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Abstract: This paper investigates the microeconomics of diversification, based on a two-period 

model of an owner-managed firm facing uncertainty. The analysis utilizes a general state-

contingent representation of uncertainty and learning. Economies of diversification are 

defined based on a certainty equivalent, which has three components: expected profit, the risk 

premium (measuring the cost of risk aversion), and the value of information associated with 

learning. The influence of scale effects, “trans-ray concavity” effects, and income effects on 

economies of diversification are examined in detail. We argue that, while scope economies 

and risk aversion can provide general incentives for diversification, information and learning 

can have the opposite effect. By integrating scope, risk, and the role of information, our 

analysis provides new insights on existing economic tradeoffs between firm diversification 

and specialization. 
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On the Microeconomics of Diversification under Uncertainty and Learning 

 

1. Introduction 

This paper integrates three economic rationales for diversification by economic agents: scope, 

risk management, and learning.  Scope economies and risk management have been distinct foci of 

extensive microeconomic research related to diversification.  Starting with the seminal work of Baumol, 

Panzar, and Willig, economies of scope, which measure the cost reduction or profit gain associated with 

multi-output production or marketing processes,1 have been broadly applied to understand the 

organization and performance of many sectors and industries, including higher education (e.g., Cohn et 

al.; De Groot et al., Foltz et al.), telecommunication (e.g., Evans and Heckman), banking (e.g., Berger et 

al.; Dietsch; Ferrier et al.; Lang and Welzel; Huang and Wang), R&D (e.g., Henderson and Cockburn; 

Klette), biotechnology (e.g., Arora and Gambardella), and health care (e.g., Prior).2  These models 

examine the cost properties of multi-output production processes, looking for evidence of scope 

economies while abstracting from portfolio-risk considerations in the evaluation of diversification choice. 

Risk management in portfolio theory is exemplified by the aphorism: “Don’t put all your eggs in 

one basket”. The analysis is typically based on risk aversion and the incentives it can provide to diversify 

among risky prospects (e.g., Markowitz; Tobin; Samuelson, 1967).3 This approach has generated useful 

insights on the role of risk in many economic and financial decisions.4 Yet, it is surprising that scope and 

risk rationales for diversification have not been integrated (as far as we know) in theoretical or applied 

microeconomics.  If both scope and risk considerations are at play simultaneously in an economic agent’s 

decision, it would seem crucial to identify properly their relative effects in microeconomic decision-

making.  For example, two activities in an agent’s portfolio could have both scope economies and risk-

reducing features, which would provide reinforcing motivations for pursuing them jointly to improve 

profits and reduce risk. Alternatively, diseconomies (economies) of scope and risk reduction 

(augmenting) features could cut against each other, making diversification decisions more complex in a 

way that a single rationale could not explain. At both theoretical and empirical levels, this suggests a need 
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to incorporate both scope and risk rationales into the analysis of diversification choices in order to 

properly identify their individual roles and cumulative effects.  

Integrating scope and risk in a microeconomic model is a central goal of this paper. Yet, the 

analysis of risk effects raises the question: how does a particular decision maker come to assess her 

uncertain environment? This typically takes place through learning. But can learning also play a role in 

diversification decisions? We argue that it can and does. As such, we add learning as a third major 

rationale for (or against) diversification in economic analysis. We show how learning can affect the 

incentive to diversify. To do so, we develop a model representing individual learning under bounded 

rationality. Bounded rationality means that, in complex environments, obtaining and processing 

information is difficult, making it infeasible for the decision maker to obtain perfect information about 

technology and market conditions (e.g., Simon; Conlisk; Gabaix et al.). This assumption is relevant for 

agents facing significant changes in their economic environment (e.g., technology, market conditions). 

And, it seems particularly important for entrepreneurs involved in innovations, i.e. in the discovery of 

knowledge leading to new technology, new products, and improved use of current resources. We argue 

that, under bounded rationality, learning plays an important role in diversification strategies: difficulties 

in information processing tend to have adverse effects on the incentive to diversify.5 It means that, in 

addition to scope and risk management, learning also affects diversification decisions, and thus the 

primary focus of the article is to develop an integrated microeconomic model of diversification choices 

made by an owner-manager. The model provides new insights into diversification strategies, with 

implications for financial management, firm structure, household choices, and the economics of 

entrepreneurship.   

Our analysis is also motivated by some of the difficulties economists face in explaining observed 

diversification choices. Indeed, discrepancies between theory and observed behavior have generated 

several “puzzles”. Here, we focus attention on two puzzles. One relates to the observed prevalence of 

investors holding poorly diversified portfolios (e.g., Blume and Friend; Calvet et al.; Campbell; Curcuru 

et al.; Goetzmann and Kumar; Kelly). Why are so many households willing to hold under-diversified 
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portfolios? This is a challenge to portfolio theory which stresses the benefits of diversification. The 

empirical evidence also shows much variability in diversification strategies among households. For 

example, Goetzman and Kumar find that younger, less wealthy, and less sophisticated investors exhibit 

greater under-diversification. Explaining such heterogeneity remains challenging, as illustrated by our 

second puzzle: should a senior widow(er) accept the same level of risk exposure as a young entrepreneur?  

Financial planners have long argued that very risky investments that appear suitable for young 

entrepreneurs should be avoided by widow(er)s, Yet, Samuelson (1969) showed that, under constant 

relative risk aversion, a young entrepreneur and a senior widow(er) with the same wealth should select 

exactly the same exposure to risk. We call this discrepancy between “conventional wisdom” on 

diversification and Samuelson’s theoretical result the “Samuelson puzzle.” We argue below that the 

Samuelson puzzle can be explained by introducing the role of learning in diversification strategies.6 This 

means that traditional approaches to diversification focusing on scope and/or risk alone may be too 

narrow. An integrated approach also capturing the effects of learning is needed.  

Our integrated approach also provides some new and useful insights into the economics of 

entrepreneurship. Entrepreneurs require refined knowledge and skills to learn about their environment and 

identify useful innovations related to technology, new products, and/or improved use of resources. This 

clearly involves risk management. But perhaps more importantly, this requires learning. Since good 

entrepreneurs can be distinguished by their ability to obtain and process information, entrepreneurial 

learning is crucial. Finally, entrepreneurs must try to integrate information about their economic 

environment in a useful way, which fits Lazear’s ‘jack of all trades’ description of entrepreneurs. These 

lessons have two important implications. First, the economic functions of entrepreneurs are complex and 

cannot be reduced easily to simple roles. Second, all three components of our analysis (scope, risk and 

learning) appear to be important aspects of entrepreneurial activities. This suggests that our integrated 

approach to diversification will help provide new insights into the economics of entrepreneurship, or 

more generally into the economics of human capital (Schultz).   
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This article develops a dynamic model of a price-taking, owner-operated firm that explicitly 

incorporates all three diversification rationales: scope, risk and learning.  The analysis is presented in the 

context of a two-period model under a state-contingent representation of uncertainty (Debreu; Chambers 

and Quiggin). The dynamic model provides a general representation of learning (including learning-by-

doing; see Arrow, 1962). The focus on an owner-operated firm allows us to capture bounded rationality 

issues at the micro level, while setting aside the potential interactive and strategic effects that may arise in 

multiple agent environments. The microeconomic model is general and flexible.  

Our analysis of diversification outcomes relies on a “certainty equivalent” representation which is 

introduced in section 3.  The certainty equivalent approach is used in section 4 to propose a measure of 

economies of diversification and in section 5 to identify its three components: expected discounted profit 

(scope), a risk premium (capturing the role of risk aversion), and the value of information (capturing the 

benefit of learning process).  In section 6, our analysis further decomposes each of these three 

components into scale effects, “trans-ray concavity” effects, and income effects. We show that, when 

applied to economies of scope, such a decomposition reduces to the analysis presented by Baumol and 

Baumol et al. However, the identification of scale effects and trans-ray concavity effects related to risk 

and learning are apparently new results. We then develop several conjectures about the nature and 

direction of these effects and explore in Section 7 their implications for diversification choices. In 

particular, we evaluate the implications of scale effects in risk management. We also discuss how the 

trans-ray concavity/convexity of the value of information affects diversification choices. Under bounded 

rationality, we conjecture that, through the trans-ray convexity of the value of information, learning tends 

to have adverse effects on diversification incentives. This is a key finding that helps to explain why 

entrepreneurs often hold highly specialized investments, and indicates that, while economies of scope and 

risk management may favor diversification, leaning effects will often favor specialization. These 

conjectures help to provide an answer to the “Samuelson puzzle.” They also provide other new and useful 

insights into economic tradeoffs involved in diversification choices.   
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2. The Model 

Consider a manager making decisions for a firm over time. For simplicity, we focus our attention 

on a two-period model. The firm is involved in a production process producing m outputs using n inputs 

at time t = 1 and time t = 2. The vector of m outputs chosen at time t is yt = (y1t, …, ymt) ∈ ℜ , and the 

vector of n inputs chosen at time t  is x

m
+

t = (x1t, …, xnt) ∈ ℜ , t = 1, 2. The manager faces uncertainty. The 

uncertainty comes from the production technology as well as market conditions. Production uncertainty, 

represented by R possible states, r = 1, …, R, reflects all uncertain factors related to the production 

process, ranging from imperfectly understood aspects of the technology to stochastic factors (such as 

unforeseen weather effects, possibility of strikes, or equipment breakdown), all of which affect production 

possibilities. Market uncertainty, represented by S possible states, s = 1, …, S, reflects all factors that 

generate uncertainty about market conditions and future market prices. Note that the number of states can 

be quite large. For example, if production uncertainty is generated by 10 random variables, each one 

taking one of 10 possible values, then R = 10

n
+

10, a very large number. Dealing with a large number of 

states can be quite difficult and problematic for the manager as well as for the economic analyst (e.g., 

Simon; Magill and Qinzii). Section 3 explores the implications of this “curse of dimensionality” for the 

assessment of diversification. We focus our attention on situations of incomplete risk markets, where risk 

exposure cannot be transferred entirely to other agents.  

We consider the case where the manager is also the owner of the firm. While period-two 

decisions can depend on the information that becomes available about the states of nature, we assume that 

all period-one decisions are made ex ante.  At time t, the owner-manager has a fixed amount of time T to 

allocate between leisure Let, labor input in the firm Lat, and wage activities Lwt spent working outside the 

firm and earning a wage rate pLt. At time t, the manager’s time constraint is  

T = Lat + Lwt + Let, (1) 

with Lat ≥ 0, Lwt ≥ 0, and Let ≥ 0, t = 1, 2.7 At time t, the owner-manager also chooses a consumption good 

ct, t = 1, 2. He/she faces price pct > 0 for consumption ct, a wage rate pLt > 0 for wage labor Lwt, prices pyt 
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≡ (py1t, …, pymt) ∈ ℜ  for outputs ym
++ t, prices pxt ≡ (px1t, …, pxnt) ∈ ℜ  for inputs xn

++ t, t = 1, 2. Being the 

residual claimant, the owner-manager receives the period-one firm profit (py1
T y1 - px1

T x1).8 In period 

one, the owner-manager also chooses to invest an amount I into an asset yielding a unit return of [1 + 

ρ(s)] in period two. It follows that the owner-manager’s period-one budget constraint is  

pc1 c1 ≤ w + pL1 Lw1 + py1
T y1 - px1

T x1 - I,  (2a) 

where w denotes initial wealth, and (pL1 Lw1) is wage income at time t = 1.    

At time t = 2, the owner-manager chooses netputs x2, consumption good c2, along with the time 

allocation Le2, La2 and Lw2. Under market condition s, the owner-manager faces market price pc2(s) > 0 for 

c2, a wage rate pL2(s) for Lw2, and prices px2(s) for netputs x2. Being the residual claimant, the owner-

manager receives the period-two firm profit (py2
T y2 - px2

T x2). Denote by c2(r, s), x2(r, s) and Lw2(r, s) the 

period-two decision for c2, x2 and Lw2, respectively, under state (r, s). It follows that the owner-manager’s 

period-two budget constraint is 

pc2(s) c2(r, s) ≤  pL2(s) Lw2(r, s) + py2(s)T y2 (r, s) - px2(s)T x2(r, s) + [1 + ρ(s)] I.   (2b) 

Substituting (2a) into (2b) gives the manager’s overall budget constraint 

pc2(s) c2(r, s) ≤ [1 + ρ(s)][w + pL1 Lw1 + py1
T y1 - px1

T x1 - pc1 c1]  

+ pL2(s) Lw2(r, s) + py2(s)T y2 (r, s) - px2(s)T x2(r, s).   (3) 

The period-two decisions for consumption and leisure under state (r, s) are respectively c2(r, s) 

and Le2(r, s). The associated decision rules under all possible states are 2c~  ≡ (c2(1,1), …, c2(R, S)) and 

 ≡ (Le2L~ e2(1,1), …, Le2(R, S)). Using a state-contingent approach, the manager’s preferences are 

represented by the ex ante utility function u(c1, Le1, 2c~ , ). Note that this includes as a special case the 

expected utility (EU) model. Indeed, under the EU model, u(c

e2L~

1, Le1, 2c~ , ) = e2L~ ∑ =

R

1r ∑ =

S

1s
 Pr(r, s) 

U(c1, Le1, c2(r, s), Le2(r, s)), where Pr(r, s) is the probability of facing the state (r, s) and U(c1, Le1, c2, Le2) 

is a von Neumann-Morgenstern utility function representing the manager’s risk preferences. However, the 

state-contingent utility u(c1, Le1, 2c~ , ) applies under conditions much broader than the EU model. For e2L~
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example, it includes as special cases weighted utility (Chew), rank-dependent expected utility (Quiggin), 

prospect theory (Kahneman and Tversky), and general smooth preferences (Machina). Unlike the EU 

model, this allows for preferences that are not linear in the probabilities. And more generally, the state-

contingent approach does not even require that the manager formulates a probability assessment of the 

states (Debreu). Throughout, we assume that u(c1, Le1, 2c~ , ) is strictly increasing in (ce2L~ 1, 2c~ ). This 

implies that the owner-manager’s preferences are non-satiated in the consumption goods (c1, 2c~ ).   

As noted above, the decisions made at time t = 1 (i.e., y1, x1, La1, Lw1, Le1, c1 and I) are chosen ex 

ante. This means that they do not depend on the states (r, s). However, the decisions made at time t = 2 

can depend on the states. This includes the period-two consumption and leisure decisions 2c~  ≡ (c2(1,1), 

…, c2(R, S)) and  ≡ (Le2L~ e2(1,1), …, Le2(R, S)). The nature of state-contingency reflects the amount of 

the manager’s learning about his economic environment. Below, we assume that the period-two 

consumption/leisure decisions (c2, Le2) are made ex post. It means that c2(r, s) and Le2(r, s) can be different 

across each state (r, s). However, we want to capture the role of the learning process for other period-two 

decisions. This includes the output decisions 2
~y  ≡ (y2(1,1), …, y2(R, S)), the input decisions 2

~x  ≡ 

(x2(1,1), …, x2(R, S)), and the labor decisions  ≡ (La2L~ a2(1,1), …, La2(R, S)) and  ≡ (Lw2L~ w2(1,1), …, 

Lw2(R, S)). Let z2 ≡ (y2, x2, La2, Lw2) = (z12, …, zm+n+2,2) ∈ ℜm+n+2, with 2
~z  ≡ (z2(1,1), …, z2(R, S)) ∈ 

ℜ(m+n+2)RS. We allow the decisions z2 to reflect different amount of learning. This is done by considering 

different partitions of the state space P ≡ {1, …, R}×{1, …, S}. Let Pi be a partition of P, i.e. a collection 

of disjoint subsets of P whose union is P. Assume that zi2 (the i-th decision variable in z2 ≡ (y2, x2, La2, 

Lw2)) is chosen based on the information partition Pi such that  

zi2(r, s) = zi2(r’, s’) if (r, s) and (r’, s’) are in the same element of Pi, (4) 

i = 1, …, n+m+2. Equation (4) means that, when choosing zi2, the manager cannot distinguish between 

states that are in the same elements of the partition Pi. This can represent different amount of information 

available. At one extreme, perfect information corresponds to Pi = P+ ≡ {(1, 1), …, (R, S)}, where P+ has 
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RS elements with each element corresponding to a state (r, s). Then, Pi = P+ implies that the manager 

chooses zi2 ex post. At the other extreme, no information corresponds to Pi = P- ≡ {P}, where P- has only 

one element. Then, Pi = P- implies that the manager chooses zi2 ex ante. And partial learning corresponds 

to intermediate situations where the number of elements in Pi is greater than 1 but less than RS.  

Denote by P = (P1, …, Pn+m+2) the information structure supporting the second-period decisions z2 

≡ (x2, La2, Lw2) = (z12, …, zn+m+2,2). To investigate the role of the learning process, we allow P to be 

endogenous. That is, we consider situations of active learning, where the manager uses the resources 

he/she controls to obtain information about his/her economic environment.  

For a given information structure P, let the feasible set F(P) ⊂ ℜn+2+(m+2)RS represent the firm 

technology, where (y1, x1, La1, Lw1, 2
~y , 2

~x , , ) ∈ F(P) means that netputs (ya2L~ w2L~ 1, x1, La1, Lw1, 2
~y , 

2
~x , , ) are feasible under the information structure P. Note the generality of this characterization. 

It guarantees feasibility for (y

a2L~ w2L~

1, x1, La1, Lw1, 2
~y , 2

~x , , ) across all possible states. It allows for 

production as well as investment activities (where the first-period decisions generate uncertain second-

period payoff). It allows for jointness between choosing (y

a2L~ w2L~

1, x1, La1, Lw1, 2
~y , 2

~x , , ) and learning 

(the choice of P) about both technology (represented by the states r = 1, …, R) and market conditions 

(represented by the states s = 1, …, S). As such, it can represent situations of active learning (including 

learning-by-doing; see Arrow, 1962). Under active learning, we assume that F(P) ⊂  F(P’) for any 

information structure P’ that is at least as fine as P. Then, F(P’) - F(P) represents the set of resources 

required to learn so as to replace P by P’. And the benefits obtained from the new information are 

associated with equation (4) (which becomes less restrictive). The feasible set F(P) also allows for the 

possibility that labor activities outside the firm (L

a2L~ w2L~

w1, Lw2) can affect the productivity of labor within the 

firm (La1, La2). And it can reflect contractual and institutional restrictions imposed on labor choices both 

within and outside the firm. Finally, the characterization allows the amount of learning to be specific to 
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each decision zi2. This can represent situations where information processing requires the use of resources 

but with a learning process that varies across zi2’s. 9  

Under economic rationality, the manager’s decisions is represented by the optimization problem  

W(w) = Max {u(c1, Le1, 2c~ , ): equations (1), (2a), (2b) and (4);  e2L~

(y1, x1, La1, Lw1, 2
~y , 2

~x , , ) ∈ F(P)}.  (5)  a2L~ w2L~

Under non-satiation in 2c~ , note that the budget constraint (3) is always binding under each state 

(r, s). Below, we assume for simplicity that leisure is always positive, with Le1 > 0 and Le2(r, s) > 0. Then, 

after substituting (1) and (3) into the utility function, the optimization problem (5) can be alternatively 

written as 

W(w) = Max {u[c1, T – La1 – Lw1, …, [w + pL1 Lw1 + py1
T y1 - px1

T x1 - pc1 c1][1 + ρ(s)]/pc2(s)  

+ [pL2(s) Lw2(r, s) + py2(s)T y2(r, s) - px2(s)T x2(r, s)]/pc2(s), …, T – La2(r, s) – Lw2(r, s), …]:  

Lat ≥ 0, Lwt ≥ 0, t = 1, 2; equation (4) evaluated at P;  

(y1, x1, La1, Lw1, 2
~y , 2

~x , , ) ∈ F(P)}.  (6)  a2L~ w2L~

Let Lt ≡ (Lat, Lwt), t = 1, 2. Using backward induction, the optimization problem (6) can be 

decomposed into two stages: first choose (y2, x2, L2), conditional on (y1, x1, L1, c1, P); and second choose 

(y1, x1, L1, c1, P). The first stage decision is 

u*(w, y1, x1, L1, c1, P) = Max  {u[c0L,x,y 222 ≥ 1, T – La1 – Lw1, …,  

[w + pL1 Lw1 + py1
T y1 - px1

T x1 - pc1 c1][1 + ρ(s)]/pc2(s)  

+ [pL2(s) Lw2(r, s) + py2(s)T y2(r, s) - px2(s)T x2(r, s)]/pc2(s), …, T – La2(r, s) – Lw2(r, s), …]:  

equation (4) evaluated at P; (y1, x1, La1, Lw1, 2
~y , 2

~x , , ) ∈ F(P)},  (7a) a2L~ w2L~

with 2
~y *(w, y1, x1, L1, c1, P), 2

~x *(w, y1, x1, L1, c1, P) and 2
~L *(w, y1, x1, L1, c1, P) being the 

corresponding optimal decision rules. The second stage decision is 

W(w) = Max  {uP,c0,L,x,y 1111 ≥
*(w, y1, x1, L1, c1, P)},  (7b) 
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with (y1
*, x1

*, L1
*, c1

*, P*) as corresponding optimal decisions.  

How much learning typically takes place? When the economic environment of the firm is simple, 

assessing the uncertainty facing the owner-manager may be reasonably easy. Under such circumstances, 

obtaining perfect information may be attainable (provided that the decisions maker is willing to spend 

enough resources in the learning process). However, the economic environment of firms can be complex, 

especially during periods of significant market, technological, or institutional changes. Entrepreneurial 

activities seem fraught with this kind of complexity and characterized by opportunities for learning, 

where the number of states R and S is large. In this context, information acquisition and processing may 

prove difficult. When R and S are large, we define bounded rationality as any situation where F(P+) = ∅ 

where P+ represents perfect information. Under bounded rationality, this means that making all period-

two decisions ex post is not feasible. Under such circumstances, while extensive learning remains 

feasible, perfect learning is impossible (Simon). In this context, our analysis provides a basis to 

investigate the economics of bounded rationality.  

 

3. Certainty Equivalent under Uncertainty and Learning 

Under incomplete risk markets, the owner-manager cannot transfer his/her risk exposure entirely 

to other agents. This means that risk exposure and information are expected to affect the welfare of the 

owner-manager. If so, how do risk and information affect production/investment decisions? This section 

explores under what conditions period-one netputs would be chosen in a way consistent with standard 

profit maximization. And if profit maximization does not apply, how can it be modified to account for risk 

and information effects?   

First, we address the question: Does profit maximization apply to period-one inputs and outputs? 

Under non-satiation in (c1, 2c~ ), note that the optimization with respect to x1 in (6) implies the profit 

maximization problem 

π(py1, px1, La1, Lw1, 2
~y , 2

~x , , , P) = Max  {pa2L~ w2L~
11 x,y y1

T y1 - px1
T x1:  

 10



(y1, x1, La1, Lw1, 2
~y , 2

~x , , ) ∈ F(P)},  (8) a2L~ w2L~

where x1
π(py1, px1, La1, Lw1, 2

~y , 2
~x , , , P) is the optimal solution for xa2L~ w2L~ 1, and π(py1, px1, La1, Lw1, 

2
~y , 2

~x , , , P) is a restricted profit function. The profit function π(pa2L~ w2L~ y1, px1, La1, Lw1, 2
~y , 2

~x , 

, , P) is homogenous of degree one and convex in (pa2L~ w2L~ y1, px1). Equation (8) is a standard profit 

maximization problem conditional on period-two state-contingent decisions ( 2
~y , 2

~x , , ) and on 

the information structure P. However, the conditionality on (

a2L~ w2L~

2
~y , 2

~x , , ) has important 

implications. The state-contingent choices (

a2L~ w2L~

2
~y , 2

~x , , ) control for the distribution of risk across 

all possible states. Controlling for risk exposure is the key reason why risk preferences do not play any 

role in (8). This can be seen as a significant advantage of (8): it applies irrespective of risk preferences. 

However, making equation (8) empirically tractable can be quite challenging. The reason is that it 

requires identifying the decisions (y

a2L~ w2L~

2, x2, La2, Lw2) under all possible states. When the number of states is 

large, this is very demanding. This “curse of dimensionality” is the main reason why this approach has 

not been used much in the analysis of production/investment decisions under risk. This has two important 

implications. First, equation (8) shows that the maximization of profit remains a valid motivation for a 

firm under very broad conditions. Second, the problem with profit maximization under risk is not in its 

conceptual validity but rather in its empirical tractability.  

When evaluating the state-contingent choices ( 2
~y , 2

~x , , ) proves difficult, equation (8) 

will not appear very attractive to support empirical analyses. Then, is there another way to proceed? The 

answer is yes, through the use of a “certainty equivalent.” But this will come at a cost: if we no longer 

control for risk exposure, information and risk preferences will now play a role. To define a certainty 

equivalent, we focus our attention on profit. The discounted value of profit over the two periods is: p

a2L~ w2L~

y1
T y1 

- px1
T x1 + [py2(s)T y2(r, s) - px2(s)T x2(r, s)]/[1+ρ(s)]. While there is no uncertainty about period-one profit, 

py1
T y1 - px1

T x1, the discounted period-two profit, [py2(s)T y2(r, s) - px2(s)T x2(r, s)]/[1+ρ(s)], is subject to 
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uncertainty. Define the expected value of period-two discounted state-contingent profit by M( 2
~y , 2

~x ) ≡ 

Pr(r, s) [p∑ =

R

1r ∑ =

S

1s y2(s)T y2(r, s) - px2(s)T x2(r, s)]/[1 + ρ(s)], where Pr(r, s) is the subjective 

probability of facing the state (r, s).10 To define a certainty equivalent, consider a situation characterized 

by: 1/ the replacement of discounted period-two profit by its expected value M( 2
~y , 2

~x ); and 2/ no 

learning. Associate the absence of learning with the information structure P0, where P0 ≡ (P-, …, P-), with 

P- having only one element. This means that, under the information structure P0, the period-two choice x2 

and L2 is made ex ante, i.e. without any learning. Then, define “certainty equivalent” CE as the sure 

amount of income satisfying  

MaxP {u*(w, y1, x1, L1, c1, P)}  

= Max  {u[c0L,x,y 222 ≥ 1, T – La1 – Lw1, …, [w + CE + pL1 Lw1 + pc1 c1][1 + ρ(s)]/pc2(s)  

+ [pL2(s) Lw2(r, s)]/pc2(s), …, T – La2(r, s) – Lw2(r, s), …]:  

equation (4) evaluated at P0; (y1, x1, La1, Lw1, 2
~y , 2

~x , , ) ∈ F(Pa2L~ w2L~ 0)},  (9) 

where u*(w, y1, x1, L1, c1, P) is defined in equation (7a). Note that the right-hand side of equation (9) is 

associated with no learning (as reflected by PP

0) and no uncertainty about p (s) or x (r, s). As such, all 

uncertainty related to period-two production/investment decisions has been effectively eliminated. 

Solving equation (9) for CE gives the certainty equivalent CE(y , x , α), where α = (w, L , c ).  

x2 2

1 1 1 1

From equation (7b), the period-one production/investment decisions (y1, x1) involve the 

maximization of the left-hand side in equation (9). But the period-one decisions (y1, x1) appear on the 

right-hand side in (9) only through the certainty equivalent CE. And under non-satiation in c2, the right-

hand side in (9) is an increasing function of CE. Then, equations (7b) and (9) yield the following result.   

Proposition 1: The optimal period-one decisions (y1, x1) satisfy 

(y1, x1) ∈ argmax  {CE(y
11 x,y 1, x1, α)}. (10) 

Proposition 1 shows that the certainty equivalent CE(y1, x1, α) has two attractive characteristics. 

First, being a sure amount of income, it provides a simple welfare measure of production/investment 
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activities for the firm. Second, equation (10) shows that the certainty equivalent CE(y1, x1, α) provides all 

the information necessary for the period-one decisions (y1, x1). Note that this representation is very 

general. It applies under any specification of risk preferences and learning process, even if the owner-

manager decides to work only in the firm, i.e. if he/she chooses Lwt = 0, t = 1, 2. It also applies 

irrespective of the feasible set for Lt = (Lat, Lwt), t = 1, 2. This allows for situations where labor contracts 

are not flexible and impose restrictions on the choice of (Lat, Lwt). As such, the certainty equivalent CE 

given in (9) provides a broad characterization of the factors affecting period-one netput decisions (y1, x1). 

We exploit these desirable characteristics below.  

 

4. Diversification  

We want to investigate whether the multiproduct firm would benefit (or lose) from reorganizing 

its production/investment activities in a more specialized way. The reorganization involves breaking up 

the firm into K specialized firms, 2 ≤ K < m.  To analyze the economics of diversification, we start with 

the certainty equivalent of the original firm CE(y1, x1, α) defined in (9), with α ≡ (w, L1, c1). Proposition 

1 implies that (y1, x1) is chosen as follows: 

Max  {CE(y
11 x,y 1, x1, α)} ≡ Max {p

1y y1
T y1 - DC(y1, α)} (11a) 

where 

 DC(y1, α) ≡ -Max {CE(y
1x 1, x1, α)} + py1

T y1.  (11b) 

As further discussed in section 6.1 below, the function DC(y1, α) can be interpreted as a 

“discounted cost” function, which is conditional on period-one outputs y1.  

Next, consider the K specialized firms created from the breakup of the original firm. Let the k-th 

specialized firm produce period-one outputs y1
k = (y11

k, …, ym1
k) while facing αk ≡ (wk, L1

k,  c1
k), k = 1, 

…, K. To guarantee that each of the K firms exhibit some form of specialization (compared to the original 

firm), we assume below that y1
k ≠ y1/K, k = 1, ..., K.  
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Definition 1: Economies of diversification (diseconomies of diversification) are said to exist if  

S ≡ CEc(y1, α) - ∑  CEK
1k=

c(y1
k, αk) > 0 (< 0),  (12) 

where CEc(y1, α) ≡ Max {CE(y
1x 1, x1, α)}, and the y1

k’s satisfy ∑  yK
1k= 1

k = y1.  

The restriction ∑ K  y1k= 1
k = y1 in (12) guarantees that the evaluation of diversification involves the 

same aggregate period-one outputs y1, whether it is produced by the original firm or by the K specialized 

firms. From equation (12), economies of diversification exist (with S > 0) if the certainty equivalent of 

producing period-one outputs y1 is higher from an integrated firm as opposed to K specialized firms. This 

identifies the presence of synergies or positive externalities in the production of outputs. Alternatively, 

diseconomies of diversification exist (with S < 0) if the certainty equivalent of producing y1 is lower 

when such outputs are obtained from an integrated firm as opposed to K specialized firms. This reflects 

the presence of negative externalities in the production process among period-one outputs.  

Note that an alternative formulation for S in (12) exists. It is: 

S ≡ ∑  DC(yK
1k= 1

k, αk) - DC(y1, α) > 0 (< 0),  (12’) 

Since ∑  yK
1k= 1

k = y1, it is clear from (11b) that expressions (12) and (12’) are equivalent. Then, 

from equation (12’), economies of diversification exist (with S > 0) if and only if the cost of producing 

period-one outputs y1 is lower from an integrated firm as opposed to K specialized firms. We will show in 

section 5 below that S in (12’) reduces to the standard measure of diversification in the absence of risk 

and dynamics (e.g., as discussed by Baumol et al.).   

Note that S in equation (12) or (12’) is measured in monetary units. Given ∑  yK
1k= 1

k = y1, relative 

measures of economies of diversification can be defined as  

S’ ≡ S/CEc(y1, α) = [CEc(y1, α) - ∑  CEK
1k=

c(y1
k, αk)/CEc(y1, α),  (13) 

assuming that CEc(y1, α) > 0, and 

S” ≡ S/DC(y1, α) = [∑  DC(yK
1k= 1

k, αk) - DC(y1, α)]/DC(y1, α),  (14) 

 14



assuming that DC(y1, α) > 0. Economies (diseconomies) of diversification corresponds to S’ > 0 (< 0) in 

(12’), and S” > 0 (< 0) in (14). S’ in (13) and S” in (14) are a unit-free measures. S’ reflects the 

proportional increase in the certainty equivalent obtained by producing outputs y1 in a single integrated 

firm (as compared to K specialized firms). Similarly, S” reflects the proportional decrease in cost 

obtained by producing outputs y1 in a single integrated firm.  

Given ∑  yK
1k= 1

k = y1 and y1
k ≠ y1/K, k = 1, ..., K, equations (12) or (12’) allow for various forms 

of specialization among the K firms. For example, at one extreme, the k-th firm can be completely 

specialized in the j-th output in period one if yj1
k = yj1, and yj1

k’ = 0 for k’ ≠ k. In this case, the k-th firm is 

the only specialized firm producing the j-th ouput. Alternatively, our definition of economies of 

diversification in (12) or (12’) allows for partial specialization. Assuming that yj1 ≠ 0, j = 1, ..., m, this 

occurs for the k-th firm when yj1
k ≠ 0, j = 1, ..., m. Then, while y1

k ≠ y1/K implies some form of 

specialization for the k-th firm, this firm continues to produce non-zero quantities of all period-one 

outputs. In general, economies of specialization S in (12) or (12’) will depend on the patterns of 

specialization among the K firms.  

 

5. A decomposition of the certainty equivalent 

In this section, we investigate the sources of benefit/cost of diversification. This is done by 

identifying the components of the certainty equivalent CE(y1, x1, α) defined in (9).  

5.1. The value of information  

As discussed above, the information structure P0 ≡ (P-, …, P-) is associated with no learning, with 

P- having only one element. This means that, under the information structure P0, the period-two choices x2 

and L2 are made ex ante. A monetary evaluation of the change from P* ∈ argmaxP {u*(w, y1, x1, L1, c1, 

P)} to P0 is given by the conditional selling price of information V(y1, x1, α), where α = (w, L1, c1)  

(LaValle, chapter 8). This conditional value of information V(y1, x1, α) is given by the monetary value V 

which satisfies  
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u*(w + V, y1, x1, L1, c1, PP

0) = Max  {uP
*(w, y , x , L , c , P)}.  (15) 1 1 1 1

V(y1, x1, α) defined in (15) is the smallest amount of money the manager is willing to receive ex 

ante to give up the information structure P* ∈ argmaxP {u*(w, y1, x1, L1, c1, P)} and replace it by P0. It is 

a conditional value of information since it depends on the period-one decisions, including (y1, x1). Under 

non-satiation in (c1, 2c~ ), u*(w, ⋅) is necessarily increasing in w. It follows from (15) that  

V(y1, x1, α) ≥ 0,  (16) 

Equation (16) states that the conditional value of information is always non-negative. This result 

applies for any risk preferences and any reference information structure P0. Given α = (w, L1, c1), the 

properties of the conditional value of information V(y1, x1, α) provide useful insights on the role of the 

period-one decisions z1 ≡ (y1, x1, L1) ∈ ℜm+n+2. Of special interest are the effects zi1 (the i-th element of 

z1) on V(y1, x1, α). If zi1 has a positive effect on V(y1, x1, α), then the i-th netput would increase the value 

of information. This can happen under two conditions: 1/ under active learning, zi1 is part of the firm’s 

information gathering activities; or 2/ the use of zi1 increases the options for the firm to adjust its period-

two decisions in response to new information. Note that this latter effect can be present with or without 

active learning. Alternatively, if zi1 has a negative effect on V(y1, x1, α), then the i-th netput would 

decrease the value of information, again under two conditions: 1/ using zi1 has adverse effects on the 

learning process; or 2/ the use of zi1 decreases the options for the firm to adjust its period-two decisions in 

response to new information. This latter effect would arise when zi1 is an irreversible decision that cannot 

be undone either because reversing the decision is not feasible (Henry, and Arrow and Fisher) or because 

of sunk costs (Pindyck and Dixit). For example, when (y1, x1) involves choosing between a reversible and 

an irreversible decision, the associated change in the value of information V(y1, x1, α) reduces to Arrow 

and Fisher’s “quasi-option value” under the reversible scenario.   

5.2. Risk premium  

Using (7) and (15), the first period decisions (y1, x1, L1, c1) in the optimization problem (5) or (6) 

can be written as 
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W(w) = Max  {u
1111 c0,L,x,y ≥

*(w + V(y1, x1, α), y1, x1, L1, c1, PP

0)}. (17) 

Note that in equation (17), the manager makes period-two decisions without learning (as reflected 

by PP

0) while being compensated for it (through V(⋅)). However, the manager still faces price and 

production uncertainty. In general, the manager may want to manage his/her risk exposure using 

insurance contracts. Here, we focus our attention on the case of profit insurance and an actuarially neutral 

risk. Thus, we consider a profit insurance contract which replaces the period-two discounted state-

contingent profit [p (s)y2
T y (r, s) - p (s)2 x2

T x (r, s)]/[1 + ρ(s)] by its expected value M(2 2
~y , 2

~x ) ≡ 

Pr(r, s) [p (s)∑ =

R

1r ∑ =

S

1s y2
T y (r, s) - p (s)2 x2

T x (r, s)]/[1 + ρ(s)]. Let α = (w, L , c ). The 2 1 1 risk premium 

for profit insurance Q(y , x , α) is defined as the sure amount of money Q which satisfies1 1
11  

Max  {u[c0, 22 ≥Lx 1, T – La1 – Lw1, …, [w + V(y1, x1, α) - Q + M( 2
~y , 2

~x ) + pL1 Lw1  

+ px1 ⋅ x1 – pc1 c1][1 + ρ(s)]/pc2(s) + pL2(s) Lw2(r, s)/pc2(s), …, T – La2(r, s) – Lw2(r, s), 

 …]: equation (4) evaluated at P0; (x1, La1, Lw1, 2
~y , 2

~x , , ) ∈ F(Pa2L~ w2L~ 0)} 

= u*(w + V(w, y1, x1, L1, c1), x1, L1, c1, P0).  (18) 

The risk premium Q(y1, x1, α) defined in (18) measures the smallest amount of money the 

manager is willing to pay ex ante to replace period-two profit by its expected value. Note that the risk 

premium Q(y1, x1, α) is conditional on the period-one decisions, including y1 and x1. Since the risk 

premium Q(y1, x1, α) measures the willingness-to-pay to eliminate profit risk, its sign can be used to 

characterize the nature of the manager’s risk preferences: the manager is said to be risk averse, risk 

neutral, or risk lover with respect to a profit risk when Q(y1, x1, α) > 0, = 0, or < 0, respectively. Under 

risk aversion, the risk premium Q(y1, x1, α) measures the implicit cost of risk bearing for profit risk.  

The properties of the risk premium Q(y1, x1, α) provide useful insights on the role of the period-

one netputs x1 in risk management. Of special interest are the effects xi1 (the i-th intput in x1) on Q(y1, x1, 

α). If xi1 has a positive (negative) effect on Q(y1, x1, α), then the i-th input would increase (decrease) the 
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implicit cost of risk bearing. For a risk averse decision maker, if Q(⋅) > 0, the i-th input is risk increasing, 

and the manager has an incentive to decrease the use of xi1.. Alternatively, for a risk averse decision 

maker, if Q(⋅) < 0, the i-th input is risk decreasing, and the manager has an incentive to increase the use of 

xi1. Note that similar interpretations apply to period-one outputs y1.  

5.3. The components of CE under uncertainty and learning 

Combining equations (7a)-(7b) and (18) gives  

MaxP u*(w, y1, x1, L1, c1, P)  

= Max  {u[c0L,x,y 222 ≥ 1, T – La1 – Lw1, …, [w + V(y1, x1, α) - Q(y1, x1, α) + M( 2
~y , 2

~x )  

+ pL1 Lw1 + py1
T y1 - px1

T x1 - pc1 c1][1 + ρ(s)]/pc2(s) + pL2(s) Lw2(r, s)/pc2(s),  

…, T – La2(r, s) – Lw2(r, s), …] 

: equation (4) evaluated at P0; (y1, x1, La1, Lw1, 2
~y , 2

~x , , ) ∈ F(Pa2L~ w2L~ 0)}.  (19) 

Denote by ( 2
~y *, 2

~x *, 2
~L *) the solution of the maximization problem on the right-hand side of 

(19). Then, under non-satiation in c , comparing equations (9) and (19), we obtain the following result. 2

Proposition 2: The certainty equivalent CE(y1, x1, α) satisfies 

CE(y1, x1, α) = M*(y1, x1, α) + py1
T y1 - px1

T x1 + V(y1, x1, α) - Q(y1, x1, α), (20) 

where M*(y1, x1, α) ≡ M( 2
~y *(w, y , x , L , c ), 1 1 1 1 2

~x *(w, y1, x1, L1, c1)) is the expected period-two 

discounted profit, and α = (w, L1, c1).  

Proposition 2 shows that the certainty equivalent CE(y1, x1, α) is the sum of four components. 

From equation (20), CE(y1, x1, α) equals the expected period-two discounted profit M*(y1, x1, α), plus the 

period-one profit py1
T y1 - px1

T x1, plus the conditional value of information V(y1, x1, α), minus the risk 

premium Q(y1, x1, α). In addition to expected profit, M*(y1, x1, α) + py1
T y1 - px1

T x1, this shows that both 

the value of information V(y1, x1, α) and the cost of private risk bearing Q(y1, x1, α) affect the welfare of 

the firm and its owner-manager. The former has a positive effect, stressing the importance of information 
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processing in managerial decisions. And under risk aversion, the latter has a negative effect: it provides 

risk-averse managers an incentive to reduce their risk exposure.  

 

6. A decomposition of economies of diversification 

Combining equations (12) and (20) gives the following result.  

Proposition 3: Economies of diversification (diseconomies of diversification) exist if 

S ≡ Sπ + SQ + SV > 0 (< 0),  (21) 

with      Sπ ≡ πc(y1, α) - ∑  πK
1k=

c(y1
k, αk),  (22a) 

SQ ≡ -Qc(y1, α) + ∑  QK
1k=

c(y1
k, αk),  (22b) 

SV ≡ Vc(y1, α) - ∑  VK
1k=

c(y1
k, αk),  (22c) 

where πc(y1, α) ≡ M*(y1, x1
c(y1, α), α) - px1

T x1
c(y1, α), Qc(y1, α) ≡ Q(y1, x1

c(y1, α), α), Vc(y1, α) ≡ 

V(y1, x1
c(y1, α), α), x1

c(y1, α) ∈ argmax {CE(y
1x 1, x1, α)}, α = (w, L1, c1), and the y1

k’s satisfy 

∑  yK
1k= 1

k = y1.  

Note that πc(y1, α) in (22a) is a measure of expected profit defined as the discounted period-two 

expected profit M*(y1, x1, α) minus the period-one cost px1
T x1, both evaluated at x1

c(y1, α) ∈ 

argmax {CE(y
1x 1, x1, α)} (as in (11b)).  

Proposition 3 shows that S, the economy of diversification measure, has three additive 

components: Sπ in (22a) reflecting the effects on expected profit; SQ in (22b) reflecting the effects on the 

cost of risk bearing; and SV in (22c) reflecting the effects of information and learning. In the absence of 

uncertainty and risk, Qc(y1, α) = 0 and Vc(y1, α) = 0, implying that SQ = 0 and SV = 0. It follows from (21) 

that, in the absence of risk, S ≡ Sπ. Thus, without risk, the profit effect Sπ in (22a) captures all the 

economic effects of diversification. Such effects have been analyzed in detail in previous literature (e.g., 

Baumol et al.). We will show below that, in a riskless situation, our analysis indeed includes as a special 

case well-known results on the economics of diversification. However, proposition 3 goes beyond 
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previous literature by showing how risk (through the term SQ in (22b)) and learning (through the term SV 

in (22c)) can affect the economies of diversification. Next, we present a further decomposition of the 

terms in (21)-(22) into scale effects, concavity/convexity effects, and income effects which we use to 

develop conjectures about the nature of these effects and their implications for diversification strategies.   

6.1. Expected profit effects  

Proposition 3 identifies the role of diversification on expected profit through the term Sπ ≡ πc(y1, 

α) - ∑  πK
1k=

c(y1
k, αk). It shows that profit effects contribute to economies of diversification if Sπ ≡ πc(y1, 

α) - ∑  πK
1k=

c(y1
k, αk) > 0, where ∑  yK

1k= 1
k = y1. This corresponds to a scenario where expected profit πc(y1, 

α) is higher under an integrated firm than under K specialized firms.  

The following decomposition of Sπ in (22a) will prove useful.  

Lemma 1: The profit effect Sπ in (22a) can be written as 

Sπ ≡ Sπ1 + Sπ2 + Sπ3, (23) 

where   Sπ1 ≡ πc(y1, α) - K πc(y1/K, α),          (24a) 

Sπ2 ≡ K πc(y1/K, α) - ∑  πK
1k=

c(y1
k, α),  (24b) 

Sπ3 ≡ ∑  πK
1k=

c(y1
k, α) - ∑ K  π1k=

c(y1
k, αk).  (24c) 

Lemma 1 decomposes the profit effect Sπ into three additive components: Sπ1 reflecting scale 

effects (24a), Sπ2 reflecting trans-ray concavity effects (24b), and Sπ3 capturing income effects (24c). 

First, consider Sπ1. Note from (24a) that Sπ1 = 0 when πc(y1, α) is linear homogeneous in y1. Then, Sπ1 = 0 

corresponds to situations where [πc(λ y1, α)/λ] is a constant for all λ > 0. Define the ray-average profit as 

RAP(λ, y1) ≡ πc(λ y1, α)/λ, where λ is a positive scalar reflecting the scale of period-one outputs. Define 

 as situations where the ray-average profit RAP(λ, y
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

(DRTS) scale  toreturns decreasing
(CRTS) scale  toreturnsconstant 

(IRTS) scale  toreturns increasing
1) is 
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⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

decreasing
constant 

 increasing
 in λ > 0. It follows that Sπ1 = 0 under CRTS. Alternatively, Sπ1 in (24a) is non-zero only 

when there is a departure from CRTS.  

We make the following conjecture about Sπ1: 

Conjecture Cπ1: For each y1 > 0, there is a scale λ0(y1) > 0 such that the scale term is positive, Sπ1[λ y1, ⋅] 

> 0, for all λ ∈ (0, λ0(y1)].    

Cπ1 states that the term Sπ1 is positive for small scales of operation. As just discussed, this means 

that the technology exhibits increasing returns to scale (IRTS) in the region of “small scales.” It is well 

known that a sufficient condition for a small firm to exhibit IRTS is the existence of fixed cost. Our 

conjecture Cπ1 can be motivated by the prevalence of fixed cost in production/marketing/investment 

decisions. Since Sπ1 > 0 contributes to economies of diversification, it follows from the conjecture Cπ1 

that the scale effect Sπ1 provides an incentive for small firms to diversify. It remains possible for “large 

firms” to produce at a scale where CRTS applies, i.e. where the scale effect vanishes (with Sπ1 = 0).   

The term Sπ2 in (23) and (24b) reflects a concavity effect. To see that, note that πc(∑ θK
1k= k y1

k, α) 

 ∑  θ
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

≤
=
≥

K
1k= k πc(y1

k, α) if the function πc(y1, ⋅) is  in y
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

convex
linear

concave
1, for any θk ∈ [0, 1] satisfying ∑ θK

1k= k 

= 1. Choosing θk = 1/K and using ∑  yK
1k= 1

k = y1, it follows from (24b) that Sπ2  0 if the function 

π

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

≤
=
≥

c(y1, ⋅) is  in y
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

convex
linear

concave
1. In other words, from (23), the concavity of πc(y1, ⋅) in y1 contributes to 

economies of diversification. The concavity of πc(y1, ⋅) in y1 reflects diminishing marginal productivity 

with respect to period-one outputs. This means that diminishing marginal productivity contributes to 
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economies of diversification. In addition, note that the concavity of πc(y1, ⋅) in (24b) is evaluated along a 

hyperplane (since y1 = ∑ yK
1k= 1

k). Following Baumol et al. (p. 81), a function is said to be trans-ray 

concave (trans-ray convex) if it is concave (convex) along a hyperplane. Thus, the concavity (convexity) 

properties just discussed are in fact trans-ray concavity (trans-ray convexity) of the expected profit 

function πc(y1, ⋅) along the hyperplane defined by y1 = ∑ yK
1k= 1

k. It follows from (24b) that trans-ray 

concavity of πc(y1, ⋅) (along the hyperplane satisfying ∑ yK
1k= 1

k = y1) contributes to economies of 

diversification.  

Finally, consider the term Sπ3 in (23) and (24c). It reflects the effects of heterogeneity in the αk’s 

in (24c). Indeed, if αk = α, k = 1, …, K, then Sπ3 = 0. Thus, it is only when the αk’s differ among 

specialized firms that the Sπ3 can be non-zero. In addition, note that the effects of  α = (w, L1, c1) reflect 

income effects (e.g., as captured by initial wealth w). This means that the term Sπ3 in (23) and (24c) 

capture the heterogeneity of income effects in the evaluation of economies of diversification.  This term 

could be of special importance in certain contexts including ones with high poverty incidence and 

variation in wealth/income.  

How does Lemma 1 relate to previous research? To answer that question, consider a situation 

where dynamics are neglected, i.e. where M*(⋅) = 0. If, in addition, risk is neglected, then V(⋅) = 0 and 

Q(⋅) = 0. In this case, it follows from (20) that CE = py1
T y1 - px1

T x1, and from (11b) that DC(y1, α) = 

Min {p
1x x1

T x1: (y1, x1) feasible} = -πc(y1, α). Then, DC(y1, α) in (11b) becomes the standard cost 

function. And S in (12’) and S/DC in (14) reduce to the standard cost-based measures of economies of 

diversification found in the literature (e.g., Evans and Heckman; Baumol; Baumol et al.). In this case, 

note that Sπ3 = 0, implying that Sπ ≡ Sπ1 + Sπ2 from (23). Then, the roles of scale effect and of trans-ray 

convexity reduce to the analysis of diversification presented by Baumol and Baumol et al. In particular, 

Baumol and Baumol et al. showed that complementarity among outputs contributes to the trans-ray 

convexity of the cost function and the presence of economies of scope. Using (11), this means that output 
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complementarity contributes to the trans-ray concavity of profit πc(y1, ⋅), thus providing incentives to 

diversify. This shows how our approach extends previous literature on the economics of the multiproduct 

firm.  

6.2. Risk effects 

Proposition 3 shows that risk effects contribute to economies of diversification if SQ = -Qc(y1, α) 

+ ∑  QK
1k=

c(y1
k, αk) > 0, where ∑  yK

1k= 1
k = y1. This corresponds to a scenario where the risk premium Q is 

lower under an integrated firm than under K specialized firms. In a way similar to Lemma 1, we have the 

following result.   

Lemma 2: The risk effect SQ in (22b) can be written as 

SQ ≡ SQ1 + SQ2 + SQ3, (25) 

where  SQ1 ≡ -Qc(y1, α) + K Qc(y1/K, α),         (26a) 

SQ2 ≡ -K Qc(y1/K, α) + ∑  QK
1k=

c(y1
k, α),  (26b) 

SQ3 ≡ -∑  QK
1k=

c(y1
k, α) + ∑  QK

1k=
c(y1

k, αk).  (26c) 

Lemma 2 decomposes the risk effect SQ into three additive components: SQ1 reflecting scale 

effects (26a), SQ2 reflecting trans-ray convexity effects (26b), and SQ3 capturing income effects (26c).  

First, consider SQ1. Note from (26a) that SQ1 = 0 when Qc(y1, α) is linear homogeneous in y1. Then, SQ1 = 

0 corresponds to situations where [Qc(λ y1, α)/λ] is a constant for all λ > 0. Define the ray-average risk 

premium as RAR(λ, y1) ≡ Qc(λ y1, α)/λ, where λ is a positive scalar reflecting the scale of period-one 

outputs. It follows that SQ1 = 0 when the ray-average risk premium RAR(λ, ⋅) is constant. And under a U-

shape RAR(λ, ⋅), being in the region where the ray-average risk premium is declining (increasing) implies 

SQ1 > 0 (< 0). Thus, an increasing ray-average risk premium implies that SQ1 < 0, i.e. that the scale of 

operation provides a disincentive for risk diversification. We make the following conjecture: 

Conjecture CQ1: SQ1 < 0.  

To motivate CQ1, consider situations where the risk premium takes the form  
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where β > 0 reflects risk aversion and  is the variance-covariance matrix of net returns 
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1 = (y11, y12, …). Under the expected utility model, the specification (27) corresponds to 

situations of normal distributions and constant absolute risk aversion (see Freund; Pratt). More generally, 

(27) applies as a “local measure” of the risk premium in the neighborhood of the riskless case (Pratt). 

Under the specification (27), we have SQ1 = Qc(y1, ⋅) (1-K)/K ≤ 0. Thus, under risk aversion, a local 

measure of the risk premium implies SQ1 ≤ 0. The conjecture CQ1 simply states that this local result may 

hold in general. It indicates that scale effects have in general a negative effect on diversification 

incentives.  

 The term SQ2 in (25) and (26b) reflects a trans-ray convexity effect. To see that, note from (26b) 

that SQ2  0 if the function Q
⎪
⎭
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convex
linear

concave
1.12 Since the concavity/convexity is evaluated 

along a hyperplane (where ∑  yK
1k= 1

k = y1), it follows from (26b) that the trans-ray convexity (trans-ray 

concavity) of Qc(y1, ⋅) in y1 implies that SQ2 ≥ 0 (≤ 0). We make the following conjecture: 

Conjecture CQ2: SQ2 > 0.  

To motivate CQ2, consider the case where the risk premium takes the form (27). As noted above, 

equation (27) provides at least a local measure of the risk premium (Pratt). Noting that Qc(y1, ⋅) in (27) is 

(trans-ray) convex in y1, it follows that SQ2 ≥ 0, implying that risk exposure provides an incentive to 

diversify. The conjecture CQ2 simply states that this local result may be expected to hold in general. In 

other words, under CQ2, the risk premium Qc(y1, ⋅) is expected to be trans-ray convex (along the 

hyperplane satisfying ∑ K y1k= 1
k = y1), implying that risk aversion generates incentives for diversification. 
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Under conjectures CQ1 and CQ2, the scale effect SQ1 and the trans-ray convexity effect SQ2 work 

against each other: the latter in favor of diversification, the former against it. Which one dominates 

depends on the nature of risk exposure. To illustrate, consider the specification (27) where the y1
k’s 

involve complete specialization (with y1
1 = (y11, 0, 0…), y1

2 = (0, y12, 0, …), etc.). This gives SQ1 + SQ2 = -

β ∑j ∑j’≠j σjj’ yij y1j’. Given β > 0 and y1 > 0, it follows that (SQ1 + SQ2) is positive (negative) when all 

covariances σjj’ are negative (positive). This gives the well-known result that, among risk-averse decision 

makers, negative (positive) covariances tend to stimulate (dampen) the incentive to diversify (e.g., 

Markowitz; Tobin; Samuelson, 1967). Thus, the net effect of SQ1 and SQ2 on diversification incentives is 

largely an empirical matter, but the result also shows that our state contingent approach extends previous 

analyses of the role of risk aversion in diversification strategies.   

Finally, the term SQ3 in (25) and (26c) captures how the heterogeneity of income effects 

contributes to the risk premium and the incentive to diversify.    

6.3. Information effects 

Proposition 3 shows that information effects contribute to economies of diversification if SV = 

Vc(y1, α) - ∑  VK
1k=

c(y1
k, αk) > 0, where ∑  yK

1k= 1
k = y1. This corresponds to a scenario where the value of 

information V is higher under an integrated firm than under K specialized firms.  

Lemma 3: The information effect SV in (22c) can be written as 

SV ≡ SV1 + SV2 + SV3, (28) 

where SV1 ≡ Vc(y1, α) - K Vc(y1/K, α),          (29a) 

SV2 ≡ K Vc(y1/K, α) - ∑  VK
1k=

c(y1
k, α),  (29b) 

SV3 ≡ ∑  VK
1k=

c(y1
k, α) - ∑  VK

1k=
c(y1

k, αk).  (29c) 

 

Lemma 3 decomposes the information effect SV into three additive components: SV1 reflecting 

scale effects (29a), SV2 reflecting trans-ray concavity effects (29b), and SV3 capturing income effects.  
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First, consider SV1. Again, note from (29a) that SV1 = 0 when Vc(y1, α) is linear homogeneous in 

y1. Then, SV1 = 0 corresponds to situations where [Vc(λ y1, α)/λ] is a constant for all λ > 0. Define the 

ray-average value of information as RAV(λ, y1) ≡ Vc(λ y1, α)/λ, where λ is a positive scalar reflecting the 

scale of period-one outputs. It follows that SV1 = 0 when the ray-average value of information RAV(λ, ⋅) 

is constant. And under an inverted U-shape RAV(λ, ⋅), being in the region where the ray-average value of 

information is increasing (decreasing) implies that SV1 > 0 (< 0), meaning that the scale of operation 

strengthens (weakens) the information incentive for diversification. We make the following conjecture: 

Conjecture CV1: For each y1 > 0, there is a scale λ0(y1) > 0 such that the scale term is positive, SV1[λ y1, ⋅] 

> 0, for all λ ∈ (0, λ0(y1)].    

 CV1 states that the term SV1 is positive for small scales of operation, which means that the ray-

average value of information RAV(λ, ⋅) is increasing in the region of “small scales.” Similar to the 

conjecture Cπ1, this conjecture can be motivated by the presence of fixed costs in learning activities. Since 

SV1 > 0 contributes to economies of diversification, it follows from the conjecture CV1 that  scale effects 

related to learning provide an incentive for small firms to diversify. It remains possible for “large firms” 

to produce at a scale where SV1 = 0 (where the scale effect vanishes).  

 The term SV2 in (28) and (29b) reflects a trans-ray concavity effect. Note from (29b) that SV2 

 0 if the function V
⎪
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⎪
⎬

⎫

⎪
⎩

⎪
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⎧

convex
linear

concave
1. Since the concavity/convexity is evaluated along a 

hyperplane (where ∑  yK
1k= 1

k = y1), it follows from (29b) that the trans-ray concavity (trans-ray convexity) 

of Vc(y1, ⋅) in y1 implies that SV2 ≥ 0 (≤ 0). Thus, a trans-ray concave (convex) value of information Vc(y1, 

⋅) would contribute positively (negatively) to economies of diversification. While identifying the exact 

nature of such effects remains an empirical matter, we make the following conjecture: 

Conjecture CV2: SV2 < 0.  
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CV2 states that SV2 is likely to be negative. This is motivated as follows. In complex 

environments, bounded rationality is expected to limit the ability of decision makers to process 

information. Greater diversification typically exposes the decision maker to additional sources of risk, 

implying more complex uncertainty. This suggests that, under bounded rationality, the value of 

information would tend to be higher under specialized activities and would decline under increased 

diversification, implying SV2 < 0. Under such a conjecture, the value of information Vc(y1, ⋅) tends to be 

trans-ray convex in y1, in which case information provides a disincentive for diversification. This issue is 

further discussed in section 7.2.   

Finally, the term SV3 in (28) and (29c) captures how the heterogeneity of income effects shapes 

the value of information and the incentive to diversify.  

6.4. Combined effects 

Using Lemma 1, 2 and 3, Propositions 3 generates our main result.  

Proposition 4: Economies of diversification (diseconomies of diversification) exist if 

S ≡ S1 + S2 + S3 > 0 (< 0),  (30) 

with      S1 = Sπ1 + SQ1 + SV1, (31a) 

S2 = Sπ2 + SQ2 + SV2, (31b) 

S3 = Sπ3 + SQ3 + SV3, (31c) 

where S1 ≡ CEc(y1, α) - K CEc(y1/K, α) represents a scale effect, S2 ≡ K CEc(y1/K, α) - ∑  

CE

K
1k=

c(y1
k, α) represents a trans-ray concavity effect, and S3 ≡ ∑  CEK

1k=
c(y1

k, α) - ∑  CEK
1k=

c(y1
k, αk) 

is an income effect.  

Proposition 4 decomposes the economies of diversification S into all its components. Along the 

lines discussed in Lemma 1-3, equation (30) shows that S can be decomposed into three components: the 

scale effect S1, the trans-ray concavity effect S2, and the income effect S3. Equation (31a) shows that the 

scale effect S1 is the sum of the scale effects associated with expected profit Sπ1, risk SQ1, and information 

SV1. This indicates that the scale of operation can affect the motivation for diversification in multiple 
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ways: through their effects on expected profit, on the risk premium, as well as the value of information. 

From conjectures Cπ1, CQ1 and CV1, we expect Sπ1 > 0 for small firms, SQ1 < 0, and SV1 > 0 for small 

firms, which means that the net effect of scale on diversification incentives is indeterminate. For small 

firms, if the terms Sπ1 and SQ1 are sufficiently large, then the scale of small firms would give them an 

extra incentive to diversify. Alternatively, for large firms, if the terms Sπ1 and SQ1 are close to zero, then 

SQ1 < 0 would imply that scale gives large firms an extra incentive to specialize.  

Similarly, equation (31b) implies that the trans-ray concavity effect S2 is the sum of the 

corresponding effects associated with expected profit Sπ2, risk SQ2, and information SV2. Again, this 

means that the trans-ray concavity effects matter in multiple ways: through their effects on expected 

profit, on the risk premium, as well as the value of information. While the role of trans-ray concavity (or 

rather trans-ray convexity of the cost function) has been identified in the literature on scope economies 

(e.g., Baumol; Baumol et al.), our analysis shows that such effects are relevant as well in assessing the 

role of risk and information in diversification strategies. From conjectures CQ2 and CV2, we expect SQ2 > 

0, and SV2 < 0 which means that the net effect of trans-ray convexity on diversification incentives is 

indeterminate. If the term SQ2 is sufficiently large, then the certainty equivalent CE(y1, ⋅) may be trans-ray 

concave, implying a stronger incentive to diversify. This could occur in situations of extreme risk 

aversion or strong negative covariance among distinct activities. Alternatively, if the term SV2 is negative 

and sufficiently large, then the certainty equivalent CE(y1, ⋅) may be trans-ray convex, implying an extra 

incentive to specialize. Under bounded rationality, this would occur in situations where the decision 

maker finds it difficult to obtain and/or process information.  

Finally, equation (31c) shows that the income effects S3 is the sum of the income effects 

associated with expected profit Sπ3, risk SQ3, and information SV3.13 Overall, Proposition 4 shows that the 

economies of diversification haves nine components, each reflecting different effects (as discussed 

above). Interestingly and conveniently, each effect takes a simple additive form in (30) and (31). The 

broader economic significance of these results for diversification outcomes is discussed next.  
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7. Economic Implications of an Integrated Approach to Diversification 

Our economic model provides a nuanced picture of the potential factors influencing diversification 

outcomes in an owner-operated firm. Previous analyses have typically focused on one of the three 

components of scope, risk, and learning, and up to two of the effects. For example, the analysis of 

economies of scope has focused on the scale effect Sπ1 and trans-ray concavity/convexity effect Sπ2 (see 

Baumol; Baumol et al.). Yet, we have identified (in Proposition 4) up to nine separate effects that can 

influence the diversification decision of an owner-operator under uncertainty and learning. Thus, the 

economics of diversification may often be more complex than previously assumed. This creates a 

significant challenge to economic analysis. Among the nine factors, which ones are likely to be 

economically important? The answer will depend both on the refinement of applied theoretical models 

and corresponding empirical analysis. To the extent that the nature and magnitude of these nine effects 

may vary depending on the firm, the industry and the economic context, their evaluation is in large part an 

empirical issue. However, in section 6, we developed specific conjectures about several of these effects. 

Below, we discuss the implications of these conjectures in the analysis of diversification strategies, with 

applications to the fields of finance, development economics, agricultural economics, and 

entrepreneurship. Since our analysis has stressed the presence of three possible rationales (scope, risk and 

learning), we begin our discussion by considering the increased explanatory power obtained from linking 

initially linking two of the three rationales at a time.  

First, what new insights can be obtained from considering the joint effects of risk and learning on 

diversification strategies? We find that our integrated approach can help to resolve important debates in 

the financial economics and risk management literature.  Consider again the “Samuelson puzzle” that, 

under constant-relative risk aversion, age should not affect risk management/diversification decisions. If, 

however, diversification choices are analyzed from the perspective of both learning and risk rationales, 

then we obtain a new explanation for why entrepreneurs might find it optimal to undertake specialized 

investments. It can be deduced from our conjecture CV2: under bounded rationality, limitations in 

information processing lead to the trans-ray convexity of the value of information V(y1, ⋅), which provides 
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extra incentives for specialization or away from diversification. Assume that the value of information is 

more important for entrepreneurs (compared to other investors) as entrepreneurs have a superior ability to 

process information (Zeckhauser). This implies that the portfolios of entrepreneurs are expected to be 

more specialized (compared to other investors) because of a stronger trans-ray convexity effect. Thus, 

introducing learning in the analysis of diversification provides a solution to the Samuelson puzzle: under 

bounded rationality, learning may provide a disincentive for diversification and especially so for 

entrepreneurs.  

Learning can also help to explain the prevalence of under-diversification in portfolio selection. 

Indeed, poorly-diversified portfolios are commonly observed in both developed countries (e.g., Blume 

and Friend; Calvet et al.; Campbell; Curcuru et al.; Goetzmann and Kumar; Kelly) as well as in 

developing countries (e.g., (Banerjee and Newman; Barrett et al.; Binswanger; Dercon; Eswaran and 

Kotwal; Rosenzweig and Binswanger; Udry; Townsend; Zimmerman and Carter). Our analysis shows 

that, under bounded rationality, learning provides incentives for specialization (from our conjecture CV2). 

This outcome is consistent with the evidence that links investor cognitive abilities, financial market 

participation, and under–diversification decisions (e.g., Calvet et al.). Another explanation for under-

diversification in the activity portfolio of poor households in developing countries might be related to the 

scale effect of risk SQ1. As stated in conjecture CQ1, small scales of operation are expected to have adverse 

effects on the incentive to diversify (with SQ1 < 0). We note that this effect is likely to become more 

important under high levels of risk aversion. Many farms in developing countries are small and support 

poor households who are likely to be highly risk averse. This empirical regularity suggests that the scale 

effect related to risk, SQ1, could help to explain why small farms in developing countries often exhibit 

relatively little diversification. Note that this effect of scale and the cost of risk aversion on diversification 

choices appear to be new, and illustrates the usefulness of our decomposition of economies of 

diversification.  
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Consider next the interactions of scope and risk on diversification decisions. Agricultural contexts 

are fraught with the presence of significant weather and market risks. This risk exposure has long been 

linked to the fact that farms are typically diversified multi-output enterprises (Schultz). In the absence of 

complete risk markets, risk-averse farmers have an incentive to diversify to reduce their risk exposure. 

Introducing farmer’s risk management strategies helps to explain observed farm diversification choices 

(e.g., Lin et al.). Yet, many farm activities also involve considerable potential for scope economies based 

on ecological, logistical, and management considerations (Chavas; Chavas and Aliber; Fernandez-

Cornejo et al.). One example is given by crop rotations and the potential benefit of reducing pest damages 

(by suppressing pest populations). Another rotation benefit is the productivity-enhancing effect between 

nitrogen-using and nitrogen-fixing crops (e.g., corn-soybeans, corn-alfalfa). Scope economies in 

agriculture are also likely on integrated livestock-crop operations. Grain and forage produced on the farm 

can be fed to livestock that produce meat, milk, off-spring and manure, the last of which can be returned 

as soil nutrients to improve land productivity for the next round of crops. In addition, management and 

labor can be spread between crop and livestock activities across days and seasons, which may increase 

management and labor productivity.  Of course, there is also potential for these multiple farm activities to 

be risk-mitigating. Hence, it is surprising to note that an integrated analysis of risk and scope effects in 

agriculture has yet to be done. Our analysis suggests that proper attention given to scale and trans-ray 

concavity/convexity effects, for both risk and scope, are likely to be crucial to understand optimal 

diversification strategies in agriculture.   

 Another potentially fruitful link between scope and risk issues could emerge from a reappraisal of 

the diversification issues surrounding seasonal migration, especially by rural people in developing 

countries.14 Seasonal migration could have significant scope effects if the operator can realize better 

returns on production, marketing, and investment activities by improving market access or the direct sale 

of its products. Note that such scope effects may vary with the scale of the operation of the owner-

operator. Again, as suggested by our analysis, scale effects and trans-ray concavity/convexity effects 

related to both risk and scope may be important aspects of seasonal migration decisions.  
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 Seasonal migration can also be used to illustrate the role played by our third rationale: learning. 

Indeed, beyond generating higher expected returns and modifying risk exposure, seasonal migration 

might also involve learning about technological options and market conditions. To the extent that the 

value of information plays a role in diversification strategies, this suggests that learning would also affect 

seasonal migration decisions. More specifically, our analysis indicates that both scale effects and trans-

ray convexity effects related to learning may also shape migration choice.    

 Finally, consider the case of entrepreneurship. It provides a good example where all three of our 

rationales for diversification (expected profit, risk and learning) appear to be important. As such, our 

integrated analysis provides new and useful insights into the economics of entrepreneurs. The role of risk 

in entrepreneurship has been analyzed by Kihlstrom and Laffont. They point out that entrepreneurs would 

self-select out of the least risk averse individuals in society, since this gives them some advantage in 

facing entrepreneurial risk (because of a lower risk premium Q). However, to the extent that risk aversion 

is commonly found among most decision makers, this feature may not explain why many entrepreneurs 

are found to be overly specialized (e.g., Gentry and Hubbard; Goetzmann and Kumar; Moskowitz and 

Vissing-Jorgensen).  

 Our analysis suggests that their over-specialization can be explained through the learning 

dimension. Note that concern with the role of learning in entrepreneurial activities is not new. It dates 

back to Schumpeter, but also to Schultz and Kirzner. What is new is that, even if entrepreneurs are seen as 

having a superior ability to process information, such ability remains constrained by bounded rationality 

issues. This is at the heart of our conjecture CV2 (stating that the value of information V(y1, ⋅) is trans-ray 

convex, implying an incentive to specialize), and is important for three reasons. First, bounded rationality 

helps to explain why entrepreneurs tend to hold very specialized portfolios. Second, it suggests that 

information effects may typically work against scope and risk effects in diversification decisions, which 

indicates the need for an explicit analysis of the role of learning in investment decisions. Third, it puts the 

role of entrepreneurs under a new light. While managing their risk exposure, entrepreneurs must integrate 

knowledge (suggesting the importance of scope economies of management a la Lazear’s ‘jack-of-all-
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trades’ conceptualization) while dealing with their own bounded rationality (which likely pushes them 

toward some specialization). The key to entrepreneurial success seems to involve finding proper tradeoffs 

between these conflicting directions. Note that such tradeoffs likely vary across firms and industries 

(depending on the quality of human capital and the complexity of the underlying technology). Yet, 

understanding these tradeoffs should help to assess the relative economic efficiency of alternative patterns 

of diversification or specialization. To the extent that entrepreneurship is one of the engines of 

technological progress and economic growth, refined analyses of these tradeoffs should help to generate 

new insights into the process of economic growth. In this context, our analysis of the role of expected 

profit, risk and learning in diversification strategies (along with their scale and trans-ray convexity 

components) should prove useful.  

  

8. Concluding remarks  

We have developed a model of economic behavior of a firm owner-manager under bounded 

rationality, with implications for the assessment of diversification strategies. The model relies on a 

general two-period model of an owner-managed firm facing uncertainty. The analysis is based on a 

general state-contingent representation of uncertainty and learning. We analyze economies of 

diversification based on a certainty equivalent, and investigate the role of expected profit, the risk 

premium (measuring the cost of risk aversion), and the value of information associated with learning. The 

influence of scale effects, “trans-ray concavity” effects, and income effects on economies of diversity are 

examined in detail. We argue that, while scope economies and risk aversion can provide general 

incentives for diversification, learning processes can have opposite effects. By identifying the role of 

information and integrating these three rationales for diversification, our analysis provides new insights 

on diversification and specialization choices with applications to a wide range of fields in economic 

study.  

Our analysis of a firm owner-manager could be extended in several directions. First, it would be 

useful to extend it to more than two periods to deepen the dynamics. Second, introducing agency issues 
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(such as separation of ownership and control or interactions in learning within a team) would be valuable 

for understanding efficiency and other welfare concerns that are likely to arise with multiple agents under 

bounded rationality, including for example the question of scope versus specialization in firms 

undergoing mergers or acquisitions. Finally, further investigation of the implications of scope, risk and 

information for economic efficiency in a general equilibrium context could enhance our models of 

endogenous growth by focusing on the value of learning and specialization/diversification independent of 

increasing returns (Schultz). These appear to be good topics for future research.  
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Footnotes 

                                                 

∑=

n

1i

2

1 Note that Baumol et al. characterized economies of scope involving complete specialization schemes. 
Below, we interpret economies of scope in a broader context that also allows for partial specialization 
(as discussed by Evans and Heckman, Berger et al., Ferrier et al. and others).   

2 This has shed new lights on the existence, nature and role of synergies and complementarities between 
production processes (e.g., Anbarci et al.; Antoneli; Arora and Gambardella; Baumol et al.; Desruelle 
et al.; Milgrom and Roberts; Topkis). 

3 While portfolio theory was originally developed in a mean-variance context (Markowitz; Tobin), it has 
been extended to capture the role of skewness (e.g., Mitton and Vorkink). Also, while risk aversion 
was first characterized in the context on the expected utility model (e.g., Arrow, 1965; Pratt), 
extensions to non-expected utility models have been developed (e.g., Chambers and Quiggin; Chew; 
Kahneman and Tversky; Machina; Quiggin).  

4 Risk management has provided useful insights into financial and investment decisions under 
uncertainty. For example, the presence of significant weather and price risk in agriculture has helped 
explain why most farms are multi-output enterprises (e.g., Lin et al.).  

5 As further discussed below, our conjecture that learning has adverse effects on the incentive to diversify 
is supported by the empirical evidence that some investors under-diversify when they have superior 
information (e.g., Goetzman and Kumar).  

6 Note that other explanations have been explored in the literature. They include the presence of liquidity 
constraints and their effects on diversification choices (e.g., Gollier).    

7 Thus, wage income at time t is pLt Lwt = pLt (T – Let – Lat). It follows that when Lwt is positive, the wage 
rate pLt measures the unit opportunity cost of both Let and Lat.  

8 In our notation, vectors are treated as column vectors. The superscript “T” denotes the transpose (e.g., 
implying that px1

T x1 ≡ pxi1 xi1).   
9 How individuals process information is complex. While neuroscience is making significant progress on 

this issue (e.g., Camerer et al.), developing a scientific understanding of how the brain processes 
information and makes decisions remains a very challenging task. In this context, our state-contingent 
approach is interpreted simply as a reduced-form representation of individual learning.  

10 In the case where probability assessment is not possible, note the analysis presented below can still hold 
after replacing M( ~y 2x~

K
1k=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎧

≤
=
≥

K
1k=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎧

convex
linear

concave

K
1k=

K
1k=

, ) by some measure of central tendency of discounted period-two profit.  
11 This is consistent with the characterization of the risk premium proposed by Arrow (1965) and Pratt 

under the expected utility model. Equation (18) is a generalization of the Arrow-Pratt measure under 
a state-contingent approach.  

12 Note that Qc(∑ θk y1
k, α) ⎨  ∑  θk Qc(y1

k, α) if the function Qc(y1, ⋅) is ⎨  in y1,  for 

any θk ∈ [0, 1] satisfying ∑ θk = 1. Choosing θk = 1/K and using ∑  y1
k = y1 yield the desired 

result.  
13 Note that we do not have strong a priori information on the income effects Sπ3, SQ3 and SV3. The exact 

nature and magnitude of these effects seem to be largely an empirical matter.  
14 Rural-urban migration by family members could be treated analogously to the seasonal migration 

example. However, household migration choices involve multiple agents and raise contracting and 
learning dynamic issues that reach beyond the scope of the current model. 
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