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Abstract 

 

Locust swarms hit subsistence-staple-crop-growing households at random and are not privately 

controllable. An aerial-spraying optimal control model that supports the said households’ liveli-

hood at least expected cost is therefore developed. The qualitative properties of the model are 

analysed under economically plausible but mild assumptions. The steady state comparative stat-

ics reveal that the locust swarm size and the probability of a household’s crop being destroyed 

by a swarm decrease with the number of households, yield per household, and the staple crop’s 

replacement price, and increase with the marginal cost of spraying and the planner’s discount 

rate. A local comparative dynamics analysis is also conducted, as it provides the necessary eco-

nomic intuition behind other ostensibly anomalous steady state comparative statics results. 

 

 

Keywords: Optimal control, local stability, steady state comparative statics, local comparative 

dynamics 
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1. Introduction 

The growing of essential crops in large parts of North and West Africa, as well as in other less 

developed areas inhabited by indigenous people pursuing a traditional way of life, has often been 

impeded by swarms of locusts. Typically, locust swarms have not been effectively dealt with by 

small staple-crop-growing households due to the swarms’ large size, high mobility, and the ran-

dom nature of the timing and target of their raids.  Also compounding the problem is the lack of 

private capital, skill, coordination, and cooperation among the indigenous people, along with 

their unwillingness to share common locust-control costs. Indeed, the severe outbreak of this 

plague in North and West Africa in the second half of the 1980s is due, in part, to the public 

complacency over a period of thirty years that followed the high initial control obtained with the 

application of the highly toxic and environmentally persistent dieldrin in the 1950s. 

 The locusts’ lifecycle is approximately six weeks, during which they are transformed 

from crawlers to walkers and hopers, to flyers and, finally, to mating insects. They dwell in equal 

life-phase groups clearly identifiable by their colours—white, green, pink, and yellow, respec-

tively. The principal crop-damaging group is the flying pink locusts, known as the swarm. 

Unlike many other groups of smaller and better-camouflaged agricultural pests, the pink-locust 

swarms are highly visible and their impact is immediately evident. 

 A swarm’s survival and regeneration depend on cultivation size and type. Consequently, 

drastic changes in the scale and types of farming activities can reduce the number and size of lo-

cust swarms. However, the said changes can also adversely affect the well being of indigenous 

farming households which, for ethnic, cultural, and human capital reasons, are not willing to give 

up their traditional way of life and relocate. In North and West Africa the means for supporting 

crop production and the traditional way of life of the indigenous population in regions affected 

by locusts is a regionally and internationally coordinated and financed effort, which consists of 

aerial spraying of organophosphate pesticides with relatively short environmental persistence 

[Cowan and Gunby (1996) provide an explanation as to why chemical control of agricultural 

pests remains the dominant technology]. 
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 The optimal control model developed in this paper focuses on a locust-alley, such as 

those in North and West Africa. These areas are dominated by a perpetual locust swarm and 

house a large and stable number of similar, traditional farming households, which are endowed 

with small fields for self-sustaining staple-crop production. The proposed model differs from the 

agricultural and environmental economic pest-control models extant for technologically ad-

vanced cash-crop farms by its design to stabilise the production of staple crops in less developed 

areas, and thus support the native inhabitants’ traditional way of life at the least expected cost to 

the planner [cf. Shoemaker (1973) and Saphores (2000)]. 

 The model takes into account the fact that a swarm moves quickly and erratically, and 

thus hits clusters of staple-crop-growing households at random. It also takes into account that, 

due to an immediate and highly noticeable presence and adverse impact, a swarm’s location and 

density are accurately assessed and reported by the affected farming households. In view of the 

standard practice of scheduling the aerial spraying at a time when a swarm is most vulnerable—

the dawn that follows a reporting of a swarm’s location and density by the affected households—

the efficacy of the aerial spraying is also taken to be certain, in contrast to Feder (1979). How-

ever, the large size of the swarm and the convexity of the spraying cost function prevents the 

eradication of the swarm. As is commonly the case, it is assumed that the crop of the raided 

households is completely devoured. As a result, previously sprayed fields are not revisited by a 

swarm during a crop-growing season and, in turn, the number and timing of pesticide applica-

tions [cf. Hall and Norgaard (1973) and Saphores (2000)] and re-entry [cf. Lichtenberg, Spear 

and Zilberman (1993)] are not relevant issues in this locust-alley environment. 

 

2. A Locust-Control Model 

Consider a topographically and climatically homogeneous locust-alley, with ( )N t +∈R  indicat-

ing the size of the locust swarm at time , i.e., the number of pink locusts or stock of locusts at 

time , and let 

t

t ( ( ))F N t  be the swarm’s natural growth rate given the swarm size . Define 

 as the rate of pesticide aerially sprayed on the swarm at time , and let 

( )N t

( )s t +∈R t ( )( );C s t α  be 
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the total cost of spraying at the rate . The parameter ( )s t α ++∈R  represents a price index of the 

involved inputs—pesticides, planes’ fuel, user cost, piloting and ground crew, coordination, and 

management. This price index takes into account the full price of pesticides, which includes en-

vironmental and health damages from spraying. The higher the inputs’ market prices and the 

harsher the pesticides’ impact on the environment and health, the larger is the value of α . The 

eradication production function ( )E ⋅  is assumed to be a function of the size of the swarm and the 

rate of pesticide spraying, and thus its value may be expressed as ( )( ), ( )E s t N t . Given this in-

formation, the instantaneous change in the size of the locust swarm is given by the ordinary dif-

ferential equation ( ) ( )( ) ( ) ( ), ( )N t F N t E s t N t= −� , which serves as the state equation in the op-

timal control model. 

 The following assumptions are placed on the functions ( )C ⋅ , ( )E ⋅ , and , and ex-

plained subsequently. 

( )F ⋅

(A.1) , , ( ) :C + +⋅ × →R R R+
(2)( )C C⋅ ∈ ( ; ) 0sC s α > , ( ; ) 0C sα α > , ( ; ) 0sC sα α > , and 

( ; ) 0ssC s α >  for all 2( , )s α ++∈R . 

(A.2) , , , , , 

, , for all 

( ) :E + +⋅ × →R R R+
(2)( )E C⋅ ∈ ( , ) 0sE s N > ( , ) 0NE s N > ( , ) 0sNE s N >

( , ) 0ssE s N < ( , ) 0NNE s N < 2( , )s N ++∈R . 

(A.3) ,  for all ( ) :F +⋅ →R R (2)( )F C⋅ ∈ N ++∈R , (0) ( ) 0F F K= = ,  for all ( ) 0F N′ >

[0, )N N∈ , ( ) 0F N′ = , ( ) 0F N′ <  for all ( , ]N N K∈ , and ( ) 0F N′′ <  for all N ++∈R . 

The assumption that all of the underlying functions are  is driven by the use of general func-

tional forms and the desire to obtain a differential qualitative characterization of the solution of 

the ensuing optimal control problem. Assumption (A.1) asserts that the spraying cost function is 

a strictly increasing and strongly convex function of the spraying rate, and that an increase in the 

input price index 

(2)C

α  increases the total and marginal cost of spraying. Similarly, supposition 

(A.2) states that the eradication production function is a strictly increasing and strongly concave 

function of the spraying rate and swarm size, individually, and that the marginal product of 

spraying is an increasing function of the swarm size—the latter reflecting the fact that a given 

spraying rate is more effective the larger is the size of the swarm. Finally, assumption (A.3) 
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states that the growth function is strongly concave, increasing for stock sizes less than the growth 

maximizing stock size N ++∈R , decreasing for stock sizes greater than the growth maximizing 

stock size, and that growth is zero when the locust population is nil or when it is at the locust-

alley’s environmental carrying capacity K N> . The logistic growth function is an example of a 

specific functional form that satisfies the aforementioned assumptions on the locust growth func-

tion . ( )F ⋅

 Because of the long-range mobility of the pink locusts and the variation in the air tem-

perature and currents, household-fields are hit at random by the swarm. Carlson and Wetzstein 

(1993) have argued that the likelihood of a crop getting eaten by pests is a function of cultivation 

size and that it is given by the entropy distribution. In the present case, however, farms are small 

and numerous, and similar household-fields share a similar climate and topography. Moreover, 

the farmers typically grow a common staple-crop. Accordingly, it is assumed that each house-

hold-field in the locust-alley has an equal probability of being hit by the swarm at any time t . 

Furthermore, it is assumed that the probability of a household-field being hit satisfies 

(A.4) ( ) : [0,1]ϕ +⋅ →R , ,  and (2)( ) Cϕ ⋅ ∈ 1( )NLϕ −′ > 0 01( )NLϕ −′′ <  for all 1NL−
++∈R , 

, and 1
1

0
lim ( ) 0

NL
NLϕ−

−
↓

= 1
1lim ( ) 1

NL
NLϕ−

−
↑+∞

= . 

This assumption states that the probability of a household-field being hit by the swarm at time t  

increases with the size of the swarm N +∈R  relative to the number of time-invariant feeding 

sites or farming households , but does so at a diminishing rate. L ++∈R

 In view of the small size of a household’s field and the large size of the swarm, it is as-

sumed that in the event of being hit by the swarm, the household’s crop is completely destroyed 

and that the yield (or output) of a household-field spared by the swarm is a time-invariant (due to 

traditional cultivation methods) scalar y ++∈R . Given these assumptions, the yield of a house-

hold-field in the locust-alley at time t  is binomially distributed. Consequently, yield is zero with 

probability  and  with probability ( )1( )N t Lϕ − y ++∈R ( )11 ( )N t Lϕ −− . This implies that the ex-

pected aggregate loss of yield in the locust-alley at time  is given by . t ( )1( )yL N t Lϕ −
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 The proposed swarm-control model is based on the following additional premises. First, 

there is a trade-off between the instantaneous cost of aerial spraying and the instantaneous yield 

salvaged. Second, the livelihood of households hit by the swarm depends on free-of-charge pub-

lic aid. Third, the public aid fully compensates the affected households for the loss of yield with 

purchased and delivered quantities of the staple crop. Fourth, the public planner is risk-neutral 

and farsighted when selecting the aerial spraying trajectory that minimizes the present value of 

the expected cost caused by the swarm. Finally, the expected cost caused by the locust swarm at 

any time t  is comprised of the expected cost of compensating for the aggregate loss of yield, 

plus the cost of spraying. 

 Putting all of these elements together, the public planner’s problem may be formally ex-

pressed as the following infinite horizon optimal control problem: 

  (1) ( ) ( )def 1
0 ( )

0

( , ) min ( ) ( ); t

s
C N pyL N t L C s t e dtρϕ α

+∞
∗ −

⋅
⎡= +⎣∫θ −⎤⎦

 ( ) ( ) 0s.t. ( ) ( ) ( ), ( ) , (0)N t F N t E s t N t N N= − =� , 

where  denotes the crop-replacement price, i.e., the full price of delivering the staple 

crop to the affected households, 

p ++∈R

ρ ++∈R  is the public planner’s instantaneous and time-invariant 

discount rate,  is the initial size of the locust swarm,  is the minimum pre-

sent-value expected-cost of the optimal spraying plan, and . 

0N ++∈R 0( , )C N∗ θ
def 5( , , , , )L p yα ρ ++= ∈θ R

 The ensuing additional assumptions are introduced for problem (1) and discussed below. 

(A.5) There exists a unique and interior optimal solution to problem (1) for each ( ; )B δ∈γ γ , 

, denoted by , with corresponding current value co-

state variable 

def
0( , )N=γ θ ( 0( ; , ), ( ; , )N t N s t N∗ ∗θ θ )0

0( ; , )t Nλ θ , where ( ; )B δγ  is an open 6-ball centered at the point 6
++∈γ R  

of radius 0δ > . 

(A.6) For each ( ; )B δ∈γ γ  the optimal pair ( ) ( )0 0
ˆ ˆ( ; , ), ( ; , ) ( ), ( )N t N s t N N s∗ ∗ →θ θ θ θ

)
 as 

, where  is the simple, unique, and interior steady state solution of 

problem 

t →+∞ ( ˆ ˆ( ), ( )N sθ θ

(1). 
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Given the lack of functional form assumptions, the aggregate nature of the optimal control 

model, and the fact that neither the Mangasarian- or Arrow-type sufficiency theorems can be ap-

plied to problem (1) to establish optimality of a solution that satisfies the necessary conditions, 

supposition (A.5) is a natural one to make. Even if one were to make further “favourable” curva-

ture assumptions on the functions, e.g., that ( )ϕ ⋅  is convex and ( )E ⋅  is concave, the Hamiltonian 

is not necessarily convex in  because of the concavity of ( , )s N ( )F ⋅  and the fact that the current 

value costate variable is positive in the optimal plan, as is shown in §3. Assumption (A.6) states 

that the optimal solution of problem (1) converges to the unique, interior, and simple steady state 

solution. Recall that a simple steady state is one in which the determinant of the Jacobian matrix 

of the linearization of the differential equations is nonzero when evaluated at the steady state. 

Take in totality, assumptions (A.1)–(A.6) permit us to use the results in Caputo (1997) or Caputo 

(2005) to present a thorough but compact characterization of the qualitative properties of the so-

lution to problem (1). 

 

3. Necessary Conditions and Local Stability of the Steady State 

We begin this section with the derivation of the necessary conditions obeyed by the planner’s op-

timal spraying policy. To this end, define the current value Hamiltonian by 

 . (2) def 1( , , ; ) ( ) ( ; ) [ ( ) ( , )]H N s pyL NL C s F N E s Nλ ϕ α λ−= + + −θ

By Theorems 14.3 and 14.9 of Caputo (2005), the triplet ( )0 0( ; , ), ( ; , ), ( ; , )N t N s t N t Nλ∗ ∗θ θ θ 0  

necessarily satisfies 

 ( , , ; ) ( ; ) ( , ) 0s s sH N s C s E s Nλ α λ= − =θ , (3) 

 , (4) 1[ ( ) ( , )] (NF N E s N py NLλ ρ λ ϕ −′= − + −� )′

N , ( ) ( , )N F N E s N= −�
0(0)N = , (5) 

 lim ( , , ; ) 0t

t
H N s e ρλ −

→+∞
=θ . (6) 

Equation (3) is the typical marginal optimality condition, and asserts that the optimal spraying 

rate at each point in time of the planning horizon equates the marginal social cost of spraying 

[ ( ; )sC s α ] with its marginal social benefit [ ( , )sE s Nλ ], the latter being comprised of the product 
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of the current value shadow cost of the swarm (λ ) and the marginal product of the spraying rate 

[ ]. Furthermore, using assumptions (A.1) and (A.2), Eq. ( , )sE s N (3) can be rearranged to read 

( ; ) ( , )s sC s E s Nλ α= , thereby implying that 0( ; , ) 0t Nλ >θ  for all ) [0,t∈ +∞

hat

. But this was to 

be anticipated, seeing as the planner is interested in minimizing the costs associated with control-

ling the locust swarm and because the latter is a “bad”. In passing, note that by making use of the 

fact t  ( ; ) ( , )Ns sC s E sλ α=

on. 

 and using assumption (A.6), one can verify that necessary condi-

tion (6) does indeed hold along the optimal soluti

 In order to determine the local stability of the steady state and draw the local phase por-

trait corresponding to the solution to the planner’s problem, we proceed to reduce Eqs. (3)–(5) 

down to two necessary conditions. To begin, observe that because Eq. (3) holds as an identity for 

all  along the optimal path, it may be differentiated with respect to t . Doing just that, 

substituting Eqs. 

[0, )t∈ +∞

(4) and (5) in the resulting differential equation, and then making use of the re-

lation ( ; ) ( , )s sC s E s Nλ α= , we arrive at the following pair of ordinary differential equations: 

 , (7) ( ) ( , )N F N E s N= −�

 
[ ]

[ ]

1( , )( ; ) ( ) ( , ) ( ) ( , ) ( ) ( , )
( , )

( ; ) ( ; ) ( , ) ( , )

sN
s N s

s

ss s s ss

E s NC s F N E s N F N E s N py NL E s N
E s N

s
C s C s E s N E s N

α ρ ϕ

α α

−⎧ ⎫
′ ′− + − + −⎨ ⎬

⎩ ⎭=
−

� . (8) 

By assumption (A.5), the optimal pair ( )0( ; , ), ( ; , )N t N s t N∗ ∗θ θ 0  is the unique solution to the dy-

namical system consisting of Eqs. (7) and (8). 

 In the steady state  and 0N =� 0s =� , in which case Eqs. (7) and (8) simplify to 
 ( ) ( , ) 0F N E s N− = , (9) 

 [ ] 1( ; ) ( ) ( , ) ( ) ( , ) 0s N sC s F N E s N py NL E s Nα ρ ϕ −′ ′− + − = . (10) 

By assumption (A.6), the pair of values ( )ˆ ˆ( ), ( )N sθ θ  is the unique solution to Eqs. (9) and (10).  

Furthermore, upon using assumptions (A.1), (A.2), and (A.4) in Eq. (10), it follows that 

 ( ) ( )ˆ ˆˆ( ) ( ), ( ) 0NF N E s Nρ ′− +θ θ θ > . (11) 

This result will be of value when the qualitative properties of the model are derived in §4. 

 10



 In order to determine the local stability of the steady state, compute the Jacobian matrix 

of Eqs. (7) and (8), evaluate the result at the steady state solution ( )ˆ ˆ( ), ( )N sθ θ , and then use as-

sumptions (A.1)–(A.4). Carrying out these three steps yields 

 
( ) ( ) (

( ) ( )
( )( )def

21 22
( )

( ) 0
0

ˆ ˆˆ ˆ( ) ( ), ( ) ( ), ( )

ˆ ˆˆ ˆ( ), ( ) ( ), ( )

N s

d

d d

N
s

N N
F N E s N E s NN s

J
s s j N s j N s
N s

−−

+
+ =

=

⎡ ⎤∂ ∂ ⎡ ⎤′ − −⎢ ⎥∂ ∂ ⎢ ⎥⎢ ⎥
⎢ ⎥= =⎢ ⎥∂ ∂ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥∂ ∂ ⎣ ⎦

⎣ ⎦ �
�

� �

� �

)ˆθ θ θ θ θ

θ θ θ θ
, (12) 

where the sign of an element of  is given below it when it is unambiguous, dJ

 ( )
1

def
21

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆˆ ˆ( ), ( ) ˆ ˆ ˆ ˆ

s sN
N s NN sN s

d s

ss s s ss

C E F E C E F py E E L
Ej N s

C C E E

ϕ ϕ −⎡ ⎤ ⎡ ⎤ ⎡′ ′′ ′− + − − + ⎤′′⎣ ⎦ ⎣ ⎦ ⎣
=

⎡ ⎤− ⎣ ⎦
θ θ

⎦
, (13) 

 ( ) def
22

ˆ ˆ ˆ ˆˆ
ˆ ˆ( ), ( ) 0

ˆ ˆ ˆ ˆ
ss N ssd

ss s s ss

C F E py E
j N s

C C E E

ρ ϕ⎡ ⎤′ ′− + −⎣ ⎦= >
⎡ ⎤− ⎣ ⎦

θ θ , (14) 

and where, for example, the notation (defˆ ˆ( );s sC C s )α= θ  signifies that the function is evaluated at 

the steady state solution ( ) . ˆ ˆ( ), ( )N sθ θ

 Because problem (1) falls under the class of optimal control problems studied by Caputo 

(1997, 2005), we may apply Eq. (10a) of Caputo (1997) to conclude that , thereby 

implying that the simple steady state is also hyperbolic. Consequently, we may also invoke Sta-

bility Lemma of Caputo (1997) or Theorem 18.1 of Caputo (2005) to conclude that the steady 

state (  is a local saddle point, or equivalently, that 

tr 0dJ ρ= >

)ˆ ˆ( ), ( )N sθ θ 0dJ < . 

 Given that 0dJ < , an equivalent statement of this condition is that 

 
( ) ( )0 0

0 0
N N
s s

N N s N
N s s s
− += =

= =

−∂ ∂ −∂ ∂
<

∂ ∂ ∂ ∂
� �
� �

� �
� �

, (15) 

as may be readily verified. By the implicit function theorem, the left-hand side of Eq. (15) is the 

slope of the  isocline in a neighbourhood of the steady state, while the right-hand side is 

the slope of the  isocline in a neighbourhood of the steady state. In view of the fact that 

only the signs of the denominators in Eq. 

0N =�

0s =�

(15) are known in general, as indicated, Eq. (15) points 
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to three different configurations of the isoclines that are consistent with the steady state being a 

local saddle point. We examine each possibility in what follows. 

 First consider the case in which the slope of the 0N =�  isocline is positive in a 

neighbourhood of the steady state, or equivalently, that 
0 0

ˆ ˆ 0NN s
N N F E

= ∧ =
′∂ ∂ = −� �

� > . In this case 

Eq. (15) implies that in a neighbourhood of the steady state, the slope of the  isocline is 

positive and greater than the slope of the 

0s =�

0N =�  isocline, and that 
0 0

0
N s

s N
= ∧ =

∂ ∂ � �
� < . Figure 1 

presents the phase portrait in this situation. The optimal trajectory is the stable manifold of the 

saddle point steady state and is depicted by the two “thick” trajectories in Figure 1. The phase 

diagram shows that the optimal spraying rate and swarm size increase monotonically over time if 

the initial swarm size is less than the steady state swarm size, while they both decline monotoni-

cally over time if the initial swarm size is greater than the steady state swarm size. Because 

0 0
ˆ ˆ 0NN s

N N F E
= ∧ =

′∂ ∂ = − >� �
�  in this case, the steady state swarm size is less than the growth-rate 

maximizing swarm size N , which obeys ( ) 0F N′ =  from assumption (A.3). 

 The second case consistent with the local saddle point nature of the steady state occurs 

when the slope of the  isocline is negative in a neighbourhood of the steady state, or 

equivalently, when 

0s =�

0 0
0

N s
s N

= ∧ =
∂ ∂ >� �
� . In this situation Eq. (15) implies that in a neighbourhood 

of the steady state, the slope of the 0N =�  isocline is negative and absolutely greater than the 

slope of the  isocline, and furthermore that 0s =�
0 0

ˆ ˆ 0NN s
N N F E

= ∧ =
′∂ ∂ = −� �

� < . The phase portrait 

for this case is given in Figure 2. Note that the inequality 
0 0

ˆ ˆ 0NN s
N N F E

= ∧ =
′∂ ∂ = −� �

� <  implies 

that the steady state swarm size is greater in the present case than in the previous one, and that it 

may also be greater than the growth-rate maximizing swarm size N . Consequently, it is not sur-

prising in this case to find that the optimal spraying rate increases monotonically to its steady 

state value when the initial swarm size is greater than its steady state swarm size, in contrast to 

the previous case. 

 The third (and last) case that is consistent with the steady state being a local saddle point 

is when the  isocline has a negative slope in a neighbourhood of the steady state and the 

 isocline has a positive slope in a neighbourhood of the steady state, which are equivalent to 

0N =�

0s =�
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0 0
ˆ ˆ 0NN s

N N F E
= ∧ =

′∂ ∂ = − <� �
�  and 

0 0
0

N s
s N

= ∧ =
∂ ∂ <� �
� , respectively. The phase portrait for this 

situation is depicted in Figure 3. 

 Before closing out this section, we pause to briefly mention the ramifications for the 

phase portrait in the special case in which the eradication production function is independent of 

the swarm size, i.e., when ( , ) 0NE s N ≡ . Under this supposition, it follows from Eqs. (12) and 

(13) that 
0 0

0
N s

s N
= ∧ =

∂ ∂ >� �
� , thereby implying, by way of the implicit function theorem and Eq. 

(15), that the slope of the  isocline is negative in a neighbourhood of the steady state. Using 

Eq. 

0s =�

(15) and the implicit function theorem again, this implies that the slope of the  isocline 

is also negative in a neighbourhood of the steady state, or equivalently, that 

0N =�

0 0
ˆ 0

N s
N N F

= ∧ =
′∂ ∂ = <� �

� , and that it is absolutely larger than that of the 0s =�  isocline. These con-

clusions imply that Figure 2 is the relevant phase portrait under the simplifying assumption 

. ( , ) 0NE s N ≡

 In closing out this section we return to the necessary and sufficient condition for local 

saddle point stability of the steady state, to wit, 0dJ < . We intend to establish a relationship be-

tween this condition and the Jacobian determinant of the steady state equations evaluated at the 

steady state. This result plays a central role in determining the local differentiability and qualita-

tive steady state comparative statics properties of the optimal solution to problem (1), as will be 

shown in §4. 

 To this end, compute the Jacobian matrix of Eqs. (9) and (10), evaluate the result at the 

steady state solution ( , and then use assumptions (A.1)–(A.4) to get )ˆ ˆ( ), ( )N sθ θ

 
( ) ( ) ( )

( ) (
( )def

21 22
( )

ˆ ˆˆ ˆ( ) ( ), ( ) ( ), ( )

ˆ ˆˆ ˆ( ), ( ) ( ), ( )

N s

s

s s

F N E s N E s N

J
j N s j N s

−

+

⎡ ⎤′ − −
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

θ θ θ θ

θ θ θ θ )

ˆ θ

ˆ

, (16) 

where 

 ( ) def 1
21

ˆˆ ˆ ˆ ˆˆ ˆˆ( ), ( )s
s NN sN sj N s C E F py E E Lϕ ϕ −⎡ ⎤ ⎡′′ ′ ′′= − − + ⎤⎣ ⎦ ⎣θ θ ⎦

ˆ

, (17) 

 . (18) ( ) def
22

ˆ ˆˆ ˆ ˆ ˆ ˆˆ( ), ( ) 0s
s Ns ss N ssj N s C E C F E py Eρ ϕ⎡ ⎤′ ′= + − + − >⎣ ⎦θ θ
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Next, using Eq. (10b) of Caputo (1997), or by computing the determinants of Eqs. (12) and (16), 

it can be shown that ˆ ˆ ˆ ˆs d
ss s s ssJ C C E E J⎡ ⎤⎡ ⎤= − ⎣ ⎦⎣ ⎦ . Seeing as ˆ ˆ ˆ ˆ 0ss s s ssC C E E⎡ ⎤− >⎣ ⎦  by assump-

tions (A.1) and (A.2) and that 0dJ < , it follows that 0sJ < . Moreover, given that the func-

tions , ( )C ⋅ ( )E ⋅ , , and ( )F ⋅ ( )ϕ ⋅  are  by assumptions (A.1)–(A.4), and the fact that (2)C 0sJ ≠ , 

the implicit function theorem implies that ( ) (1)ˆ ˆ( ), ( )N s C⋅ ⋅ ∈  locally. This conclusion permits the 

use of the differential calculus to study the comparative statics properties of the steady state solu-

tion  in §4. ( )ˆ ˆ( ), ( )N sθ θ

 

4. Steady State Comparative Statics and Local Comparative Dynamics 

The analysis of the steady state comparative statics begins by substituting the steady state solu-

tion  in Eqs. ( ˆ ˆ( ), ( )N sθ θ ) (9) and (10) to get the following identities in θ : 

 ( ) ( )ˆ ˆˆ( ) ( ), ( ) 0F N E s N− ≡θ θ θ , (19) 

 ( ) ( ) ( ) ( ) ( )1ˆ ˆ ˆ ˆˆ ˆ ˆ( ); ( ) ( ), ( ) ( ) ( ), ( ) 0s N sC s F N E s N py N L E s Nα ρ ϕ −⎡ ⎤′ ′− + −⎣ ⎦θ θ θ θ θ θ ≡θ . (20) 

Differentiation of Eqs. (19) and (20) with respect to, say, α , gives the system of linear equations 

 
( ) ( ) ( )

( ) ( )
( )

21 22
( )

ˆˆ ˆ ˆ ( )ˆ ˆ( ) ( ), ( ) ( ), ( )
0

ˆ ˆ ˆˆ ˆ ˆ( )ˆ ˆ( ), ( ) ( ), ( )

N s

s s
s N

NF N E s N E s N

C F Esj N s j N s α

α
ρ

α

−

+

⎡ ⎤ ⎡ ⎤∂′ − −
⎢ ⎥ ⎢ ⎥ ⎡ ⎤∂⎢ ⎥ ⎢ ⎥ ≡ ⎢ ⎥

⎡ ⎤′− − +∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥∂⎣ ⎦⎣ ⎦

θθ θ θ θ θ

θθ θ θ θ
. (21) 

Solving Eq. (21) with Cramer’s rule, using assumptions (A.1), (A.2), and Eq. (11), and recalling 

that 0sJ < , gives the steady state comparative statics results 

 
ˆˆ ˆ ˆˆ ( ) 0

s s N

s

E C F EN
J

α ρ

α

⎡ ⎤′− − +∂ ⎣ ⎦≡ >
∂
θ , (22) 

 
ˆˆ ˆ ˆ ˆˆ( ) N s N

s

F E C F Es
J
α ρ

α

⎡ ⎤ ⎡′ ′− − − +∂ ⎤⎣ ⎦ ⎣≡
∂
θ ⎦ . (23) 

Alternatively, one may simply invoke Theorem 1 of Caputo (1997) or Theorem 18.2 of Caputo 

(2005) to derive these and the ensuing steady state comparative statics results. 
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 Noting that the steady state probability of an individual household’s crop being devoured 

by the locust swarm is , and making use of assumption (A.4) and Eq. ( 1ˆ ( )N Lϕ −θ ) (22), it follows 

that 

 
( ) ( )

1
1 1

ˆ ( ) ˆ ( )ˆ ( ) 0
N L NN L L

ϕ
ϕ

α α

−

− −
∂ ∂′= >

∂ ∂

θ θ
θ . (24) 

Finally, using Theorem 14.10 of Caputo (2005) and assumption (A.1), we arrive at the dynamic 

envelope result 

 ( )0
0

0

( , ) ( ; , ); 0tC N C s t N e dtρ
α α

α

+∞∗
∗ −∂

= >
∂ ∫
θ

θ . (25) 

Let us now turn to the economic interpretation of Eqs. (22)–(25). 

 Because an increase in α  (which is due to a rise in the spraying inputs’ market prices 

and/or in the environmental and health sensitivities to pesticides) results in an increase in the (in-

stantaneous) total and marginal costs of spraying, it is not surprising that Eq. (25) shows that the 

minimum present value expected cost of the locust control program increases with α . Equations 

(22) and (24) show that the steady state swarm size and the probability of a household being hit 

by the swarm both increase with the marginal cost of spraying. These are intuitive results in that 

with spraying more costly at the margin, one would expect a larger swarm size and thus an in-

creased probability of being hit by the swarm to result.  On the other hand, Eq. (23) shows the 

steady state spraying rate may increase or decrease when the marginal cost of spraying increases. 

Thus, it is possible that the steady state swarm size and the spraying rate increase as a result of an 

increase in the marginal cost of spraying, a rather unexpected outcome. Indeed, this is precisely 

what occurs when the sufficient condition that produces Figure 1 prevails, as we show in the en-

suing paragraph. Moreover, with the aid of a local comparative dynamics analysis we will also 

provide an intuitive explanation for this surprising steady state comparative statics outcome. 

 Recall that in §3 we proved that if 
0 0

ˆ ˆ 0NN s
N N F E

= ∧ =
′∂ ∂ = −� �

� > , which is equivalent to 

assuming that the slope of the  isocline is positive in a neighbourhood of the steady state, 

then 

0N =�

0 0
0

N s
s N

= ∧ =
∂ ∂ <� �
�  and the phase portrait is given by Figure 1. Using Eq. (23) it then follows 
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that ˆ( ) 0s α∂ ∂ >θ , as was to be demonstrated. In order to come to some understanding of the 

economic rationale behind the seemingly counterintuitive joint occurrence of ˆ ( ) 0N α∂ ∂ >θ  and 

ˆ( ) 0s α∂ ∂ >θ , we now examine the local comparative dynamics of an increase in α . The reader 

may wish to consult Caputo (2005, Chapters 15–18) for more details on the construction of com-

parative dynamics phase diagrams that are used below. 

 First observe that by using Eq. (7), it follows that the 0N =�  isocline is independent of α  

and therefore does not shift when α  changes. Using Eq. (8), on the other hand, shows that the 

 isocline is a function of 0s =� α , as it appears explicitly in it. By the implicit function theorem, 

the effect of an increase in α  on the 0s =�  isocline in a neighbourhood of the steady state is 

given by [ ] [ ] 0s s sα− ∂ ∂ ∂ ∂ <� � , as may be readily verified. This result implies that the 0s =�  

isocline shifts down in the  phase plane in a neighbourhood of the steady state when ( , )N s α  in-

creases. Note that these conclusions regarding the isoclines hold regardless of their slopes. 

 Given the conclusions of the preceding paragraph, and maintaining the basic assumption 

that generates Figure 1, namely, 
0 0

ˆ ˆ 0NN s
N N F E

= ∧ =
′∂ ∂ = − >� �

� , the local comparative dynamics 

phase portrait corresponding to an increase in α  may be drawn—it is given in Figure 4. The op-

timal path from the old steady state to the new steady state is indicated by the “thick” trajectory, 

and shows that at the instant the marginal cost of spraying increases, the planner reduces the 

spraying rate below its old steady state value. This initial decrease in the spraying rate and the 

subsequent period of time in which it remains below its old steady state value are responsible for 

the rise in the swarm size in the new steady state—this despite the fact that the spraying rate is 

higher in the new steady state than it is in the old. Thus, the ostensibly counterintuitive steady 

state results, to wit, ˆ ( ) 0N α∂ ∂ >θ  and ˆ( ) 0s α∂ ∂ >θ , are found to be intuitively plausible once 

the local comparative dynamics of the increase in α  are understood. It is left to the interested 

reader to derive the local comparative dynamic phase diagrams in the intuitive cases correspond-

ing to Figures 2 and 3, i.e., when ˆ ( ) 0N α∂ ∂ >θ  and ˆ( ) 0s α∂ ∂ <θ  occur. 
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 Let us now turn to the effects of an increase in the planner’s discount rate ρ . The ensu-

ing qualitative results can be derived by following the above procedures and using assumptions 

(A.1)–(A.4), or by invoking Theorem 1 of Caputo (1997) or Theorem 18.2 of Caputo (2005): 

 
ˆˆˆ ( ) 0s s

s

E CN
Jρ

−∂
≡ >

∂
θ , 

ˆˆ ˆˆ( ) N s

s

F E Cs
Jρ

⎡ ⎤′− −∂ ⎣ ⎦≡
∂
θ , 

( )1
1

ˆ ( ) ˆ ( )ˆ 0
N L N L

ϕ
ϕ

ρ ρ

−

−
∂ ∂′= >

∂ ∂

θ θ , (26) 

 ( ) ( )10
0 0

0

( , ) ( ; , ) ( ; , ); 0tC N t pyL N t N L C s t N e dtρϕ
ρ

+∞∗
∗ − ∗ −∂ ⎡ ⎤= − + <⎣ ⎦∂ ∫

θ
θ θ α . (27) 

The steady state comparative statics exhibited in Eq. (26) are qualitatively identical to those for 

α  and thus merit only a brief remark. Recalling that an increase in ρ  implies a more impatient 

planner, it is intuitive that the optimal plan calls for a higher steady state swarm size along with 

an increased probability of an attack, seeing as the more impatient planner wishes to push off 

“bad” events into the future even more. This intuition also explains the lower present value cost 

of the program, as indicated by Eq. (27). As was the case for an increase in the marginal cost of 

spraying, the steady state spraying rate may increase or decrease with the planner’s increased 

impatience. In passing, note that the local comparative dynamics properties of ρ  are qualita-

tively identical to α , and so are left for the interested reader to contemplate. 

 Turning to the crop-replacement price p , we have 

 
2ˆˆ ˆ [ ]( ) 0s

s

y EN
p J

ϕ′∂
≡ <

∂
θ , 

ˆ ˆ ˆˆˆ( ) N s

s

F E y Es
p J

ϕ⎡ ⎤′ ′−∂ ⎣ ⎦≡
∂
θ , 

( )1
1

ˆ ( ) ˆ ( )ˆ 0
N L N L

p p

ϕ
ϕ

−

−
∂ ∂′= <

∂ ∂

θ θ , (28) 

 ( )10
0

0

( , ) ( ; , ) 0tC N yL N t N L e dt
p

ρϕ
+∞∗

∗ − −∂
= >

∂ ∫
θ

θ . (29) 

The steady state comparative statics given in Eq. (28) show that they are qualitatively the oppo-

site of those for the marginal cost of spraying and the planner’s discount rate. Because a higher 

crop-replacement price implies that a locust invasion is more costly, it is intuitive that the opti-

mal policy calls for a lower steady state stock of locusts and a lower probability of an attack, and 

results in a higher expected present discounted cost of the optimal spraying program. On the 

other hand, an increase in the crop-replacement price may increase or decrease the steady state 
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spraying rate. If it is the case that the steady state spraying rate increases, i.e., if ˆ( ) 0s p∂ ∂ >θ , 

then it is intuitive that there would be a lower steady state swarm size and probability of attack. 

If, however, the steady state spraying rate decreases, i.e., ˆ( ) 0s p∂ ∂ <θ , then as was the case with 

an increase in the marginal cost of spraying, it seems counterintuitive that the steady state swarm 

size and probability of attack are lower in the new steady state too. As was the case before, in-

vestigating the local comparative dynamics of an increase in the crop-replacement price will 

shed light on the underlying economic intuition of this ostensibly counterintuitive case. 

 As before, the  isocline is independent of 0N =� p  and thus does not shift when p  

changes. The  isocline, however, is a function of 0s =� p  and thus does shift as p  changes. By 

the implicit function theorem, the effect of an increase in p  on the  isocline in a 

neighbourhood of the steady state is given by 

0s =�

[ ] [ ] 0s p s s− ∂ ∂ ∂ ∂ >� � , thereby implying that the 

 isocline shifts up when 0s =� p  increases in a neighbourhood of the steady state. Because these 

two conclusions hold regardless of the slope of the isoclines, Figures 2 and 3 are seen to generate 

the intuitive outcome, to wit, ˆ( ) 0s p∂ ∂ >θ  and ˆ ( ) 0N p∂ ∂ <θ , just as they did for an increase in 

α  and ρ . Consequently, it is again Figure 1 that yields the seemingly counterintuitive steady 

state comparative statics results ˆ( ) 0s p∂ ∂ <θ  and ˆ ( ) 0N p∂ ∂ <θ . We thus turn to the local com-

parative dynamics associated with Figure 1 for an increase in p  in order to fully understand this 

“puzzling” result. 

 Maintaining the essential assumption that generates Figure 1, that is to say, 

0 0
ˆ ˆ 0NN s

N N F E
= ∧ =

′∂ ∂ = − >� �
� , it follows from Eq. (28) that ˆ( ) 0s p∂ ∂ <θ  and ˆ ( ) 0N p∂ ∂ <θ . 

Given the shift in the  isocline noted in the preceding paragraph, the local comparative dy-

namics phase portrait corresponding to an increase in 

0s =�

p  may be drawn, and is given by Figure 5. 

The optimal path from the old to the new steady state is again indicated by the “thick” trajectory, 

and shows that at the instant the crop-replacement price increases, the planner increases the 

spraying rate above its old steady state rate. By continuity, the spraying rate remains above its 

old steady state rate for a finite period of time, and as a result, the swarm size falls over time.  

Even though the spraying rate in the new steady state is lower than it was in the old, the initial 
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(but temporary) increase in the spraying rate brought about by the increase in the crop-

replacement price is wholly responsible for the lower swarm size in the new steady state. Thus, 

even though ˆ( ) 0s p∂ ∂ <θ  and ˆ ( ) 0N p∂ ∂ <θ  occur in this case and appear counterintuitive, the 

local comparative dynamics analysis has revealed the mechanism by which this qualitative result 

is indeed a rational outcome, to wit, there is an initial increase in the spraying rate that drives the 

swarm size and the probability of an attack down to their new steady state values. 

 The steady state comparative statics and envelope properties that result from an increase 

in the number of households and yield per household are qualitatively identical to that for an in-

crease in the crop-replacement price, as shown by the ensuing formulae: 

 
2 2ˆ ˆˆ ˆ[ ] ( )( ) 0s

s

py E N LN
L J

ϕ −′′−∂
≡ <

∂
θθ , 

2ˆ ˆ ˆ ˆˆ ( )ˆ( ) N s

s

F E pyE N Ls
L J

ϕ −⎡ ⎤′ ′′− −∂ ⎣ ⎦≡
∂

θθ , 

 
( )1

1 2
ˆ ( ) ˆ ( ) ˆˆ ( ) 0

N L N L N L
L L

ϕ
ϕ

−

− −
∂ ⎡ ⎤∂′= − <⎢ ⎥∂ ∂⎣ ⎦

θ θ
θ , ( )10

0
0

( , ) ( ; , ) 0tC N py N t N L e dt
L

ρϕ
+∞∗

∗ − −∂
= >

∂ ∫
θ

θ , 

and 

 
2ˆˆ ˆ [ ]( ) 0s

s

p EN
y J

ϕ′∂
≡ <

∂
θ , 

ˆ ˆ ˆˆˆ( ) N s

s

F E p Es
y J

ϕ⎡ ⎤′ ′−∂ ⎣ ⎦≡
∂
θ , 

( )1
1

ˆ ( ) ˆ ( )ˆ 0
N L N L

y y

ϕ
ϕ

−

−
∂ ∂′= <

∂ ∂

θ θ , 

 ( )10
0

0

( , ) ( ; , ) 0tC N pL N t N L e dt
y

ρϕ
+∞∗

∗ − −∂
= >

∂ ∫
θ

θ . 

Given the above observation we provide but a brief economic interpretation of these results. 

 When the number of households in the locust-alley increase, the new steady state has a 

lower swarm size and a lower probability of a household being attacked by the swarm, while the 

expected present value cost to the planner is higher, regardless of whether or not the spraying 

rate is higher or lower in the new steady state. This is driven by the fact that with more house-

holds in the locust-alley, aggregated expected losses are higher, hence the optimal policy aims 

for a lower swarm size and probability of attack. The same seemingly counterintuitive result can 

occur in this case too, as it is possible for the steady state spraying rate to fall along with the 

swarm size and probability of an attack. But as was the case with an increase in the crop-
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replacement price, this is explained by the initial increase in the spraying rate that accompanies 

the increase in the number of farm-households. Essentially the same economic intuition applies 

when the yield per household increases, seeing as it too raises the expected aggregate loss to the 

planner. 

 

5. Summary and Concluding Remarks 

Locust swarms in less developed areas regularly hit clusters of subsistence-staple-crop-growing 

small-scale farming households at random, and inflict essentially immediate and complete dam-

age. Moreover, the said farming households typically act in an uncoordinated manner, and as a 

result, the locust swarm attacks often go unchecked through locust-allies. With these empirical 

regularities in mind, we have developed an optimal-control model designed to stabilise the sup-

ply of staple crops in such areas and to support the inhabitants’ traditional way of life at least ex-

pected cost to a public planner. 

 Relying on plausible economic assumptions about the costs of spraying and the eradica-

tion technology, we showed that the steady state of the model is a local saddle point. Using this 

feature of the model we then provided a thorough characterization of the steady state compara-

tive statics of the optimal spraying policy. In particular, we showed that the steady state swarm 

size and probability of an attack increase with (i) the number of alternative feeding sites or farm-

households, (ii) the amount of food for the locusts, i.e., yield per farm, and (iii) the value of the 

crop and hence the value of spraying. On the other hand, we showed that the steady state swarm 

size and probability of an attack increase with the spraying’s input-prices and adverse effects on 

the environment and population health, and with the planner’s discount rate. Using the dynamic 

envelope theorem, we also demonstrated that the aforesaid increases in the parameters of the 

model generate the expected changes in the planner’s minimum present discounted expected cost 

of locust control. 

 In contrast to the above unambiguous and intuitive qualitative results, we found that in 

general, an increase in any of the parameters of the model generates an ambiguous change in the 
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steady state rate of spraying. This implies that the steady state rate of spraying and swarm size 

may both decrease when, say, the crop-replacement price increases. By examining the local 

comparative dynamics of a crop-replacement price increase, we showed that this ostensibly 

counterintuitive result is easily understood. Specifically, we showed that the result stems from 

the fact that at the instant the crop-replacement price increases, the spraying rate initially in-

creases above its old steady state value. This feature provides the impetus for driving down the 

swarm size to its new, lower, steady state level, in spite of the fact that the spraying rate is lower 

in the new steady state. 
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