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Abstract

The successful exploitation of germplasm banks, harbouring plant genetic

resources indispensable for plant breeding, will depend on our ability to

characterize their genetic diversity. The Vegetable Germplasm Bank of Zaragoza

(BGHZ) (Spain) holds an important Capsicum annuum collection, where most of the

Spanish pepper variability is represented, as well as several accessions of other

domesticated and non-domesticated Capsicum spp from all over the five

continents. In the present work, a total of 51 C. annuum landraces (mainly from

Spain) and 51 accessions from nine Capsicum species maintained at the BGHZ

were evaluated using 39 microsatellite (SSR) markers spanning the whole genome.

The 39 polymorphic markers allowed the detection of 381 alleles, with an average

of 9.8 alleles per locus. A sizeable proportion of alleles (41.2%) were recorded as

specific alleles and the majority of these were present at very low frequencies (rare

alleles). Multivariate and model-based analyses partitioned the collection in seven

clusters comprising the ten different Capsicum spp analysed: C. annuum, C.

chinense, C. frutescens, C. pubescens, C. bacatum, C. chacoense and C. eximium.

The data clearly showed the close relationships between C. chinense and C.

frutescens. C. cardenasii and C. eximium were indistinguishable as a single,

morphologically variable species. Moreover, C. chacoense was placed between C.

baccatum and C. pubescens complexes. The C. annuum group was structured into

three main clusters, mostly according to the pepper fruit shape, size and potential

pungency. Results suggest that the diversification of C. annuum in Spain may occur

from a rather limited gene pool, still represented by few landraces with ancestral

traits. This ancient population would suffer from local selection at the distinct
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geographical regions of Spain, giving way to pungent and elongated fruited

peppers in the South and Center, while sweet blocky and triangular types in

Northern Spain.

Introduction

The genus Capsicum belongs to the Solanaceae family and have its origins in the

tropical South American region centered in what is now Bolivia [1, 2]. Currently,

the number of recognized species in the genus is twenty-seven, five of which were

domesticated from distinct events at different primary diversification centers

[3, 4]. These five cultivated forms of Capsicum: C. annuum L., C. chinense Jacq., C.

frutescens L., C. baccatum L. and C. pubescens Ruiz et Pav., represent some of the

most economically important vegetable crops worldwide due to their versatile and

innovative food and non-food uses [5]. These species are thought to have been

domesticated independently in at least two regions of the New World; C. annuum

and C. frutescens in Mesoamerica and C. chinense, C. baccatum and C. pubescens in

South America [6]. Capsicum species have been divided into three complexes

based on cytogenetics and cross fertility. The C. annuum complex contains C.

annuum, C. chinense, C. frutescens, their wild relatives and C. galapagoense

Hunziker. These species are integrated into a morphological continuum and they

are potentially crossable with ease, although compatibility might be affected by the

pollinated genotypes, the direction of crossing or even by the reciprocal 1/8

chromosome translocation event that differentiates C. annuum from its related

species [7–9]. Many authors have argued that at least C. frutescens and C. chinense

should be combined into one species [10, 11]. The C. baccatum complex

comprises C. baccatum, C. praetermissum Heiser et Smith and C. tovarii Eshbaugh,

Smith et Nickrent, although the location of the last wild species is still disputable

[11–13]. Finally, the C. pubescens complex is constituted by C. pubescens, C.

cardenasii Heiser et Smith and C. eximium Hunziker. Even though the last two

complexes are sexually isolated from each other and from the first one, viable

hybrids have been obtained between C. annuum and C. baccatum and different

methodologies have been proposed to cross C. pubescens and C. annuum [14, 15].

The wild species C. chacoense Hunziker has not been clearly assigned to one of

these genetic pools, and it has been considered to be in either the C. baccatum or

the C. annuum complex [11–13].

Since its domestication in pre-Columbian times, peppers have migrated

worldwide. They were introduced into Europe at the end of the 15th century. Later

on they were dispersed to Mediterranean countries, and afterwards to Africa,

India and China [3, 16]. C. annuum was the most successful in this conquest,

probably due to it being the first Capsicum that arrived to Europe, rather than to

any superior agronomic trait [17]. C. chinense and C. frutescens became also

popular in Africa and Asia, whereas C. baccatum and C. pubescens mostly
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remained in South America and Andean regions [16]. In these secondary

diversification centers, the different species were selected by farmers over centuries

of cultivation to fit the divergent agro-climatic environments of specific regions,

giving rise to local lines or landraces and resulting in the great phenotypic

diversity of pepper cultivars found nowadays [18, 19]. Among the five

domesticates, C. annuum is the most widespread and economically important

Capsicum species worldwide as well as the most used in commercial cultivar

breeding programs. C. annuum was likely domesticated in Mexico from the wild

bird pepper or ‘‘Chiltepin’’ (C. annuum var. glabriusculum) [1, 20, 21]. The fruit

of the wild progenitor is small, erect, red-coloured, pungent, deciduous and soft-

fleshed. Domestication and subsequent steps of artificial selections led to the great

variation in size, form, colour and pungency of contemporary C. annuum fruits,

depending on human preferences at the different diversification territories [22]. In

general, continued selection was driven to obtain lines with non-deciduous,

pendant, larger and non-pungent fruits with greater shape variation and increased

fruit mass [23]. Nowadays, C. annuum contains both small pungent peppers,

mainly used for spice and condiments, and large-fruited blocky (Bell) types, which

are the most economically important around the world [16]. In the last century,

modern plant breeding provoked that traditional landraces gave way to

commercial varieties and hybrids with higher, more uniform yields and frequently

carrying resistances to diseases [24]. As a consequence, modern and highly

performing cultivars have pragmatically replaced the diversified and hetero-

geneous landraces all around the world. This phenomenon led to a considerable

reduction of the genetic diversity of pepper; threatening their cultivation with

genetic erosion [25], as these genetically uniform cultivars possess a higher

propensity to become more susceptible to biotic and abiotic stresses inherent to

the crop [26]. Broadening the genetic basis of this and other economically

important crops represent a challenge in order to respond to climate change and

increasing global food demand in the successive decades [27]. Landraces, wild

ancestors and related species are important reservoirs of genetic variation that

have not been always exploited in breeding programmes. Since the early 20th

century, great efforts have been made by private, national and international

initiatives to preserve the variability associated with each crop through the

maintenance of germplasm collections [28]. In Spain, as in other parts of

Southern Europe, the versatility of agro-climatic regions and the heterogeneity of

the land favoured the survival in cultivation of a large number of specifically

adapted landraces very diverse phenotypically. The majority of these landraces are

conserved at the Vegetable Germplasm Bank of Zaragoza (BGHZ) (Zaragoza,

Spain), which also contains several accessions of other domesticated and non-

domesticated Capsicum spp from all over the five continents [29].

The evaluation of Capsicum spp genetic resources is essential to investigate the

relationships among the different species and to outline the presumed

diversification processes of each at the different secondary diversification centers.

The characterization of these resources will be also compulsory to identify

valuable accessions for breeding programmes and to develop efficient conserva-
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tion strategies not only in genebanks but also in situ. Several methodologies to

analyse genetic variability, such as phenotypic descriptors and molecular markers,

have been widely used in crop diversity studies. However, the latter methods

(principally those based on PCR) became of preference because they are not under

the influence of environmental conditions or plant development factors [30].

Different types of DNA markers, such as RFLPs, RAPDs, AFLPs or microsatellite

(SSRs), have been developed and used in peppers to determine the relationships

and levels of genetic variation in wild and domesticated Capsicum spp [31–34].

Over the last decade, SSR markers have emerged as the most widely-used

genotyping markers in plants because of their co-dominance, stability, capacity of

multi-allelic detection, ease of application and excellent sensitivity, particularly

between species [30]. Recently, several groups of pepper microsatellites, both

genomic and EST-based markers, came to be available for diversity studies and

many of them have been mapped in intra- and interspecific populations [35–42].

Such markers allow now a better understanding of the extent and patterns of

genetic diversity within and among worldwide Capsicum germsplasm collections

and pave the way towards marker-trait association studies based not only in

mapping populations but also in association mapping approaches.

The main goal of the present work was to assess the genetic diversity and

structure present in the Capsicum genetic resources maintained at the BGHZ by

using a large set of microsatellite markers, as well as to investigate the relatedness

among the representatives of the different Capsicum spp., emphasizing in the gene

pool composed by C. annuum accessions originate in Spain.

Materials and Methods

Plant Material

One hundred and two accessions were selected from the pepper (Capsicum spp)

germplasm collection maintained at the Vegetable Germplasm Bank of Zaragoza

(BGHZ) (Zaragoza, Spain) (Table S1). The majority of accessions belong to the

domesticated species C. annuum (51), C. chinense (14), C. bacatum (11), C.

frutescens (8) and C. pubescens (5). C. annuum accessions are mainly landraces

from Spain. The other fifteen accessions represent five closely related wild species

(C. chacoense, C. eximium, C. galapagoense, C. cardenasii and C. tovarii) (Table

S1). All accessions were previously classified according to morphological traits

[29], based on the IPGRI descriptors for Capsicum [43]. Fruit shapes were also

coded according to IPGRI and, when possible, the accessions were categorized

into the horticultural types defined by Bosland [16, 44].

DNA extraction and microsatellite genotyping

Genomic DNA was isolated from young leaves of each accession using the CTAB

method [45] and stored at 220 C̊ until used. Fifty five publicly available

microsatellite markers, uniformly distributed across the twelve pepper chromo-
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somes, were mostly selected according to their broad transferability and high

polymorphism in different Capsicum spp [34, 37, 38, 46] (Table S2). Additional

information on the markers positions in chromosomes were retrieved from Barchi

et al. [47], Wu et al. [39], Mimura et al. [41], Sugita et al. [42], Nicolai et al. [48],

and through the SOL Genomics Network (http://solgenomics.net/). The putative

presence of the pungency trait in the Capsicum accessions was assessed by using

the molecular marker MAP1, which was developed based on a DNA sequence

with high similarity to Pun1 locus [49]. PCR amplification and detection of

microsatellite markers were performed according to the methodology reported by

Schuelke [50] based on the fluorescently labelling of universal primers. Briefly, an

M13 tail (59-CACGACGTTGTAAAACGAC-39) was added to the 59 end of each

publicly available forward primer cited above. A universal primer with a

complementary sequence to the M13 tail was labelled with different fluorophores

(6-Fam, Hex or Ned). PCR was carried out in a final volume of 15 ml, which

contained 50–75 ng of genomic DNA, 16 PCR Buffer (NZYTech), 2.5 mM

MgCl2 (NZYTech), 0.02 mM of the forward primer, 0.2 mM of reverse primer,

0.18 mM of the universal primer, dNTPs (Fermentas) at 0.2 mM each, and 0.4 U

of Taq DNA Polymerase (NZYTech). All fragments were amplified using the

following touchdown PCR profile: an initial denaturing step of 5 min at 94 C̊ was

followed by 35 cycles with denaturation at 94 C̊ for 30 s and extension at 72 C̊ for

30 s, respectively. The annealing temperature was decreased in 0.5 C̊ increments

from 62 C̊ in the first cycle to 56 C̊ and was then kept constant for the remaining

35 cycles (always 30–50 s). A final extension step was performed at 72 C̊ for

10 min. DNA fragments were resolved in an Applied Biosystems 3130xl Genetic

Analyzer. The allele sizes were assigned with the GeneMapper 3.7 software

(Applied Biosystems).

Data analyses

The number of observed alleles per locus, the observed heterozygosity

(Ho5number of heterozygous individuals/number of individuals scored) and the

Nei’s unbiased gene diversity index (uHe) [51] were calculated using GenAlex

software v6.5 [52]. PIC (Polymorphic Information Content) values for each

marker were computed according to the formula of Botstein et al. [53]

implemented in the Excel Microsatellite Toolkit [54].

The marker data were used to generate a 0/1 matrix (presence/absence of allele

at the marker locus) that was employed to estimate the genotypic distances

between accessions. Pairwise similarities were calculated using the Dice coefficient

[55]. A tree depicting relationships of the germplasm was built from the distance

matrix using the Neighbour-Joining (NJ) method (1000 bootstraped). Diversity

within the collection was further assessed using principal coordinates analysis

(PCoA). All these analyses were carried out using R software (v3.0.2) [56]. The

graphical representation of the tree was performed with MEGA software v6 [57].

In order to investigate the population structure and to assign individuals to

populations based on the SSR genotypes, a Bayesian model-based clustering
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procedure implemented in the software STRUCTURE 2.3.4 was used [58]. The

tests were performed using an admixture model with correlated allele frequencies

and by setting the number of populations (K) from 1 to 10, with 10 independent

simulations for each K. Each run consisted of a burn-in period of 500,000 steps

and 106 Markov Chain Monte Carlo (MCMC) repetitions. In order to assess the

best K value supported by the data, the DK method described by Evanno et al.

[59] was used through Structure Harvester v. 6.93 [60] to examine the rate of

change in successive posterior probabilities over the range of K values. When the

results suggested that the K groups could be further structured in sub-groups, a

second-level of STRUCTURE analysis was performed individually for each K

group [61]. Genotypes were assigned to the group (or sub-group) for whom they

had the highest membership coefficient, considering strong affinity when the

membership coefficient (qI) was $80% [62, 63]. CLUMPP [64] was employed to

generate Q values for groups or sub-groups from the STRUCTURE data using the

Greedy K algorithm.

Results

Marker summary and genetic diversity

Eight loci (AA840692, GPMS113, CAMS864, HpmsE004, Hpms1-214, GP20087,

GPMS008 and HpmsE128) did not amplify in any accession. The primer Hpms2-

21 produced only one amplicon in the C. annuum group and the SSR Hpms1-111

generated multiple bands on the agarose gels. Loci CAMS647, GP20068, Hpms1-

172 and GPMS117 did not exhibit easily interpreted electropherograms in the

genetic analyser. All these markers were not considered in subsequent analyses.

Among the remaining 41 informative loci, two (GPMS171 and GPMS164)

showed one allele with a frequency close to 95%, and they were excluded from all

analyses to avoid potential errors in estimating genetic diversity. A few markers

did not deliver any amplicon in some species and they were considered as null

alleles: particularly C. tovarii and C. cardenasii (Hpms1-5, HpmsE120, CA523558,

Hpms2-45, GPMS178, CA514272, EMPS342, HpmsE082, Hpms1-3), C. pubescens

(Hpms1-165 and Hpms1-5), C. eximium (EPMS342 and HpmsE125) and C.

chacoense (GPMS159) (Table S3). An analysis per group revealed that various

markers resulted monomorphic in some species. Thus, C. frutescens showed the

highest rate of polymorphism (97.4%), followed by C. baccatum (89.7%), C.

chacoense (89.5%), C. annuum/C. chinense (84.6%) and C. pubescens/C. eximium

(58.9%) (Table S3).

The 39 SSR loci amplified a total of 381 alleles in the 102 accessions analysed,

ranging from 3 (HpmsE120 and CP10023) to 23 (Hpms1-5), with an average of

9.8 distinct alleles per locus. Allele size oscillated between 118 and 379 bp. The

total number of alleles highly varied among the Capsicum spp. The highest

number of alleles was found in C. annuum (157), C. chinense (125) and C.

frutescens (124), whereas the lowest was detected for C. pubescens (70), C.

galapagoense (68) and C. eximium (61) (Table S3). A sizeable proportion of alleles
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(41.2%) was recorded as unique alleles, i.e., alleles present in only one species and

absent in the others. Although differences in sample size need to be considered,

the number of unique alleles was much higher in C. annuum, C. chacoense and C.

chinense (46, 29 and 24 unique alleles, respectively), whereas these alleles were

absent in C. galapagoense. C. tovarii presented eight unique alleles, despite to be

represented by only one accession (Table S3). The majority of these were present

at very low frequencies (rare alleles) in C. annuum (58.7%), but not in C.

chacoense or C. chinense, where specific alleles were found in more than 5% of the

individuals of the corresponding group. The polymorphic information content

(PIC), which depicts the number of alleles and their distribution, was calculated to

determine the interspecific and intraspecific informativeness of each marker.

Considering the whole investigated set of Capsicum accessions, the PIC value

ranged from 0.88 (Hpms1-5) to 0.13 (CP10023) with an average of 0.66. The most

informative markers varied among the different species (Table S4).

The observed heterozygosity (H0) was very low for all markers with a mean of

0.074 for the whole set. The Nei’s unbiased gene diversity index ranged from 0.13

(CP10023) to 0.89 (Hpms1-5), with an average of 0.69 for all accessions (Table 1).

The mean SSR diversity parameters were considered in the different Capsicum

species including more than two accessions (Table 1). The mean number of alleles

per locus varied from 1.80 (C. pubescens) to 4.03 (C. annuum). However, this

parameter is not very meaningful, as it is biased due to the unbalanced number of

accessions between species. The observed heterozygosity and Nei’s index, which

summarize the fundamental genetic variation of a group, should be more

appropriate. In this manner, the lowest Ho was observed for C. annuum (0.03),

while the highest was detected for C. pubescens (0.15). C. frutescens was the most

diverse, while the least was C. pubescens (average diversity index across all loci of

0.54 versus 0.28) (Table 1).

The comparison of non-Spanish and Spanish C. annuum accessions was based

on 29 polymorphic loci that generated a total of 143 alleles with an average of 4.9

alleles per locus. Thirty-seven alleles appeared only in the Spanish group and

almost half of these (40.5%) were considered rare alleles. The diversity index

across all loci was smaller for the Spanish group (0.53) than for the non-Spanish

C. annuum (0.65) (data not shown).

Multivariate analysis

Pairwise similarities among accessions were computed using the Dice coefficient

and the resulting matrix was employed to generate a dendrogram using the

Neighbor-Joining clustering algorithm. The NJ tree was well resolved and showed

well-supported groups corresponding to the different species (Fig. 1). Only few

displacements were observed, some accessions not being grouped into clusters

that corresponded to their morphological classification. Thus, the C. frutescens

accession C103 clustered with the C. annuun group, although with a lower value

of bootstrap (40.5%). In the same manner, the accession C166 (C. frutescens) was

included in the C. chinense branch (bootstrap 41.2%).
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The cultivated C. annuum accessions were clustered together in a single group,

with a bootstrap of 98.1%. The other domesticated species C. chinense, C.

frutescens, C. pubescens and C. baccatum were clearly into distinct branches

supported by high values of bootstrap (.80%). The C. chinense accessions were

visibly separated from C. frutescens accessions, but both groups were clustered

tightly with high bootstrap support (81.9%). C. pubescens accessions were

clustered with 100% of confidence and closely related to C. tovarii, although with

low bootstrap support (ca. 48%). C. baccatum accessions were in a cluster

supported by a 100% bootstrap value and they seemed related to the wild species

C. eximium, C. cardenasii and C. chacoense, although under a very low bootstrap-

supported node (ca. 34%). C. eximium and C. cardenasii were clustered together

with a bootstrap value of 99.7%. The wild species C. chacoense formed a distinct

group supported by a 93.5% bootstrap, being more related to C. eximium and C.

baccatum (Fig. 1). C. galapagoense C167 and C179 clustered with the C. baccatum

and C. chinense groups, supported by bootstrap values of 45.9% and 41.2%,

respectively (Fig. 1).

Genetic relationships among Capsicum ssp was further investigated using

principal coordinate analysis (Fig. 2). The eigenvalues revealed that the first three

principal coordinates accounted for 31.9% of the total genetic variability. The

projection of accessions in the three-dimensional plane basically agreed with that

of the NJ tree. The first axis alone explained 17.9% of the variance, and clearly

separated the C. annuum accessions from the other species (Fig. 2a). The second

and third coordinates explained 8.9% and 5.0% of the marker variance,

respectively, and split the three established Capsicum complexes; C. annuum

complex (C. annuum, C. frutescens and C. chinense), the C. baccatum complex (C.

baccatum) and the C. pubescens complex (C. pubescens, C. eximium and C.

cardenasii) (Fig. 2b). As deduced from the hierarchical clustering, C. tovarii was

located close to the C. pubescens complex, while C. galapagoense accessions C167

and C179 were grouped with C. baccatum and C. chinense, respectively.

Interestingly, C. chacoense accessions did not form a specific group and they were

Table 1. Diversity parameters in the different Capsicum species and in the entire collection.

Group N Na Ho uHe

C. annuum 51 4.03 0.03 0.42

C. chinense 14 3.20 0.12 0.44

C. baccatum 11 3.00 0.12 0.43

C. frutescens 8 3.13 0.10 0.54

C. pubescens 5 1.80 0.15 0.28

C. chacoense 7 3.00 0.11 0.49

Total 96 9.76 0.07 0.70

Species with less than two accessions are not represented. N5number of accessions, Na5average number of alleles per locus, Ho5observed
heterozigosity, uHe5Nei’s unbiased gene diversity index.

doi:10.1371/journal.pone.0116276.t001
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clustered together with the C. pubescens complex, differing from the NJ tree

results.

Genetic structure of the collection

The software STRUCTURE was applied to define the population structure and to

assign individuals to populations. In the first analysis, the log probability of data

(ln[Pr(X/K)]), after the Evanno et al. [59] correction, showed a clear maximum

for DK52 (S1A Fig.). This partitioning level corresponds to a very strong

differentiation in two major groups, one corresponding to the C. annuum

accessions (GI) and a second one which include the other species (GII), all of

Fig. 1. NJ tree of 102 Capsicum accessions based on 39 SSR markers. Only bootstrap values that supported each species or complex have been
printed. Numbers are the percentage of bootstrap support. C. cardenasii C306 and C. tovarii C261 are represented in black. C. galapagoense accessions
C167 and C179 are shown in light green.

doi:10.1371/journal.pone.0116276.g001
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them with membership coefficients qI.80% (Fig. 3a). A more exhaustive

exploration of the DK results obtained after analysis with Structure Harvester

revealed a smaller peak at K58, suggesting that the two major groups GI and GII

could be sub-structured. Therefore, each of them was submitted separately to

further STRUCTURE analysis. The subsequent evaluation of the DK statistic

indicated that K56 was the most probable number of clearly differentiated genetic

sub-groups of Capsicum spp. within the non-annuum group (S1B Fig., Fig. 3b).

The clustering of the different species was very similar to the results for both the

hierarchical clustering and discriminant analysis, since all sub-groups displayed a

clear cut structure with no or very few admixture. The first sub-group (GII.1)

included the C. chinense accessions. The second (GII.2) corresponded to C.

baccatum, while the third sub-group (GII.3) comprised the C. frutescens

accessions. The fourth one (GII.4) included C. pubescens whereas all the C.

chacoense accessions were assigned to the fifth sub-group (GII.5). The sixth cluster

(G-II.6) consists of C. eximium together with C. cardenasii and C. tovarii. C.

galapagoense accessions C167 and C179 were resolved in C. baccatum and C.

chinense, respectively (Fig. 3b).

A Bayesian analysis was also performed individually for the C. annuum group

(GI). In this case, the highest DK value matched to K52 (S1C Fig.), which mainly

corresponded to the differentiation between non-Spanish C. annuum accessions

(GI.1) and accessions from Spain (GI.2) (S2A Fig.). Some Spanish accessions

assembled with the non-Spanish group at coefficients qI.95%, while few of them

showed admixture, with half of their genome belonging to two different groups

(S2A Fig.). The lack of stabilization of the ln[Pr(X/K)] across runs at K52 and the

Fig. 2. Principal Coordinate Analysis (PCoA) of 102 Capsicum accessions based on 39 SSR markers. A) Coordinate 1 (PCo1) vs Coordinate 2
(PCo2). B) PCo2 vs PCo3.

doi:10.1371/journal.pone.0116276.g002
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presence of secondary smaller peaks at increasing Ks, pointed at some underlying

sub-structure within the group of C. annuum genotypes. The independent analysis

of the Spanish group showed a maximum for K53 (S1D Fig., Fig. 3c). The sub-

groups GI.2.1 and GI.2.2 included 6 and 20 genotypes with more than 80% of

membership into each cluster, respectively. The sub-group GI.2.3 comprised 7

genotypes with qI.0.8. There were six accessions that showed less than 0.60

memberships in any given sub-group, but they shared similar qI for both the

Fig. 3. Bayesian clustering for Capsicum accessions genotyped at 39 loci. A) Structure bar plots based on 102 Capsicum accessions at K52, GI
indicates the C. annuum accessions and GII the non-annuum group. B) Structure bar plots based on 50 Capsicum non-annuum accessions at K56,
GII.15C. chinense, GII.25C. baccatum, GII.35C. frutescens, GII.45C. pubescens, GII.55C. chacoense and GII.65C. eximium, C. cardenasii and C.
tovarii. C) Spanish C. annuum population sub-structure for K53. D) Distribution of the different fruit morphologies in the groups defined by Structure within
the Spanish C. annuum panel. E) Presence (named as ‘‘pungent’’) or absence (‘‘non-pungent’’) of the MAP1 allele for pungency in each group established
by the model based analysis.

doi:10.1371/journal.pone.0116276.g003
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GI.2.2 and GI.2.3 clusters, indicating a mixed sub-group comprised by a common

overall genomic constitution (Fig. 3c). The genetic relationships among all sub-

groups showed rather good coherence with pepper fruit size and shape and

partially with the geographical origin of accessions. The IPGRI descriptor for

overall pepper fruit shape comprises mostly five categories: campanulate, almost

round, elongate, blocky and triangular [43]. On the basis of STRUCTURE

analysis, we have subdivided the latter sections into small and large types. The

sub-group GI.2.1 was characterized by accessions with small size fruits and shapes

from elongated short (50%) (between ‘Piquin’ and ‘Serrano’ types, according to

Bosland [16, 44]) to almost round and heart-shaped (similar to ‘Cherry’ and

‘Pimiento’ types) (50%). This group is also defined by taller plants (average

.100 cm) coming from the Canary Islands and a small region in the centre of

Spain (Fig. 3d). The second sub-group (GI.2.2) included mostly accessions with

slightly shorter plants (around 90 cm) carrying fruits with elongated morphology

(‘Cayenne’ type) (45%) and small blocky and small triangular types (30%). The

majority of these accessions are from the Center and South of Spain, but a

reduced number, comprising the small blocky and triangular shapes (C226, C432,

C433, C266 and C436), come from the North. The third sub-group (GI.2.3)

comprised accessions with smaller plants (,75 cm) bearing principally triangular

(similar to ‘Ancho’ and ‘Anaheim’ types), and blocky (‘Bell’ type) fruits of larger

sizes (72%). These accessions are mainly originally from Northern Spain. The

Mixed group was composed by triangular and blocky types also originated in the

North (Fig. 3d). The potential presence of the pungency trait in the Spanish

accessions was tested with the molecular marker MAP1. All accessions in the sub-

group GI.2.1 carried an allele associated to pungency in the MAP1 marker

(Fig. 3e). The specific fragment for pungency was also recorded in sixty percent of

accessions in sub-group GII.2.2, mainly corresponding to the fruits with elongated

shape. Regarding sub-group GI.2.3 and Mixed group, the majority of accessions

(71.4% and 83.3%, respectively) displayed the non-pungent allele (Fig. 3e).

Considering that the increase of the log did not taper off for K53, the clustering

of accessions obtained at higher K values was also examined. When increasing K,

the GI.2.3 group remained almost inseparable (S2B Fig.). The GI.2.1 and GI.2.2

groups became divided into smaller subgroups, with some accessions showing

now a mixed membership. Interestingly, the group formed by small blocky and

triangular types from the North in cluster GI.2.2 set apart at K54 and more

clearly at K55 (S2B Fig.).

Diversity based on the Nei’s index was calculated for each STRUCTURE group

at K53. The group GI.2.1 resulted somewhat the most variable (uHe50.45),

followed by groups GI.2.2 (0.43), Mixed group (0.35) and GI.2.3 (0.34) (Fig. 4a).

The detected genetic structure was more clearly reflected in the specific alleles.

Hence, the group GI.2.2 could be easily differentiated from the other three due to

the presence of 21 specific alleles at 14 loci. Fifteen unique alleles were found in

the group GI.2.1 and only 3 and 5 alleles were detected in the Mixed group and

GI.2.3, respectively. Common alleles were observed mainly between groups GI.2.1

and GI.2.2 and among GI.2.2/Mixed/GI.2.3 (Fig. 4a). Remarkably, 60% of the
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specific alleles present in group GI.2.1 were shared with non-Spanish C. annuum

accessions, whereas 65%, 66.6% and 80% of the specific alleles displayed by

GI.2.2, Mixed and GI.2.3 groups, respectively, resulted exclusive of C. annuum

landraces from Spain. The groups established at K53 were visualized in the space

through a principal coordinate analysis (Fig. 4b). The first coordinate explained a

12.07% of the variability and displayed the transition in fruit morphology from

the group GI.2.1 (elongated short and round fruited accessions with a pungent

allele in MAP1) to group GI.2.2 (mostly elongated), while the second dimension

accounts for a 9.93% of the variance and exhibited the flux from group GI.2.2 to

group GI.2.3 (triangular and blocky shaped forms with mainly non-pungent

alleles), with the Mixed group arising between these two.

Discussion

One hundred and two accessions from the Capsicum collection maintained at the

Vegetable Germplasm Bank of Zaragoza (BGHZ) (Zaragoza, Spain) were

evaluated with a set of microsatellite loci spread overall the pepper genome and

mostly selected for their broad polymorphism in Capsicum spp [34, 37, 38, 46].

The level of transferability achieved by the SSR markers among the different

species was high and mirror that experienced in other reports, particularly for

EST-SSRs [34, 61, 62], since expressed sequences are more likely to be conserved

between related species. Only a small number of genomic microsatellites

generated null alleles for a few species, which agrees with results obtained by

Fig. 4. Venn diagrams and Principal Coordinate Analysis (PCoA) on the Spanish C. annuum groups established after structure analysis. A)
Diagrams showing the number of unique alleles and shared alleles in the four groups defined by STRUCTURE in the Spanish C. annuum landraces. B)
PCoA of the Spanish C. annuum accessions represented according to their memberships coefficients for K53.

doi:10.1371/journal.pone.0116276.g004
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Nicolai et al. [48] in the Capsicum collection maintained at INRA (France). The

rate of polymorphism for the entire collection was higher than that reported by

other authors [37, 65, 66, 67] although slightly variable among Capsicum spp. Such

variation might be interpreted to some extent as a bias of source markers, since

the majority of primers were primarily designed for C. annuum. Additionally, the

small number of accessions assessed for some of the species (for example C.

eximium) as well as the larger diversity of some panels, concerning the

geographical origin of accessions (for example C. frutescens), could also serve as

plausible interpretations. In general, the PIC values represented more than 50% of

polymorphism, which confirms that SSR markers used in this study were highly

informative and that wide genetic variability has been accumulated within the

collection.

The average number of alleles per locus was higher than those reported for

germplasms sets from India or Japan [66, 68], but lower than those observed by

Ibiza et al. [67] and Nicolai et al. [48] in other Capsicum collections. This might

be explained because the latter reports surveyed larger samples than that of the

current study. Nevertheless, a rough normalization of results according to the

number of accessions per species suggests that our set is as diverse as those. Many

private alleles were detected in the Spanish Capsicum collection, pointing to the

existence of exotic accessions that could act as a reservoir for novel alleles for crop

improvement. This was especially relevant for the C. annuum landraces from

Spain, in which 37 unique alleles, i.e. not detected in the non-Spanish group, were

identified. The presence of these alleles might be of adaptive significance, as a

result of selection for adaptation to local constraints. Capture and preservation of

these specific alleles and genotypes should be an important objective of any

conservation strategy [69].

The observed heterozygosity in the entire collection was low and comparable to

previous studies in Capsicum spp [48, 67, 70]. Such level of heterozygosity is

expected due to the highly inbred nature of Capsicum populations in both

domesticated and wild forms [71]. The genetic diversity, expressed as a measure of

the Nei’s unbiased gene diversity index, was similar to values reported in studies

with larger diverse sets of Capsicum spp [48, 68], confirming that we are

evaluating a sample of Capsicum types with considerable variability. The lowest

diversity was found in C. pubescens, which also emerged as the less polymorphic

group. This result agrees with the hypothesis of DeWitt and Bosland [72], who

explained the narrowest genetic diversity of this species as a consequence of a

founder effect during its domestication. Interestingly, C. pubescens showed the

highest Ho within the domesticated species, despite the low mean number of

alleles per locus, which might suggest a certain level of allogamy in this species. C.

frutescens possessed the highest variation in terms of gene diversity (uHe), in

accordance with results of Tam et al. [73]. In our case, the greatest variability

obtained for this species could be also attributed to the diverse origins of the seven

accessions that constitute the group, which come from Brazil to Japan and former

Yugoslavia. Regarding C. chinense and C. bacatum, the diversity parameters were

similar to C. annuum and comparable to those obtained in other reports [74, 75].
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In this work, a relatively high level of genetic diversity was also observed for the

cultivated C. annuum, as opposed to other self-pollinated crops. This fact was

previously explained by Lefebvre et al. [31] as a consequence of the reproductive

behaviour of domesticated pepper and the way in which domestication took place.

Multivariate and Bayesian analyses revealed that two accessions fell into

different clusters from those of their supposed species. One likely explanation for

these discrepancies is a misclassification of species based on morphological traits.

Usually, classification of Capsicum spp based on morphology is carried out by

investigating characters of flowers, leaves and fruits [43], but this method is

sometimes ambiguous. This is especially true for C. chinense and C. frutescens,

since the morphological characteristics of the flowers are similar in these two

species. The structure of the dendrogram and PCoA were in good concordance

with the taxonomical classifications previously reported for the genus Capsicum

[11, 13, 71]. C. chinense and C. frutescens, clustered together in the NJ tree and

they resolved as closely related to C. annuum in the space confined by the second

coordinate in the PCoA analysis. This confirmed both species as sister taxa and

outline the conventionally well-defined C. annuum complex [11, 76]. C. cardenasii

and C. eximium, sometimes hypothesized as a single species, clustered together

with a high bootstrap support confirming previous results [13, 67, 77], and

together with C. pubescens, constituted a basal complex group characterised by

purple flowers (C. pubescens complex) [8, 38], as demonstrated the PCoA output.

Some inconsistences were observed regarding the classification of C. chacoense.

The NJ tree suggested that C. chacoense accessions were more closely related to C.

bacatum, although under a very weak bootstrapped node, coinciding with recent

data from Ibiza et al. [67]. However, the ordination analysis grouped C. chacoense

with the C. pubescens complex. C. chacoense was initially considered to be in either

the C. baccatum or the C. annuum complex, since crosses between these species

produce fertile hybrids and they share comparable morphotypes [8, 78]. However,

other works resolved C. chacoense as a sister species to the purple-flowered group

[11, 79]. Our results seem to indicate that C. chacoense might be closely related to

both C. baccatum and C. pubescens, which is in agreement with earlier reports

[48, 80] and support the hypothesis that C. chacoense may be the ancestor of the

three major groups of Capsicum [12, 13]. The genetic relationship of C.

galapagoense to the other Capsicum spp has been studied to a lesser extent and the

majority of works resolved this species as a highly distinctive member of the C.

annuum complex [11, 13]. Our data did not shed too much light on the placement

of C. galapagoense within the Capsicum complexes, as the two analysed accessions

were assorted in C. chinense and C. baccatum groups, which might be also

attributed to morphological misclassifications.

An analysis of the entire collection with the STRUCTURE software, produced a

most probable value of DK52, that clearly separated the annuum and non-

annuum groups. Such explicit cut-off may well have resulted from the unbalanced

size of the different Capsicum groups. Similarly, Rai et al. [66] observed a

maximum DK value of 2, corresponding to annuum and non-annuum

populations, in a neither equally distributed germplasm collection from India.
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Subsequent analysis of the non-annuum cluster reflected the separation of the

majority of Capsicum species evaluated in this study according to their taxonomic

group, in agreement with multivariate analyses Only C. tovarii was misplaced

overall different analyses. The position of C. tovarii regarding to the other

Capsicum spp have remained unclear [12], although some studies grouped it with

the C. baccatum clade [13, 80]. However, our data suggested that C. tovarii might

be included in the purple-flowered complex, constituted by C. pubescens, C.

eximium and C. cardenasii. Nevertheless, considering that our results are based on

only one accession, further investigations should be carried out to genetically

position C. tovarii with finer resolution.

C. annuum is the most commonly cultivated species worldwide within the

genus Capsicum. In Spain, several phenotypically diverse pepper landraces can still

be found all over the country, due to their high quality and good acceptance in the

national market. However, the origins and relationships among the landraces

from different regions have remained unclear. Bearing in mind that pepper was

likely introduce in Europe through Spain and that the Mediterranean region

constitute an important secondary diversification center for C. annuum [17], we

decide to investigate the genetic diversity, structure and putative diversification

process in a sample of Spanish peppers, along with their relationship to a group of

non-Spanish materials, also maintained at the BGHZ. The structure analysis firstly

clustered the 51 cultivated C. annuum accessions into two principal genetic

groups. A comprehensive examination of results suggested the grouping of

genotypes according to fruit traits. This would explain why some Spanish

accessions clustered with non-Spanish set, as all these individuals shared common

fruit morphology, characterized by small and erect berries carrying an allele for

pungency.

Independent model-based analysis within the Spanish group indicated that a

DK value of 3 seemed to capture the major structure of the data, grouping the

Spanish genotypes mostly according to the pepper fruit shape and size. In this

manner, the group GI.2.1 was characterized by accessions with fruits that

morphologically resemble traits attributed to the C. annuum ancestor; the wild

bird pepper, such as the small size, red-colour, erect growth and pungency [23].

The other groups included on one hand mostly elongated fruited accessions

carrying an allele for pungency (GI.2.2) and on the other hand large, triangular

and blocky fruited accessions displaying a non-pungent allele in marker MAP1

(GI.2.3). Division of C. annuum genotypes according to the fruit shape has been

previously reported for commercial cultivars and landraces [22, 32, 81], and earlier

reports also pointed out clear separations among lines with small and pungent

peppers, lines with elongated and pungent fruits and lines with large and blocky

sweet peppers [23, 31, 38, 81]. Similarly, the large blocky and triangular types

harboured lower degrees of genetic diversity, likely as a consequence of selection

from a small gene pool and a bottleneck effect [24, 31, 48, 73]. A transition in

membership coefficients between groups GI.2.2 and GI.2.3 was observed for some

accessions, with a proportion of their genome into each group. These accessions,
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named as Mixed group, seemed to represent an intermediate genetic pool derived

from proximal enlargement of elongate peppers as suggested by Tam et al. [73].

The inspection of subsequent values of K up to K55, revealed that the

genotypes into group GI.2.3 (blocky and triangular types) remained tightly joined,

but groups GI.2.1 and GI.2.2 were split into sub-groups. Hill et al. [82] observed a

similar pattern in the genetic structure of a set of C. annuum cultivars for

increased values of K, the Bell types persisting as a highly consistent group. In our

case, differentiation between large triangular and blocky types was not possible.

All these accessions are grown in close proximity in the North of Spain, so that

gene flow between them might have occurred. That was consequent with

observations by Portis et al. [83], who also found an indivisible group of

triangular and blocky types, mostly from the North, within a collection of Italian

pepper landraces. The most significant sub-division at K54 and K55 was the

differentiation in cluster GI.2.2 of small blocky and small triangular fruited

accessions from Northern Spain. These accessions might be derived from an

ancestor in common with the cluster GI.2.1. Spain was the pepper’s first point of

arrival in Europe and it likely constituted a secondary diversification centre in the

Mediterranean region [17, 84]. Such diversification might have occurred from a

rather limited gene pool brought back from Central America in post-Columbian

times. Part of the ancient populations could promptly migrate to the North of

Spain, where they would suffer local selection and confinement to this

geographical region leading to non-pungent, small blocky and triangular types.

Indeed, some of the accessions, which comprised a specific cluster with a distinct

genomic constitution at K55, retained one of the key traits that was left behind

after domestication, as it is the erect peduncle of their flowers and fruits [23].

Large triangular and blocky fruited accessions grouped in cluster GI.2.3, also from

the North, could be originated from these smaller types, throughout several years

of farmer’s selection towards an increase of fruit shape and a reduction in

pungency. The remaining pepper accessions, mainly from Southern and Central

Spain would diversify through different directions of artificial selection under the

warmer and drier conditions of those regions. The PCoA analyses based on

groupings at K53 supported the transition in morphologies suggested by the

structure analysis, from peppers which resemble some wild-type characteristics to

accessions selected for sweeter, larger and pendant fruits. This is in agreement

with the overall trend during domestication and selection that has been reported

in pepper [23, 73, 82, 85]. A clearer resolution of the relationships among C.

annuum accessions from Spain will require of additional accessions and a larger

amount of molecular markers in order to accurately investigate the impact of

traditional farmer management in structuring genetic diversity and population

dynamics of Spanish pepper landraces.

In the era of ‘‘Next Generation’’ DNA Sequencing (NGS) technologies, when

thousands of high throughput molecular markers are already available and various

Capsicum genomes have been sequenced [85, 86, 87, 88] yet rely on a set of

microsatellite markers for evaluating genetic diversity could be interpreted as a

limiting factor. Certainly, the use of such a small number of SSRs might have
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somehow hampered greater conclusions in the present work. However,

microsatellites still remain very attractive for breeding purposes and they have

proven superior power than other markers in resolving population structure [89].

Furthermore, SSRs can be assayed in any laboratory with minimum facilities and

limited access to NGS tools. In the present study, the genotyping of the collection

with a set of microsatellite markers, widely distributed across the twelve pepper

chromosomes will serve to utilize, conserve and manage this pepper genetic pool

in a more effective manner, widening their potential usage, and opening the way

towards association genetics studies. A wide range of linkage disequilibrium (LD)

across the C. annuum genome, which implies the feasible use of association

mapping approaches, has been reported recently [90]. This level of LD could help

to understand the consequences of breeding selection in C. annuum and the

classification of Spanish landraces according to fruit traits as well as the transition

in morphologies from ‘Chiltepin’-like peppers to the ‘Bell’-type forms. In any

case, this is out of the scope of the current study and it should be addressed in

future analyses. In conclusion, we can assert that the Spanish Capsicum

germplasm collection held at the BGHZ represent a distinctive reservoir of genetic

diversity, not only for the most widely grown C. annuum group, but also for other

Capsicum species. Additionally, the BGHZ collection has proven to be a valuable

resource to shed some light into the relationships among the divergent Capsicum

species.

Supporting Information

S1 Fig. Estimation of the number of groups based on output from the package

STRUCTURE. K values from 1 to 10 were explored by estimating the rate of

change of the slope of the log likelihood curve (DK) calculated according to

Evanno et al. [59] plotted against K. Plots for the analysis on the entire collection

(A), on the non-annuum group (B), on the C. annuum group (C) and on the

Spanish C. annuum accessions (D).

doi:10.1371/journal.pone.0116276.s001 (TIF)

S2 Fig. Model based clustering for C. annuum accessions. A) Structure bar plots

based on 51 C. annuum accessions at K52, GI.15non-Spanish accessions,

GI.25Spanish accessions. B) Spanish C. annuum population sub-structure for

K54 and K55. Accessions are represented in columns and are ordered according

to the probability of membership of every accession to each group, identified by

colour.

doi:10.1371/journal.pone.0116276.s002 (TIF)

S1 Table. Code, species, common name and origin of the Capsicum accessions

selected from the BGHZ (Zaragoza, Spain).

doi:10.1371/journal.pone.0116276.s003 (XLSX)
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S2 Table. Microsatellite markers evaluated for the genotyping of the Capsicum
spp collection.
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S3 Table. Total number of alleles and range of allele sizes detected in the entire

collection, number of alleles and rate of polymorphism detected in each

species. The two numbers in brackets represent the number of unique alleles and

the number of rare alleles, respectively. ‘‘Null’’ indicates the absence of

amplification.
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S4 Table. PIC values of 39 SSR markers on the entire collection and in each

species. ‘‘Null’’ indicates the absence of amplification and ‘‘M’’ the absence of

polymorphism.
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