
Send Orders of Reprints at reprints@benthamscience.net 

4 Recent Patents on Anti-Infective Drug Discovery, 2013, 8, 4-12  

  2212-4071/13 $100.00+.00 © 2013 Bentham Science Publishers  

Climate Change, Climate Variability and Brucellosis 

Alfonso J. Rodríguez-Morales* 

Research Group Infection and Immunity, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, 

Risaralda, Colombia; Office of Scientific Research, Cooperativa de Entidades de Salud de Risaralda (COODESURIS), 

Pereira, Risaralda, Colombia; Instituto José Witremundo Torrealba, Universidad de Los Andes, Trujillo, Venezuela; 

Working Group on Zoonoses, International Society for Chemotherapy (ISC), Aberdeen, Scotland, United Kingdom;  

Scientific Committee on Zoonoses and Haemorrhagic Fevers, Asociación Colombiana de Infectología (ACIN), Bogotá, 

Colombia 

Received: April 29, 2012; Revised: July 6, 2012 Accepted: July 11, 2012 

Abstract: In addition to natural climate variability observed over comparable time periods, climate change is attributed 

directly or indirectly to human activity, altering the composition of global atmosphere. This phenomenon continues to be a 

significant and global threat for the humankind, and its impact compromises many aspects of the society at different lev-

els, including health. The impact of climate change on zoonotic diseases has been largely ignored, particularly brucellosis. 

We here review some direct and indirect evidences of the impact of climate change and climate variability on brucellosis. 
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INTRODUCTION 

 Climate change, the shift attributed directly or indirectly 
to human activity that alters the composition of global at-
mosphere, in addition to natural climate variability observed 
over comparable time periods, which continues to be a sig-
nificant global threat for the humankind [1-4]. Its impact 
compromises many aspects of the society at different levels. 
As it has been previously stated, health is one of the relevant 
elements affected by this enormous problem that represents 
the climate change [5]. Despite the impact of climate change 
on infectious diseases have been highlighted [6-16], its im-
pact on zoonotic diseases has been largely ignored [17-23]. 
Many zoonoses are very prone to increase due to shifts in the 
distribution and behavior of vectors and animal species, 
which indicates that biologic systems are already adapting to 
ecological variations [17-23]. 

 Zoonotic infections are in general defined as infections 
transmitted from animal to man (and less frequently vice 
versa), either directly (through contact or contact with animal 
products) or indirectly (through an intermediate vector as an 
arthropod or an insect) [24]. Although the burden of zoonotic 
infections worldwide is considered high; both in terms of 
immediate and long-term morbidity and mortality, [25, 26] 
and in terms of emergence/reemergence and socioeconomi-
cal, ecological, and political correlations [17]. The scientific 
and public health interest and the funding opportunities for 
these diseases have not received the corresponding attention 
[27]. 
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 It is well established that climate is an important deter-

minant of the distribution of different vectors and pathogens 

[2, 5, 15, 16, 18]. This has been extensively described for 
some tropical non-zoonotic diseases, such as those of ma-

laria and dengue [5, 16, 28-32]. Although not yet accepted, 

recent evidences indicate that malaria would be also a zoono-
tic disease [33]. In the case of zoonotic diseases, leishmania-

sis (vectorized by sandflies Phlebotomus spp. [in the Old 

World] and Lutzomyia spp. [in the New World] and caused 
by Leishmania spp.), should be probably the most studied of 

them, regarding the impact of climate change and variability 

in many parts of the World. Available evidences of these 
associations, at different levels, came from different coun-

tries in Latin America [5, 20, 22, 34-37], Africa [38, 39], 

Asia [40-42] and Europe [13, 43-48]. However, other 
zoonoses, such as brucellosis, which remains as the com-

monest zoonotic disease worldwide [49-52], have been 

largely neglected regarding studies assessing the impact of 
climate change variability on its epidemiology [53-55]. With 

a high burden in many countries, brucellosis accounts for 

more than 500,000 new cases annually [49-52], is associated 
with substantial residual disability [51, 56], and is an impor-

tant cause of travel-associated morbidity [56-58]. The incor-

poration of new tools and disciplines, recently developed; 
such as ecoepidemiology [59-62], landscape epidemiology 

[63, 64], medical ecology [17, 65-68], geographical informa-

tion systems [69-72] and remote sensing and satellite epide-
miology [73-75], among others, could provide new insights 

on the potential influences of climate change and climate 

variability on infectious, tropical and zoonotic diseases, par-
ticularly those emerging and reemerging [76].  

 In this article, we review some direct and indirect evi-

dences of the impact of climate change and climate variabil-
ity on brucellosis. 
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CLIMATE CHANGE AND ZOONOTIC DISEASES 

 The climate is an important determinant of the distribu-
tion of vectors and pathogens, such as those of malaria and 
dengue. However, more information is required for zoonoses 
that are important in different regions in the World, such as 
leishmaniasis, Chagas disease, toxocariasis, brucellosis [18-
20, 22, 27, 56, 77]. Recent contributions in the field have 
demonstrated strong associations between climate variabil-
ity, climate change and emerging and reemerging infectious 
diseases that represent public health issues for many areas in 
the World. These diseases and other zoonotic diseases repre-
sent a significant burden of disease, from highly endemic 
areas to those from lower endemic areas [18-20, 22, 27, 56]. 
These diverse epidemiological scenarios have suffered the 
impacts of climate change in the socioeconomical systems, 
such as agriculture and fishering, as a consequence of the 
phases of the El Niño Southern Oscillation (ENSO) phenom-
ena, but also in specific health conditions such as infectious, 
tropical and zoonotic diseases; such as leishmaniasis, Chagas 
disease, toxocariasis, brucellosis, among others [18-20, 22, 
27, 56]. Different statistical analysis, most of them based on 
linear regressions, have associated extreme climatic anoma-
lies with significant alterations in the epidemiological pat-
terns of diseases, sometimes coupled directly and indirectly 
on time and space. Additionally to statistic techniques, geo-
graphical information systems (GIS) and remote sensing 
(spatial epidemiology) have supported these observations 
and are helping in the development of systems for prediction 
and forecasting of such diseases based on climate variability 
and climate change, as it has been previously reported [36, 
43, 78, 79]. Given the substantial burden of disease associ-
ated to climate change in developing tropical countries, it is 
of utmost relevance to incorporate climate changes studies 
into public health thinking and prevention. Then, the list of 
zoonotic diseases currently studied, regarding the impact of 
climate change and variability, that includes at least: anthrax 
[80], babesiosis [81], cholera [82], giardiasis [83], hantavirus 
infections [84], leishmaniasis [20, 22], leptospirosis [85], 
rabies [86], schistosomiasis [19, 21], yellow fever [87], 
among others, would be possibly included in the near future 
[77]. 

 Although many studies still may have some limitations; 
such as the lack of incorporation of other meteorological 
factors into the analysis, it has been suggested that such find-
ings are relevant, from a public health perspective, to better 
understand the ecoepidemiology of different diseases [2, 5, 
87]. However, further research is needed in many regions of 
the World to develop monitoring systems that will assist in 
predicting the impact of climate changes in the incidence of 
these diseases in endemic areas with various biological and 
social conditions [2, 5].  

CLIMATE CHANGE AND BRUCELLOSIS 

 In first instance, it should be clarified that, in many coun-
tries, there is a considerable lack of information of human 
and animal brucellosis, due to the lack of availability of the 
diagnostic techniques and in the public data on, records and 
surveillance of the disease, particularly in some countries of 
South America and Africa [56, 88]. Research on this zoono-
sis is still neglected in many countries of these regions. For 

South America, a database search (Medline) shows that there 
are only 9 articles published on brucellosis from Colombia, 
from 1809 to 2012. Similarly, in Venezuela 8 results can be 
obtained for the same period [89, 90]. From Ecuador, jut 2 
references can be retrieved, as well as 3 from Paraguay, 3 
from Uruguay and 1 from Bolivia [91-99]. In Africa, coun-
tries such as Tanzania, have published 15 articles on brucel-
losis, Kenya 35, Bostwana 2, Congo 8 and Cameroon 6 
[100-104]. On the other hand, burden of morbidity and com-
plications from this zoonotic and foodborne disease can rep-
resent a significant problem in many endemic areas in the 
World [105, 106]. 

 Secondly, from an ecological point of view, it is impor-
tant to understand that brucellosis can be caused by different 
species of the genus Brucella, hosted by different animal 
reservoirs: B. melitensis (animal hosts: sheep, goats, camels) 
being the most common cause of human brucellosis; B. 
abortus (animal hosts: cattle, buffalo, elk, yaks, camels), the 
second most common cause of human infection. Human in-
fections have also been included after cases reported,  
B. suis, B. canis, B. ceti and B. inopinata [107]. 

 The ecology where Bru cella species, pathogenic or not 
for the human beings, occur is highly diverse. The role of 
wildlife animals as a reservoir for human disease has already 
been outlined in the case of the risk to hunters [108-111]. 
Wildlife species naturally infected with Brucella can also 
serve as a reservoir for animal disease. This is the case with 
disease transmission between wild boar and domestic pigs 
and, more interestingly, between elk and cattle. The latter 
possibility has resulted in major political debate in the 
United States of America (USA) in recent years, with elk 
trapping, testing and, if positive, killing in the Yellowstone 
National Park area (Wyoming, USA) to avoid transmission 
of B. abortus to domestic cattle during grazing [107]. A re-
cent DNA genotyping study confirmed that the origin of 
brucellosis affecting domestic and wildlife species in the 
Greater Yellowstone area was indeed the elk [112]. 

 In the Greater Yellowstone Ecosystem, Wyoming, USA 
Fig. (1), where the free-ranging elk (Cervus elaphus) is a 
maintenance host for Brucella abortus [113], a study as-
sessed how the increase on the transmission of brucellosis in 
those animals, may be affected by climatic factors, such as 
snowpack [55]. Those possibilities using snowpack and feed-
ing data, from 1952 to 2006, and disease testing data, from 
1993 to 2006, were assessed. Brucellosis seroprevalence was 
strongly correlated with the timing of the feeding season. 
Longer feeding seasons were associated with higher sero-
prevalence. However, elk population size and density had 
only minor effects. In other words, the duration of host ag-
gregation and its association with peak transmission periods 
was more important than just the host population size. Accu-
rate modeling of disease transmission depends upon incorpo-
rating information on how host contact rates fluctuate over 
time relative to peak transmission periods. They also found 
that supplemental feeding seasons lasted longer during years 
with deeper snowpack. Therefore, milder winters and/or 
management strategies that reduce the length of the feeding 
season may reduce the seroprevalence of brucellosis in the 
elk populations of the southern Greater Yellowstone Ecosys-
tem [55]. 
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 Recently, the area-to-area variation of brucellosis in 
some endemic areas may be linked to ecological factors and 
differences in management practices [114]. Another consid-
eration that should be taken into account is the potential in-
fluence of ecological factors; particularly climate change, the 
so-called ecotones, which are areas of transition in multiple 
conditions highly susceptible to be impacted by those 
changes [115, 116]. Brucellosis is one of the diseases that 
have been considered to affect, in terms of transmission, by 
the landscape modifications resulting from climate change, 
although further data are necessary to support this assump-
tion [117]. Land changes can modify microclimates for live-
stock production, leading to habitat loss, increase the move-
ment of domestic species and provide more chances for live-
stock to be in contact with wild species. These factors raise 
the exposure to Brucella and other new pathogens and the 
bidirectional transmission of emerging diseases (in livestock 
or wildlife). Wildlife trade intensified in areas affected by 
emergent diseases and cross-border illegal traffic will in-
crease the risk of emergent disease transmission between 
wildlife and people [117], even in non endemic countries or 
areas [118-121]. 

 In a recent study from northern Alaska, USA Fig. (1), the 
presence of specific antibodies to Brucella spp. in polar 
bears (Ursus maritimus) from southern Beaufort Sea during 
2003-2006 was reported [122]. One possible explanation 
suggested for the annual variability, ranging from 7% to 19% 
in the period, is climate change [122].  

 In general, besides these studies, that were not specifi-
cally designed to address the impact of climate change on 
brucellosis, no other reports in the medical literature (in-
dexed at Medline, Science Citation Index, Scopus and 
SciELO) can be found related to these specific interactions 
between that phenomena and this bacterial zoonosis. 

 Beginning with the consideration of the immediate envi-
ronmental influences that can affect Brucella spp., since very 
long time it has been stated that this bacteria is capable of 
surviving for prolonged periods in the environment, and so 
inhalation of contaminated dusts in hot, dry countries (par-
ticularly in the tropics) may be a source of infection [123]. 
Microbiological studies have indicated that strains of Bru-
cella grow optimally at 37ºC [123-127]. Therefore, this in-
formation would be consistent with the fact that climatic 
anomalies, altering the temperature and the humidity in the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Map of North America showing places where some studies regard the impact of climate change and climate variability on animal 

brucellosis have been held (Wyoming and Alaska, USA). 
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endemic environments, would affect the conditions for the 
persistence of Brucella, in its live and non-live reservoirs 
and hosts and, eventually, they would alter the capacity of 
Brucella to be transmitted to animals and humans. 

 Reviewing the epidemiology of brucellosis in some coun-
tries, it can be found that, for example in Mexico, this 
zoonosis remains as one of the most important reservoirs of 
human brucellosis. Data from the Mexican Ministry of 
Health’s epidemiology directorate from the years 1990 to 
2000 [128] were analyzed herein, in a linear regression 

model, using one of the macroclimatic indicators of climate 
change and variability. The Oceanic Niño Index (ONI) from 
the National Oceanographic and Atmospheric Agency 
(NOAA) showed that the higher number of cases that oc-
curred during El Niño years (warm seasons), were signifi-
cantly associated with the ONI Fig. (2). Conversely, using 
data from the Venezuelan Ministry of Health’s epidemiology 
directorate from the years 1989 to 2001 [89], no significant 
relationship was found between the ONI and the occurrence 
of bovine cases of brucellosis in the country Fig. (2). How-
ever, in a shorter series of data for bovine brucellosis from 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Linear regression models between the Oceanic Niño Index (ONI) and the occurrence of cases of brucellosis in four Latin American 

endemic countries. Human cases in Mexico, 1990-2000 (left upper graph), bovine cases in Venezuela, 1989-2001 (right upper graph), bovine 
cases in Peru, 1999-2003 (left lower graph) and bovine cases of brucellosis in Brazil, 1996-2002 (right lower graph). 
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the Ministry of Health of Peru [129], the same pattern ob-
served for human cases in Mexico was observed, with the 
higher number of cases, that occurred during El Niño years 
(warm seasons), was significantly associated with the ONI 
Fig. (2). 

 In Brazil, where 162,314 cases of bovine brucellosis 
were reported between 1996 and 2002, according to the 
World Organization for Animal Health [130], the same pat-
tern described for human cases in Mexico and bovine cases 
in Peru was observed. The higher number of Brucellosis that 
occurred during El Niño years (warm seasons), were signifi-
cantly associated with the ONI Fig. (2). 

 In Venezuela, the human cases of brucellosis reported 
between 1996 and 1998, could be probably associated to the 
climate change shift and to an increase in the global tempera-
ture anomaly, as it could be observed by annual satellite im-
ages obtained from the Tropical Rainfall Measuring Mission 
(1 month - TRMM) imagery database of National Aeronau-
tics and Space Administration [NASA] Earth Observations 
(NEO, NASA, USA) (http://neo.sci.gsfc.nasa.gov/) and ana-
lyzed for Venezuela with the software Google Earth

®
 Fig. 

(3). Despite all these findings, more data series are necessary 
to confirm these quantitative and qualitative observations. 

 Considering the epidemiological and ecological informa-
tion and the findings from those studies and such analyses, 
an explicative model on the potential influences of climate 
change on brucellosis can be preliminary developed Fig. (3). 
This approach has been taken for other climate-sensitive 
infectious diseases, particularly vector-borne and zoonotic. 

CURRENT & FUTURE DEVELOPMENTS 

 Climate change produces threats to human health, safety, 
and survival via weather extremes and climatic impacts on 
food yields, fresh water, infectious diseases, conflict, and 
displacement [131]. Public health now has to consider many 
of these impacts in their perspectives for prevention, control 
and surveillance in all countries of the World [132, 133]. In 
the case of infectious diseases, many of them, including 
some zoonoses, have been recognized as potentially affected 
by climate change and climate variability [77]. However, the 
research of many zoonoses are still neglected in many as-
pects, including impact of climate change on their epidemi-
ological patterns. This happens with brucellosis. 

 The research of Brucellosis is still neglected in many 
areas of the World, particularly in Latin America and Asia. 
In the case of impacts of climate change and climate vari-
ability, this situation is even more critical. Although some 
evidences have indicated that this zoonosis can be signifi-
cantly affected by these factors, only few data are currently 
available to understand and support such associations. 

 Therefore, more research on the relationship between 
epidemiological variables, from humans and animals, as well 
as ecological, environmental and climatic factors is needed 
and justified for brucellosis. 

 The use of data available from several sources; such as 
the World Organization for Animal Health, records of hu-
man and animal brucellosis at country-level, from 1996 to 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Global temperature anomaly patterns maps from the 

TRMM satellite for Venezuela during 1996 to 1998 (NEO/NASA) 

and its potential relationship with human brucellosis report. 

 

2004, as well as those from ministries and secretaries of 
health at country and states, departments of provinces, as 
epidemiological source with multiple climatic data, and vari-
ables currently available, such as those provided globally 
from NOAA and NASA, as well from environmental or me-
teorological national agencies, can provide insights into the 
impact of climate change on brucellosis, allowing the devel-
opment of models and, ultimately, leading to climate-based 
forecast of disease, like early warning systems, developed  
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for malaria, and other zoonosis and tropical diseases [73, 
134-138], Therefore preventing the significant increase of 
the disease and improving the disease surveillance. 
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