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Price Dynamics in a Vertical Sector: The Case of Butter 

 

1. Introduction 

The issue of price transmission in a vertical sector has been the subject of much 

research. A common issue is that retail prices do not respond very quickly to changes in 

market conditions. Under fluctuating market conditions, this raises questions about the 

efficiency of vertical markets. Examples include situations where retail prices remain 

�sticky� in the face of large decreases in farm or wholesale prices (e.g., Borenstein et al.; 

Peltzman; Miller and Hayenga). Peltzman finds strong evidence that in many markets 

retail prices tend to rise faster than they fall, both in the short term and in the longer term.  

This has stimulated research on the possible cause of asymmetric price 

adjustments. Two potential explanations have been explored: imperfect competition and 

adjustment costs. A traditional explanation under oligopoly is a kinked-demand schedule 

that generates sticky prices. More generally, barriers to entry can create asymmetric 

economic adjustments (see Tirole for an overview). Many other sources of asymmetry 

have been explored. In general, in the presence of adjustment cost, firms and consumers 

may not respond to small or transitory price changes until the benefits of changing 

strategies outweigh the cost. Consider, for example, the unequal cost of maintaining high 

versus low inventory, where the higher cost of experiencing a stockout can generate 

asymmetric price adjustments (e.g., Reagan and Weitzman). Also, consumers may not 

respond quickly to price changes in the presence of search costs. This can allow retailers 

to boost profits by increasing their prices fast as wholesale prices rise, and lowering them 

slowly when wholesale prices fall. In addition, menu costs can prevent firms from 

changing prices rapidly in response to small and transitory market changes (e.g., Blinder; 
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Blinder et al.). Finally, sunk investment costs can create irreversibility in firms� strategies 

(e.g., Dixit and Pindyck). Thus, there are many reasons why price transmission may be 

asymmetric in a vertical sector. Peltzman�s analysis suggests that current theories fail to 

explain the prevalence of price asymmetry. His empirical evidence covering many 

markets shows no correlation between price asymmetry and inventory cost, menu cost or 

imperfect competition. This raises significant challenges to our theory of markets. It also 

stresses the need for a better understanding of the empirical regularities found in price 

transmissions.   

The objective of this paper is to develop a dynamic reduced form model of 

asymmetric price transmission in a vertical sector. The analysis expands on previous 

models of dynamic price transmission by allowing asymmetry for both contemporaneous 

and lagged, own and cross price effects. The model is applied to wholesale-retail price 

dynamics in the US butter market. As illustrated in Figure 1, butter prices have exhibited 

large fluctuations over the last 10 years. This makes the butter market an interesting case 

study of dynamic price adjustments in a vertical sector. Following Peltzman, in the 

absence of a clear theory of asymmetric price adjustments, the analysis is unrepentantly 

descriptive. The empirical results provide strong evidence of asymmetric price 

transmissions in the US butter market. They also document the complex nature of 

nonlinear price dynamics in a vertical sector. They show how asymmetric price responses 

affect the distribution of future prices. By stressing the effects on skewness of the price 

distribution, they point out the limitations of previous models of price dynamics that 

relied solely on autocovariance (or spectral density in the frequency domain, as done by 

Miller and Hayenga). One of the main findings is that the asymmetry in responses to 
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shocks is more pronounced in the short run for retail prices, and in the longer run for 

wholesale prices.  

 

2. A Model of Price Dynamics 

Consider a vertical sector involving m markets in a vertical sector. Let yt = (y1t, 

y2t, �, ymt)� be an (m×1) vector of market prices at time t. Assume that the price vector yt 

has a dynamic reduced-form representation given by the vector autoregression (VAR) 

model1 

yt = α + ∑  AK
1k= k yt-k + et,   (1) 

where α is an (m×1) vector, Ak is an (m×m) matrix, k = 1, �, K, and et is an (m×1) error 

term independently and normally distributed with mean zero and variance Ω.  This can be 

alternatively written in terms of the error-correction model (ECM) 

∆yt = α + B0 yt-1 + ∑  B1K
1k
−
= k ∆yt-k + et, (2) 

where ∆yt = yt - yt-1, B0 = -[IK - A1 - A2 - � - AK], and Bk = -[Ak+1 + Ak+2 + � + AK], k = 

1, 2, �, K-1.  

Equation (2) means that ∆yt is stationary if and only if [B0 yt-1 + ∑  B1K
1k
−
= k ∆yt-k] is 

stationary. Obviously, yt being stationary is sufficient for ∆yt to be stationary. In addition, 

if yt is not stationary (e.g., in the presence of units roots), then a stationary ∆yt implies 

that [B0 yt-1] must be stationary. Such a process is cointegrated, and B0 identifies 

stationary linear combinations of the non-stationary variables (y1t, �, ymt)�. In this case, 

the matrix B0 is singular and can be written as B0 ≡ β γ, where β is an (m×c) matrix, γ is a 

(c×m) matrix of c cointegration vectors, with c = rank(B0). In the error-correction model 

(2), the vector zt ≡ [γ yt-1] is stationary, reflecting long-term relationships among prices, 
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and B0 yt-1 ≡ β zt (see Hamilton, p. 580). The general specification includes as a special 

case the situation where B0 ≡ -[IK - A1 - A2 - � - AK] = 0 and (2) implies that price 

dynamics can be properly analyzed using a VAR in differences. However, when rank(B0) 

≥ 1, equation (2) shows that a VAR in differences is an inappropriate representation of 

price dynamics. 

The linear specification (1) or (2) can be extended in a number of directions. First, 

the intercept α can change over time in at least two ways: 1/ it can have a time trend 

(reflecting inflation, technical progress, or other long term changes); and 2/ it can involve 

seasonal effects. This corresponds to α = a0+ a1 t + ∑  α1S
1s
−
= s Dts, where Dts is a dummy 

variable for the s-th season: Dts equals 1 if t is in the s-th season and zero otherwise, s = 1, 

�, S. Then, (a0+ a1 t) is the intercept at time t in the S-th season, and a1 measures the 

change in intercept between two successive periods.  

Second, we consider the case where the dynamics in (1) or (2) vary between 

regimes. For simplicity we focus on the case of binary regimes denoted by the dummy 

variables R. Let Rit = 1 if yit is in regime 1 at time t, and Rit = 0 if yit is in regime 0 at time 

t, i = 1, �, m. In equation (2), let Bk = 

, k = 1, �, K-1.  This 

means that the impact of ∆y
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∆yit = ai0+ ai1 t + ∑ S
s  α1

1
−
= is Dts + ∑ j Bm

1= 0ij yj,t-1  

+ ∑ ∑ [B1K
1k
−
=

m
1j= kij

1 Rj,t-k + Bkij
0 (1-Rj,t-k)Bk] ∆yt-k + eit, (3) 

i = 1, �, m. Equation (3) provides a framework to investigate whether price dynamics 

vary across regimes. Indeed, prices would exhibit the same dynamics under both regimes 

if Bkij
1 = Bkij

0 for all (k, i, j). Alternatively, finding that Bkij
1 ≠ Bkij

0 for some (k, j, i) 

would be sufficient to conclude that price dynamics vary across regimes.3   

Next, consider the Cholesky decomposition of the variance of et: Ω ≡ S S�, where 

S =  is a lower triangular matrix satisfying s
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ii > 0, i = 1, �, m. It 

means that equation (2) can be alternatively written as 

S-1 ∆yt = S-1 α + S-1 B0 yt-1 + ∑  S1K
1k
−
=

-1 Bk ∆yt-k + εt, (2�) 

where εt = S-1 et is normally distributed with mean zero and variance Im. Note that the off-

diagonal elements of S capture the contemporaneous effects across dependent variables. 

For example, the covariance between y1t and y2t is Cov(y1t, y2t) = s11 s21, and the 

contemporaneous impact of a shock in y2t on y1t is ∂y1t/∂y2t = s21/s11. Also, the 

contemporaneous cross-price effects vanish if sij = 0 for all i > j. Thus, the presence of 

contemporaneous cross-price effects can be confirmed by rejection of the null hypothesis: 

sij = 0 for all i > j. In addition, if we are interested in exploring whether such 

contemporaneous effects are situation-specific, we can consider the more general 

specification: sij = σij0 + σij zt, where zt is a vector of predetermined variables at time t, i ≥ 

j. In this context, constant contemporaneous effects across dependent variables implies 

that σij = 0 for all i > j. Alternatively, finding that σij ≠ 0 for some i > j would be 

 5



sufficient to conclude that some contemporaneous cross-price effects vary over time. 

Econometrically, this corresponds to a situation of heteroscedasticity where the 

covariance matrix Ω ≡ S S� is time-varying. This provides a framework to analyze how 

contemporaneous cross-price effects vary with market conditions.  

In summary, the model exhibits three types of price transmission:  

contemporaneous cross price effects (captured by the specification for sij); lagged effects 

(captured by Bk, k = 1, �, K); and long term effects (captured by B0). The model is novel 

in the flexibility with which it captures these different dynamic price relationships. 

As discussed in the introduction, much recent research has focused on whether 

price dynamics respond symmetrically to price increases versus price decreases. The first 

area of flexibility, then, corresponds to Rit = 1 if ∆yit > 0 and Rit = 0 if ∆yit ≤ 0. In this 

context, equation (3) extends previous specifications of asymmetric price response found 

in the literature.4 The Bk
0�s and Bk

1�s capture asymmetric response to price shocks after k 

lags, k = 1, �, K. This extends Wolffram�s specification, which restricts the Bk
i�s to be 

the same for all k. By allowing the Bk
i�s to vary, equation (3) allows for dynamic 

asymmetry to vary between the short run and the intermediate run (e.g., as investigated 

by Peltzman). Second, under cointegration, [B0 yt-1] is the �error correction term� which 

captures deviations from long-term relationships among prices. While equation (3) 

reduces to the Miller-Hayenga specification when B0 = 0, the Miller-Hayenga 

specification of asymmetric price response becomes inappropriate when B0 ≠ 0 (e.g., 

under cointegration). Third, the specification sij = σij0 + σij zt expands on both the Miller-

Hayenga and the Peltzman specifications. It allows for situation-specific 

contemporaneous cross-price effects. The Miller-Hayenga specification implicitly 

assumes constant sij�s, thus restricting contemporaneous cross-price effects to be 
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symmetric and constant (with σij = 0 for all i ≥ j). The Peltzman specification (Peltzman�s 

equation (2) on p. 476) corresponds to equation (2�) above with y1 = �output price� and 

y2 = �input price�. It allows for asymmetric contemporaneous effects from �input price� 

to �output price�, but implicitly assumes symmetric and constant contemporaneous 

effects from �output price� to �input price�. The specification sij = σij0 + σij zt is more 

flexible and allows for more complex contemporaneous cross-price effects (see below).  

Finally, as suggested by equations (1) and (2), one must choose between 

estimating the model �in levels� (equation (1)) or �in differences� (equation (2)). Both 

approaches can generate consistent parameter estimates. Below, we focus on the 

specification �in differences� for two reasons. First, the estimation of models �in 

differences� can perform better in small samples (Hamilton, p. 652). Second, hypothesis 

testing is easier �in differences� as test statistics exhibit more standard distributions (e.g., 

the case of Granger causality; see Toda and Phillips). Thus, the analysis presented below 

focuses on the estimation of equation (3). Equation (3) can be estimated by maximum 

likelihood, which under a correct specification generates consistent and asymptotically 

efficient parameter estimates. 

 

3. Application to the US Butter Sector 

We apply model (3) to price dynamics in the vertical sector for US butter. The 

analysis focuses on the dynamics of two prices (m = 2): the wholesale and retail prices of 

butter. The analysis uses monthly data from the period January 1980 to August 2001. The 

wholesale price is the Chicago Mercantile Exchange AA butter cash price, and the retail 

price for butter is from the Bureau of Labor Statistics.  
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First, some diagnostic tests were conducted on each price series. The augmented 

Dickey-Fuller (ADF) test for a unit root was implemented for each price separately. This 

was done based on a model with 5 lags in price differences (as suggested by the Schwartz 

criterion). ADF testing of the null of a unit root yielded t-values of  -0.635 for retail 

prices and -1.10 for wholesale prices. At the 5 percent significance level, the ADF critical 

value is -3.43. Thus, we failed to reject the null hypotheses of unit roots. This provides 

evidence that both prices are non-stationary.  

Next, we investigated the nature of price dynamics in the butter market. For this 

purpose, we relied on the specification given in equation (3). For the i-th price at time t-k, 

we defined two market regimes: Ri,t-k = 0 (regime 0) when ∆yi,t-k ≤ 0, and Ri,t-k = 1 

(regime 1) when ∆yi,t-k > 0. This provided a framework to investigate whether price 

dynamics differ for price increases versus price decreases, including both own price and 

cross price effects. In addition, we wanted to analyze whether contemporaneous price 

relationships change with market conditions. With m = 2, let y1 ≡ yr represent the retail 

price, and y2 ≡ yw represent the wholesale price. We allow the covariance between yrt and 

ywt to vary with market conditions and consider the specification s21 = σ0 + σr Et(∆yrt) + 

σw Et(∆ywt), where s21 is the off-diagonal element in the Cholesky decomposition of the 

variance of et.5 From (3), the expected price change for yit is Et(∆yit) = ai0+ ai1 t + ∑  α1S
1s
−
= is 

Dts + ∑ j Bm
1= 0ij yj,t-1 + ∑ ∑ [B1K

1k
−
=

m
1j= kij

1 Rj,t-k + Bkij
0 (1-Rj,t-k)Bk] ∆yt-k. When σr ≠ 0 and/or σw 

≠ 0, this specification allows market conditions to affect the contemporaneous cross price 

effects between yr and yw. For example, finding that σr > 0 (σw > 0) would mean that an 

expected rise in retail price (wholesale price) would increase the contemporaneous 

covariance between retail and wholesale prices. Note that, unlike the Peltzman 
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specification, this allows retail market conditions to affect the contemporaneous 

relationships between retail and wholesale prices. 

Applied to US butter prices, this model specification (3) was estimated using the 

maximum likelihood method. Based on the Schwartz criterion, the number of lags was 

chosen to be K = 6. The resulting econometric estimates are presented in Table 1. Many 

of the estimates are found to be significant. In general, the coefficients (αis) of the 

monthly seasonal dummies Dst show more evidence of seasonality in wholesale prices 

than in retail prices. Also, the time trend effects differ: the trend coefficient ai1 is negative 

and significant for wholesale price, while it is positive but insignificant for retail price. 

This reflects that the marketing margin (yr - yw) has increased over time during the 

sample period. Finally, most of the coefficients on lagged prices are significant, 

indicating the presence of significant dynamic adjustments in the US butter market. 

The nature of the dynamic relationships between yr and yw was investigated.  

First, we implemented a Johansen cointegration test for model (3). The null hypothesis of 

a cointegration relation between yr and yw was investigated using a likelihood ratio test of 

the rank of the B0 matrix. Testing the null hypothesis that rank(B0) = 0 versus the 

alternative rank(B0) = 1, the Johansen test statistic was 94.19, which is significant at the 5 

percent level. This, in conjunction with the results to the Augmented Dickey Fuller test, 

provides evidence that wholesale and retail butter prices are cointegrated, i.e. that they 

exhibit long-term relationships. On its own, it also suggests that a VAR in differences 

(e.g., as used by Miller and Hayenga) would be misspecified. 

Second, we test for Granger causality among prices. The null hypothesis of no 

causality between prices yi and yj requires Bkij
1 = 0 and Bkij

0 = 0 for k = 1, �, K-1, and 

B0ij = 0. Under some regularity conditions, the associated likelihood ratio test has a chi-
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square distribution under the null hypothesis (Toda and Phillips). For i ≠ j, the Granger 

causality test statistic is 114.57 for the effects of lagged retail on wholesale prices, and 

132.40 for the effects of lagged wholesale on retail prices. At the 5 percent significance 

level and with 6 degrees of freedom, the critical value is 1.64. Thus, we strongly reject 

the null hypothesis of no causality and find strong evidence of lagged cross effects among 

butter prices. If i = j, the test investigates the presence of lagged own price effects. The 

associated test statistics are 136.53 for retail prices and 116.17 for wholesale prices. At 

the 5 percent significance level and with 6 degrees of freedom, we therefore strongly 

reject the null hypotheses of no own lagged effects. This provides evidence of significant 

dynamic adjustments in both wholesale and retail prices. 

Third, we evaluate the symmetry of lagged price effects. In the context of 

equation (3), the symmetry of dynamic effects of price j on price i corresponds to the null 

hypothesis Bkij
1 = Bkij

0, k = 1, �, K-1. Using a likelihood ratio test, the associated test 

statistics are 66.87 for (i, j) = (r, r), 28.09 for (i, j) = (r, w), 96.02 for (i, j) = (w, w), and 

107.89 for (i, j) = (w, r). Based on a chi square distribution with 5 degrees of freedom, the 

critical value is 1.15 at the 5 percent significance level. Thus, we strongly reject the 

symmetry of dynamic adjustments for all prices (i, j).  In other words, we find strong 

evidence that both own price and cross price dynamics exhibit asymmetric adjustments 

across regimes. The associated non-linearity in price dynamics will be explored in details 

below.  

Fourth, we investigate the presence of contemporaneous effects between prices. 

This is captured by the Cholesky term s21 = σ0 + σr Et(∆yrt) + σw Et(∆ywt). The null 

hypothesis that σ0 = σr = σw = 0 implies a zero correlation between yr and yw and thus 

zero contemporaneous effects between retail and wholesale prices. A likelihood ratio test 
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of this hypothesis yielded a test statistic of 243.29. Based a chi square distribution with 3 

degrees of freedom, we strongly reject the null hypothesis. This provides evidence of 

significant contemporaneous cross price effects between the two butter prices.  

 

Fifth, we explore the nature of contemporaneous cross price effects. The estimates 

reported in Table 1 give s21 = 0.0358 + 0.7894 Et(∆yrt) - 1.4368 Et(∆ywt). As discussed 

above, the coefficients of s21 are jointly significant. In a long run equilibrium situation 

where Et(∆yrt) = Et(∆ywt) = 0, it follows that s21 = 0.0358, which is positive and 

significant. This means that yrt and ywt are positively correlated and that any shock in one 

price has a positive contemporaneous effect on the other. The coefficient on Et(∆yrt) is 

positive and significant, implying that an expected change in retail price has a positive 

effect on the covariance between yrt and ywt. The coefficient of Et(∆ywt) is negative and 

significant, showing that an expected change in wholesale price has a negative effect on 

the covariance between yrt and ywt. This provides statistical evidence that the 

contemporaneous effects of one price on the other are sensitive to market pressure. In 

particular, it shows that the contemporaneous linkages between retail and wholesale 

prices become weaker (stronger) when the wholesale (retail) price is expected to increase. 

This is another form of asymmetry between retail and wholesale butter prices. 

Finally, to evaluate explanatory power, predicted prices were obtained from the 

estimated model and compared with actual prices during the sample period. The results 

are presented in Figure 1. The model has high explanatory power and provides a good fit 

to the butter price data, with R-squares of 0.984 for retail prices and 0.886 for wholesale 

prices. 
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4. Implications 

The empirical results show strong evidence of asymmetry in price effects and 

dynamics in the US butter market. This asymmetry means that price dynamics are 

nonlinear in two ways: 1/ contemporaneous cross-price effects vary with market 

conditions; and 2/ price dynamics vary across regimes between situations of price 

increases and price decreases. These nonlinearities mean that, in general, the forward 

path of prices depends on initial conditions (Potter). As a result, the dynamic price 

response to exogenous shocks is typically situation specific. To evaluate the nature of 

dynamic adjustments in the US butter market, dynamic stochastic simulations of the 

estimated model were performed. The nonlinear dynamics imply that there is no simple 

way of summarizing price effects (since the results always depend on initial conditions). 

Below, we report some selected simulation results that illustrate the dynamic implications 

of the estimated model. 

The stochastic simulations were performed as follows. A random number 

generator was used to generate pseudo-random draws for the error terms εt = (εrt,  εwt)� 

distributed N(0, I2). For given initial conditions (say at time τ), these error terms were 

used to simulate forward the estimated model (3) with eτ+i = Sτ+i ετ+i, i = 0, 1, 2, � , 

where Ωt ≡ St St�. Repeated dynamic simulation generated a distribution of prices yτ+i at 

time τ+i, i = 0, 1, 2, � This distribution simulates the distribution of predicted prices at 

time τ+i, based on the information available at time τ. In addition, for given pseudo-

random draws for the εt�s, the dynamic simulation can be repeated after shocking the 

system at time τ. Comparison of the paths of the simulated series with and without the 

shock provides a basis for measuring numerically the effects of the shock on the 
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dynamics of prices and their distribution. It measures the dynamic impulse response to 

the initial shock, which can shed light on the nature of price dynamics. We consider two 

kinds of shock: a shock in retail price at time τ, and a shock in wholesale price at time τ. 

The former is represented by an exogenous change in εrτ, and the latter by an exogenous 

change in εwτ.  

In general, under nonlinear dynamics, the impulse response depends not just on 

the initial conditions, but also on the nature and magnitude of the shock (Potter). To 

evaluate the effects of asymmetric price adjustments, we distinguish between positive and 

negative shocks to prices.  

The distribution of impulse responses to 40% shocks in wholesale price in 

December 1998 is presented in Figure 2.6 Figure 2 shows the evolution of the 10th, 25th, 

50th, 75th, and 90th percentiles of the distribution over the 12-month period following the 

shock. In general, a positive (negative) shock in wholesale price has a positive (negative) 

impact on retail price, with effects that decay slowly over time. Figure 2 illustrates the 

asymmetric effects generated by a positive shock versus a negative shock. Indeed, it 

shows how the distribution of the impulse response can vary: compared to a negative 

shock, a positive wholesale shock generates greater short-term variability in wholesale 

price, but lower short-term variability in retail price. Also, Figure 2 suggests that the 

nonlinear dynamics generate a skewed distribution of retail price responses to a 

wholesale price shock (see below). 

Similarly, Figure 3 presents the distribution of impulse response to 10% shocks in 

retail price on December 1998.7 Again, a positive (negative) shock in retail price has a 

positive (negative) impact on wholesale price, with effects that decay slowly over time. 

Here, the differences between a positive and a negative shock are not apparent: Figure 3 
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shows similar patterns of impulse response whether the retail price initially rises or falls. 

However, it does indicate the presence of skewness in the distribution of the price 

response. In addition, the initial shock in retail price (0.21 $/lb) has a magnified 

contemporaneous impact on wholesale price (0.40 $/lb). This large cross-price effect is 

due to a high s21 estimate generating a large covariance between yr and yw.  

To show that the results presented in Figures 2 and 3 can be sensitive to initial 

conditions, we present the impulse response to a 10% retail price shock on September 

1995 (see Figure 4). Figure 4 illustrates the non-stationarity of the model: a positive 

(negative) retail shock tends to increase (decrease) retail and wholesale prices both in the 

short run and in the long run. The absence of decay over time is in sharp contrast with 

Figure 3. Yet the only differences between Figures 3 and 4 are the initial conditions 

(December 1998 versus September 1995). This indicates that stationarity conditions can 

become �local� in nonlinear models, making price forecasts much more complex. Both 

Figure 3 and Figure 4 show that, in response to a retail shock, price variability tends to be 

larger for wholesale prices than retail prices. This reflects, in part, the fact that the 

variance of ew is larger than the variance of er. Finally, from Figure 4, the initial shock in 

retail price (0.21) has a smaller short-term impact (compared to Figure 3) on wholesale 

price (0.15). This is because s21 is time varying: it is smaller in September 1995 than in 

December 1998. 

The implications of nonlinear dynamics for the asymmetry of impulse response to 

positive versus negative shocks are investigated further. Table 2 reports formal testing of 

the null hypothesis of symmetry (the distribution of impulse responses at a point in time 

is symmetric for a price increase versus an equivalent price decrease). This is done using 

a chi-square Pearson test. The results are presented for different initial conditions (shock 
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date), for different shock sizes and at three time intervals (the 2nd, 6th and 12th months of 

the simulation). First, Table 2 makes it clear that the magnitude of the shock has a large 

impact on the presence of asymmetry. The evidence of asymmetry is very weak in the 

case of a small shock (e.g., 1% shock), but becomes strong with increases in the size of 

the shock. This reflects in large part the piece-wise linearity in model (3): it may take 

large changes to switch from one regime to another. As a result, the model can still 

exhibit �linear properties� locally, i.e. in the neighborhood of some path. The non-

linearities become apparent only globally, when path changes are large enough to induce 

regime switching.  

Second, the evidence of asymmetry in wholesale price response tends to be weak 

in the short run but become stronger in the longer run (e.g., August 96). With the 

exception of retail price shock in September 1995, this applies in response to either a 

wholesale price shock or a retail price shock (see Table 2). It suggests that the wholesale 

market exhibits symmetric short-term price adjustments, but asymmetric long-term price 

adjustments. To the extent that asymmetry is motivated by adjustment costs, this 

indicates the presence of significant long-term adjustment costs in the butter wholesale 

industry. This includes adjustment costs in investment and capital formation in butter 

manufacturing. 

Third, in stark contrast to our results on asymmetry in wholesale responses, Table 

2 shows that asymmetry in retail price responses tends to be stronger in the short run 

(after 2 months) but declines in the longer run (12 months). This holds in response to 

either a wholesale price shock or a retail price shock (see Table 2). It indicates that the 

retail market exhibits significant asymmetric short-term price adjustments, and that such 

asymmetry becomes weaker in the longer run. Also, Table 2 shows that the evidence of 
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asymmetry is in general stronger for retail price responses (compared to wholesale price 

responses). Again, to the extent that asymmetry is motivated by adjustment costs, this 

indicates the presence of significant short-term adjustment costs in the butter retail sector. 

This includes adjustment costs for consumers (e.g., search cost) as well as retailers.  

Finally, we evaluate the skewness of the distribution of impulse response. Table 3 

presents relative skewness obtained from the simulated effects of shocks in September 

1995. It also reports tests of the null hypothesis of zero skewness (corresponding to a 

symmetric distribution of an impulse response around its mean). This is done using the 

Bera-Jarque test. The evidence against the null hypothesis is weaker when considering 

the effect of a positive wholesale shock on the retail price. However, the statistical 

evidence of skewness is rather strong in all other cases, and is found to be stronger in the 

longer term. The importance of skewness points out that mean-variance representations 

cannot provide sufficient statistics for the distribution of future prices. This shows the 

limitations of previous analyses of price dynamics based solely on autocovariance (or 

spectral density in the frequency domain, as used by Miller and Hayenga). Table 3 also 

shows that positive shocks tend to generate positive skewness for own price shocks and 

negative skewness for cross price ones (with opposite effects obtained under negative 

shocks). This means that an unanticipated shock in price yit increases the relative 

probability mass in the tail of the distribution of prices yit� in the direction of the initial 

shock, for t� > t. And it decreases the relative probability mass in the tail of the 

distribution of prices yjt� in the direction of the shock for j ≠ i, t� > t. This illustrates how 

non-linear dynamics and asymmetric adjustments affect the distribution of future prices 

in a marketing channel.   
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5. Concluding remarks 

This paper developed a model of asymmetric price transmission in a vertical 

sector, allowing for refined asymmetry for both contemporaneous and lagged own and 

cross price effects. Applied to wholesale-retail price dynamics in the US butter market, 

the model provides strong evidence of asymmetric price transmissions. The asymmetry 

generates nonlinear dynamics in price adjustments in a vertical sector. We document the 

complex nature of price dynamics in the butter market. First, the effects of market shocks 

depend on initial conditions. For example, the impact of a change in retail price on 

wholesale price is found to vary significantly with market conditions (see Figures 1 and 

3). Also, the evidence of asymmetry grows with the size of the shock. Second, we show 

how asymmetric price responses affect the distribution of prices. We find strong evidence 

of skewness in the response to large price shocks. For example, an unanticipated increase 

in wholesale price tends to create positive skewness in the distribution of future 

wholesale price, but negative skewness in the distribution of future retail price. This 

highlights the limitations of previous analyses of price dynamics that relied only on the 

autocovariance (or spectral density in the frequency domain). Third, for retail price, the 

asymmetric response is stronger in the short run but declines in the longer run. This is 

consistent with the presence of consumer search costs and/or menu costs facing retailers. 

Fourth, in contrast with retail price, the evidence of asymmetry in wholesale price 

response is weak in the short run but stronger in the longer run. This is consistent with the 

presence of sunk costs in investment and capital formation in the butter sector.  

The analysis has focused on vertical price adjustments in the butter sector. It can 

be extended in several directions. First, it would useful to investigate whether our 

empirical findings hold for other sectors. Second, there may be more complex forms of 
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nonlinear dynamics that are relevant in vertical price adjustments. Finally, following 

Peltzman, our empirical findings suggest significant challenges for improving our 

conceptual understanding of dynamic market adjustments. These are good topics for 

further research.     
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Table 1: Maximum likelihood estimate of the parameters 
 

Parameter Estimate Std. Error Parameter Estimate Std. Error 

aw0 -0.1562** 0.0574 ar0 -0.0934** 0.0217 
aw1             -0.0003* 0.0002 ar1              0.0001 0.0001 
αw1            0.0849** 0.0249 αr1             0.0804** 0.0104 
αw2            0.0648** 0.0275 αr2             0.0162 0.0128 
αw3            0.0952** 0.0373 αr3             0.0292** 0.0115 
αw4            0.0571* 0.0328 αr4             0.0098 0.0205 
αw5            0.0770** 0.0261 αr5             0.0451** 0.0115 
αw6            0.0939** 0.0327 αr6             0.0067 0.0107 
αw7            0.0712** 0.0288 αr7             0.0016 0.0132 
αw8            0.0943** 0.0359 αr8             0.0081 0.0110 
αw9            0.0760** 0.0351 αr9             -0.0122 0.0111 
αw10           0.0527** 0.0218 αr10           0.0008 0.0069 
αw11           0.0812** 0.0354 αr11           -0.0329** 0.0101 
B1ww

1         0.2064** 0.0841 B1rw
1         0.5834** 0.0613 

B1ww
0         0.2635** 0.0631 B1rw

0         0.5712** 0.0495 
B2ww

1         0.2013** 0.0753 B2rw
1         0.2708** 0.0570 

B2ww
0         0.0726 0.0914 B2rw

0        0.3770** 0.0420 
B3ww

1         0.4104** 0.1135 B3rw
1         0.5031** 0.0591 

B3ww
0         0.0342 0.0507 B3rw

0         0.2338** 0.0762 
B4ww

1         -0.4495** 0.1914 B4rw
1         0.1509** 0.0507 

B4ww
0         0.0850 0.0619 B4rw

0        0.2230** 0.0715 
B5ww

1         -0.1296* 0.0742 B5rw
1         0.0332 0.0645 

B5ww
1         0.4816** 0.1519 B5rw

1         0.2997** 0.0439 
B1wr

1          0.0848 0.0894 B1rr
1          0.0180 0.0744 

B1wr
0          -0.6344** 0.2052 B1rr

0          -0.6602** 0.0746 
B2wr

1          -0.5860** 0.1989 B2rr
1          -0.3567** 0.0630 

B2wr
0          0.3828** 0.1674 B2rr

0          -0.0215 0.0807 
B3wr

1          0.0206 0.0960 B3rr
1          -0.3580** 0.0675 

B3wr
0          -0.3387** 0.1367 B3rr

0          -0.3502** 0.0920 
B4wr

1          0.2694** 0.0912 B4rr
1         0.2885** 0.0855 

B4wr
0         -0.1458 0.0990 B4rr

0        -0.4615** 0.0778 
B5wr

1          -0.1013 0.0777 B5rr
1         -0.0574 0.0638 

B5wr
1          -0.1119 0.0961 B5rr

1          0.1480* 0.0892 
B0ww          -0.1049* 0.0593 B0rw          0.0429 0.0335 
B0wr           0.1253** 0.0547 B0rr           0.0037 0.0251 
s11             0.0458** 0.0028 σ0             0.0344* 0.0180 
s22             0.0501** 0.0030 σw            -2.4823** 0.9699 

   σr              0.8692** 0.3920  
Log Likelihood = 824.5952.  Number of Observations = 254. 
** means |t|-value greater than 2; * means |t|-value greater than 1.6 
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Table 2: Testing the symmetry of impulse price response to a price increase versus a 
price decrease 

 

P-Values for the Null Hypothesis that Wholesale Shocks Produce
Symmetric Wholesale Price Responses  

P-Values for the Null Hypothesis that 
Retail Shocks Produce Symmetric 
Wholesale Price Responses 

Shock  
Date Time 

1%  
shock 

5% 
shock 

10%  
shock 

20%  
shock 

40%  
shock  

Shock 
Date Time 

1%  
shock 

5%  
shock 

10%  
shock 

Jan-82 2 0.9935 0.4231 0.0003 0.0000 0.0000  Jan-82 2 1.0000 1.0000 1.0000 
 6 0.9267 0.5930 0.1704 0.0022 0.0002   6 0.6376 0.0003 0.0000 
 12 0.9912 0.2861 0.0007 0.0000 0.0000   12 0.5114 0.7442 0.0520 
Sep-95 2 0.9998 0.9966 0.9688 0.8281 0.3330  Sep-95 2 1.0000 1.0000 1.0000 
 6 0.9979 0.9843 0.6468 0.0021 0.0001   6 0.9988 0.7743 0.2477 
 12 0.9968 0.6265 0.0463 0.0000 0.0000   12 0.9985 0.8215 0.8254 
Aug-96 2 1.0000 1.0000 1.0000 1.0000 0.9980  Aug-96 2 1.0000 1.0000 1.0000 
 6 0.9997 0.9965 0.9432 0.9392 0.7191   6 0.9985 0.3943 0.0471 
 12 0.9989 0.8897 0.8629 0.7049 0.2581   12 0.9975 0.5421 0.0074 
Dec-98 2 0.9960 0.8172 0.4611 0.0001 0.0000  Dec-98 2 1.0000 1.0000 1.0000 
 6 0.9981 0.9715 0.8441 0.0946 0.0028   6 0.9997 0.8877 0.0733 
 12 0.9808 0.1176 0.0002 0.0000 0.0000   12 0.9911 0.4985 0.0001 

P-Values for the Null Hypothesis that Wholesale Shocks Produce
Symmetric Retail Price Responses  

P-Values for the Null Hypothesis that 
Retail Shocks Produce Symmetric  
Retail Price Responses 

Shock  
Date Time 

1%  
shock 

5%  
shock 

10%  
shock 

20%  
shock 

40%  
shock  

Shock 
Date Time 

1%  
shock 

5%  
shock 

10%  
shock 

Jan-82 2 0.9398 0.0025 0.0000 0.0000 0.0000  Jan-82 2 0.0000 0.0000 0.0000 
 6 0.9975 0.7555 0.0154 0.0000 0.0000   6 0.0000 0.0000 0.0000 
 12 0.5994 0.9613 0.2638 0.0000 0.0000   12 0.4657 0.0000 0.0000 
Sep-95 2 0.9682 0.1342 0.0001 0.0000 0.0000  Sep-95 2 0.0000 0.0000 0.0000 
 6 0.8702 0.0150 0.0000 0.0000 0.0000   6 0.9236 0.0042 0.0000 
 12 0.9854 0.5873 0.0351 0.0000 0.0000   12 0.9886 0.9113 0.4137 
Aug-96 2 0.9996 0.4583 0.0362 0.0000 0.0000  Aug-96 2 0.0000 0.0000 0.0000 
 6 0.9995 0.9426 0.7110 0.1203 0.0000   6 0.8575 0.0014 0.0000 
 12 0.9939 0.8864 0.2188 0.0854 0.0087   12 0.8755 0.0000 0.0000 
Dec-98 2 0.9602 0.0060 0.0000 0.0000 0.0000  Dec-98 2 0.0000 0.0000 0.0000 
 6 0.9276 0.0008 0.0000 0.0000 0.0000   6 0.9899 0.2603 0.0000 
 12 0.9477 0.1138 0.0003 0.0000 0.0000   12 0.9960 0.4684 0.0009 
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Table 3: Skewness of the distribution of impulse response (September 1995 shocks)  
 
 A Positive Wholesale Shock A Positive Retail Shock 
Responding 
Price: Wholesale Retail Wholesale Retail 

Month 
Relative 
Skewness P-Value 

Relative 
Skewness P-Value 

Relative 
Skewness P-Value 

Relative 
Skewness P-Value 

1 0.999103 0.0000 -1.0019 0.0000 0.999909 0.0000 0.999585 0.0000 
2 0.018136 0.7322 -0.12991 0.0935 -0.10688 0.1677 -1.0005 0.0000 
3 0.85994 0.0000 -0.26077 0.0008 -0.87527 0.0000 -0.10676 0.1681 
4 0.956083 0.0000 -0.16268 0.0357 -1.19661 0.0000 0.232713 0.0027 
5 1.512311 0.0000 -0.04885 0.5283 -1.38537 0.0000 0.580954 0.0000 
6 1.688903 0.0000 -0.14151 0.0677 -1.83915 0.0000 0.816 0.0000 
7 1.769619 0.0000 -0.06146 0.4275 -1.5596 0.0000 0.830869 0.0000 
8 2.525748 0.0000 -0.11229 0.1472 -1.40426 0.0000 0.664662 0.0000 
9 4.288709 0.0000 -0.11962 0.1225 -1.44261 0.0000 0.951117 0.0000 
10 6.150138 0.0000 -0.2188 0.0047 -1.65875 0.0000 0.650639 0.0000 
11 5.770587 0.0000 -0.21556 0.0054 -1.63818 0.0000 0.868161 0.0000 
12 2.491966 0.0000 -0.35109 0.0000 -2.31332 0.0000 1.074575 0.0000 
 A Negative Wholesale Shock A Negative Retail Shock 
Responding 
Price: Wholesale Retail Wholesale Retail 

Month 
Relative 
Skewness P-Value 

Relative 
Skewness P-Value 

Relative 
Skewness P-Value 

Relative 
Skewness P-Value 

1 -0.9987 0.0000 1.001285 0.0000 -0.99916 0.0000 -0.99955 0.0000 
2 -0.01632 0.8331 0.125657 0.1048 0.106875 0.1677 1.000401 0.0000 
3 0.040325 0.6027 -0.22315 0.0040 0.875086 0.0000 0.106875 0.1677 
4 -0.16857 0.0295 -0.21401 0.0057 1.191057 0.0000 -0.26156 0.0007 
5 -0.60019 0.0000 0.244514 0.0016 1.417848 0.0000 -0.55379 0.0000 
6 -0.6913 0.0000 0.472841 0.0000 1.924504 0.0000 -0.8149 0.0000 
7 -0.78773 0.0000 0.450066 0.0000 1.545587 0.0000 -0.83036 0.0000 
8 -1.0791 0.0000 0.61254 0.0000 1.638787 0.0000 -0.81439 0.0000 
9 -2.19873 0.0000 0.711232 0.0000 1.507778 0.0000 -1.14421 0.0000 
10 -3.28016 0.0000 0.751143 0.0000 1.738341 0.0000 -0.73588 0.0000 
11 -2.62252 0.0000 0.745978 0.0000 2.019929 0.0000 -0.93841 0.0000 
12 -0.30226 0.0001 0.796072 0.0000 2.609708 0.0000 -1.15015 0.0000 
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Footnotes 

                                                 

1S
1s
−
=

K
1k=

m
1j=

K
1k=

K
1k=

1 See Zellner and Palm for a discussion of the linkages between a structural model of 

price determination and the time series representation (1).  

2 Note that equation (3) can be equivalently expressed in �levels� as 

yit = ai0+ ai1 t + ∑  αis Dts + ∑ ∑ [Akij
1 Rj,t-k + Akij

0 (1-Rj,t-k)Bk] yt-k + eit, 

i, = 1, �, m, where the A�s satisfy ∑ Akij
1 = ∑ Akij

0, for i, j = 1, �, m.   

3 Equation (3) restricts the B0ij�s to be the same across regimes. It assumes that 

cointegration relationships among the dependent variables are not regime specific. This 

will prove convenient in the implementation of the Johansen test for cointegration (see 

below).  

4 More general forms of asymmetry can treat the regime switching as endogenous. This 

includes threshold autoregression (TAR; see Hansen, and Koop and Potter), or Markov 

chains with regime switching (e.g., Hamilton, chapter 22). 

5 Allowing the sij�s to become time-varying means that the model specification changes 

with the ordering of the prices. To evaluate this issue, we also estimated the same model 

with y1 = yw and y2 = yr. This resulted in a lower log-likelihood value of the sample.   

6 The choice of 40 percent was made to reflect some of the larger shocks to wholesale 

butter price observed during the sample period.   

7 A 10 percent shock reflects some of the larger shocks to retail butter price observed 

during the sample period. 
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