stage. One useful fact is:

Corollary 2 For k ∈ {0, 1, 2, ...,K − 1}, Ωk+1 ⊆ Ωk

This can be sufficient to find the solution to some problems, because:

Corollary 3 (Predecessor Dominance) If ω0 is a successor of ω00 in some Ek and R
∗ (ω0) > R∗ (ω00)

then ω00 is not stochastically stable.

Proof. Since ω0 is a successor of ω00 it is less costly to go from ω00 to ω0 than vice versa, thus
Ca (ω00) ≤ Ca (ω0) . Since R∗ (ω0) > R∗ (ω00) ω00 is not stochastically stable.
This is especially useful if a strategy in the core has a high security level. This technique works in

bargaining games (below), and in the second example above we did not actually have to calculate ∆1c∗ (a|ω1)
since r∗ (c) > r∗ (a).

4 Applications.

In this paper I will limit myself to providing a characterization of games with two limit sets and explaining

the results in Young [26] and Young [27]. The author has also applied this technique to generalizing the

results in Johnson, Levine, and Pessendorfer [12] and analyzing the evolution of social norms ([10] and [11])

but will present those results elsewhere.

4.1 Games with Two Limit Sets.

A disappointing problem in dynamic evolution is our inability to characterize the solution to broad classes of

problems. Instead for each game it seems like the stochastically stable strategy appears mysteriously from

the analysis, with no clear relationship to other analyses. With the techniques in this paper this problem

can finally be overcome at least for one class of games, those with two limit sets.
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Corollary 4 If |Ω0| = 2 and ω0 has maximal security level then ω is stochastically stable.

The proof is given by Corollary 3. Many games have only two equilibria, if these games are also acyclic

(Young [25]) then they have two limit sets and stochastic stability is easy to characterize.

4.2 Bargaining and Contracts.

It is noteworthy that Young [26] implicitly used the emergent seed to find the stochastically stable strategies–

and published before the seminal papers of Kandori, Mailath, and Rob [14] and Young [25]. There is also a

simple emergent seed in contract games (Young [27]).

The similarity of these games and their transparent emergent seeds makes them excellent examples of

how the emergent seed underlies much evolutionary analysis. In a surplus sharing game there are two

players who must decide how to divide one unit of a good. They will have strictly increasing, concave

utility functions with ui (1) = 1 and ui (0) = 0 for i ∈ {1, 2}. They do this by simultaneously declaring a

share for themselves and the other person ai =
©
si1, s

i
2

ª
, sij ∈ [0, 1] for {i, j} ∈ {1, 2}2, we will require that

sij ∈
©
d
D

ªD
d=0

where D is some large finite number. The game is a contract game if the surplus sharing rule

is:

hc (a1, a2) =

½ ©
s11, s

2
2

ª
if s11 = s

2
1, s

2
2 = s

1
2, s

1
1 + s

2
2 ≤ 1

{0, 0} else

the game is a bargaining game if the surplus sharing rule is:

hb (a1, a2) =

½ ©
s11, s

2
2

ª
if s11 + s

2
1 ≤ 1

{0, 0} else

In our analysis of both games the results are slightly peculiar if players can make extreme demands, so first

I will analyze the game where sij /∈ {0, 1}.

4.2.1 The Contract Game.

In a contract game a player’s payoff from anyone playing a different strategy is zero. Thus the security level

is found by having a small group make the most attractive alternative offer possible. Notice that this group

is also requesting the least possible amount for themselves, thus call them “weak invaders.” Because of their

importance denote ω+1 =
©
D−1
D , 1D

ª
and ω+2 =

©
1
D ,

D−1
D

ª
. For arbitrary ω the cost of the transition for

group i then is the minimal p such that:

(1− p)ui (ωi) ≤ pui
¡
ω+i

¢
ui (ωi)

ui (ω+i) + ui (ωi)
= p

and the security level of ω then is:

r∗ (ω) = min
i∈{1,2}

½
ui (ω)

ui (ω+i) + ui (ω)

¾
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and ω∗’s direct successor in the absorbent seed is ω+2 if:

u2 (ω
∗
2)≤

u2
¡
ω+2

¢
u1 (ω+1)

u1 (ω
∗
1)

One can immediately see the emergent seed from this analysis. The ratio
u2(ω+2)
u1(ω+1)

defines a line in utility

space, all ω with payoffs below this line go to ω+2 all ω0 with payoffs above go to ω+1, as is depicted in the

graph below.

0 1

1

0

u(ω+2)

u(ω+1)
u(ω')

u(ω)

slope =  u(ω+2)/u(ω+1)

u2

u1
0 1

1

0

u(ω+2)

u(ω+1)
u(ω')

u(ω)

slope =  u(ω+2)/u(ω+1)

u2

u1
A graph of the payoff space of the contract game. An arrow from u (ẑ) to u (z̃)
means that z̃ is the direct successor of ẑ in the emergent seed.

At this point in the analysis in Young [27] finds a sufficient condition to characterize the stochastically

stable strategy. With our new methodology the characterization can be directly stated.

Lemma 3 For all ω ∈ Ω0

ca (ω) = min
i∈{1,2},−i={1,2}\i

(
ui
¡
ω+(−i)

¢
ui (ω) + ui

¡
ω+(−i)

¢ ui
¡
ω+i

¢− ui (ω)
ui (ω+i) + ui

¡
ω+(−i)

¢)

Proof. It will be shown that the direct predecessor of ω in ca (ω) is ω+i for i ∈ {1, 2}. Let ωo be ω’s
direct predecessor in ca (ω). Then the first difference cost is:

min
i∈1,2

½
ui (ω

o)

ui (ω) + ui (ωo)

¾
− min
i∈1,2

½
ui (ω

o)

ui (ω+i) + ui (ωo)

¾
Now if the solution to the first term is i and the solution to the second is −i = {1, 2} \i then since ui(ω

o)
ui(ω)+ui(ωo)

is an increasing function of ui (ωo) we want to minimize over ui (ωo), but that will lead us into the area where
the solution to both problems is i. In this case the first difference cost is as above, and it is an increasing
function until

p
ui (ω+i) ui (ω) ≤ ui (ωo), thereafter decreasing. Thus the second function is concave and

we should compare it’s endpoints, at ui
¡
ω0
¢
= ui

¡
ω+(−i)

¢
it is less than at ui

¡
ω0
¢
= ui

¡
ω+i

¢
and we are

done.
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Thus the stochastically stable strategy is:

ω∗ ∈ arg min
ω∈Ω0


−mini∈1,2

n
ui(ω)

ui(ω+i)+ui(ω)

o
+mini∈{1,2},−i={1,2}\i

½
ui(ω+(−i))

ui(ω)+ui(ω+(−i))
ui(ω+i)−ui(ω)

ui(ω+i)+ui(ω+(−i))

¾ 
Note that both terms are decreasing in ω thus ω∗ is Pareto Efficient. Further characterization is frustrated

by the complexity of the second term. Young [27] also has this problem, but notice that as the grid gets

finer ui
¡
ω+(−i)

¢
goes to zero, and thus the second term becomes unimportant. As he showed in the limit

the solution becomes the Kalai-Smordinsky solution.

This can also be done by allowing {0, 1} and {1, 0}. In this case each strategy’s security level is:

r∗ (ω) = min
i∈1,2

½
ui (ω)

1 + ui (ω)

¾
but {1, 0} and {0, 1} are not limit sets. From the state {0, 1} the smallest mutation by type 2 players will

cause the system to drift, and vice a versa for {1, 0}. Thus the successor in the emergent seed can be any

state, and this effectively means that all of the states are in the core. Therefore the stochastically stable

strategy is the maximal security level or:

ω∗ ∈ arg min
ω∈Ω0

½
− min
i∈1,2

½
ui (ω)

1 + ui (ω)

¾¾
≈ arg max

ω∈Ω0
min
i∈1,2

ui (ω)

which is the Kalai-Smordinsky solution or maximin welfare.

4.2.2 The Bargaining Game.

In the bargaining game the limit sets are the Nash equilibria where both parties receive a strictly positive

amount–the have the form {s, 1− s}, s ∈ (0, 1). The security level of a limit set may still be determined

by weak invaders, with the same logic as above. But now there is another alternative. Remember that

in a bargaining game a player can lower the amount they demand and only loose a tiny amount from

everyone. Experimenters can take advantage of this to “push around” their opponents. Strong invaders

of population −i (−i = {1, 2} \i) demand 1
D more than the current offer (if possible), we denote this payoff

ω↓i =
©
ωi − 1

D ,ω−i +
1
D

ª
. It is a best response to go along with this group if:

(1− p)ui (ω) ≤ ui
¡
ω↓i
¢

1− ui
¡
ω↓i
¢

ui (ω)
= p
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And as Young [26] shows,

r∗ (ω) = min {rw (ω) , rs (ω)}
rw (ω) = min

i∈1,2

½
ui (ω)

ui (ω+i) + ui (ω)

¾
rs (ω) = min

i∈1,2

(
1− ui

¡
ω↓i
¢

ui (ω)

)

note that if ωi = 1
D then ω↓i is not possible, and rs (ω) must be modified accordingly. One can easily verify

that both of these functions are concave, as well notice that for any ω rs (ω) < rw (ω) for large enough D.

In fact for large enough D by concavity rs (ω) ≤ rw (ω) for all ω in the grid. Below this point is illustrated
for u1 (ω) = ω1 and u2 (ω) = ω

4
5
2 .

0 1

Key rs(ω), D=10 rw(ω), D=5 rs(ω), D=5

r*(ω)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90 1

Key rs(ω), D=10 rw(ω), D=5 rs(ω), D=5

r*(ω)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A graph of the security level for D ∈ {5, 10}. An arrow from r∗ (ẑ) to r∗ (z̃) means that z̃ is the direct successor of ẑ in
the emergent seed.

When D = 5 you see that at the endpoints rw (ω) < rs (ω), but when D = 6 this is no longer true. When

D is large the case on the bottom dominates, rs (ω) determines the security levels. The arrows represent

E1 in each case. Notice that when D = 5 we have two ω1’s and thus there is an E2. But this happens

only when D is small, the case when D = 10 is more common, the core is in the interior and has the highest

security levels, therefore the game is solved by predecessor dominance. Furthermore, the stochastically

stable strategy is also the Nash Bargaining Solution for the finite grid. Call the strategy in the core that

has the highest payoff for player 1 ω̄ and the other one ω, and for clarity if ωN is the Nash bargaining

solution then for the finite grid we know that u1
¡
ωN
¢
u2
¡
1− ωN

¢ ≥ u1
¡
s11
¢
u2
¡
s22
¢
for all s11 + s

2
2 ≤ 1,©

s11, s
2
2

ª ∈ h© dDªDd=0i2
Proposition 1 Assume D is large enough that rs (ω) ≤ rw (ω) for all relevant ω, then if ω̄ is stochastically
stable then ω̄ is the Nash Bargaining solution.
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Proof. Since ω̄ is stochastically stable we know that r∗ (ω̄) ≥ r∗ (ω) since ω̄ is higher than ω for player
1 this means

1− u1
¡
ω̄↓1

¢
u1 (ω̄)

≥ 1− u2
¡
ω↓2

¢
u2 (ω)

but note that ω↓2 = ω̄ and ω̄↓1 = ω. This means that u1 (ω)u2 (ω) ≤ u1 (ω̄)u2 (ω̄). Now consider
ω̃ = ω − 1

D1
, since the security levels are decreasing we know:

1− u1
¡
ω↓1

¢
u1 (ω)

≥ 1− u2
¡
ω↓2

¢
u2 (ω)

≥ 1−
u2

³¡
ω↓2

¢↓2´
u2 (ω↓2)

and thus u2 (ω)u1 (ω) ≥ u1
¡
ω↓2

¢
u2
¡
ω↓2

¢
. Repeating this process for all ω ≤ ω and reversing the argument

for all ω ≥ ω̄ proves the Proposition.

Notice the speed at which evolution takes place in this model, the modified coradius is r∗ (ω) = 1 −
u2(ω↓2)
u2(ω)

, or the expected waiting time converges to zero as D gets large. Allowing for demands of {0, 1} and
{1, 0}means that if rw (ω) ≤ rs (ω) then ω can be in the core. The only effect this has is being able to allow
for log-concave utility functions.

5 Conclusion.

This paper analyzes a fundamental underlying structure in dynamic evolution–the emergent seed. When

the stochastic potential of a strategy is written relative to this structure the potential is seen to be an additive

combination of the security level and the core attraction rate. The result is a representation theorem that

clarifies what makes a strategy evolutionarily successful.

Several examples are presented to show the usefulness of this result, for example stochastically stability

in games with two limit sets is completely characterized. In bargaining and contract games the underlying

dynamics are clarified by analyzing the emergent seed.

It is far from clear that this methodology would always be easier than Ellison [8]. Examples can be

found where it is clear that the emergent seed methodology would give little aid. For example in Kandori

and Rob [16] the “bandwagon effect” does not impose enough structure on the underlying game to make the

emergent seed useful.

Dynamic evolution is a structural and viable alternative to equilibrium analysis. While still in it’s infancy

it has shown great promise and insight as a methodology. It is hoped that analysts continue exploring

various models of “limitedly rational” behavior to see what types of changes the results are sensitive too.

At the same time it is hoped that the emergent seed methodology provides a new window of opportunity for

applications of the model, allowing us to see the implications of dynamic evolution in more settings.
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