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Abstract

Exchange and allocation of a heterogeneous divisible commodity (e.g., land or cake)
that is modeled as a measurable space is considered. The exsistence of a competitive
equilibrium with additive prices in ’land’ trading economy with unordered convex
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established.
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1. Introduction

We consider exchange and allocation of a heterogeneous divisible commodity. One
notable example of such a commodity is land. This problem is coined in literature as
the ’cake division’ or ’land division’ problem. A heterogeneous divisible commodity is
modelled as a measurable space (X, Σ). In theoretical models of land economics, X is
assumed to be a Borel measurable subset of Euclidean space R2 (or more generally
Rk) and Σ to be the Borel σ−algebra B(X) of subsets of X. It is usual to consider
this measurable space with the Lebesgue measure.

Berliant [3] is the first to study a competitive equilibrium in the context of a
land trading economy. He shows the existence of a competitive equilibrium in the
case when preferences over land plots are represented by utility functions of the form
U(B) =

∫
B

u(x)dx, so that U is a measure on B(X) absolutely continuous with respect
to the Lebesgue measure. His proof uses a method that imbeds the land trading
economy into an economy with the commodity space L∞(X), and then uses Bewley’s
equilibrium existence results [2] along with the methods of infinite dimensional analysis
to establish the existence of an equilibrium.

Dunz [9] studies the existence of the core for substantially more general
preferences. In [9] preferences are given by the utility functions that are compositions
of quasi-concave functions with a finite number of characteristics of land parcels.
Dunz proves that under these assumptions on preferences the weak core of a land
trading game is nonempty. These chracteristics are countably-additive over land
parcels. Assigning a finite number of additive characteristics to land parcels is a
common assumption made in empirical literature on land trading. Dunz [9], based
on results of his joint work with Berliant [4], argues that ”...if prices are required to
be additive ... then an equilibrium might not exist. If no equilibrium with additive
prices exists, then it is not clear what the final allocation of the economy will be
since there would always be arbitrage opportunities. This suggests that competitive
equilibrium might not be the appropriate solution concept for economies with land.”
However, nonexistence of equilibrium in the example in Berliant-Dunz [4] is of the
same nature as one in the classical case of trading divisible commoditiies and is due
to nonconvexity of preferences. One of the goals of the present paper is to show
that a competitive equilibrium with an additive price exists in land trading economy
with rather general unordered ’convex’ preferences. In particular, preferences are
not assumed to be ordered. In fact this is done in a more abstract context of a
measurable space trading economy. We show the existence of an equilibrium with the
equilibrium price that is a measure, ν, on (X, Σ), absolutely continuous with respect
to the sum of all characteristic measures. For the land trading economy, where all
characteristic measures are assumed to be absolutely continuous with respect to the
Lebesgue measure λ, we obtain that the equilibrium price ν, is absolutely continuous
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with respect to the Lebesgue measure λ. Hence the Radon-Nikodim derivative dν
dλ

is an
integrable function h on measure space (X, Σ, λ) (see [1, p. ]). So ν(B) =

∫
B

h(x)dλ(x)
for all measurable sets B in X. Function h can be interpreted as equilibrium price
density on X.

Then, using the standard scheme, we show that a competitive allocation is a
weak core allocation. This core existence result generalizes Dunz’s [9] core existence
theorem in two directions; first, it considers the division problem in the setting of
abstract measurable space and does not assume the existence of a reference measure,
and the second, preferences are not assumed to be ordered.

The next topic that is dealt with in this paper is the existence of a fair division.
Examples of the fair division problem are: division of a heritance fairly among
inheritants, designing land reform laws that allows to divide the land owned by a
collective farm fairly among members of the collective farm in transition economies.
On a deeper level fairness can be regarded as an essential and desirable property of a
solution concept in economics (and game theory).

Weller [15] considered a problem of fair division of a measurable space (X, Σ)
with a finite number of atomless measures discribing agents’ preferences over
measurable subsets. He shows the existence of an envy-free and efficient partition in
this problem. In a somewhat different setting, namely when X is a measurable subset
of the Euclidean space Rk and preference measures are nonatomic and absolutely
continuous with respect to the Lebesgue measure, Berliant-Thomson-Dunz [5] shows
the existence of a group envy-free and efficient partition. The concept of group
envy-free partition is stronger than the concept of envy-free partition. Neither of these
results implies the other; Weller’s result is concerned with more abstract problem of
fair partitioning an abstract measurable space with no reference measure. On the
other hand, Berliant-Thomson-Dunz’s [5] Theorem 2 states the existence of a fair
partition in a stronger sense. Our approach to the fairness problem will be abstract
and we will consider much more general preferences over measurable pieces. The
result established here implies both of the above discussed results.

In proofs of the main results of the paper we use the following scheme. We
reduce a problem of trading a heterogeneous divisible commodity to the one of
trading a finite number of homogeneous divisible commodities (totality of subjectively
attributed characteristics of measurable pieces), where endowments are subsets in the
commodity space rather than commodity bundles. We then transform this economy
to the general model of economy introduced by Gale and Mas-Colell [10] with the
advantage of employing their competitive equilibrium existence theorem.

This introduction is followed by a section devoted to definititions and some
preliminary results. Section 3, the central to the paper, studies the existence of a
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competitive equilibrium and core of the measurable space trading economy. Section 4
studies fairnes criteria for this economy.

2. Preliminaries

We consider a measurable space trading problem set in the following way. Let (X, Σ)
be a measurable space (the cake or land plot) and let P̄ = {A1, A2, . . . , An} be a
measurable ordered partition of X. Let µ1, µ2, . . . , µn be nonatomic finite vector-
measures on (X, Σ) of dimensions s1, s2, . . . , sn, respectively. The interpretation is that
there are n persons N = {1, 2, . . . , n} each contributing his share Ai (i ∈ N) and parts
of the cake, X, are valued by individuals according to their measures µ1, µ2, . . . , µn,
respectively. The components of vector-measure µi(B) are interpreted as measures
of different attributes of a measurable piece B attached to this piece by individual i.
We assume that individual i has a preference �i over his subjective attributes profiles
µi(B), B ∈ Σ and hence over measurable sets B ∈ Σ. We will use the same symbol
�i for denoting both of these preferences. No confusion should arise. Every ordered
measurable partition B1, B2, . . . , Bn will be interpreted as a feasible allocation of X.

Definition 1. A pair (P = {B1, B2, . . . , Bn}, ν) consisting of a feasible partition
P and a measure µ is said to be a competitive equilibrium if for each individual i subset
Bi maximizes his preference �i in his budget set

Bi(ν) = {B ∈ Σ | ν(B) ≤ ν(Ai)}.

In this case P = {B1, B2, . . . , Bn} is called an equilibrium allocation and measure
ν is called an equilibrium price.

A coalition is an arbitrary nonempty subset of N. The set of all coalitions
is denoted as N . All partitions considered further are assumed to be ordered and
measurable. Further, the terms partition and division will be used interchangably.

Definition 2. We say a coalition I ⊂ N improves (weakly improves) upon a
division P = {B1, B2, . . . , Bn} if there exists a partition Q = {Ci | i ∈ I} of A(I) =
∪i∈IAi such that Ci �i Bi for all i ∈ I (not Bi �i Ci for all i ∈ I and Ci �i Bi at
least for one i ∈ I.)

Definition 3. Partition P = {B1, B2, . . . , Bn} is said to be a weak core allocation
(core allocaton) if there is no coalition that improves (weakly improves) upon allocation
P. The set of all weak core allocations is called the weak core (core) of the measurable
space trading problem.

Next, we introduce two concepts of Pareto efficient partition.
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Definition 4. Partition P = {B1, B2, . . . , Bn} of X is said to be weak Pareto
efficient (Pareto efficient) if there is no partition P ′ = {B′

1, B
′
2, . . . , B

′
n} of X such

that µi(B
′
i) �i µi(Bi) for all i ∈ N (not Bi �i B′

i for all i ∈ N and B′
i �i Bi for at

least one i ∈ N.)

We will identify a vector of vectors (perhaps of different dimensions) as a long
vector with scalar coordinates arranged in the lexicographic order. Sometimes we will
denote coordinates with double indexes, with the first index being the index of the
component vector and the second one the index of a component in that component
vector .

The following theorem is a generalization of a result known as Dubins-Spanier’s
theorem (see also C. Aliprantis and K. Border [1] page 358) and easily follows from
this result. It is to be noted that this theorem was discovered a decade earlier
Dubins-Spanier’s theorem by Chernoff [7].

Theorem 1. Let (X, Σ) be a measurable space and let µ1, µ2, . . . , µn be nonatomic
finite vector measures on (X, Σ) of dimensions s1, s2, . . . , sn, respectively. Then the
following set in Rs, where s =

∑n
j=1 sj,

R = {(µi(Bi))
n
i=1 ∈ Rs | P = (B1, B2, . . . , Bn) a partition of X}

is compact and convex.

Proof of Theorem 1 based on Dubins-Spanier’s theorem. Let µ = (µk)
s
k=1

be a vector measure (µ1, µ2, . . . , µn) of dimension s. With every partition
P = (B1, B2, . . . , Bn) ∈ Πn(X) we associate the s×n matrix of reals M(P ) = (µk(Bi)).
Denote by M s×n the space of all s×n matrices with real entries. By the Theorem 1 in
Dubins and Spanier [8] the range R′ ⊂ M s×n of matrix-valued function M is compact
and convex.

Let L : M s×n → Rs be a mapping defined in the following way. The first s1

components of L(M) are the first s1 entries in the first column of matrix M, the second
s2 components are the entries in the second column of M with the column indexes
s1 +1 through s1 + s2, and so on. Clearly L is a linear mapping with L(R′) = R. Since
R′ is compact and convex it follows that so is R. �

3. Existence of a competitive equilibrium and a core

In this section for a preference �i on Rsi
+ we denote Pi(xi) = {x′i ∈ Rsi

+ | x′i �i xi}.
Clearly, correspondence Pi defines �i in the unique way. We assume that preferences
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�i or Pi (i ∈ N) are continuos, that is graphs of correspondences Pi are open
relative to Rsi

+ ×Rsi
+ , and that they satisfy the following assumption.

Assumption (Weak Monotony). If for xi, x′i ∈ Rsi
+ and x′i ≥ xi, then

Pi(x
′
i) ⊂ Pi(xi) for all i ∈ N.

We assume the following about the initial endowments of individuals.

Assumption (Positive Endowments). For each i ∈ N, set Ai can be divided into
n measurable parts Aij (j ∈ N) so that µj(Aij) > 0 for all j ∈ N.

In the case, when for each i ∈ N there exists a component measure µij(Ai) > 0
and all the component measures are mutually absolutely continuous, then it is easily
seen that the assumption of positive endowments is satisfied.

The central result of this paper is the following competitive equilibrium existencce
theorem.

Theorem 2. If attribute vector-measures µi, i ∈ N are nonatomic, preferences
�i, i ∈ N are irreflexive continuos weakly monotone and convex, then there exsists
a competitive equlibrium (P = {B1, B2, . . . , Bn}, ν) in the measurable space trading
economy. Moreover, the equilibrium price measure ν is absolutely continuous with
respect to the sum of all component measures of vector-measures µi, i ∈ N.

Proof. We will reduce the above exchange economy to an economy of exchange
of a finite number of divisible homogeneous commodities, where endowments of
individuals are sets in the consumption spaces, rather than a single commodity
bundle, from which the individuals are free to choose.

There are s commodities in this economy. Thus the commodity space is Rs, the
s−dimensional Euclidean space. Rs

+ and Rs
++ denote the nonnegative and positive

cones in this space, respectively. For i ∈ N, Rsi
+ will be a consumption space of

individual i. It will be considered as a coordinate subspace in Rs
+.

We define the initial endowment set Ei ⊂ Rs of individual i in the following way:

Ei = {(µ1(C1), µ2(C2), . . . , µn(Cn)) | {C1, C2, . . . , Cn} is a partition of Ai}.

By Theorem 1 initial endowment sets are compact and convex.

Denote ∆ the unit simplex in Rs. A price p will be an element of ∆. Wealth of
individual i is defined as

αi(p) = max{p · x | x ∈ Ei} for all i ∈ N.
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Budget set of i is defined as

Bi(p) = {x ∈ Rsi | psi · x ≤ αi(p)}.

Preferences of individual i are defined through mapping Pi : Rsi
+ → Rsi

+ that
is irreflexive, that is xi /∈ Pi(xi), has an open graph in Rsi

+ × Rsi
+ , and its values are

nonempty convex sets.

Define the set of aggregate endowment vectors as the algebraic sum of individual
endowment sets, that is E =

∑
i∈N Ei, and the technology as Y = E + Rs

−.

Fact 1. Y is closed, has a nonempty bounded intersection with the nonnegative
cone Rs

+.

Proof is routine.

Let E0 ⊂ E be the Pareto frontier of Y, otherwise the smallest set with
Y = E0 + Rs

−.

Definition 4. A competitive equilibrium in the above described economy E is
defined as an (2N+1)− tuple (x̄1, x̄2, . . . , x̄n, ȳ1, ȳ2, . . . , ȳn, p̄) ∈ ((Πi∈NRsi

+)×Πi∈NEi)×
∆ such that

x̄0 =
∑
i∈N

x̄i =
∑
i∈N

ȳi = ȳ0 ∈ E0, (1)

p̄ · x̄i = p̄ · ȳi = αi(p̄) for i ∈ N, (2)

and
P (x̄i) ∩ Bi(p̄) = ∅ for i ∈ N. (3)

Define
Π(p) = sup p · Y for p ∈ ∆. (4)

Obviously sup in (4) is attained for each p ∈ ∆.

Fact 2. Π : ∆ → R+ is a nonnegative continuous function.
Proof is routine.
By the definition of Y and E we have

Π(p) =
∑
i∈N

αi(p) for p ∈ ∆. (5)

(This is known as ’aggregation’ in Microeconomics, see Mas-Colell et al [12]
Proposition 5.E.1.) Following Gale and Mas-Colell [10], observe that

p̄ · ȳ0 =
∑
i∈N

p̄ · ȳi =
∑
i∈N

αi(p̄) = max p̄ · Y.
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By the Positive Endowments assumption Ei contains a strictly positive vector.
It follows that

αi(p) > 0 for all p ∈ ∆, i ∈ N. (6)

Now we have the following economy

E0 = {Y, {Rsi , Pi, αi}i∈N}

satisfying all of assumptions of Gale-Mas-Colell existence theorem [10]. So there
exists an (N + 1)− tuple (x̄1, x̄2, . . . , x̄n, p̄) such that conditions∑

i∈N

x̄i = x̄0 ∈ Y, (7)

p̄ · x̄i = αi(p̄) for i ∈ N, (8)

and
P (x̄i) ∩ Bi(p̄) = ∅ for i ∈ N (9)

are satisfied.

Definition 5. Call an (N + 1)− tuple (x̄1, x̄2, . . . , x̄n, p̄) satisfying conditions
(7)-(9) a competitive pseudoequilibrium in E .

So a competitive equilibrium in E0 is a competitive pseudoequilibrium in E . Next
we will show that for every competitive pseudoequilibrium (x̄1, x̄2, . . . , x̄n, p̄) in E there
exists ȳi i ∈ N such that (x̄1, x̄2, . . . , x̄n, ȳ1, ȳ2, . . . , ȳn, p̄) is a competitive equilibrium
in E .

In this step we make use of the Weak Monotony assumption. So let
(x̄1, x̄2, . . . , x̄n, p̄) be a competitive equilibrium in E0. Then

∑
i∈N x̄i = x̄0 ∈ Y.

If x̄0 ∈ E0, then since E0 ⊂ E

x̄0 =
∑
i∈N

x̄i =
∑
i∈N

ȳi

for some ȳi ∈ Ei (i ∈ N) and such that equations (1) are satisfied. Since p̄ · x̄0 =
max p̄·Y it follows that equations (2) are satisfied. Thus (x̄1, x̄2, . . . , x̄n, ȳ1, ȳ2, . . . , ȳn, p̄)
is a competitive equilibrium in E . Assume x̄0 /∈ E0. It follows from the definition of
Y and E0 that there exists x̂0 ∈ E0 such that x̂0 ≥ x̄0. Set x̂i = x̄i+(x̂0−x̄0)

si for i ∈ N.
Then ∑

i∈N

x̂i =
∑
i∈N

x̄i +
∑
i∈N

(x̂0 − x̄0)
si = x̂0.

So (x̂1, x̂2, . . . , x̂n) is feasible.

8



We have
p̄ · x̂i = p̄ · x̄i = αi(p̄) for i ∈ N.

Otherwise, x̄i would not be a profit maximizing consumption at price p̄.
Since x̂i = x̄i, by the weak monotony assumption it follows that Pi(x̂i) ⊂ Pi(x̄i).

This inclusion together with equation (9) imply that

Pi(x̂i) ∩Bi(p̄) = ∅ for i ∈ N.

So, we have constructed a new competitive equilibrium (x̂1, x̂2, . . . , x̂n, p̄) in E0 such
that ∑

i∈N

x̂i = x̂0 ∈ E0. (10)

We have shown above how to construct a competitive equilibrium in E from one
of E0 with the property (10). Thus we have proven the existence of a competitive
equilibrium in economy E .

Let (x̄1, x̄2, . . . , x̄n, ȳ1, ȳ2, . . . , ȳn, p̄) be a competitive equilibrium in economy E .
By the definition of sets Ei (i ∈ N) there are partitions Pi = {A1

i , A
2
i , . . . , A

n
i } of sets Ai

such that (µ1(A
1
i ), µ2(A

2
i ), . . . , µn(An

i )) = ȳi for each i ∈ N. Set Bj = ∪i∈NAj
i (j ∈ N).

Clearly {B1, B2, . . . , Bn} is a partition of X. Define a measure ν on Σ by setting

ν(D) =
∑
i∈N

p̄si · µi(D ∩Bi) for D ∈ Σ.

Obviously ν is a measure on Σ absolutely continuous with respect to θ =∑
i∈N

∑si

j=1 µj
i . We will show that the pair ({B1, B2, . . . , Bn}, ν) is a competitive

equilibrium in the measurable space exchange economy. Show that Bi is �i −maximal
in the budget set of individual i, Bi(ν) for i ∈ N. Assume on the contrary, for some i
there exists B ∈ Bi(ν) such that B �i Bi. Thus

ν(B) ≤ ν(Ai) = ν(Bi) = αi(p̄)

and µi(B) ∈ Pi(µi(Bi)). This preference implies that

p̄si · µi(B) > p̄si · µi(Bi) = ν(Bi) = αi(p̄) ≥ ν(B) =
∑
j∈N

p̄sj · µj(B ∩Bj).

Otherwise
p̄si · µi(B \Bi) >

∑
j∈N\{i}

p̄sj · µj(B ∩Bj).

This inequality would mean that selling the piece B \ Bi at price p̄si is more
profitable for agents possessing this piece. This contradicts to the profit maximization
property, that is to the optimality of divisions {A1

j , A
2
j , . . . , A

n
j } for i ∈ N. �
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Corollary 3. Under the conditions of Theorem 2 the weak core in the measurable
space trading economy is nonempty.

Proof. By Theorem 2 there exists an equilibrium ({B1, B2, . . . , Bn}, ν). We show
that {B1, B2, . . . , Bn} belongs to the weak core. Assume on the contrary, there exists a
coalition I that improve upon partition {B1, B2, . . . , Bn}. Thus there exists a partition
{Ci | i ∈ I} of A(I) = ∪i∈IAi such that Ci �i Bi for all i ∈ I. Then since
({B1, B2, . . . , Bn}, ν) is an equilibrium we have ν(Ci) > ν(Bi) for all i ∈ I. Adding
these inequalities we will get ν(C(I)) > ν(A(I)). This contradicts to C(I) = A(I). �

It is obvious that every (weak) core division is (weak) Pareto efficient. For the
coincidence of the weak core (the weak Pareto set) and the core (the Pareto set) some
assumptions are required.

Proposition 4. If preferences �i are the strict parts of rational continuous
preferences <i, monotone (for xi, x

′
i ∈ Rsi

+ , x′i ≥ xi implies x′i �i xi,) and if measures
ηi =

∑si

j=1 µj
i (i ∈ N) are absoluely continuous with respect to each other, then the

weak core (the weak Pareto set) and the core (the Pareto set) coincide.

Proof. We now show that the weak core and core coincide. Let a coalition I
weakly improve upon a division P = {B1, B2, . . . , Bn} via division Q = {Ci | i ∈ I}
of A(I) = ∪i∈IAi. So we have not Bi �i Ci for all i ∈ I and Ci �i Bi for at least
one i ∈ I.) Since preferences are assumed to be the strict parts of rational preferences
[not Bi �i Ci] is equivalent to [Ci <i Bi]. Let Ci0 �i0 Bi0 for i0 ∈ I. Then by the
weak monotony assumption we have µi0(Ci0) ≥ 0. By the mutual absolute continuity
assumption µi(Ci0) ≥ 0 for all i ∈ N.

By continuity of �i0 there exists d > 0 such that for D ⊂ Ci0 , µi0(D) < d and
Ci0 \D �i0 Bi0 . By nonatomicity of measure µi0 such subset D exists. By Theorem 1
there exists a partition Di, i ∈ I) for D such that µi(Di) = 1

|I|µi(D) for all i ∈ I.

Define Fi0 = Ci0 \ D, and Fi = Ci ∪ Di for i ∈ I \ {i0}. Then {Fi | i ∈ I}
is a partition of A(I) such that Fi �i Ci for all i ∈ I. Thus I improves upon division P.

Corollary 3 and Proposition 4 imply

Corollary 5. If in addition to the assumptions of Propsition 4 preferences are
convex, then the core in the measurable space trading economy is nonempty.

As it is noted in the Introduction the main result of Dunz [9] follows from
Corollary 5. Notice that in [9] continuity of utility functions is not explicitly assumed.
As the following example shows without this assumption the weak core may be empty.
Although in [9] this result is formulated as the existence of the core (rather than the
weak core), the method of the proof is based on Scarf theorem on nontransferable
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utility games which asserts only the existence of the weak core.

Example. Consider X = [0, 2] × [0, 2] ⊂ R2 with the Lebesgue measure µ. Let
there be two agents with endowments A1 = [0, 1] × [0, 2] and A2 = (1, 2] × [0, 2]
and preferensces are defined in the following way. Let both agents have the common
characteristics µ1, µ2 defined as µi(B) =

∫
B

gi(x)dµ(x) (i = 1, 2) for measurable B ⊂
X, where gi (i ∈ N) is the characteristic function of Ai (i ∈ N). Let u1, u2 : R2

+ → R
be defined as

u1(x1, x2) =


x1 for 0 ≤ x1, x2 ≤ 1,
2− x1 for 1 < x1 ≤ 2, 0 ≤ x2 ≤ 1,
0 elsewhere.

and u2(x1, x2) = u1(x2, x1).

It is easily verified that functions u1, u2 are quasiconcave. It is easy to calculate V (1) =
{(U1, U2) | U1 ≤ 0}, V (2) = {(U1, U2) | U2 ≤ 0} and V (1, 2) = {U1, U2) | U1 <
0, U2 < 0}. Thus V (1, 2) is open and therefore the weak core and hence the core is
empty.

4. Existence of fair divisions

Let (X, Σ) be a measurable space. Let as above preferences of agents over measurable
subsets in X are defined in the following way. Agent i ∈ N attributes si quantifiable
characteristics to these subsets modeled as positive finite measures µ1

1, µ
2
i , . . . µ

si
i on

Σ. We denote µi = (µ1
1, µ

2
i , . . . µ

si
i ). Then preferences of agent i are given through a

preference mapping Pi : Rsi
+ 7−→ Rsi

+ that is nonempty-valued, irreflexive and has an
open graph in Rsi

+ ×Rsi
+ .

Definition 6. A division P = {A1, A2, . . . , An} of X is said to be fair if it is
(a) Pareto optimal, that is if there is no other division Q = {C1, C2, . . . , Cn)} such
that µi(Ci) ∈ Pi(µi(Ai)) for i ∈ N,
and
(b) envy-free, that is if µi(Aj) /∈ Pi(µi(Ai)) [otherwise, not Aj �i Ai] for i, j ∈ N.

Definition 7. A division {A1, A2, . . . , An} is weak group envy-free if for every pair
of coalitions N1, N2 with |N1| = |N2| there is no division {Ci}i∈N1 of ∪j∈N2 Aj such
that Ci ∈ Pi(Ai) for all i ∈ N1.

This definition is adapted from Berliant-Thomson-Dunz [5]. Obviously if an
allocation is weak group envy-free then it is envy-free and weak Pareto efficient.
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Definition 7’. A division {A1, A2, . . . , An} is group envy-free if for every pair of
coalitions N1, N2 with |N1| = |N2| there is no division {Ci}i∈N1 of ∪j∈N2 Aj such that
Ai /∈ Pi(Ci) for all i ∈ N1 and Ci ∈ Pi(Ai) at least for one i ∈ N1.

Of course when preferences Pi are derived from rational preferences <i then the
last part of Definition 7’ will be read as ”Ci <i (Ai) for all i ∈ N1 and Ci �i Ai at
least for one i ∈ N1.”

As in the proof of Proposition 4 it can be shown that under the assumptions
of Proposition 4 every weak group envy-free division is group envy-free, that is two
concepts coincide.

Theorem 6. Under the assumptions of Theorem 2 there exists a group envy-free
and Pareto efficient allocation.

Let µj
i , i ∈ N be nonatomic measures on (X, Σ). If there existed a partition of X

into n parts, say Cj, j ∈ N, so that restrictions of vector-measure µ = (µ1, µ2, . . . , µn)
into Cj, j ∈ N have identical ranges, then one could exploit the standard scheme of
a proof of the existence of a fair division by assigning each individual j the piece Cj.
The author does not know whether such a partition exists. Therefore we are not able
to derive the existence of a fair division from the existence of an equilibrium division.

For proving the existence of a fair (or more generally, a group envy-free and
efficient) allocation, we will use the method exploited above for establishing the
existence of a competitive equilibrium. More explicitly, we will first construct an
economy with the aggregate endowment set, and then generate from it an economy
of the type as in Gale-Mas-Colell [10], in which individuals are given equal profits.
Further, we will use a competitive equilibrium of the latter economy for constructing
a division in the measrable space division problem that is group envy-free and Pareto
efficient.

Proof of Theorem 6. Define

E = {(µ1(A1), µ2(A2), . . . , µn(An)) | {A1, A2, . . . , An} is a partition of X}.
By Theorem 1, E ⊂ Rs is a nonempty compact convex set. Set Y = E + Rs

− and
Xi = Rsi

+ for i ∈ N as in Section 3. As before define

α(p) = max p · Y.

Define individual wealth functions by setting αi(p) = α(p)
n

, for i ∈ N. It is easily seen
that α(p) > 0 and hence

αi(p) > 0 for all p ∈ ∆.

Budget sets are defined as

Bi(p) = {xi ∈ Xi | psi · xi ≤ αi(p)}.

12



So, we have an economy E for which a competitive economy is defined in the following
way.

Definition 8. An (n + 1)−tuple (x̄1, x̄2, . . . , x̄n, p̄), where x̄i ∈ Xi and p̄ ∈ ∆ is
said to be a competitive equilibrium in economy E , if x̄i is a Pi−maximal element in
the budget set Bi(p) for all i ∈ N.

For economy E all conditions of Gale-Mas-Colell equilibrium theorem [10] are
satisfied. So, there exists a competitive equilibrium (x̄1, x̄2, . . . , x̄n, p̄) in economy E .
We have

x̄0 =
∑
i∈N

x̄i ∈ Y and p̄ · x̄0 = max p̄ · Y.

If x̄0 ∈ PF (Y ), then x̄0 ∈ E, and hence there exists a division {B1, B2, . . . , Bn} of X
such that

µi(Bi) = x̄i for i ∈ N.

As in Section 3 define a measure ν on Σ by setting

ν(D) =
∑
i∈N

p̄si · µi(D ∩Bi) for D ∈ Σ. (11)

We have

ν(Bj) = p̄sj · µj(Bj) = αj(p) =
α(p̄)

n
for all j ∈ N.

We assert that division B = {B1, B2, . . . , Bn} is group envy-free and Pareto
efficient. Assume it is not group envy-free. Then there exist N1, N2 ⊂ N such
that |N1| = |N2| and there is a division ∪i∈N1Ci of ∪j∈N2Bj such that Ci ∈ Pi(Bi)
for all i ∈ N1. It follows then ν(Ci) > ν(Bi) for all i ∈ N1. Summing up
these inequalities we will have ν(∪i∈N1Ci) > ν(∪i∈N1Bi). But from (11) we have

ν(∪i∈N1Ci) = ν(∪j∈N2Bj) = |N2|
n

α(p̄) = ν(∪i∈N1Bi). Assume now that division B is
not Pareto efficient. Then there exists a division C = {C1, C2, . . . , Cn} of X such
that Ci ∈ Pi(Bi) for all i ∈ N. Then ν(Ci) > µi(Bi) for all i ∈ N. Summing
these inequalities we will have

∑
i∈N ν(Ci) >

∑
i∈N ν(Bi) that is ν(X) > ν(X), a

contradiction.

If x̄0 /∈ PF (Y ), where PF (Y ) is the Pareto frontier of Y, then there exists
x̂0 ≥ x̄0 such that x̂0 ∈ PF (Y ), and hence x̂0 ∈ E. Using the weak monotony
assumption as in Section 3 we reduce the situation to the case of x̂0 ∈ N. �

In the case when X is a subset of Euclidean space Rk and preferences �i are
given by scalar measures on the Borel σ−algebra of sets in X absolutely continuous
with respect to the Lebesgue measure we obtain Theorem 2 of Berliant-Dunz-Thomson
[5]. Notice that in their approach there is a reference measure (the Lebesgue measure)
while our approach does not involve any such measure.

13



Corollary 7. Under the assumptions of Theorem 2 there exists a fair division
of a measurable space (X, Σ).

When each agent i has a single atribute formalized as a finite positive measure µi

on Σ and preferences �i are defined simply as strictly greater relation on R, in other
words, if preferences are given by a scalar measure on Σ, we obtain Weller’s fairness
result [15].
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