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Efficiency and Technological Change at US Research Universities 
 

1. Introduction  

It is well documented that university research and development have played a vital role in 

generating long term social returns in the United States (e.g., Jaffe, 1989; Mansfield, 1995; 

Chavas, Aliber, and Cox, 1997; Jones and Williams, 1998). This R&D effort has been 

sponsored by a combination of public and industry funding support.  Over the past two 

decades, universities have turned increasingly to industry sources to finance R&D activities, 

including sponsored research agreements with companies and various forms of 

commercialization of intellectual property rights (patent licensing, start-ups, etc.).   

 Increased commercialization of university research efforts has generated controversy 

about the effects on traditional outputs of universities: trained students, high quality research, 

and the pace, terms, and future use of scientific disclosures (see e.g., Bok, 2003; Ehrenberg 

Rizzo, & Jakubson, 2003; Atkinson et al., 2003; Kennedy, 2000).  Blumenthal et al. (1996), 

for example, show that - in the life sciences - faculty with more than two-thirds of their 

research support from industry sources have lower rates of publication and write less 

influential articles than other faculty with less industry support. Yet universities are clearly 

identified as the source of exceptional regional entrepreneurial activities that have spurred the 

development of high technology (Jaffe, 1989; Bania, Eberts & Fogerty, 1993, Jensen and 

Thursby, 2001; Hall, Link, & Scott, 2003; Link and Scott, 2003). Leading private universities 

(e.g., Harvard, MIT, and Stanford) and some of the land-grant public universities (e.g., 

University of California and University of Wisconsin) are well known for their outstanding 

performance in technology transfer and licensing revenue generation.  Indeed, since the 

Bayh-Dole act of 1980 allowed universities to patent their inventions, the last two decades 
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have seen many research universities invest heavily in technology transfer offices. Overall, 

the literature on the production of university patents has shown mixed effects of this 

regulatory change on the quality of research, with some (Henderson, Jaffe, &Trajtenberg., 

1998) showing declining quality and others (Sampat, Mowery, & Zeidonis, 2003) showing 

no effect. Another outcome potentially associated with increasing pressures to produce 

commercial outputs is the dramatic increase in the use of post-doctoral researchers in U.S. 

university labs (see Table 1), which has given rise over the past two decades to an 86% 

increase in the number of post-doctoral researchers while faculty numbers increased by about 

10%. Universities clearly face some trade-offs between hiring post-doctoral researchers and 

expanding faculty or graduate student numbers, but do they increase their efficiency by 

having more post-doctoral researchers? At all three levels, increased industry funding, 

emphasis on technology transfer, and utilization of post-doctoral researchers, there is a need 

to examine how these and other factors have affected research performance at US 

universities.  

This paper examines efficiency and technological change at U.S. research universities 

in order to explore how they are affected by the commercialization of university research 

outputs associated with the rise of academic patenting.  This issue seems especially timely 

for two reasons.  First, it has been more than two decades since the passage of the Bayh-Dole 

Act provided the institutional basis for a major expansion of academic patent activity. 

Second, US universities are in the midst of an era when both federal and state funds for 

research seem likely to stagnate under the burden of mounting fiscal deficits.  As a result, 

most US research universities find themselves in an austere era, searching for alternative 

funding sources as well as ways to improve their efficiency.  Knowing how 
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commercialization in its different forms affects university research performance would be 

valuable to decision-makers at various levels. 

This paper presents a refined analysis of a unique panel data set consisting of 92 top 

U.S. research universities from 1981 to 1998. We focus our attention on the estimation and 

determinants of technical efficiency and rates of technological change among universities 

during this period.  The analysis is based on measurements reflecting traditional university 

outputs (trained graduate and undergraduate students, publications) as well as the growing 

importance of university patenting. The output measures are more complete than most 

previous analyses of university research production. They also take into account quality 

differences in university research outputs by adjusting counts with citation information. 

Inputs to university scientific production are measured by numbers of faculty, doctoral 

students, and post-doctorates.1   

Our analysis of efficiency and technological change is based on the directional 

distance function (Chambers, Chung and Fare, 1996). The panel data allows for the 

estimation of university-specific measures of technical efficiency and technological progress 

for each time period. These estimates help answer some basic questions on trends in the 

degree of technical efficiency and rate of technological progress at different types of 

universities. Using a nonparametric representation of the university production process, we 

find that levels of efficiency and rates of technological change vary a great amount across 

different university types. We then conduct an econometric analysis investigating the factors 

influencing efficiency and technological change. This provides useful information on the 

                                                 

1 The analysis focuses on the role of human capital (as measured by inputs such as faculty, post-docs, etc.) 
which is at the heart of the production of new knowledge by research universities.  
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effects of funding sources, university size, university type (e.g., public versus private), tech-

transfer efforts, use of post-docs, and other university-specific characteristics.  

   

2. Methodology 

Consider a university as a firm producing multiple outputs: patents, journal articles, and 

trained students. The production process involves the production of y ∈ R , a m-vector of 

outputs, using x ∈ R , a n-vector of inputs. Using netput notation, let z ≡ (-x, y) where 

outputs are positive and inputs are taken to be negative. Let F ⊂ R × R  represent a closed 

production possibility set, where z ≡ (-x, y) ∈ F means that outputs y can be produced from 

inputs x. Let g ∈ R , g ≠ 0, be some reference netput bundle. Following Chambers, 

Chung, and Fare (1996) and Luenberger (1995), consider the directional distance function: 

m
+

n
+

n
−

m
+

mn+
+

D(z, g, F) = maxβ {β: (z + β g) ∈ F} if (z - β g) ∈ F for some scalar β, (1) 

= +∞ otherwise. 

The directional distance function D(z, g, F) in (1) measures how far the point z ≡ (-x, 

y) is from the frontier technology, expressed in units of the reference bundle g. Note that D(z, 

g, F) in (1) is the negative of the shortage function discussed in Luenberger (1995). The 

properties of the directional distance function D(z, g, F) have been investigated by Chambers, 

Chung, and Fare (1996) and Luenberger (1995). They are summarized next. First, z ∈ F 

implies D(z, g, F) ≥ 0 (since D(z, g, F) < 0 implies z ∉ F). Second, if the set F is convex, the 

directional distance function D(z, g, F) is concave in z. Third, under free disposal (where z ∈ 

F and z’ ≤ z implies that z’ ∈ F), the production possibility set F can be written as F = {z: 

D(z, g, F) ≥ 0}. Then, the boundary of the production technology is represented by the 
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implicit equation D(z, g, F) = 0. Finally, the directional distance function satisfies the 

translation property where D(z - k g, g, F) = k + D(z, g, F).   

 

2.1. Technical Efficiency 

Under technology F, consider a firm observed to be at point z ≡ (-x, y). The 

directional distance function D(z, g, F) in (1) provides a general way of assessing technical 

efficiency and productivity. It is also intuitive: D(z, g, F) measures the quantity of inputs g 

that can be saved by moving to the frontier technology. In addition, for a given reference 

bundle g, this quantity can be meaningfully added across firms and/or across periods. It 

means that the directional distance function can be aggregated without undue complication.  

Since D(z, g, F) ≥ 0 under feasibility, it follows that D(z, g, F) is a convenient 

measure of the distance to the frontier technology.  If D(z, g, F) = 0, then point z is 

necessarily on the boundary of the production technology F. And finding D(z, g, F) > 0 

implies that point z is technically inefficient as it is below the production frontier. It means 

the D(z, g, F) in (1) is a convenient measure of technical inefficiency for a firm that reflects 

the number of units of the netput bundle g needed to get to the frontier. In addition, consider 

the case where p ∈ R  is a vector of prices associated with netputs z. Noting that the point 

[z + D(z, g, F) g] is feasible, it follows that [D(z, g, F) p ⋅ g] provides a measure of profit 

increase that a firm choosing netputs z can attain by becoming technically efficient. In 

situations where prices p are normalized such that p ⋅ g = 1, then the directional distance 

function D(z, g, F) provides a measure of this profit increase.  

mn+
++

Note that D(z, g, F) in (1) is closely related to three other measures of technical 

performance that have appeared in the literature. First, consider the case where g = (0, y). 
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Then, the directional distance function in (1) becomes D(z, (0, y), F) = 1/DO(z, F) - 1, where 

DO(z, F) ≡ infβ≥0 {β: (-x, y/β) ∈ F} is Shephard’s output distance function (Shephard, 1970; 

Fare and Grosskopf, 2000). In this context, DO(z, F) ≥ 1 if z is feasible, and DO(z, F) = 1 if z 

is on the upper boundary of the technology. Then [DO(z, F) – 1] measures the proportional 

change in outputs that can be obtained by moving to the production frontier.  

Second, consider the case where g = (x, 0). Then, the directional distance function in 

(1) becomes D(z, (x, 0), F) = 1 – 1/DI(z, F), where DI(z, F) ≡ supβ≥0 {β: (-x/β, y) ∈ F} is 

Shephard’s input distance function (Chambers, Chung, and Fare, 1996). A closely related 

concept is Farrell’s (1957) input distance function Df(z, F) ≡ infβ≥0 {β: (-β x, y) ∈ F} = 

1/DI(z, F) which satisfies D(z, (x, 0), F) = 1 – Df(z, F). In general, Df(z, F) ≤ 1 if z is feasible 

and Df(z, F) = 1 if z is on the upper boundary of the technology. Much research has used 

Shepard’s input distance function DI(z, F) and Farrell’s input distance function Df(z, F) in the 

investigation of technical efficiency and productivity. For example, [1 – Df(z, F)] provides a 

measure of the proportional reduction in all inputs that can be obtained by moving to the 

frontier technology. This shows that D(z, g, F) in (1) includes as special cases most measures 

of firm performance that have been proposed in the literature.  

 

2.2. Productivity-Technological Progress 

Consider a change in technology from F to F’, where under technological progress, F 

⊂ F’ as the feasible set expands. Since the directional distance function in (1) involves a 

maximization problem, this implies that D(z, g, F’) ≥ D(z, g, F). Evaluated at point z, this 

suggests the following measure of technological progress  

A(z, g, F, F’) = D(z, g, F’) - D(z, g, F).  (2) 
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A(z, g, F, F’) in (2) has a simple and intuitive interpretation. First, A(z, g, F, F’) = 0 

in the absence of technological progress. Second, evaluated at point z, finding A(z, g, F, F’) > 

0 implies technological progress from F to F’. In this case, A(z, g, F, F’) is the number of 

units of the netput bundle g that can be obtained by switching from technology F to F’. As 

noted above, for a given reference bundle g, this measure can be meaningfully summed 

across firms and/or across time periods. This additivity property makes A(z, g, F, F’) a 

convenient measure in the investigation of technological change for a group of firms or for 

an aggregate industry.  In addition, noting that [z + D(z, g, F) g] is a feasible point of the 

production frontier under technology F, the associated profit is [p ⋅ [z + D(z, g, F) g]]. It 

follows that the change in profit associated with switching from technology F to F’ is [D(z, g, 

F’) - D(z, g, F)] [p ⋅ g]. In the case where prices p are normalized such that p ⋅ g = 1, then 

[D(z, g, F’) - D(z, g, F)] measures the benefit (in terms of profit increase) of technological 

progress from F to F’.  

Below, we will use equations (1) and (2), respectively, to evaluate the technical 

efficiency and rate of technological change among US research universities.    

 

3. Data 

The dataset combines information on research inputs and outputs in the sciences and 

engineering for 92 US universities, including 61 public universities and 31 private 

universities for the period of 1981-1998. This dataset contains for all 92 universities the 

following data:  

1) Total patent counts and citations from all science and engineering fields (U.S. 

Patent Office, 2004; Hall, Jaffe, &Tajtenberg, 2003),  
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2) Article counts and citations from all science and engineering fields (ISI Web of 

Science, 2004),  

3) Total number of doctorates and bachelor degrees granted in the sciences as well as 

the number of graduate students, faculty, and post-docs (National Science 

Foundation, 2004).  

Further details on the sources of the data and key choices in the construction of the 

dataset can be found in the appendix. One key aspect of the dataset warrants discussion here. 

The dataset focuses on scientific inputs and outputs, reflecting our interest in studying 

university production processes that include producing patents. We focus on the sciences 

because they are the disciplines which have experienced the greatest in-roads of industry 

funding and are most likely to be engaged in patenting.2  

In order to proceed with the empirical analysis, we need a representation of the 

university production process. University research in the sciences produce outputs (articles, 

patents, and trained students) using primarily the following human capital inputs: faculty, 

post-doctoral researchers, and graduate student labor.   

In the case of student training, we measure undergraduate bachelor’s degrees in the 

sciences as university outputs. However, graduate students can be both inputs and outputs: 

they are outputs of the university educational function, but they are also inputs into the 

research process through their work in labs. To account for this dual function of graduate 

students, we assume that they are outputs until their final year, when they are treated as an 

input into the university research process. Since there is a one or two year delay between 

when research is done and when a graduate student worked on it, we think that this 
                                                 

2 Including the humanities and social sciences would have led to major measurement difficulties, since the 
outputs in many disciplines, such the arts, cannot be adequately measured by article and patent counts.   
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assumption reasonably closely matches the output data we have. Thus, we measure 

continuing graduate students as outputs, and PhDs granted as inputs. In this context, 

universities are involved in the production of four outputs (journal articles, patents, trained 

undergraduate students, and trained graduate students) using three inputs (faculty, post-

doctoral researchers, and PhD graduate students). 

To account for quality differentials, we use citations to quality-adjust the patent and 

article counts.3 The quality adjustment measure used for each science article/patent is the 

deviation from the average citation rate of an article/patent in the same broad class/category 

published in the same year. For example, a 1995 biochemistry article with 10 citations is 

compared to the average level of citations of all biochemistry articles produced in that year. 

For a given year, the average quality article within a category has a citation rate of 1, with 

higher quality articles then having a measure greater than one and lower quality articles 

receiving a measure between zero and one. This relative citation approach minimizes a 

truncation bias that would be introduced by using an absolute citation count. Further details 

on the citation measure are available in the appendix. 

Finally, the university research production process is dynamic: the process of 

scientific discovery is typically time-consuming. For example, lagged inputs can affect 

current outputs in the presence of production lags (e.g., it takes time for research to be 

published). And lagged outputs may affect current outputs in the presence of temporal 

synergies in production. We incorporate dynamics in the representation of the underlying 

technology by specifying and estimating a multi-period production technology over a four-

                                                 

3 The work presented here was also done using quantity measures without quality adjustments.  The results 
showed relatively little difference.  For brevity’s sake we chose to only present the quality adjusted data.  A 
summary of the quantity results are available from the authors upon request. 
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year period. Outputs for the current year are assumed to depend on inputs of the current year, 

as well as on inputs and outputs from the three previous years. The effects of lagged 

quantities are captured by a weighted average of the corresponding quantities, with weights 

equal to 0.5 for lag one-year, 0.37 for lag two-years, and 0.13 for lag three-years. As a result, 

our dynamic production process is represented by eight outputs (four current outputs and four 

lagged outputs) and six inputs (three current inputs, and three lagged inputs).  

 Some summary statistics of the data are presented in Table 1. Table 1 reveals major 

increases in U.S. university scientific research production between 1984 and 1998 in spite of 

relatively minor changes in faculty numbers. Patent production grew most over this fifteen-

year time span with a 312% increase in the average annual level of production, followed by 

articles and doctorates with 60% and 47% increases, respectively. Meanwhile, the number of 

science faculty only grew by 10% over this time period. However, postdoctoral numbers 

grew by close to 86% over this same period. The fact that all of these scientific outputs grew 

much more substantively than faculty numbers may suggest the presence of major 

technological progress during this era, but it could also be true that the growing importance 

of postdoctoral inputs explains much of the increased research production.  Little more can 

be said without a more careful analysis of the efficiency and technological progress 

properties of the university production process. The ensuing empirical analysis builds on a 

non-parametric representation of the production process to generate university-specific 

estimates of efficiency and technological change. This is followed by an econometric 

analysis of the determinants of these estimates.   
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4. Nonparametric Implementation 

4.1. Estimating the Directional Distance Function  

Estimating the directional distance function D(z, g, F) in (1) requires a representation 

of the technology F. This can be done either using parametric methods (involving a 

parametric specification followed by an econometric estimation of the parameters) or 

nonparametric methods. Below, we rely on a non-parametric approach for several reasons. 

First, it provides a flexible representation of the multi-output production frontier, and this 

does not require imposing a parametric structure on the problem. Second, when the number 

of netputs is large, it is not subject to multicollinearity problems. Finally, it does not require 

that each data point be on the frontier technology, which allows for technical inefficiencies.  

Input and output data are used to recover an estimate of the underlying multi-output 

production technology for universities. As discussed above, university outputs are measured 

as research articles, patents, doctoral students in labs, and bachelor degrees, while the inputs 

are measured as post-docs, doctorates in their final year of study, and faculty.  Following 

Afriat (1972), Varian (1984) and others, the non-parametric approach (also called data 

envelopment analysis or DEA) consists of representing the underlying technology by the 

smallest convex set that includes all the data.  Consider a set of observations on S universities 

over T time periods. For the s-th university at time t, we observe netputs z t  ≡ (- , ), s = 

1, …, S and t = 1, …, T. Assuming non-regressive technological change and variable returns 

to scale,

s
t
sx t

sy

4 a nonparametric representation of the technology at time τ is 

                                                 

4 Comparisons between variable returns to scale and constant returns to scale can also be used to investigate 
scale efficiency.   
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Fτ = {z: ∑  ∑ λ t
s  z t

s  ≥ z, ∑ S  ∑ τ λ t
s  = 1,λ ≥ 0, s = 1, …, S, and t = 1, …, 

τ}.(3) 

S
1s=

τ
1t= 1s= 1t=  t

s

Given Fτ in (3), the directional distance function in (1) can be obtained as follows  

D(z, g, Fτ) = maxβ,λ {β: ∑  ∑ λ t
s  z t

s  ≥ z + β g, ∑ S ∑ τ λ t
s  = 1,λ ≥ 0, s = 1, …, 

S, and t = 1, …, τ }.  (4) 

S
1s=

τ
1t= 1s=  1t=  t

s

This is a straightforward linear programming problem which implicitly estimates the 

multi-output production frontier across all universities up to time τ. This allows 

measurements of efficiency changes (university movements toward the frontier at a given 

time τ) as well as  the analysis of technological progress (movements of the frontier 

overtime) using (2). We implement this approach using GAMS software to analyze 

university performance. We choose the reference bundle g to represent “one faculty unit”: g 

= (g1, …, gn+m) where gi = 1 when i corresponds to faculty input, and gi = 0 otherwise. In this 

context, given university netputs z, D(z, g, Fτ) in (1) gives the distance to the frontier 

measured by the number of faculty that could be saved if the university could move to the 

boundary of the technology Fτ. Similarly, from (2) and given university netputs z, A(z, g, Fτ, 

Fτ’) measures the magnitude of technological progress by the number of faculty that could be 

saved by switching from technology Fτ to technology Fτ’ for τ’ > τ.  

 

4.2. Estimating the Determinants of Efficiency and Technological Progress  

The empirical implementation of (4) yields two measures of interest for individual 

universities: 1) technical inefficiency D(z, g, Fτ); and 2) university-specific technological 

progress between period τ  and τ’ as measured by A(z, g, Fτ, Fτ’) from (2).  These measures 
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are estimated for each university for each year in the data set, and provide the data that we 

use to examine the levels of efficiency and rates of technological progress.  Summary 

statistics for these estimates are presented first to show how they differ across types of 

universities and across time. Then, with these estimates, we pursue an econometric analysis 

of efficiency and technological change, thus generating insights on the determinants of 

university performance.  

The econometric model describes the dependent variables (i.e., inefficiency and 

technological progress) as a function of university characteristics and time specific measures. 

Note that university netputs z being feasible implies that D(z, g, Fτ) ≥ 0.  Thus, our 

measurement of university inefficiency is censored at 0. Similarly, for τ’ > τ, non-regressive 

technological progress implies that A(z, g, Fτ, Fτ’) ≥ 0. Again, our measurement of 

technological progress is censored at zero. This implies that the econometric analysis of 

university performance must deal with the censored nature of the data. As noted by 

Wooldridge (2002), estimating censored models with panel data can be challenging. We 

estimate Tobit models using partial maximum likelihood estimation, because as shown by 

Wooldridge (2002, p. 402) they have desirable asymptotic properties: for fixed T and S → ∞, 

they give parameter estimates that are consistent and asymptotically normal. This applies 

under fairly general conditions: it does not require strict exogeneity of the explanatory 

variables; and it allows the error terms to be serially correlated. However, the presence of 

serial correlation affects the computation of asymptotic standard errors and requires 

appropriate adjustments (Wooldridge, 2002, p. 406). Below, we implement such an approach 

to the analysis of university performance.  
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Let Yit ≥ be the dependent variable for the i-th university at time t (either technical 

inefficiency or technological progress). And denote by Xit the corresponding vector of 

explanatory variables. The associated Tobit model is Yit = max( 0, Xit β + uit) where uit| Xit is 

distributed N(0, σ2).  Following Wooldridge (2002, p. 539), the partial maximum likelihood 

estimator is the pooled Tobit estimator that maximizes the partial log-likelihood function ∑i 

∑t lit(β, σ2), where  

lit(β, σ2) = 1[Yit = 0] log[1 - Φ(Xit β/σ)] + 1[Yit > 0] {log φ[(Yit – Xit β)/σ] – log(σ2/2}, 

where 1[⋅] is an indicator variable, and Φ(⋅) and φ(⋅) are, respectively, the distribution 

function and the density function for the standard normal distribution. As just noted, this 

gives consistent parameter estimates. The standard error estimation accounts for the 

possibility of serial correlation. This provides a basis for obtaining robust standard errors and 

conducting statistical inferences on the determinants of university performance.   

 

5. Empirical Results 

5.1. Technical Efficiency Estimates for U.S. Universities 

Based on empirical estimates of D(z, g, Fτ) in (4), summary measures of technical 

inefficiency of U.S. universities are presented in Figure 1 as the average of 100*D/Faculty 

for three university types: private universities, public land grant universities (LGU), and 

public non-LGU.  Here, 100*D/Faculty measures the percent of faculty that can be saved by 

moving to the frontier. On average, private universities are found to be relatively more 

inefficient than public universities, but that over the last decade the gap has narrowed 

significantly as public universities have become less efficient. Figure 1 also shows that 

technical inefficiency has increased over the sample period, with 100*D/Faculty at the 
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average university rising from 10.6 percent in 1984 to 20.4 percent in 1998. One finds a 

similar trend in all university types, although public universities (both land grant and non-

LGU) have on average become relatively less efficient, thus narrowing the gap between 

public and private universities.     

 The general increase in inefficiency reflected in Figure 1 can be decomposed further 

into three groups of universities; those that were: 

• On the frontier in the initial and ending period (24 of the 92 in the sample) 

• On the frontier in the initial period but not the ending period (25 of the 92) 

• Not on the frontier in the initial or ending period (42 of the 92) 

Several empirical regularities emerge from that exercise.  First, the frontier universities 

consist of three groups that are not surprising: the top tier private universities, such as 

Harvard, MIT, Cal Tech, Johns Hopkins, and Stanford; leading public universities, such as 

five of the eight University of California campuses, University of Minnesota, University of 

Texas-Austin, Texas A&M University, University of Washington, and University of 

Wisconsin-Madison; and several mid-range public universities, such as Penn State University 

and Florida State University. Second, the universities on the frontier in the initial period but 

not in the final period were, on average, 42 percent closer to the frontier in the final period 

than was the third group, while the efficiency gap between those on the frontier and those 

that were never on the frontier was more than 35 percent on average. Thus, the trend toward 

more inefficiency shown in Figure 1 masks a process within which a group of “winners” has 

pulled further way from the rest of the sample, and especially from the third group. It is 

noteworthy that this increase in inefficiency for two-thirds of the sample occurred during the 
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period of increased commercialization. The econometric analysis presented below sheds 

additional light on this issue.  

 

5.2. Technological Change 

Our analysis of technological change is based on A(z, g, Fτ, Fτ’) in equation (2). For 

a given z and for τ’ > τ, this measures the amount of faculty that can be saved by switching 

from technology Fτ to Fτ’. To facilitate interpretation, we report 100*A/Fac, i.e. the 

percentage of faculty that can be saved due to technological progress.   

We evaluate technological change over two periods: from 1984 to 1989 and from 

1990 to 1998. For each period, we evaluate A(zi, g, Fτ, Fτ’) where zi is the netput vector of 

the i-th university during the first year of each period (1984 and 1990). Then, we obtain 100* 

A(zi, g, Fτ, Fτ’)/Faci and convert this into an annualized rate of change for each university 

over the selected period. A summary of the results are reported in Table 2.  

Table 2 shows that technological change across the two time periods by university 

type, where technological change is measured by the yearly percent change in the number of 

faculty saved by using the new technology rather than the old. It shows technological change 

across all types of universities of just under 1 percent per year, with the change slightly faster 

in the 1990’s. That there is not a more rapid pace of technological progress in the 1990’s is 

perhaps surprising given the major improvements in information technology during that 

decade.  In terms of university types, private universities also show higher technological 

change with Land Grant universities showing the lowest rate in the 1990s.  

 Figure 2 shows a histogram for the two time periods showing the distribution of 

technological change across all universities. One of the key differences is the much higher 
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portion of universities in the 1980s that saw zero or very low levels of technological change 

during that period. Universities in the 1990s were more likely to experience some 

technological change overall, although both distributions show the majority of universities 

with less than 1 percent change per year.  

 

6. Determinants of Efficiency and Technological Progress 

 In order to understand the determinants of efficiency and technological progress, we 

specify an econometric model of university performance as a function of key variables 

hypothesized to make a difference to efficiency and technological progress. To examine 

technical efficiency, a Tobit model is estimated using the relative measure of distance from 

the frontier, D(z, g, F)/Fac, as the dependent variable. To investigate technological progress, 

a Tobit model is estimated using the annualized rate (measured from A(z, g, Fτ, Fτ’) in (2)) as 

a dependent variable for the two periods: 1984-1989 and 1990-1998.  We use the same basic 

set of explanatory variables in both regressions.  The variables and their hypothesized effects 

are described below and their descriptive statistics are shown in Table 4. 

 First among the independent variables describing efficiency and technological 

progress are control variables that capture university type. We use dummy variables for 

public versus private universities and for Land Grant universities versus non-Land Grants.5  

This allows us to investigate whether the additional outreach missions of public universities, 

especially Land Grant universities, would make them less efficient in research production 

                                                 

5 Note that Cornell university is both public and private, and part land grant part non-land grant. We decided to 
categorize Cornell as a public land grant university.  None of the results presented below were affected to any 
measurable degree by changing this classification. 
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and perhaps result in slower technological progress than private universities (McDowell, 

2001).   

In order to control for scale effects in the influence of funding on efficiency and 

technological change, we include a measure of the total amount of research funding at the 

university. We also include a measure of the number of science faculty at the university as 

another measure of scale effects. We investigate whether larger universities (as measured by 

faculty numbers or research funding) will be equally efficient and have similar rates of 

technological change than smaller universities.  Since these size effects may be different 

depending on the university’s type, we include interaction variables between faculty size and 

our measures of university type. 

In terms of commercialization variables, we draw from previous literature on 

university research production that has shown the importance of funding sources to the 

research process (see e.g., Campbell and Blumenthal, 2000). The literature suggests and we 

hypothesize that higher percentages of federal funds in the university budget increases both 

efficiency and technological progress. At the same time we investigate whether a higher 

percent of industry funding diverts resources away from the typical university outputs and 

possibly lead to lower levels of efficiency. We include a cross product term for these funding 

percentages to capture any interaction effect between them. 

 Since the existence and experience of a technology transfer office will influence the 

production of one of our measured outputs, patents, we also include variables to measure the 

level of technology transfer infrastructure at the universities. We use two dummy variables: 

the first measures whether or not the university has more than 0.5 of an FTE working in their 

technology transfer office; the second measures whether the university had a technology 
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transfer office before 1980, which is the date of the Bayh-Dole act that changed the 

institutional framework governing university intellectual property right ownership and 

commercialized technology transfer.6 It is hypothesized that having a technology transfer 

office will increase the measured efficiency by increasing patent production. The existence of 

a technology transfer office is thought to stimulate technological progress as it facilitates the 

process of patent production. We hypothesize similar effects for having a technology transfer 

office before 1980 which we see as a proxy for the experience or quality of the technology 

transfer office. 

 We also include variables to control for what we think are important differences 

between universities in their response to increased commercialization efforts. The first 

measures the number of post-doctoral researchers per faculty, and the second whether the 

university has a medical school. Potentially, post-docs can be very productive in the research 

process. However, if more post-docs reflect a move toward more commercialization, this 

could also reduce the efficiency of producing more traditional university outputs. To examine 

this issue, the variable “post-doc” is included in the model, with a squared effect to account 

for possible non-linearity.  The presence of a medical school should be thought as more of a 

control variable than a commercialization effort measure, but it is also an activity that 

stretches beyond the classic research and teaching missions to include treatment of patients 

and other health care provision services. 

 

6.1. Determinants of Technical Inefficiency 

                                                 

6 Between 1984 and 1998, more than half (55%) of the universities in our sample added a technology transfer 
office.  Most of the additions occurred in the late 1980s and early 1990s. 
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 The estimation results from the pooled Tobit model on inefficiency are reported in 

Table 4.  Many of the coefficients are found to be statistically significant.7 Recall that D(z, g, 

F) measures inefficiency as the distance from the frontier, so that a positive coefficient 

estimate indicates a variable that increases inefficiency.  For example, the finding reported 

above that inefficiency increased in the 1990s relative to the 1980s is reflected by the 

positive and significant coefficient estimate on the time trend variable. This suggests a 

secular trend toward more inefficiency in university production during an era of increased 

commercialization orientation.   

 The effects of overall funding and funding sources on the efficiency of university 

science production are of special interest. Table 4 shows that higher overall levels of funding 

significantly reduce inefficiency (i.e., increases efficiency). After controlling for the scale of 

funding, having higher percentages of federal funding always lowers inefficiency. This 

highlights the importance of federal funding in the efficient operations of universities. 

However, the effects of industry funding are more complex. For a given total funding, the 

marginal effect of industry funding on inefficiency is: 3.346 – 0.06229 * (Pct. Federal 

funds).8 It follows that a relative increase in industry funding makes the production process 

more efficient whenever a university gets more than 53.7% of its funding from federal 

government sources. This shows that a relative increase in industry funding can contribute to 

improved university efficiency. However, this applies only when the majority of funding 

comes from federal sources. Our results suggest the presence of a possible “crowding-out 

                                                 

7 Note that the analysis was also conducted without correcting for quality differences in research outputs. In 
general, the econometric results were found to be similar, leading to the same qualitative findings.     
8 Note that these results based on ratios of coefficients are the same whether they are presented using the 
coefficients themselves or the marginal effects conditional on the censoring.  For ease of exposition we chose to 
present them based on the coefficients themselves. 
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effect” of industry funding (as suggested by Blumenthal et al. (1996) for the life sciences), 

whereby extensive industry funding of university research that replaces rather than 

complements federal funding can contribute to increasing university inefficiency.  

 The technology transfer variables provide some surprising evidence on the efficiency 

effects of having a technology transfer office.  Universities that have long-standing 

technology transfer offices established before the Bayh-Dole act of 1980 (e.g., MIT, Stanford, 

University of Wisconsin) are more efficient at producing research outputs (patents, articles, 

and students).  On the other hand, late-comers to the patent and technology transfer process 

do not get an efficiency increase from having a technology transfer office.  This result is 

especially strong since we are not accounting for any of the costs of a technology transfer 

office in our estimates, but we are measuring their major output, patents.  This suggests that 

increased commercialization efforts associated with technology transfer may take time and 

experience to prove effective. It also raises the question of whether latecomers will be able to 

accomplish the same research productivity gains as those of early tech transfer entrants. 

The coefficient estimates in Table 4 show that the marginal effect of “post-doc/Fac” 

on inefficiency is: 0.361 – 0.372 (post-doc/Fac). It follows that the effect of increasing post-

docs per faculty member reduces efficiency when (post-doc/Fac) < 0.97. This suggests that 

an increase in a post-doc/Fac ratio tends to reduce inefficiency only when (post-doc/Fac) > 

0.97.. Since universities with a post-doc/fac ratio higher than 1 represent only 10 percent of 

the sample, our estimates suggest that a relative increase in post-docs tends to increase 

inefficiency for most universities. We also find that universities with medical schools are less 

efficient.  This may be a direct result of having more faculty with clinical and non-research 

responsibilities, which are not adequately reflected in our output measures.   
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 In terms of university types, the results in Table 4 show that public universities are 

more efficient than private universities.  Larger universities are significantly more inefficient 

than smaller universities. The performance of Land Grant universities (LGU) is more 

complex. The marginal effect of LGU on inefficiency is: 0.168 - 0.197 * (science fac). This 

means that this effect is negative when (science fac) > 0.852, and positive otherwise. Since 

the sample mean for (science fac) is 0.583, or 583 faculty members, it follows that small 

LGUs are less efficient than non-LGU universities. Alternatively, Table 4 indicates that, 

ceteris paribus, larger LGU are relatively more efficient than non-LGU universities.    

 

6.2. Determinants of Technological Progress 

The econometric estimates of the determinants of technological progress are reported 

in Table 5.  Note that very few of the parameters are significant. This indicates that the 

process of technological progress for universities does not follow obvious patterns. In other 

words, this process appears to be for the most part unrelated to the characteristics of the 

universities and their commercial orientation, a result that is consistent with the lack of 

variation in rates of technological progress over time or across university type found in Table 

2 above.  The estimates in Table 5 do show a statistically significant effect of post-doctoral 

researchers on technological change. The marginal effect is: 3.082 – 1.255 * (postdoc/fac). It 

is positive as long as “postdoc/fac” is less than 2.455. This indicates that, for most all 

universities, postdocs do contribute positively to technological progress. Table 4 also shows 

that universities with technology transfer offices in 1980 experienced lower technological 

change than the late comers to the technology transfer process. This result may partially 
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mitigate the efficiency advantage that the early innovators showed in the previous 

regressions.  

 

7. Conclusions 

This paper has estimated a production frontier for the university research process for 

science articles, patents, and students and examined the determinants of efficiency and 

technological change using a panel of 92 US universities over 18 years. The analysis made 

use of the directional distance function estimated using nonparametric methods, which in a 

multi-output framework enables recovery of university-level estimates of efficiency and 

technological change. These estimates were in turn used to examine the temporal trends in 

these measures and to identify econometrically significant determinants of university 

performance.  This analysis seems particularly important given recent changes in US 

research universities. These changes include a takeoff in academic patenting, the 

commercialization of research efforts, and increasing fiscal constraints in federal and state 

financing for academic institutions.   

The results show that U.S. research universities have become somewhat less efficient 

in this recent era of increasing commercialization. However, we found that this general trend 

masks an increasing efficiency gap between a significant set of top tier private and public 

universities and the rest of the sample. The econometric analysis show that many factors 

affect university efficiency. We found that total research funding tends to increase efficiency. 

Perhaps more importantly, we uncovered evidence on the role of funding sources. We found 

that, while federal funding always increases efficiency, a relative increase of industry funding 

can improve efficiency but only when federal funding remains dominant. This has three 
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significant implications. First, it stresses the importance of federal funding of university 

research, which is primarily distributed on a competitive basis. Second, it identifies the 

presence of synergies between public and industry funding. Third, it shows that these 

synergies remain present only when federal funding is dominant. Thus, our results show that, 

while the commercialization of universities can generate efficiency gains, it does so only in 

consort with continued strong federal funding of university activities.   

Our analysis also documents how technology transfer offices and hiring of more post-

docs affect university efficiency. Technology transfer offices appear to contribute positively 

to efficiency for those universities that have had them for a long time but not for latecomers 

to the technology transfer arena. In addition, we find that increasing reliance on post-docs 

does not improve research efficiency. In terms of some of the control variables, we 

uncovered evidence of performance differences across university types. For example, our 

results indicate that, on average, large public Land Grant universities exhibit higher levels of 

technical efficiency.    

Finally, we investigated technological progress in university activities. We found 

evidence of significant productivity growth associated with an outward shift in the university 

frontier technology. However, explaining the determinants of technological progress proved 

more difficult. This may reflect the fact that technological progress for universities may well 

be driven by factors exogenous to the university such as general improvements in 

computational speed, which are available to and adopted by major research universities 

simultaneously.    
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Table 1: Average Inputs and Outputs for US Research Universities*

Year Patents Articles Faculty Undergrads PhD’s Graduate 
students 

Postdoc

1984 5.7  1326 471.9 1360 148.8 1482 177.6

1985 5.7  1413 480.1 1388 150.1 1508 185.6

1986 6.4  1465 476.4 1376 152.9 1564 198.2

1987 8.3  1503 474.4 1354 156.3 1574 205.8

1988 10.0  1549 467.8 1321 165.1 1596 216.3

1989 11.1  1617 470.7 1325 171.8 1633 232.2

1990 11.9  1674 474.8 1364 177.0 1681 246.4

1991 12.1  1771 488.2 1374 187.7 1729 257.8

1992 14.5  1892 475.3 1434 192.0 1811 272.5

1993 17.1  1893 494.1 1480 196.6 1839 285.4

1994 21.6  1976 502.9 1510 204.0 1824 302.9

1995 28.3  2082 514.3 1529 206.0 1786 301.1

1996 22.6  2082 531.4 1547 210.0 1753 309.3

1997 24.9  2100 528.9 1537 208.7 1721 320.2

1998 23.5  2132 518.7 1568 209.6 1720 329.9

Average 14.9  1765 491.3 1431 182.4 1681 256.1

 

* Note that “PhD’s” represents completed doctorates while “Graduate students” represents continuing 

graduate students.   

 28



Table 2: Rate of Technological Change (as measured by annualized 100*A/fac)* by 

University Type (1980s and 1990s) 

  LGU Private Non-LGU Public Average 

1980s 0.71 1.09 0.82 0.87 

1990s 0.67 1.07 1.06 0.92 
 
* This is the percentage of faculty saved per year due to technological progress. 
 

Table 3:  Descriptive Statistics 

Variables Number of 
observations

Mean Std. Dev. Min Max 

Research Funding 

($million) 

1257 148.365 111.830 7.078 825.631 

Pct. Federal Funds 1257 60.994 15.5572 23.8272 96.0457 

Pct. Industry Funds 1257 6.3209 4.0551 0 27.1062 

Pct. Fed X Pct. Ind 1257 378.02 261.46 0 1569.31 

Private University 1257 0.307876 0.461799 0 1 

Land Grant U. 1257 0.393795 0.488785 0 1 

Science Faculty (1,000) 1257 0.519 0.239 0.125 1.327 

Tech Transfer Y/N 1257 0.747812 0.434441 0 1 

Tech Transfer 1980 1257 0.295943 0.456647 0 1 

Medical School Y/N 1257 0.630072 0.482977 0 1 

Postdoc/fac 1257 0.490902 0.450179 0 4.39428 

100*D/fac  1257 14.8826 15.9573 0 57.8012 

Annualized  
100*A/fac 

184 0.895 0.9471 0 5.782 
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Table 4: Inefficiency Estimates: Tobit Model*
    

Dependent Variable = 100*D(z, g, F)/Fac 
Variables 
 

Estimate 

Time Trend 1.062 
 (5.99)** 
Research Funding ($million) -0.109 
 (4.96)** 
Pct. Federal Funds -0.053 
 (0.60) 
Pct. Industry Funds 3.346 
 (4.93)** 
Pct. Fed X Pct. Ind -0.06229 
 (5.38)** 
Private University 13.89 
 (3.07)** 
LGU 16.76 
 (4.27)** 
Science Faculty (1,000) 22.998 
 (2.86)** 
Private* Science Faculty 2.84 
 (0.29) 
LGU* Science Faculty -19.72 
 (3.02)** 
Tech Transfer Y/N 3.90 
 (2.29)* 
Tech Transfer 1980 -12.22 
 (6.63)** 
Medical School Y/N 8.03 
 (6.03)** 
Postdoc / faculty 36.06 
 (5.96)** 
(Postdoc / faculty)2 -18.61 
 (7.12)** 
Constant -10.97 
 (1.71) 
Sigma 20.17 
std. error of sigma (0.511)** 
Log Likelihood -3653.7 
Observations 1257 
 

*  Robust z statistics are presented in parentheses: * = significant at 5% level; ** = significant at 1% level.  
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Table 5: Technological Change Estimates: Tobit Model* 

Dependent variable = annualized 100*A/Fac 
Variables 
 

Estimates 

Time (1990’s = 1) -0.037 
 (0.16) 
Research Funding ($million) -0.003 
 (1.28) 
Pct. Federal Funds -0.012 
 (1.25) 
Pct. Industry Funds 0.0052 
 (0.06) 
Pct. Fed X Pct. Ind -0.00007 
 (0.05) 
Private University -0.787 
 (1.07) 
LGU 0.257 
 (0.52) 
Science Faculty (1,000) 0.831 
 (0.98) 
Private* Science Faculty  2.546 
 (1.44) 
LGU* Science Faculty -0.648 
 (0.80) 
Tech Transfer Y/N 0.281 
 (1.21) 
Tech Transfer 1980 -0.789 
 (2.78)** 
Medical School Y/N 0.317 
 (1.56) 
Postdoc / faculty 3.082 
 (3.81)** 
(Postdoc / faculty)2 -1.255 
 (3.48)** 
Constant 0.411 
 (0.63) 
Sigma 1.141 
std. error of sigma (0.094)** 
Log Likelihood 224.84 
Observations 168 
 
* Absolute value of t statistics are presented in parentheses: * = significant at 5% level; ** = 
significant at 1% level. 
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Figure 1: Average Inefficiency by University Types 
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Figure 2: Distribution of Technological Change (measured by annualized 100*(A/fac)) 

in the 1980s and 1990s  
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Appendix 

Patents 

Patent data were culled from the NBER patent database, where they were identified 

as having a university assignee.  Patents assigned to the University of California system were 

associated with a campus (Berkeley, Davis, Los Angeles, etc.) by the location of their authors 

through searches of campus directories.  Relative citations for patents were generated by year 

and by patent class comparing each individual patent to the universe of all patents in that 

class (whether owned by universities or not).  A university’s patent count for that year is then 

adjusted by the ratio of number of citations received to the expected citations for that 

portfolio: 

 
)(

##
citationsE

receivedcitationspatentsPatentsAdjustedQuality ×=  

where the number of expected citations, E(citations) is calculated as the number of citations 

that same portfolio of patents would receive if each patent received the average citation rate 

for its US patent class for that year.   

 

Articles 

Article data were culled from the ISI-Web of Science database based on universities 

included in their “University Science Indicators” and categories established in that same 

document.  The Web of Science includes only the major journals in a field as identified by 

impact factors, such that our article measures necessarily cut out articles written for lesser 

journals.  In addition the citation measures are only for citations in other major journals.  This 

truncation, we believe serves our purposes of adding a subtle quality measure even to our 

quantity measures.  Articles listed in all science disciplines were chosen. 

Relative citations for articles were generated by category compared to citations of 

other articles assigned to the universities in the sample, rather than to all articles, and these 

measures were constructed annually.   The same techniques of generating relative citations 

used for patents were used for articles. 

 

 34



Universities included in the sample: (universities in italics were not included in the 

regressions due to missing technology transfer office data (7 of them) or post-doc data 

(Georgia Inst. of Technology). 

Arizona State U., Boston U., Brandeis U., Brown U., Caltech, Carnegie Mellon U., Case 

Western Reserve U., Colorado State U., Cornell U., Dartmouth College, Emory U., Florida 

State U., Georgetown U., Georgia Inst. of Technology., Harvard U., Indiana U., Iowa State 

U., Johns Hopkins U., Lehigh U.,  Loyola U., Michigan State U., MIT, N Carolina State 

U., New Mexico State U.,  Northwestern U., Ohio State U., Oregon State U., Penn State 

U., Princeton U., Purdue U., Rice U., Stanford U., Syracuse U., Texas A&M U., Tufts U., U. 

Alabama, U. Alaska, U. Arizona, U. C. Berkeley, U. C. Davis, U. C. Irvine, U. C. Los 

Angeles, U. C. Riverside, U. C. San Diego, U. C. Santa Barbara, U. C. Santa Cruz, U. 

Chicago, U. Cincinnati, U. Colorado, U. Connecticut, U. Delaware, U. Florida, U. 

Georgia, U. Hawaii, U. of Illinois Chicago, U. Illinois Urbana, U. Iowa, U. Kansas, U. 

Kentucky, U. Maryland Baltimore, U. Maryland College Park, U. Miami, U. Michigan, U. 

Minnesota, U. Missouri, U. N. Carolina Chapel Hill, U. Nebraska, U. New Hampshire, U. 

New Mexico, U. Oregon, U. Penn, U. Pittsburgh, U. Rochester, U. So Calif, U. 

Tennessee, U. Texas Austin, U. Texas Houston, U. Utah, U. Vermont, U. Virginia, U. 

Washington, U. Wisconsin Madison, Utah State U., Vanderbilt U., Virginia Polytech Inst, W. 

Virginia U., Wake Forest U., Washington State U., Washington U., Wayne State U., Yale 

U., Yeshiva U. 
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