ANÁLISIS TECNICO Y ECONOMICO EN LA RECIRCULACIÓN DE AGUAS RESIDUALES DE PELAMBRE Y CURTIDO EN UNA CURTIEMBRE

JUAN JOSE GOMEZ BUSTAMANTE
Cod: 7562568
ANDRES FELIPE ECHEVERRY GIRALDO
Cod: 9817926

Monografía de Grado presentada como
Requisito para optar al título de
Especialista en Gestión Ambiental Local

Director
Ing. Juan Mauricio Castaño Rojas
Esp. Ing. Ambiental
M.Sc. Ing. Sanitaria

UNIVERSIDAD TECNOLOGICA DE PEREIRA
FACULTAD DE CIENCIAS AMBIENTALES
PEREIRA
OCTUBRE DE 2010
Nota de aceptación:

Firma del presidente del jurado

Firma del jurado

Firma del jurado

Pereira 19 de octubre de 2010.
TABLA DE CONTENIDO

LISTA DE CUADROS ... 5
LISTA DE GRAFICOS .. 6
RESUMEN .. 7
ABSTRACT .. 8
INTRODUCCION .. 9

1 OBJETIVOS .. 13
 1.1 General ... 13
 1.2 Específicos .. 13

2 MARCO TEORICO ... 14
 2.1 Sector productivo del cuero y el medio ambiente ... 14
 2.1.1 Efecto sobre los cuerpos de agua ... 15
 2.1.2 Efectos sobre el alcantarillado y plantas de tratamiento de aguas residuales 15
 2.1.3 Efectos sobre el suelo ... 16
 2.2 Descripción del proceso productivo ... 16
 2.2.1 Ribera ... 16
 2.2.2 Curtido .. 17
 2.2.3 Post-curtido ... 18
 2.2.4 Acabado ... 18
 2.3 Producción más limpia aplicable ... 18
 2.3.1 Enfoque piramidal en el manejo de efluentes .. 19
 2.3.2 Reúso y reciclado de residuos ... 20
 2.3.3 Prácticas para la reducción del cromo ... 21
 2.3.4 Prácticas para la reducción de sulfuros y cal ... 26

3 METODOLOGÍA ... 30
 3.1 Método descriptivo ... 30
 3.2 Investigación evaluativa .. 31
 3.3 Investigación propositiva ... 31
 3.4 Procedimiento para construcción del documento ... 35
 3.5 El enfoque de producción más limpia ... 36
4 PRESENTACIÓN DE RESULTADOS ... 37
 4.1 Evaluación de las tecnologías disponibles para pelambre................................. 37
 4.1.1 Recirculación de las aguas residuales de pelambre.............................. 37
 4.2 Evaluación de las tecnologías disponibles para curtido. 43
 4.2.1 Recuperación y redisolución de los baños de curtido para recirculación 44
 4.3 Análisis económico en la recirculación de los flujos de agua residual. 52
 4.3.1 Recirculación de las aguas residuales de pelambre.............................. 52
 4.3.2 Recuperación y redisolución de los baños de curtido para recirculación 58
5 DISCUSIÓN DE RESULTADOS .. 60
6 CONCLUSIONES ... 66
7 REFERENCIAS BIBLIOGRÁFICAS ... 68
LISTA DE CUADROS

Cuadro 1. Balance de cromo [kg Cr/t piel] 22
Cuadro 2. Reducción de descargas en el efluente total por Reciclaje de los baños agotados de pelambre 42
Cuadro 3. Pruebas de precipitación del cromo en los proyectos Demostrativos para curtiembres 46
Cuadro 4. Cantidad descargada al efluente de cada parámetro generado En la implementación de la tecnología 52
Cuadro 5. Costo de productos requeridos 52
Cuadro 6. Costo para montaje de laboratorio y reactivos 54
Cuadro 7. Ahorros generados en el uso de recirculación de licor de pelambre 55
Cuadro 8. Costo de insumos en curtido 58
Cuadro 9. Análisis económico en reciclo de licor de pelambre 70
Cuadro 10. Análisis económico en recuperación de licor de curtido 72
LISTA DE GRAFICOS

Grafico 1. Enfoque piramidal de producción más limpia 20
Grafico 2. Proceso metodológico 32
Grafico 3. Proceso por objetivos 33
Gráfico 4. Procedimiento para construir el documento 35
Grafico 5. Esquema de adecuaciones para el reciclado de baños de pelambrado 36
Grafico 6. Esquema de adecuaciones para la recuperación, precipitación, Redisolución y reciclado del cromo 49
RESUMEN

En la actualidad, el sector industrial ha venido desarrollando sus actividades con una fuerte influencia negativa en el medio ambiente. Para el caso de las curtiembres, que es una de las actividades más agresivas con el ecosistema por los altos consumos de agua y por las cantidades considerables de residuos que generan, tanto sólidos como líquidos; se deben definir y aplicar alternativas de producción más limpia que permitan reducir los impactos ambientales negativos significativos, principalmente en el suelo y el agua. Una de las alternativas que se ha venido desarrollando con mayor fuerza en el sector para reducir estas afectaciones, es la recirculación directa o indirecta de efluentes líquidos, principalmente de las actividades o procesos que los generan y que representan mayores consumos y mayor contaminación, tal es el caso de pelambre y curtido. Estas actividades, además de consumir una cantidad considerable de agua, generan efluentes con una carga contaminante alta, y a la vez contienen productos para el proceso que se pierden como residuo, tales como cal, sulfuro (para el caso de pelambre) y cromo (para el caso de curtido). No obstante, existen otras alternativas que permiten un mejoramiento ambiental de la actividad pero que pueden no ser efectivas a la hora de evaluar la calidad del producto final (cuero). Por lo tanto, en el presente trabajo se pretende hacer un análisis técnico y económico en las alternativas de producción más limpia utilizadas con mayor frecuencia en las tenerías, identificando los beneficios ambientales que se obtienen, así como los beneficios en costos de producción, puesto que se reducen los consumos de agua y de insumos nuevos generándose ahorros para el empresario.

Palabras claves: Pelambre, curtido, reciclo, reuso, beneficios, contaminación, cromo, cal, sulfuro.
ABSTRACT

At present, the industrial sector has been developing its activities with a strong negative influence on the environment. In the case of tanneries, which is one of the most aggressive to the ecosystem by the high consumption of water and considerable amounts of waste generated, both solid and liquid, it must define and implement cleaner production alternatives that to reduce significant adverse environmental impacts, mainly in soil and water. One alternative that has been developed with greater force in the industry to reduce these effects is the direct or indirect recycling of wastewater, mainly from the activities or processes that generate and represent more consumption and more pollution that is the case of liming and tanning. These activities also consume a considerable amount of water, generate effluent with high contaminant load, while the process containing products that are lost as waste, such as lime, sulfur (in the case of fur) and chromium (for tanning). However, there are alternatives that allow environmental improvement of the activity but may not be effective in assessing the quality of the final product (leather). Therefore, in this paper is to make a technical and economic analysis in the cleaner production alternatives most commonly used in the tannery, identifying the environmental benefits obtained, and the production cost benefits, since reduced water consumption and generating new inputs savings for the employer.

Keywords: Liming, tanning, recycle, reuse, profits, pollution, chromium, lime, sulfur.
INTRODUCCION

La gestión ambiental empresarial es la base fundamental para el logro de un adecuado desempeño ambiental de las organizaciones, dadas las actuales demandas de recursos naturales que incrementan constantemente como resultado del desarrollo económico y del incremento en el consumo de productos. Esto trae como consecuencia el aumento en la generación de residuos sólidos, líquidos y gaseosos por lo que queda entre dicho el “Desarrollo Sostenible” imperativo dentro de la política ambiental del país.

Aunado al crecimiento económico, la innovación de las actividades industriales y la innovación técnica no controlada contribuyen al deterioro medioambiental progresivo puesto en evidencia desde la década de los sesenta. Esta situación ha llevado a un replanteamiento del tema del deterioro ambiental por las actividades productivas, a un cambio de actitud, que considera los tópicos medioambientales como de gran relevancia social, hasta tal punto que hoy resulta común identificar, al menos parcialmente, calidad de vida con el disfrute de un medio ambiente lo más íntegro y lo menos deteriorado posible.

En este orden de ideas, La empresa, como agente determinante del proceso productivo, adquiere un activo protagonismo a la hora de hablar de las actuaciones ambientales, en este marco es que los gestores empresariales cuentan con una serie de técnicas precisas que les permitan determinar tanto el valor de los impactos derivados de su actividad productiva, como los costes que habrían de internalizarse para eludir tales impactos o, al menos, reducirlas a la expresión mínima que la tecnología existente permita.

No hay que olvidar que, al hablar de medio ambiente, es importante resaltar que existe una interacción compleja entre los diferentes componentes que lo integran, por lo que es necesario identificar como es esa interacción y cuál es o será el efecto de la actividad humana sobre el mismo, como se estiman y distribuyen los beneficios y costes medioambientales en el tiempo, en el espacio y entre los agentes económicos. Así mismo, las actuaciones encaminadas al mejoramiento del entorno se ven distorsionadas debido a errores de planificación o la ausencia de la misma.

Así pues, un aspecto muy importante a tener en cuenta dentro del sistema productivo de una organización, es el de optimización de procesos a partir de un uso racional y eficiente de los recursos, principalmente de aquellos que son No Renovables, y que de una u otra manera son de vital importancia para la sostenibilidad del sistema económico y social. Un uso adecuado permite disminuir la contaminación, disminuir los costos de producción y garantizar una disponibilidad de recursos para generaciones futuras.

Dentro de las herramientas con que se cuenta para una gestión ambiental empresarial adecuada, se encuentra el uso de sistemas de producción más limpia y buenas prácticas ambientales para hacer un control operacional eficiente y efectivo de los aspectos ambientales. Éstas técnicas permiten evitar los impactos ambientales dentro del proceso evitando la implementación de tecnologías de final de tubo.
Dentro de los conceptos básicos de producción más limpia, se tienen los de Recuperar, Reutilizar y Reciclar, los cuales permiten no solo controlar los impactos ambientales generados en los procesos si no optimizar la producción en lo que tiene que ver con costes, de tal manera que se pueda evitar hacer inversiones cuantiosas en correctivos o tecnologías a final de tubo.

Entre tanto, la mayoría de los sectores industriales generan impactos negativos sobre el medio ambiente principalmente al subsistema hídrico, ya que requieren de grandes cantidades de agua en los procesos y en consecuencia descargan aguas residuales con altas cargas contaminantes. Según el Instituto de Hidrología, Meteorología y Estudios Ambientales documento Desempeño Ambiental de la Tecnología en la Industria Colombiana (IDEAM 2001), los cinco (5) sectores que presentan mayor agresividad ambiental tanto por el alto consumo de recursos como por la generación de grandes cantidades de residuos son: fabricación de pulpa química al sulfato (kraft) blanqueada, con sistema de recuperación química, extracción de aceite vegetal por prensado con centrífugación, fabricación de papeles varios para la maquinaria fourdriner, fabricación de pulpa química al sulfato (kraft) sin blanquear, con sistema de recuperación química y producción de cuero al mineral con depilado químico, secado al vacío y pintado mecánico. En el presente trabajo se abordará el último sector con la idea de hacer un aporte a la optimización del proceso productivo de tal forma que se pueda contribuir al desarrollo sostenible y servir como base para que los demás repliquen las buenas prácticas ambientales y contribuir al logro de las políticas ambientales adoptadas por el país.

En este orden de ideas, el sector industrial del curtido y preparado de cueros es uno de los sectores que mayores impactos negativos genera sobre el sistema ambiental, principalmente en las actividades de pelambre y curtido, debido a los requerimientos de grandes cantidades de agua e insumos químicos como cal, sulfuros, cromo y ácidos (sulfúrico y fórmico), con los consecuentes vertimientos líquidos con altas concentraciones de DBO, DQO, SST y toxicidad que afectan el recurso hídrico, que pueden ser reciclados para el proceso, con un tratamiento previo.

Aproximadamente el 65% de los efluentes líquidos del proceso de curtido y preparado de cueros tienen su origen en las operaciones de ribera (lavado, remojo, pelambre, encajado y desencalado); 30% en las operaciones de curtido (piquelado, curtido, recurtido y teñido) y el 5% restante en el acabado. De igual manera, el proceso más agresivo sobre el medio ambiente es el de pelambre. La carga contaminante allí generada depende mucho del método empleado para el pelambre (método convencional, sin destrucción de pelo, pelambre enzimático o amínico, etc.) y de si las pieles han sido o no predescarnadas. En esta etapa del proceso se generan aguas residuales alcalinas con alta concentración de sólidos suspendidos y disueltos: materia orgánica animal, sulfuros, SH- y sulfatos de sodio, pelo, cal y carbonatos; adicionalmente en la etapa de pelambre se aporta el 70% de la carga orgánica al efluente, la totalidad de los sulfuros residuales, el 45% de los residuos sólidos sin cromo, el 35% del nitrógeno total, y representa el 50% del volumen del efluente. Una de las características claves de este efluente es el grado de peligrosidad que representa el sulfuro cuando es desechado en un líquido, (CEPIS 1995). El Sulfuro presenta un riesgo por la formación de gas sulfhídrico, el que en baja concentración genera olor desagradable y en alta concentración puede ser muy tóxico. Así mismo, el IDEAM 2001 establece que el proceso de curtido mineral, depilado químico, secado al vacío y pintado mecánico, presenta altos consumos de agua, aproximadamente
Requiere de 48.4 m³ por tonelada de piel procesada, esto se da ya que los procesos más importantes para convertir una piel en cuero, se efectúa en medio acuoso. Cada etapa del proceso va generando residuos industriales líquidos con distintos grados de contaminación, siendo la más importante en términos de carga orgánica expresada en DBO₅, la etapa de pelambre, ya que se vierte aproximadamente 60 kg de materia orgánica por tonelada de piel procesada, representada como Demanda Bioquímica de Oxígeno, generada por los residuos de grasa, piel y pedazos de carne presentes en los vertimientos. De igual manera se genera una Demanda Química de Oxígeno (DQO) aproximadamente de 175 kg por tonelada de piel procesada, considerada alta debido a la gran cantidad de insumos químicos orgánicos no biodegradables utilizados en las diferentes etapas del proceso, reflejado una alta relación DQO/DBO con un valor de 2.92. Por último, en cuanto a los Sólidos Suspendidos Totales (SST), dicha tecnología genera una descarga aproximada de 90 kg por tonelada de piel procesada; estos sólidos están compuestos principalmente por proteína, pelo, grasa, trozos de carne, estiércol, pasto y suciedad que se le impregna a la piel del animal tanto en su estabulado, faenado, almacenamiento y transporte.

De otro lado, una parte importante de la contaminación producida en las aguas residuales de tenería procede de la etapa de curtido, debido al cromo no fijado a la piel que supone alrededor de un 15% del cromo añadido al baño de curtición. Habitualmente, los baños residuales de curtición se homogeneizan con el resto de efluentes industriales y el cromo se precipita como hidróxido de cromo, quedando retenido en los lodos de las depuradoras. Este residuo por contener un metal pesado (cromo) podría ser definido como residuo peligroso ante la posibilidad de oxidarse a cromo hexavalente, lo cual traería consecuencias negativas al bioacumularse en organismos vivos y producir alteraciones genéticas. Así mismo el CEPIS 1997 define el Cromo en los efluentes como metal pesado persistente que puede causar problemas a la salud humana cuando está presente en altas concentraciones.

Sin embargo, existen alternativas para tratar el problema de sulfuros y cromo en los efluentes: la sustitución parcial o total por otros elementos tanto en el pelambre como en el curtido; la disminución de la concentración residual de cromo mediante procesos que aumenten la fijación de cromo en el cuero y la reutilización de los sulfuros, la cal y el cromo contenidos en los baños residuales.

Conjuntamente con la implantación por parte de las curtiembres de nuevos procesos tecnológicos que disminuyan la concentración de cromo y sulfuro de los efluentes, es necesario encarar la eliminación de la carga contaminante residual para alcanzar los valores exigidos por la legislación nacional.

Sumado a lo anterior, se puede evidenciar la generación de pérdidas económicas de los empresarios por la descarga de materia prima no fijada. Un estudio del CEPIS 1997 en el Proyecto Industria del Cuero en el Uruguay sobre Tratamiento del Cromo Residual concluye que en el Uruguay anualmente se procesan 1,7 millones de cueros vacunos y 3 millones de pieles ovinas y aproximadamente 260 toneladas de óxido de cromo son volcadas anualmente a los colectores urbanos y los cursos de agua, lo que genera a las curtiembres pérdidas de casi 1 millón de dólares, estimada en base al ahorro de reutilización de dicho cromo.
Todo esto indica que las acciones para evitar la contaminación y la agresividad ambiental deben estar enfocadas esencialmente a las etapas de pelambre y curtido, teniendo en cuenta la minimización de las pérdidas de productos no fijados y la mitigación de los impactos ambientales generados por la descarga de los mismos.

Con todo, los problemas de la contaminación mirados al interior de la empresa pueden encontrar soluciones, no tan solo bajo un esquema de reuso o reciclaje de residuos, sino también considerando alternativas de prevención y minimización de los desechos.

En este sentido, los productos, procesos, insumos y residuos deben analizarse cuidadosamente. La idea es minimizar, o mejor aún, evitar la generación de residuos mejorando o cambiando procesos, procedimientos, tecnologías y la gestión. En este contexto, el sector de las curtiembres presenta amplias posibilidades de reducir sus problemas de contaminación. Estas alternativas se pueden dividir en: Control de proceso, eficiencia y prevención, posibilidades de producción más avanzada y limpieza posibilidades de minimización, reuso, recirculación, recuperación y reciclaje; con los imperativos de viabilidad económica y tecnológica de la metodología a implementar.

Aún así, se han desarrollado tecnologías para enfrentar los potenciales impactos ambientales negativos que las actividades del curtido de pieles pueden ocasionar, muchas de ellas orientadas al control de los contaminantes generados y al tratamiento de los efluentes de las plantas de producción, particularmente por elevada carga orgánica y por el contenido de cromo. No obstante, estas opciones suelen ser costosas y con costos adicionales de operación. Muchas de las tecnologías limpias desarrolladas para el sector curtiembres han surgido como consecuencia de las necesidades de hacer un uso más eficiente de la materia prima y los insumos con dos objetivos principales: reducir los costos de producción y mejorar el desempeño ambiental.

Lo anterior señala que no solo se debe evitar la contaminación dentro de una empresa, sino que también, se debe buscar la sostenibilidad de la misma con base en la eficiencia y la eficacia de los procesos, ya que, en el mercado, la competitividad es fundamental, puesto que es exigida en una economía globalizada, y que continuamente requiere de una mayor eficiencia en la producción. Esto es, no se garantiza nada dentro de la organización si se tiene un desempeño ambiental adecuado pero siendo poco competitivos, o al contrario, no se es eficiente cuando ambientalmente no se cumple con las regulaciones así sea una organización competitiva.

En este sentido, la gestión ambiental empresarial es el punto de partida para administrar los impactos ambientales negativos generados tanto por el consumo de recursos naturales como por los residuos generados en dicho proceso, teniendo en cuenta la optimización de tecnologías dentro de la organización que permitan reducir los costos de producción, internalizar los costos derivados de los efectos ambientales ocasionados y valorizar los residuos como nueva materia prima y a la vez ser competitivos. De allí, hacer un análisis técnico y económico, y obtener evaluaciones de costo/beneficio en la implementación de tecnologías de recirculación, comparando eficiencia entre organizaciones con recirculación y sin recirculación, evidenciando los posibles beneficios económicos y ambientales obtenidos y las posibles fallas.
1 OBJETIVOS

1.1 General.
Realizar un análisis técnico y económico en la recirculación de las aguas residuales de pelambre y curtido generadas en el proceso de curtido de pieles de bovino.

1.2 Específicos.
Identificar y evaluar las principales tecnologías aplicadas en sistemas de recirculación de aguas residuales de pelambre y curtido

Verificar los posibles beneficios económicos que se pueden lograr con la implementación de sistemas de recirculación de efluentes líquidos
2 MARCO TEORICO

2.1 Sector productivo del cuero y el medio ambiente

La empresa curtidora siempre ha sido mirada como una industria contaminante, sin tener en cuenta que aprovecha un subproducto altamente putrescible y de biodegradación lenta. Ahora bien, es cierto que el proceso del curtido genera una importante carga contaminante, sin embargo, tomando las medidas y precauciones necesarias, esta puede contrarrestarse adecuadamente. (Comisión Nacional de Medio Ambiente de Chile 1999).

A pesar de que existen estas medidas, muchas empresas prefieren comenzar el proceso de producción de cuero a partir de los acabados en húmedo, esto es, a partir del recurtido, con el fin de evitar controles operacionales en los procesos más contaminantes como lo son pelambre y curtido, que además de generar impactos ambientales negativos significativos, son los procesos que menor valor agregado generan para la empresa (OEA 2006). De igual manera, el CEPIS define que, según las tecnologías actualmente empleadas, el 80% de la demanda biológica de oxígeno del efluente generado por una curtiembre de cueros vacunos curtidos al cromo se origina en sus baños de pelambre, es razonable que en los últimos años el interés de los investigadores se haya centrado en la posibilidad de reducir la carga contaminante de dichos líquores de depilado; y que sea razonable que muchos empresarios quieran evitar implementar dicho proceso.

Aún así, las operaciones y procesos de las curtiembres generan residuos líquidos y sólidos que se distinguen por su elevada carga orgánica y presencia de agentes químicos que pueden tener efectos tóxicos, como es el caso del sulfuro y el cromo. Las variaciones en cuanto al volumen de los residuos y a la concentración de la carga contaminante se presentan de acuerdo a la materia prima procesada y a la tecnología empleada.

Como se ha venido mencionando, Pelambre, es un proceso que emplea un gran volumen de agua y la descarga de sus efluentes representa el mayor aporte de carga orgánica. Además de la presencia de sulfuro y cal, el efluente tiene un elevado pH (11 a 12). En segunda instancia, Piquelado es el proceso en el cual se prepara la piel para la penetración subsecuente del material curtiente. Emplea cloruro de sodio que protege la piel de la acción posterior de los ácidos que bajan el pH a niveles de 2,5 a 3. Los ácidos más utilizados son el sulfúrico y el fórmico. Presenta una descarga líquida ácida y de alta salinidad. Por último, el Curtido. Es el proceso por el cual se estabiliza el colágeno de la piel mediante agentes curtientes minerales o vegetales, siendo las sales de cromo las más utilizadas. Se emplea un gran número de procesos de curtido; algunos efluentes pueden alcanzar niveles tóxicos pero todos son potencialmente contaminantes y de bajo pH. Los curtidos minerales emplean diferentes tipos de sales de cromo trivalente (Cr³⁺) en varias proporciones.

A continuación se mencionan los principales efectos ambientales negativos generados por la actividad curtidora.
2.1.1 Efecto sobre los cuerpos de agua.

Las aguas residuales cuando se descargan directamente a un cuerpo de agua ocasionan efectos negativos en la vida acuática y en los usos posteriores de estas aguas. Un cuerpo de agua contaminado disminuye el valor de su uso como agua para bebida o para fines agrícolas e industriales, afecta la vida acuática y los peces mueren por disminución del oxígeno disuelto. Por otra parte, si su uso es indispensable, los costos de tratamiento se tornan muy altos. En el caso de las aguas subterráneas, su contaminación es más problemática y persistente porque su autodepuración es lenta debido a que no presenta corrientes que le confieran una adecuada aireación. Esto se agrava cuando es la única fuente de abastecimiento de agua para una población. Los efluentes no tratados de las curtiiembres ocasionan salinidad en las aguas subterráneas debido a la alta concentración de cloruros.

Una evaluación sobre el potencial de contaminación de cuerpos de agua causada por efluentes de curtiiembre en función de sus características principales muestra lo siguiente:

DBO y DQO. Son los parámetros utilizados para medir la materia orgánica presente en el efluente. Cuando se presentan concentraciones altas de DBO y DQO en los ríos puede ocurrir desoxigenación del mismo.

pH. Es un parámetro de importancia que indica el carácter ácido o básico del efluente. Generalmente los efluentes de las curtiiembres presentan variaciones entre 2,5 y 12,0. Las variaciones de pH afectan considerablemente la vida acuática de las corrientes receptoras.

Sulfuro. Presenta riesgo de formación de gas sulfhídrico, el que en baja concentración genera olor desagradable y en alta concentración puede ser muy tóxico.

Amonio. Es tóxico para los peces. Es un nutriente que puede causar proliferación de plantas acuáticas.

Cromo. Metal pesado persistente que puede causar problemas a la salud humana en altas concentraciones.

Sólidos sedimentables. Ocasionan la formación de bancos de lodos que producen olores desagradables.

2.1.2 Efectos sobre el alcantarillado y plantas de tratamiento de aguas residuales

Los efluentes de curtiiembres descargados a una red de alcantarillado provocan incrustaciones de carbonato de calcio y gran deposición de sólidos en las tuberías. La presencia de sulfuros y sulfatos también acelera el deterioro de materiales de concreto o cemento. Si la carga contaminante presenta sustancias tóxicas y es lanzada a una planta de tratamiento, puede interferir con el proceso biológico de la planta. En lugares donde no existen plantas de tratamiento, estos contaminantes afectan la calidad del cuerpo receptor y causan su deterioro.
2.1.3 Efectos sobre el suelo

Cuando se poseen sistemas de tratamiento de final de tubo, se pasa de generar aguas residuales contaminadas a generar un residuo sólido, esto es, lodo. Dicho residuo por contener cromo debe ser manejado adecuadamente para evitar que en la mezcla con otros residuos en el sitio de disposición final se produzca cromo hexavalente en los lixiviados y que, de manera subsiguiente, afecte el suelo, los cuerpos de agua y la salud humana.

Así mismo, según Minambiente (2006) todos los contaminantes de la curtición tienen un impacto sobre el suelo, pero el más importante es el cromo, que puede alterar en algunos casos el crecimiento y desarrollo de los cultivos; y el sodio, que altera el índice de absorción de sodio.

2.2 Descripción del proceso productivo

De acuerdo con la OEA (2006) se define que el proceso de curtiembre busca preservar la piel de animales que han sido sacrificados con el fin de utilizarla para producir una variedad de artículos, principalmente de calzado, ropa y mobiliario. Se producen pieles de diferentes tipos y calidades, de acuerdo con su aplicación y con las exigencias de los mercados, para lo cual existen variaciones en los procesos de curtiembre. Estos procesos generalmente se dividen en cuatro etapas que son la ribera, el curtido, el postcurtido y el acabado.

2.2.1 Ribera.

Es aquella en la que la piel es limpiada y preparada para la operación de curtido y consiste en el remojo, descarnado y pelambre. Este proceso requiere de grandes cantidades de agua e insumos químicos tales como sulfuros y cal principalmente, para dar a la piel las características requeridas en el proceso siguiente. Esto conlleva a la generación de altos volúmenes de aguas residuales, concentraciones altas en DBO, DQO y Sólidos suspendidos y a la generación de pérdidas de insumos químicos que se vierten en altas concentraciones en los efluentes. De igual manera, debido a las propiedades de la piel, se generan grandes volúmenes de materia orgánica. En este sentido y dadas las características de los baños residuales de este proceso, es considerado el mayor generador de contaminación en el preparado de las pieles (aporta aproximadamente el 60% de la contaminación). Guía técnica para el preparado de pieles. Minambiente (2006). Del mismo modo, el documento Guía para el Control y Prevención de la Contaminación Industrial (1999) establece que los baños residuales de este proceso aportan el 76% de la toxicidad total a los cuerpos receptores.

Es así que se han intensificado las investigaciones y desarrollos en nuevas tecnologías de depilado, de recirculación de residuos líquidos de pelambre, siendo esta última la que presenta el atractivo de operar con el sistema tradicional de cal y sulfuro de sodio (con ahorros relativos de productos químicos) y más importante aún, disminuir la descarga de
contaminantes a la Planta de Tratamiento de Aguas Residuales Industriales (PTARI), lo que se traducirá en una reducción del costo de tratamiento y del área necesaria para purificar el efluente, lo que es de particular importancia para las curtiembres que posean áreas reducidas.

2.2.2 Curtido.

La piel es finalmente preservada mediante la fijación de agentes curtientes, generalmente con ayuda de sales metálicas y principalmente sales de cromo. Esta etapa consiste en el desencalado, el rendido, el piquelado y el curtido. Las dos últimas actividades requieren de altos volúmenes de materia prima (agua, ácidos, sal y sales de cromo) lo que genera volúmenes considerables de agua residual y al mismo tiempo pérdidas de materia prima no fijada en la piel. Estos baños residuales contienen concentraciones importantes en términos de cloruros y cromo, y pHs muy ácidos, lo que representa un nivel de contaminación crítico por las descargas de metales pesados y los demás productos no fijados. La Guía para el Control y Prevención de la Contaminación Industrial (1999) define este proceso como otro importante generador de toxicidad en los cuerpos receptores (aporta el 24% de la toxicidad total).

Igualmente, según el informe final de las actividades del proyecto desarrollado entre el Laboratorio Tecnológico de Uruguay y el Instituto de Ingeniería Química de la Facultad de Ingeniería (1992-1995) citado por el CEPIS, se han investigado tecnologías de producción de cueros que disminuyen la contaminación de los efluentes industriales mejorando la viabilidad económica de las empresas.

El mismo informe muestra que una de las principales preocupaciones relacionadas con el procesamiento de las pieles es el uso de técnicas de producción que disminuyan la contaminación. En el procesamiento de las pieles saladas sólo el 50% de la piel es transformada en cuero, el resto es eliminado en forma de desecho sólido o como efluente en solución. El cromo proveniente de la etapa de curtido representa aproximadamente el 24% de la contaminación de esta industria.

En este orden de ideas, la dificultad que presenta el uso de sales de cromo en el curtido es la gran cantidad de curtiente que no es fijado y que permanece en los reflujos y en el lodo de depuración, lo que impide la utilización de los materiales residuales en la agricultura, según los estudios realizados en el documento citado anteriormente por el CEPIS, en donde se indica que las concentraciones de cromo en los baños residuales de curtido es relativamente constante, oscilan entre 6 – 7 g/L (expresada como óxido de cromo trivalente). De igual manera en el documento “Informe técnico sobre minimización de residuos en una curtiembre” (1995), elaborado por el CEPIS, cita un estudio realizado por Gómez et al (1978) donde se evidencian concentraciones de cromo de 3.5 g/L, muy aproximado al dato anterior.

Sumado a la contaminación generada a los cuerpos de agua, al suelo y a la afectación de la salud humana por las descargas de residuos con cromo, están las pérdidas ocasionadas por el producto no fijado a la piel y es desechado en los baños residuales.
2.2.3 Post-curtido.

La piel es preparada para adquirir las propiedades que se buscan de acuerdo con el producto para el cual será destinada, para ello pasa por varias operaciones: rebajado, neutralizado, recurtido, teñido, engrasado, escurrido y secado. Es entonces cuando a la piel se la llama “crust” o “crosta”.

2.2.4 Acabado.

La piel se sujeta a distintas operaciones mecánicas y de adición de acondicionadores para lograr la apariencia esperada. En este proceso se utiliza una variedad de productos químicos, así como de equipos especializados. Dependiendo del avance tecnológico de las operaciones y de los equipos, pueden aprovecharse con mayor o menor eficiencia las materias primas y la energía involucradas en el proceso. Esto tiene implicaciones importantes para el flujo de caja de las empresas y también para su desempeño ambiental.

Es de resaltar que estos dos últimos procesos (Postcurtido y Acabado) no representan impactos ambientales significativos y no representan potencialidades en la recuperación de efluentes líquidos, por lo que no se incluyen dentro del análisis.

En este sentido, es necesario centrar el análisis en los procesos de pelambre y curtido, ya que son los que aportan la mayor cantidad de contaminantes tóxicos en los efluentes receptores y obligan a las organizaciones a adoptar tecnologías que permitan minimizar los impactos ambientales negativos generados por dichas operaciones.

2.3 Producción más limpia aplicable

Entre las décadas de los 70’s y 80’s se creía que la solución a la contaminación era únicamente el tratamiento al final del proceso productivo (end of pipe). Pero solo hasta los 90’s se comienza a trabajar la parte de prevención, lo que significa un cambio de enfoque en el manejo de los temas ambientales, sobre todo para las industrias, debido a que producir sosteniblemente no significa reducir las ganancias, y hacer buenos negocios no está reñido con el cuidado del medio ambiente. Producir eficientemente implica ahorros y retornos económicos a las inversiones como resultado de un mejor uso de los recursos tanto naturales, como humanos y financieros.

La PML es implementada como estrategia ambiental preventiva integrada a los procesos productivos para incrementar la eficiencia y reducir los riesgos sobre el medio ambiente y la salud humana. Mediante la aplicación de métodos de PML se conduce al ahorro de materias primas, agua y/o energía y a la reducción en la fuente de la cantidad y toxicidad de los desechos durante el proceso de producción.

En este orden de ideas, la PML puede incrementar la eficiencia productiva debido a que su aplicación conduce a la empresa a hacer un uso óptimo de materias primas, agua y energía, entre otros insumos; permitiéndole producir la misma cantidad de productos con una menor cantidad de insumos. El efecto es la disminución de costos unitarios de
producción, y al mismo tiempo, la reducción de las características de toxicidad de los residuos líquidos por pérdidas de insumos en las descargas.

Al necesitarse una menor cantidad de insumos, también se está permitiendo el uso de insumos en otras actividades, o simplemente al dejar de utilizarlas, se está ayudando a la preservación de estos y contribuir al desarrollo sostenible. Entre los conceptos que garantizan una producción más limpia dentro de las empresas se encuentran los de Reciclar, Reusar y Recuperar, ya que son la base fundamental para implementar procesos de producción más limpia.

Lo anterior se explica puesto que existen ciertos flujos de residuos dentro de las industrias cuya cantidad es imposible o difícil de reducir en su fuente de origen, por lo que, para estos flujos no siempre es posible aplicar medidas de prevención de la contaminación y, por ende es necesario recurrir a prácticas basadas en el Reciclaje, Reuso y Recuperación, definidos cada uno así:

Reciclaje: es el proceso mediante el cual se convierte un residuo en insumo o en un nuevo producto.

Reuso: es el proceso mediante el cual se vuelve a utilizar un residuo en su forma original.

Recuperación: es aprovechar o extraer los componentes útiles de un residuo. O es simplemente la separación de diferentes flujos de residuos para aprovechar aquellos que normalmente son mezclados.

El reciclaje de residuos puede ser interno o externo. Es interno cuando es practicado en el ámbito de las operaciones que generan los residuos objeto de reciclaje. Cuando este se practica como un reuso cíclico de los residuos en la misma operación que los genera, se denomina “Reciclaje en Circuito Cerrado”. El reciclaje externo se refiere a la utilización del residuo en otros procesos o operaciones diferentes del que lo generó. Por otra parte, tanto el reciclaje como el reuso pueden efectuarse entre otros por recuperación.

2.3.1 Enfoque piramidal en el manejo de efluentes

La evolución en la temática ambiental hasta nuestros días ha tenido grandes cambios, sobre todo por la conciencia ambiental que se ha creado y las presiones que ejerce hoy la sociedad en su conjunto.

Las técnicas para el manejo de efluentes también han evolucionado. En el gráfico 1. se ilustra lo que se ha denominado como “enfoque piramidal para el manejo de efluentes”, el cual consisten en agotar las soluciones basadas en prácticas de producción más limpia, antes de intentar el manejo de flujos de residuos como desechos al final del proceso productivo. Este último consiste en realizar el tratamiento y la disposición final de residuos líquidos considerados como desechos.
Dentro de las prácticas de PML se debe priorizar aquellas de prevención de la contaminación y de eficiencia energética frente a las prácticas de reciclaje, reuso y recuperación. Sin embargo, las prácticas de “reciclaje en circuito cerrado” son parte de las prácticas de prevención de la contaminación o de eficiencia energética, por lo tanto, también deben ser priorizadas frente a las prácticas de reciclaje que no son realizables en circuito cerrado.

2.3.2 Reúso y reciclado de residuos

En el caso de las curtiembres este principio es aplicable y se utiliza en ocasiones en varias etapas del proceso después de un pre-tratamiento para reacondicionar las características de los baños. Esto es cierto para los baños de remojo, de pelambre y curtido. Algunas materias primas también se recuperan para posteriormente aprovecharse en las mismas operaciones unitarias o en otras, como por ejemplo la cal y los sulfuros que se reutilizan en sucesivos baños de pelambre o la recuperación de cromo para enriquecer baños de curtido. Generalmente pueden obtenerse ahorros de sulfuros de entre 20 y 50%, y de cal de entre 40 y 60% cuando se hace en forma adecuada. La dosificación de estos productos puede ser reducida hasta en un 40 a 60% en el siguiente ciclo. (OEA 2006)
De todo esto, lo importante no es evitar la contaminación al final de tubo por medio del uso de Plantas de Tratamiento de Aguas Residuales Industriales (PTARI), sino más bien, identificar tecnologías que permitan hacer recuperación de los productos contenidos en los efluentes residuales que no se fijaron a las pieles, recircularlos a las operaciones y generar ahorros, evitando la compra de insumos químicos, evitar costos en la operación de unidades de tratamiento y permitir cerrar ciclos lográndose disminuir la contaminación. Sin embargo, si se va a utilizar una unidad de tratamiento de efluentes, que sea únicamente como acción para mejorar la calidad de los vertimientos.

2.3.3 Prácticas para la reducción del cromo

Existen distintas alternativas para tratar el problema del cromo en los efluentes: la sustitución parcial o total por otros elementos curtientes; la disminución de la concentración residual de cromo mediante procesos que aumenten la fijación de cromo en el cuero, y la reutilización del cromo contenido en los baños agotados.

Conjuntamente con la implantación por parte de las curtieres de nuevos procesos tecnológicos que disminuyan la concentración de cromo de los efluentes, haciendo más eficiente la fijación del cromo en la piel (procesos de alto agotamiento), es necesario encarar la eliminación de la carga contaminante residual para alcanzar los valores exigidos por la legislación nacional.

De todo esto, según la OEA (2006) se han desarrollado diversas tecnologías para enfrentar los potenciales impactos ambientales que las actividades del curtido pueden ocasionar en el medio ambiente y la salud, muchas de ellas orientadas al control de los contaminantes generados y al tratamiento de los efluentes de las plantas de producción, particularmente por su elevada carga orgánica y el contenido de cromo. Sin embargo estas soluciones suelen ser costosas y con costos adicionales de operación, además suelen ser difíciles de implantar por requerir conocimientos técnicos adicionales a los de los procesos de curtido.

Muchas de las tecnologías limpias desarrolladas hasta ahora en el sector de curtieres han surgido como consecuencia de la necesidad de hacer un uso más eficiente de las materias primas y los insumos con dos objetivos principales: reducir los costos de producción de las empresas y mejorar su desempeño ambiental. Su implantación en América Latina ha obedecido fundamentalmente al segundo de ellos. Debe tomarse en cuenta que se requieren inversiones que compiten con otros proyectos de la empresa (por ejemplo para el aumento de la capacidad de producción), que ésta suele no tener la liquidez suficiente o no tiene acceso a fuentes de financiamiento adecuadas, que independientemente de los ahorros que las tecnologías limpias puedan generar, los costos de la gestión ambiental pueden aumentar los costos de operación en un 1 ó 2%, y la aversión al riesgo de los pequeños empresarios latinoamericanos. Es por ello que en las tecnologías limpias del curtido, muchas de ellas relacionadas con el re- aprovechamiento de agua y compuestos químicos, y con la reducción de la carga orgánica en los efluentes no son todavía comunes en los procesos de producción de la región.
No obstante, según el Centro de Promoción de Tecnologías Sostenibles (CPTS 2003), la gran cantidad de residuos líquidos que inevitablemente se genera en este sector, exige aplicar medidas que permitan valorizarlos.

Estas medidas de valorización también permiten reducir tanto el volumen como la carga contaminante del efluente industrial, por lo que, en caso de ser necesaria la instalación de una planta de tratamiento final, ésta será de menor capacidad, y, por consiguiente, los costos de adquisición y los gastos de operación, serán menores. En general, según datos recabados por el CPTS, se estima que, en Bolivia, una planta de tratamiento final de efluentes líquidos, tiene un costo anual de operación (mantenimiento, reactivos químicos, electricidad, etc.) que fluctúa entre el 10 y el 15% del monto que se requiere para su instalación. Adicionalmente, la aplicación de medidas de valorización permite dar un valor económico a los residuos. Por lo tanto, antes de implementar cualquier sistema de tratamiento final, se debe agotar todas las opciones de PML incluyendo la valorización de residuos.

En este orden de ideas, es necesario incluir en el punto de valorización de residuo, la viabilidad de recuperar las aguas residuales de pelambre y curtido dadas sus características toxicológicas y los posibles beneficios que de ello se pueden derivar.

Las descargas de cromo pueden disminuirse a través de las siguientes medidas:

- a. Optimizar los parámetros de la operación;
- b. Reciclar los baños residuales del curtido al cromo;
- c. Recuperar el cromo a través de su precipitación y posterior separación;
- d. Emplear métodos de alto agotamiento de las soluciones de cromo.

Adicionalmente a estas medidas, se han desarrollado métodos nuevos para curtir y precurtir con reactivos que no tengan cromo (wet-white). El Cuadro 1 muestra un resumen de las diferentes técnicas empleadas para reducir las descargas de cromo, la cantidad inicial de cromo que se emplea y, de éste, cuánto se fija en el cuero y cuánto se elimina en el efluente. La técnica de alto agotamiento es la que más cromo puede fijar en el cuero y la que menor oferta de cromo emplea, sin embargo, se debe emplear más tiempo en el proceso para aumentar la fijación en la piel y garantizar mayor agotamiento y al mismo tiempo hacer mas intensas las labores de control de temperatura, pH y concentración del baño.

Cuadro 1. Balance de cromo [kg Cr/t piel]

<table>
<thead>
<tr>
<th>Cromo (uso / destino)</th>
<th>Convencional (a)</th>
<th>Buen Manejo (b) (c)</th>
<th>Alto Agotamiento (d)</th>
<th>Con Reciclado (e)</th>
<th>Recuperación por Precipitación (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ofertado</td>
<td>21.5</td>
<td>15.5</td>
<td>10.0</td>
<td>12.4 - 13.1</td>
<td>n.d.</td>
</tr>
<tr>
<td>En cuero y residuos de cuero</td>
<td>13.0</td>
<td>9.6</td>
<td>9.6</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>En aguas residuales después</td>
<td>7.5</td>
<td>5.2</td>
<td>0.1</td>
<td>2.8-3.5</td>
<td>0.6 (en la descarga total)</td>
</tr>
<tr>
<td>del curtido (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En aguas residuales del</td>
<td>1.0</td>
<td>0.7</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acabado húmedo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: CPTS en base a fuentes citadas en el documento.

n.d. = no disponible.
Como se observa en el cuadro anterior, las aguas residuales generadas en el curtido implementando tecnologías de alto agotamiento permiten reducir notablemente la concentración de cromo en el vertimiento, sin embargo, es necesario invertir tiempo y realizar mayores controles al proceso, lo que se traduce en retrasos en el proceso productivo. No obstante, la recuperación por precipitación de cromo a pesar de no alcanzar la reducción en el efluente que se alcanza con el alto agotamiento, permite una continuidad en el proceso evitando retrasos, considerando que la reducción en la concentración de cromo es también significativa. De igual manera, al aplicar un alto agotamiento, las concentraciones de cromo en el baño residual no se prestarían para ser reutilizados.

2.3.3.1 Reciclaje directo de los baños residuales del curtido al cromo

El reciclaje de los baños residuales de curtido al cromo es una práctica que ha adquirido importancia, en estos últimos tiempos, por las reducciones que se logra en el consumo de cromo y en la descarga de cromo en el efluente.

Los baños residuales a reciclar pueden provenir del curtido de la flor o de la crosta. Generalmente, estos baños se reciclan para el curtido de la crosta; pero también pueden usarse para curtir la flor. La eficiencia del reciclaje, esto es, la capacidad de poder asimilar el cromo contenido en el baño sin afectar la calidad del cuero, dependerá de la eficiencia del curtido, de la técnica de reciclaje empleada, de la calidad de la filtración, del volumen residual del baño recolectado, de la oferta de cromo y de la cantidad de materia orgánica y sales acumuladas. Estos parámetros obviamente hacen que el número de baños a reciclar, sea variable y deba ser establecido por el curtidor en base a criterios técnico–económicos. De acuerdo a la literatura, es posible reciclar estos baños hasta 10 veces antes de su descarga. (CPTS 2003).

Según J. Ludvik, citado por CPTS 2003, se puede llegar a un 90% de eficiencia en la fijación del cromo y, en casos de técnicas de reciclaje más sofisticadas, hasta 95-98%. Si el agotamiento del cromo, en el baño para el primer curtido (baño inicial), es mayor al 80%, debe estudiarse si es económicamente factible el reciclado directo de los baños residuales, principalmente, cuando la concentración de cromo en el baño residual es baja (Comisión Europea 2001 citada por CPTS 2003). Esto significa que, si se tienen altas eficiencias en la fijación del cromo, por ejemplo 90%, entonces el reciclado del 10% de cromo restante puede no ser factible; además, el impacto en la reducción de la carga contaminante no será substancial. Esto es, este método no permite complementarse con el de alto agotamiento ya que no es viable desde el punto de vista económico y técnico.

Entre los beneficios ambientales, se puede logra una reducción de un 20 a 25% en el consumo de cromo y en la descarga de cromo al efluente, en el consumo de sal y en la descarga de sal al efluente, así mismo se reduce el consumo de agua.
Cabe señalar que el reciclaje de los baños residuales de cromo no requiere el uso de reactivos químicos adicionales.

En cuanto a los beneficios económicos se puede lograr una reducción de los costos de producción por la disminución del consumo de sales de cromo, agua y sal común. Los costos de implementación de las operaciones de reciclaje son bajos y el costo de tratamiento de las aguas residuales.

2.3.3.2 Recuperación de cromo a través de su precipitación y re-disolución

Para iniciar la precipitación de cromo, los sólidos en suspensión, así como las grasas en suspensión, pueden ser removidos mediante la segregación de los efluentes y la separación de sólidos gruesos.

En algunos países, las curtiembres recuperan el cromo precipitado en forma de lodos para reprocesarlo y regresarle nuevamente al ciclo del curtido. Para llevar a cabo esta práctica, es necesario recordar que la precipitación del cromo es más eficiente cuando se efectúa en efluentes segregados que provienen del curtido (es decir, antes de ser mezclados con efluentes provenientes de otras operaciones).

2.3.3.3 Curtido con alto agotamiento de cromo

La operación de curtido se hace mediante la aplicación de sales básicas de cromo trivalentes. Estas sales pueden encontrarse en forma de combinaciones de cromo (es lo más común) ya preparadas que se venden en forma líquida o atomizada, como el sulfato monobásico de cromo, puede obtenerse a partir de dicromato y un reductor, o de alumbre de cromo y carbonato sódico como basificante. La fijación del cromo en la piel suele darse en concentraciones de entre 10 y 15% de sal de cromo; sin embargo, cuando la concentración aumenta el sulfato de cromo no puede disociarse adecuadamente y pierde efecto sobre la piel. La concentración de sales también es importante debido a que la falta de éstas puede conducir a un hinchamiento excesivo de la piel antes de alcanzarse el curtido esperado y afectar la fijación del cromo. Un exceso de sal también puede afectar la calidad de la piel. Para garantizar que la operación de curtido se haga adecuadamente es conveniente verificar y controlar los parámetros que influyen en su efectividad y eficiencia.

Las técnicas de curtido de alto agotamiento buscan aumentar la eficiencia mediante un control cuidadoso del pH, el volumen del baño, temperatura, tiempo y velocidad del tambor. Con ello se busca mejorar la fijación de cromo en la piel y reducir el residuo de este metal en el efluente. OEA 2006.
2.3.3.4 Aplicación de otros métodos de curtido

Según JOHN (1998), define varios métodos para el curtido de pieles de vacuno entre los cuales menciona:

- **Curtido al aluminio.**

Los más antiguos métodos de curtición con alumbre potasio simples, cloruro y sulfato de aluminio o la curtición Glacé son utilizados muy raramente ya que no da una verdadera curtición y son ligeramente lavables con agua. Aún así, la industria química ha producido curtientes de cloruro de aluminio altamente básicos que logran un efecto de curtición estable. Sin embargo, este producto tiene gran significado en el uso como precurtiente, recurtiente o combinantes curtientes, así como complejos curtientes mezclados de cromo – aluminio. En este orden de ideas, el curtido al aluminio no puede utilizarse como único producto si no que debe mezclarse con otros curtientes para dar al cuero propiedades de resistencia.

- **Curtido al circonio.**

Se utiliza principalmente el sulfato al circonio el cual produce cueros con corte transversal blanqueado. Posee un comportamiento químico análogo de curtientes al cromo y aluminio. Por motivo de la lenta entrega de ácido en comparación con curtido al cromo, los cueros deben neutralizarse más intensivamente y empleando más tiempo, para evitar defectos en la recurtición, tintura y engrase por insuficiente difusión o también por precipitaciones.

- **Curtido vegetal**

En otras épocas, el curtido se efectuaba sobre todo mediante el tratamiento con taninos extraídos de la corteza de ciertos árboles. Dichos materiales siguen utilizándose, aunque otros productos químicos y de curtido sintético reemplazaron a muchos de los taninos vegetales. Los taninos naturales pueden conferir un color deseable. El tiempo que se requiere para el curtido es mucho mayor con los productos vegetales que con los químicos. En el proceso, el ácido tánico y otros productos químicos utilizados precipitan el colágeno en el cuero crudo y se combinan con la proteína del pellejo para dar el producto conocido como cuero curtido. Aunado a esto, los altos costos de curtientes vegetales hacen que estos sean utilizados como recurtientes en el proceso de teñido.

- **Curtido al hierro.**

Por motivos económicos o en tiempos de escasez de cromo y, recientemente también a las leyes de protección ambiental referente a la eliminación de cromo, los químicos se han ocupado muchas veces con curticiones con sales de hierro. Según TONIGOLD et al (1990) citado por John (1998), nuevos conocimientos y resúmenes muestran que la curtición con hierro, como precurtición es muy adecuada para la producción de cueros libres de cromo. Pieles curtidas con sales de hierro poseen unas características de tacto parecidas a los cueros al cromo. Sin embargo, esta tecnología
requiere difundirse y mostrar más sus beneficios en comparación con el curtido al cromo.

2.3.4 Prácticas para la reducción de sulfuros y cal.

Según el CPTS 2003 y el CEPIS 1995, en el informe técnico sobre minimización de residuos en una curtiembre, el pelambre constituye la operación que genera la mayor parte de la contaminación en una curtiembre. La carga contaminante depende mucho del método empleado para el pelambre (método convencional, sin destrucción de pelo, pelambre enzimático o amínico, etc.) y de si las pieles han sido o no predescarnadas. Las técnicas más conocidas para reducir la carga contaminante de los efluentes generados en el pelambre son:

a. Control óptimo de las variables de operación;
b. Reciclaje de los baños residuales del pelambre;
c. Pelambre con recuperación de pelo (con cal, sulfuro ácido de sodio, pelambre, enzimático, etc.);
d. Valorización de los efluentes (filtración, oxidación de sulfuro, precipitación de proteínas).

2.3.4.1 Control óptimo de las variables del pelambre

Las variables más importantes del pelambre son el tiempo, la temperatura, el pH y la concentración de sulfuro, las cuales, además de la acción mecánica, son críticas para la calidad del cuero e influyen en el grado de destrucción del pelo, en el consumo de reactivos químicos (cal, sulfuro de sodio, aminas, enzimas), de agua y de energía, que en este caso depende del tiempo de rotación del fulón, así como la carga contaminante que se genera. Además, todos estos factores influyen a la calidad del cuero.

2.3.4.2 Reciclaje de los baños residuales del pelambre y de sus lavados

Para el CEPIS 4, la reutilización de los baños de depilado de la piel vacuna puede efectuarse por dos caminos: el de la recirculación total, o por recirculación parcial de dichos licores.

a. La recirculación total involucra el reúso directo del licor sin separación de barros (Pelos sin degradar, cal, etc.) y grasas, con un reajuste de la cantidad de sulfuro de sodio y cal, y reposición del agua consumida. Con este sistema cabría esperar que las fluctuaciones en la concentración de aminas, sales y proteínas solubilizadas pudieran provocar variaciones en la turgencia, hinchamiento y apertura fibrosa de la piel, así como también problemas de manchas ante un eventual enriquecimiento del licor en materias grasas.
b. La recirculación parcial, en la que se repone también sulfuro, cal y agua, se distinguen dos variantes. La primera involucra separación total de barros del licor previo a su reúso en cada ciclo, separación que se puede efectuar por centrifugación, por filtración hidrodinámica o por ultrafiltración.

Esta alternativa pretende separar proteínas y eliminar sulfuro residual, con recuperación o no de ambos productos en forma previa a cada ciclo. Estas dos variantes pueden realizarse independientemente o combinarse, cabe agregar que la separación total de los barros exhibe dificultades, principalmente de índole económica. El costo del equipo y aquel operativo en el caso de centrifugación es muy elevado. La filtración hidrodinámica propuesta recientemente por Simoncini tomado del CEPIS ⁴ es atractiva, pero hay que efectuar una inversión inicial importante. La ultracentrifugación se halla aún en fase experimental. En cuanto a la precipitación de proteínas con recuperación de sulfuro en cada uno de los ciclos, si bien de interés, requiere instalaciones especiales y un manejo cuidadoso del proceso, puesto que se forma el sumamente tóxico gas sulfhidrónico.

Con respecto al número de ciclos a efectuarse en una recirculación, la literatura exhibe resultados en escala de laboratorio que demuestran que al cabo de 10 o más ciclos (un número mayor cuanto más elevado es el porcentaje de recuperación del baño) se estabilizan las características del licor de depilado.

2.3.4.3 Pelambre enzimático

Para Frendrup 1999 citado por CPTS 2003, La combinación de enzimas (proteasas y queratinazas) con sulfuro puede ser usada para remover más eficientemente el pelo. Sin embargo, el pelo debe ser removido constantemente del baño para evitar su destrucción. Algunas curtiembres no tienen la suficiente confianza o capacidad para usar este método, debido al daño que podrían ocasionar las enzimas a la piel, por deficiencias o por ausencia de controles adecuados. Con este método las curtiembres que lo utilizan, han comprobado que el consumo y descarga de sulfuro se reduce, así como se reduce la generación de malos olores. Empero, es mayor el consumo de agua, debido al enjuague adicional requerido para eliminar las enzimas, además de necesitar de un mayor control de las variables de operación. No obstante, se han desarrollado nuevas enzimas que se inactivan a las 12 horas y no se necesitan lavados adicionales para eliminarlas (ep3/Bolivia 1996, citado por CPTS 2003). Los resultados dependen mucho del manejo del proceso.

La reducción de la contaminación es de alrededor del 40% en DQO y del 70% en sulfuro. Se debe considerar que el tratamiento de los efluentes puede ser más complicado dado que, en algunos casos, se desconoce la naturaleza de las enzimas. Sin embargo, de acuerdo al reporte de la Comisión Europea (2001), citada por CPTS 2003, el uso de enzimas, por ejemplo en pelambre, puede reducir la contaminación del efluente, debido a que las enzimas no son persistentes y pueden ser fácilmente inactivadas y biodegradadas. El pelambre enzimático es un proceso más costoso, pero esto puede compensarse con la reducción del consumo de sulfuro. Por lo tanto, el cambio al pelambre enzimático debe realizarse solamente después de llevar a cabo un estudio
detallado que tome en consideración las ventajas y desventajas que conlleva este cambio de proceso.

2.3.4.4 Pelambre amínico

Son muy pocas las empresas que usan este método. Sólo algunas lo utilizan y con éxito, logrando una buena calidad del producto, pero no se dispone de una evaluación completa de otros factores como salud ocupacional y tratamiento de efluentes, principalmente. En Estados Unidos una metodología basada en el uso de sulfato de dimetilamina e hidróxido de sodio fue usada, pero por el riesgo de la generación de nitroso aminas cancerígenas este método no está en uso. Antes de iniciar el cambio a este tipo de pelambre, los proveedores deben proporcionar la suficiente información sobre sus riesgos. En la operación, además, debe cuidarse la generación de amoníaco, que puede resultar nocivo para los trabajadores. Los malos olores son otro problema. (JOHN 1998).

2.3.4.5 Aplicación de otros tipos de pelambre.

Según JOHN 1998, define varios métodos para el pelambrado de pieles de vacuno entre los cuales menciona:

- Pelambre sólo con hidróxido cálcico.

Por sí solo, no tiene un poder depilante acusado e incluso puede comportarse como inmunizador de pelo, por lo que se usa como agente auxiliar junto con productos depilantes a fin de provocar por su baja solubilidad (1,4 gr/l) un efecto tampón de pH 11,5-12 zona adecuada para el depilado. Así mismo por su efecto liotrópico especial limita el hinchamiento turgente que otros productos producen en la piel. Su escasa solubilidad puede provocar problemas de abrasión sobre las pieles y así mismo irregularidades en su efecto por fenómenos de decantación.

- Pelambre solo con sulfuro.

En su mayoría usado para endurecimientos naturales en pieles de cabras, para fabricación de cueros cabritillas de poros delicados y poca elasticidad, también para pieles de becerro o pieles de bovino pequeño. Aplicable para el rápido aflojamiento del pelo. Genera escaso debilitamiento de la piel y destruye el pelo.

- Pelambre con sulfuro e hidróxido cálcico.

Es el procedimiento todavía más utilizado para la fabricación de cuero ya que permiten un mejor hinchamiento de la piel y una extracción del pelo sin destruirlo o dañarlo. Concentraciones mayores al 0.2% de sulfuro de sodio dañan el pelo, concentraciones mayores a 0.5 % de sulfuro de sodio destruyen el pelo.
- Pelambre con sulfhidrato e hidróxido cálcico.

Soluciones puras de NaSH no ocasionan aflojamiento del pelo. Sólo con la adición de Ca (OH)$_2$ o NaOH se logra un resultado parecido al logrado en el pelambre con sulfuro. Este método ocasiona una ligera hinchazón.

- Pelambre con sulfuro / sulfhidrato / hidróxido cálcico.

Es uno de los procedimientos cada vez más empleados con éxito por la parcial sustitución del sulfuro por el sulfhidrato. Se reduce un exagerado hinchamiento de la piel, pero solo cuando la parte de NaSH es superior.

- Pelambre con compuestos sulfhidrilo orgánicas.

La mayoría para aplicaciones exitosas con hidroximercaptanes o tioalcoholes y de ellas las 2-mercaptoetanol como sal alcalina. Ellas poseen una gran rapidez de oxidación y por ello no contaminan con tóxicos las aguas residuales y plantas de tratamiento. Para una aplicación sola, es necesaria una rápida mezcla en el pelambre. Por motivos de su alto precio se usa la mayoría con pequeñas partes de sulfuro. Este tipo de pelambre produce todavía una más leve hinchazón que con el sulfhidrato y con ello un buen rendimiento de la superficie.

- Pelambre por oxidación.

Con este tipo de pelambre se generan cueros muy firmes poco maleables por lo que no se impulsó este procedimiento en la práctica.
3 METODOLOGÍA

Para la elaboración de la presente monografía, se utilizaron algunas metodologías de investigación, las cuales se describe a continuación utilizando.

3.1 Método descriptivo

Uno de los métodos utilizados para realizar el presente trabajo, es la investigación descriptiva, ya que se busca conocer las situaciones en el sector curtidor que permitan implementar tecnologías limpias para reducir los impactos negativos sobre el recurso hídrico, y que a su vez permitan optimizar los costos de producción debido al uso de residuos, en este caso, líquidos. Las etapas a seguir son las siguientes:

- Delimitación del problema de contaminación asociado a las curtiembres. Identificación de fuentes para obtención de información y datos.
- Verificación de la validez de las técnicas empleadas para la recolección de datos.
- Priorización de recursos naturales afectados por la actividad curtidora.
- Priorización de actividades según el grado de significancia de los impactos ambientales negativos sobre el recurso hídrico.
- Se determinaron y describieron los impactos ambientales negativos generados por la actividad curtidora sobre el recurso hídrico.
- Se hizo una identificación de las alternativas existentes para reducir el impacto ambiental negativo sobre el recurso hídrico, teniendo en cuenta las ventajas y desventajas de cada alternativa.
- Descripción, análisis e interpretación los datos obtenidos, en términos claros y precisos.

Entre los tipos de investigación descriptiva utilizados, se desarrolló un estudio de interrelación, específicamente en estudio de casos, en donde se realiza una investigación intensiva de casos exitosos en producción más limpia en el sector curtidor en el ámbito nacional e internacional. Para ello se recoge información acerca de tecnologías existentes en producción limpia aplicada a curtiembres, beneficios ambientales y económicos y requerimientos técnicos, así como las
experiencias, casos exitosos, condiciones pasadas y las variables ambientales que ayudan a determinar las características específicas, fortalezas y debilidades de la tecnología finalmente evaluada. Así, el objetivo de los estudios de casos consiste en realizar una indagación a profundidad dentro de un marco de referencia; las dimensiones o aspectos de dicho marco dependen de la naturaleza del caso estudiado.

En este orden de ideas, para concluir el análisis descriptivo y como resultado del mismo, se elaboró un diagnostico ambiental inicial del sector curtidor, con el fin de identificar los aspectos e impactos ambientales generados por dicha actividad, describirlos y priorizar el recurso hídrico como el que en mayor grado es impactado negativamente. De igual manera, se establecieron las alternativas de producción más limpia aplicables identificando características positivas y negativas de cada alternativa, para finalmente evaluar las que mayores beneficios prestan al sistema productivo y al medio ambiente.

3.2 Investigación evaluativa

En orden cronológico, el presente trabajo se desarrolla iniciando con un análisis situacional, seguido por una evaluación de las alternativas de producción más limpia para gestionar las aguas residuales en el sector. Dicha evaluación se hace por medio de una recopilación y análisis de las alternativas existentes, identificando los criterios que generan beneficios ambientales y económicos, llegando solo hasta una descripción de cada una para identificar sus beneficios y limitaciones. Finalmente, el trabajo se limita a evaluar las tecnologías de recirculación de baños residuales de pelambre y curtido, pues son las que mas presentan atractivo a los empresarios por los beneficios económicos que ofrecen al sector curtidor, obteniendo finalmente beneficios ambientales por la reducción de la contaminación.

3.3 Investigación propositiva

Dado que ya se ha hecho un diagnostico inicial y una evaluación, es necesario, finalmente, proponer o al menos guiar a los administradores para que seleccionen una alternativa económicamente viable y ambientalmente sostenible. Es decir que ofrezca atractivos económicos para el sistema productivo y permita reducir los impactos negativos significativos sobre el recurso agua. Para ello, se hizo una búsqueda documental por todos los medios existentes para identificar casos exitosos, descripción de las tecnologías, requerimientos técnicos, de infraestructura y costos de inversión, así como la cuantificación de los beneficios ambientales y económicos y los ahorros obtenidos por la implementación de las
tecnologías evaluadas, tanto en el nivel nacional e internacional. Finalmente, se definen unas conclusiones y recomendaciones obtenidas del análisis documental.

Así mismo, para la recopilación y selección de la información para la estructuración del documento final fue la implementación de varias técnicas de investigación, entre las cuales están:

Grafico 2. Proceso metodológico.

Grafico 2. Proceso metodológico.
Para la elaboración del documento se procedió según los objetivos planteados de la siguiente manera:

Gráfico 3. Proceso por objetivos.

1. Identificar y evaluar las principales tecnologías aplicadas en sistemas de recirculación de aguas residuales de pelambre y curtido

- Análisis de la situación del sistema ambiental afectado por las actividades generadas en las curtientes
- Verificación de los paquetes tecnológicos ofrecidos en el mercado que demuestren eficiencia o limitaciones en los procesos
- Identificar y evaluar las principales tecnologías aplicadas en sistemas de recirculación de aguas residuales de pelambre y curtido
- Costos asociados al acondicionado e infraestructura que requiere la instalación de la tecnología, necesidades de recurso humano y protocolos de análisis de laboratorio
- Procedimiento de operación
- Reducción de los impactos ambientales negativos generados sobre el medio ambiente por uso de tecnologías de recirculación de aguas residuales.
2. Verificar los posibles beneficios económicos que se pueden lograr con la implementación de sistemas de recirculación de efluentes líquidos

- Evaluación de los beneficios por la reducción de los costos de producción al recuperar y reutilizar la materia prima de los vertimientos líquidos previamente separados
- Análisis de reducción en costos por pagos de tasas retributivas y compensatorias
- Identificar los ahorros por la disminución en el consumo de agua
- Identificar beneficios económicos generados por la reducción de peligrosidad de los lodos con contenidos de materiales peligrosos (cromo y sulfuro)
3.4 *Procedimiento para construcción del documento*

Grafico 4. Procedimiento para construir el documento.

Causas → Identificación del problema → Consecuencias

- Estado actual del sector curtiembre y su impacto medioambiental
 → Efectos negativos

- Procesos unitarios
 → Agresividad ambiental
 → Efectos sobre los recursos naturales
 → Pérdidas en descargas por productos no fijados (caso Uruguay)

- Análisis de tecnologías de producción más limpias
 → Conceptos
 - Reducción en el consumo de productos químicos
 - Reducción en la concentración de parámetros tóxicos
 → Efectividad y aplicabilidad (1)
 - Selección de tecnologías
 - Requerimientos de infraestructura, diseño, especificaciones técnicas, beneficios técnicos ambientales, métodos de operación, fórmulas para el cálculo de los productos no fijados.

- Análisis Técnico
- Análisis Económico (2)
 - Costos de la tecnología, cotizaciones, costos de las cantidades de los productos en los efluentes, beneficios económicos, ahorros generados, periodo de recuperación de la inversión (PR) y la rentabilidad de la inversión

(1) criterios que tienen en cuenta desde la disponibilidad de materiales hasta la disponibilidad de empresas asesoras en la región para su implementación, en lo que se concluyó que las tecnologías a aplicar eran las que ofrecían opciones de recuperación y reuso.

(2) Se tomaron de un estudio realizado por Weiss et. al 2001. algunos datos sobre el costo de infraestructura para recuperar y recircular los licores de pelambre, los cuales estaban en dólares y se pasaron a pesos colombianos con un incremento del 0.05% año desde el 2002 hasta el 2008. Para el costo de la infraestructura de la recuperación de los licores de curtido, se tomo una cotización hecha a Curtimbres Sierra Perez por el Centro Nacional de Producción Más Limpia (CNPML) en el año 2006.
3.5 **El enfoque de producción más limpia**

Se hizo con base en la pirámide invertida, en donde se determina que en la gestión ambiental empresarial, la mayor parte de los efectos negativos sobre el medio ambiente se deben abordar desde la prevención, optimizando el uso de los recursos; en segundo lugar, en aquellos casos en que no se pudo implementar acciones preventivas, se requiere analizar métodos de Reuso, Reciclaje y Recuperación (aplicables al presente trabajo). De esto, lo que no se pudo reusar, es necesario llevarlo a tratamiento, después de haber hecho el análisis de todas las alternativas. Finalmente se considera como última opción la disposición final.
4 PRESENTACIÓN DE RESULTADOS

4.1 Evaluación de las tecnologías disponibles para pelambre.

A pesar de que existen diferentes técnicas de pelambrado para reducir el consumo de sulfuro y su descarga en los baños, la mayoría no son aplicables debido a que no ofrecen los requerimientos de la piel en cuanto a hinchazón y depilado, o porque resultan ser más toxicas que el efluente generado en el pelambre convencional, al mismo tiempo que los controles a realizar deben ser muy rigurosos que puedan prolongar el proceso productivo. Aunado a esto, los costos de muchos productos alternativos son excesivos para el procesamiento de la piel. Por lo tanto presenta mayor viabilidad hacer una recirculación de las aguas residuales de pelambre como alternativa para reducir el consumo de sulfuro y las concentraciones del mismo producto en las aguas residuales.

4.1.1 Recirculación de las aguas residuales de pelambre.

4.1.1.1 Descripción del diseño de la tecnología.

Los baños residuales del pelambre son ricos en sulfuro y cal, por lo que son aptos para su reuso en un nuevo ciclo. Sin embargo, los sólidos suspendidos y parte de los sólidos disueltos pueden crear problemas en el reciclaje. Si bien los sólidos disueltos no son fáciles de eliminar, los sólidos suspendidos pueden separarse con mayor facilidad. Algunas plantas poseen tanques de sedimentación o centrífugas para separar sólidos en suspensión. Sin embargo, es posible lograr el mismo resultado mediante el uso de técnicas más sencillas.

El método sugerido para el reciclaje de los baños residuales es el siguiente.

i. El primer baño se prepara utilizando la fórmula o receta rutinaria de la curtiembre.

ii. Al concluir la operación de pelambre, el agua residual debe recuperarse por filtración, haciéndola pasar por un tamiz inclinado, a fin de que los sólidos retenidos sean arrastrados hacia la base del tamiz por el líquido en movimiento, y éste pueda pasar con menor obstrucción a través de la tela usada como filtro. La tela puede ser de nylon, ya que este material es resistente en medio básico. El agua de pelambre filtrada se almacena en un tanque recolector. Cabe remarcar que lo ideal es separar el pelo del agua de pelambre tan pronto como haya sido extraído de la piel. Lo óptimo es filtrar el baño durante la operación de pelambre, una vez que se ha verificado que una gran parte de los pelos han sido extraídos.
iii. Al agua de pelambre filtrada, contenida en el tanque recolector, se le debe añadir la cantidad de agua necesaria para reponer el volumen inicial del baño de pelambre. Se estima que, en cada ciclo de pelambre, se pierde entre el 40 y 60% del agua (porcentaje basado en el peso de las pieles que ingresan al pelambre). La pérdida es debida a los derrames, a la evaporación y a la absorción de agua en las pieles (hinchamiento).

Si el pelambre se realiza en forma convencional y las pieles se procesan sin salarlas se puede utilizar la parte más sucia de las aguas del lavado de pelambre del ciclo anterior en lugar de agua fresca para reponer el volumen inicial del baño de pelambre. La parte más limpia, que es la del último enjuague, puede reservarse para iniciar el lavado de la actual operación de pelambre.

iv. En base al análisis de una muestra tomada de la mezcla final de aguas contenida en el tanque recolector, se debe calcular las cantidades de reactivos químicos necesarias para reponer las concentraciones originales del baño de pelambre. Este análisis será necesario hasta que la curtiembre haya establecido las condiciones optimizadas para realizar el reciclaje en forma rutinaria.

Es recomendable realizar un control de los parámetros más importantes de la operación, como pH, sulfuro, densidad (° Baumé), temperatura y otros.

v. La mezcla final de aguas de pelambre, se bombea desde el tanque recolector al fulón para depilar una nueva partida de pieles. Las cantidades calculadas de sulfuro y cal, necesarias para reconstituir el baño de pelambre, se agregan directamente al fulón (y no al tanque recolector).

vi. Al término de la operación de pelambre, se vuelve a recuperar el agua residual de pelambre, repitiéndose el ciclo (pasos a. – e.) tantas veces sea posible. Si la concentración de la sal aumenta en el pelambre por el reciclaje, puede inhibirse el hinchamiento. Para prevenir el aumento de la sal debe realizarse un buen lavado de las pieles saladas o puede aplicarse el método de pelambre sin destrucción de pelo con cal, donde en cada reciclo se adiciona agua fresca en el paso del acondicionamiento de la piel.

Un baño, o parte de éste, que ya no pueda ser reciclado y tenga que ser descartado, debe ser previamente tratado para eliminar el sulfuro, por oxidación, antes de su descarga. El reciclaje de las aguas residuales del pelambre, es una técnica empleada en Europa desde hace más de 10 años. Algunas curtiembres en el mundo reciclan sus baños residuales, en forma rutinaria, hasta 10 veces. Una de ellas ha logrado reciclarlos en forma indefinida. (CPTS 2003).

La aplicación de esta medida requiere de análisis de laboratorio, de un control de las operaciones y de un buen entrenamiento del personal. La calidad del cuero puede ser afectada si la operación no está controlada, debido a que la eficiencia del pelambre se reduce por la presencia de sustancias orgánicas y sales disueltas en las aguas recicladas.

De igual manera, la OEA 2006 concluye que con este método pueden obtenerse ahorros de sulfuros de entre 20 y 50%, y de cal de entre 40 y 60% cuando se hace en forma adecuada. El gráfico 5. Muestra la forma de hacer la recirculación.
Una de las limitaciones al número de veces que puede reusarse el baño de pelambre tiene que ver con la concentración cada vez mayor de sales en él y la posible saponificación. Una concentración muy alta de sales puede prevenir el hinchamiento de las pieles, pero esta puede contrarrestarse con la reposición de agua limpia. Como puede observarse en la figura anterior, el sistema puede incluir un tanque intermedio de separación, con capacidad ligeramente superior al volumen del baño, que permita la sedimentación de los sólidos suspendidos y posteriormente la separación de grasas. La inclinación del fondo del tanque de separación permitirá la limpieza de los sedimentos en una forma más fácil y efectiva. Una vez hecha la separación, las aguas pueden bombearse a un tanque elevado que permita regresar el baño el tambor por medio de gravedad. Esta variación puede ser aprovechada cuando la disponibilidad de espacio no permite hacerlo de otra manera. En esta modalidad el tanque de almacenamiento puede construirse con materiales distintos al concreto.

4.1.1.2 Entradas y salidas de la operación unitaria.

El punto crítico en el proceso de pelambre es el depilado, ya que es la actividad donde se elimina la epidermis de la piel y se extrae el pelo desde la raíz, por lo que se requiere, como se mencionó anteriormente, Sulfuro de Sodio, Cal y agua, elementos más conocidos por las características que ofrece a la piel durante y después del depilado.

En este orden de ideas los productos esenciales son Sulfuro de Sodio, Hidróxido Cálcico y agua, cuyas necesidades en el proceso son las siguientes (entradas).
11 kg de Sulfuro de Sodio por tonelada de pieles frescas
10 kg de Cal por tonelada de pieles frescas
437.5 litros de agua por tonelada de piel fresca

En las salidas se obtienen los siguientes datos:

8.7 kg de sulfuro por tonelada de piel fresca
97 kg de Solidos suspendidos por tonelada de piel fresca
122 kg de DQO por tonelada de piel fresca
45 kg de DBO por tonelada de piel fresca

Para el caso del pelambrado promedio diario de 300 pieles con un peso de 11550 kilogramos (teniendo en cuenta que este proceso dura 24 horas), se descargan aproximadamente 2065 kg de Sulfuro de Sodio al año a los cuerpos de agua, lo que amerita una recuperación de este producto para ser reutilizado. (Datos suministrados por curtimbrres sierra perez 2008)

4.1.1.3 Cálculos a realizar para determinar la cantidad de sulfuro de sodio en un baño residual de pelambrado.

A continuación se define la fórmula para hallar la cantidad equivalente de sal comercial de Sulfuro de Sodio (Na₂S) contenido en un baño residual de pelambre de volumen conocido, a partir de la determinación de la concentración de Sulfuro (S²⁻) en laboratorio de dicho baño.

Para expresar las ecuaciones que siguen se definen los siguientes términos:

V= Volumen de la solución en m³.

[S²⁻]= Concentración de Sulfuro en el baño residual expresado en kg de S²⁻/ m³ de solución del baño.

SC= Sal Comercial

PM= Peso Molecular

PA= Peso Atómico

Fórmula para hallar la SC de Na₂S en el baño residual.

Cantidad de Na₂S= \([S²⁻]\times V \times (100\% / \% Pureza SC de Na₂S) \times ([PM \ Na₂S / PA S²⁻])

Según datos suministrados por curtimbrres sierra perez en el año 2008, la concentración de sulfuro promedio en los efluentes residuales de pelambre es de 569 mg/L,
generándose una concentración de 0.55 kg por m3 de agua residual. En este orden de ideas el cálculo es el siguiente:

Na$_2$S = [0.55 kg/m3] x 1 m3 x (100% / 60%) x [(78 g/mol / 32 g/mol)]

La cantidad de Sulfuro de Sodio en el efluente es de 2.23 kg. En el procesamiento de 300 pieles con un peso de 11550 kg y una descarga de 14.5 m3 de baño residual. Es de resaltar que esta cantidad de agua es la que se va a recircular en un próximo lote de pieles, reponiendo la diferencia con la formulación.

4.1.1.4 Determinación de la factibilidad técnica

En este punto es necesario analizar si hay disponibilidad de materiales, equipos y maquinaria para la implementación de la tecnología. Como se ha venido verificando, se cuenta con los materiales requeridos principalmente para la filtración del pelo, desarrollo de la infraestructura en general y para los análisis de laboratorio. No se requiere de materiales adicionales ya que en la recirculación solo se efectúan tratamientos físicos en la optimización del baño residual. En cuanto a los equipos, se cuenta con aquellos indispensables para control de pH y concentración de sales. Por no ser una tecnología compleja no requiere de equipos o maquinaria especial. En conclusión, la tecnología es aplicable puesto que existen los recursos humanos, técnicos y económicos necesarios para su implementación. De no existir los recursos en la empresa, existen entidades como el Centro Nacional de Producción Más Limpia (CNPML), Colciencias, Universidades, SINA, Corporaciones Autónomas, entre otras, que financian proyectos de este tipo, lo que brinda mayores facilidades en su aplicación en empresas grandes.

De otra parte, en Colombia, la técnica más utilizada es el pelambrado con cal y sulfuro, ya que es la que mejores características ofrece a la piel y garantiza una extracción del pelo sin destruirlo, así como una mejor hinchazón. No obstante, principalmente en Europa, se ha difundido y se ha implementado con éxito este método de pelambrado con recirculación de los baños residuales. (CPTS 2003).

- **Requerimientos de infraestructura.**

La infraestructura necesaria para implementar la tecnología en el procesamiento de 1 tonelada de pieles es la siguiente:

1 tanque de 4 m3 que puede ser en concreto o en fibra de vidrio para almacenar el baño residual para el posterior filtrado del pelo.

1 tanque de 4 m3 para el almacenamiento del baño libre de pelo y filtrado de otros sólidos.

1 tanque de 1.5 m3 para almacenar el pelo filtrado.
1 tanque de 5 m³ para almacenar el baño filtrado por segunda vez, para toma de muestra y almacenamiento temporal.
1 filtro de pelo.

2 bombas de 3 HP

2 tamices de 1 m² cada uno en malla de nylon o acero inoxidable.

- **Requerimientos de instrumentos y materiales para laboratorio.**

Para realizar los análisis de laboratorio se requiere de los siguientes elementos:

2 matraces de 500 ml
1 bureta de 50 ml
3 frascos erlenmeyer de 250 ml cada uno
Pipetas de 1, 5 y 10 ml
Papel filtro
Acido clorhídrico concentrado (HCl) 6 N
Solución de almidón en agua
Agua destilada
Yoduro de potasio (KI)
Yodo I₂
Tiosulfato de sodio Na₂S₂O₃

- **Reducciones en la concentración de contaminantes**

La filtración de las aguas de pelambre reduce la carga orgánica contenida en el efluente de la curtiembre. Cada 1,000 kg de pieles frescas generan 150 kg de residuos o lodos que, en su mayor parte, quedan atrapados en el filtro. Los lodos contienen, además de materia orgánica (p.e. pelo, jabones por la saponificación de las grasas), materia inorgánica proveniente de los reactivos químicos adicionados (p.e cal insoluble, carbonato de calcio). Al reciclar los efluentes, se diminuye entre el 50 y el 70% de los sulfuros contenidos en el efluente.

Cuadro 2. Reducción de descargas en el efluente total por reciclaje de los baños agotados de pelambre

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Porcentaje de reducción (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQO</td>
<td>15 – 40</td>
</tr>
<tr>
<td>Nitrógeno Total Kjeldahl</td>
<td>15 – 40</td>
</tr>
<tr>
<td>Sulfuro</td>
<td>50 – 70</td>
</tr>
<tr>
<td>Sólidos Totales</td>
<td>50</td>
</tr>
<tr>
<td>Agua</td>
<td>70</td>
</tr>
</tbody>
</table>

FUENTE: CPTS TOMADO DE Best Available Techniques for the tanning of hides and skins – Comisión Europea
No obstante, el CNPML 2004 establece que en ribera la carga de SST se reduce desde 97 kg por tonelada en un pelambre convencional hasta 26 kg/ton, la DBO se reduce de 45 kg/ton a 27 kg/ton, y los sulfuros se reducen de 8.7 kg/ton a 0.7 kg/ton.

Así pues, en concordancia con la tabla anterior, la concentración de sulfuro se reduce significativamente, de lo que se puede argüir que la tecnología es eficiente desde un punto de vista técnico ambiental.

4.2 Evaluación de las tecnologías disponibles para curtido.

Según lo descrito en páginas anteriores, se puede evidenciar que todas las técnicas para el curtido de pieles apuntan al uso de sales de cromo pues según John 1998, es el método que permite producir la mayoría de tipos de cuero, ya que ofrece una gran cantidad de posibilidades de recurtición y por las características que ofrece al cuero, es imposible evitar su uso.

Muchas de las técnicas que buscan la disminución del cromo en los efluentes requieren de controles operacionales minuciosos, alargando el tiempo del proceso, generando consumos innecesarios de energía por la parada y arranque de rotación de los bombos dado el control continuo sobre el pH, temperatura, concentración, etc., además, requieren de conocimientos especializados por parte del operario, cuando en realidad son personas que si mucho llegan a cursar hasta bachillerato. Así mismo, muchas de estas técnicas requieren de ensayos previos al proceso para dar información sobre mínimas necesidades de agua a adicionar, que, de lo contrario afecta la calidad de la piel, lo que conlleva a alargar el tiempo de producción.

Otras técnicas generan sobre costos por el tipo de curtientes, o no han sido analizadas profundamente de tal forma que den al empresario seguridad en el uso de estos, pues no se evidencia la calidad del cuero procesado por estos métodos.

En las tecnologías de recirculación directa también es necesario hacer controles que prolongarían el tiempo de producción, ya que se debe verificar la calidad de la filtración de los baños, concentración de sales por acumulación progresiva, oferta de cromo en los baños, cantidad de materia orgánica acumulada, etc. Sin embargo, todas las técnicas permiten reducir el consumo de cromo y por ende se disminuye la concentración del mismo producto en el efluente, pero no garantizan una recuperación del mismo.

La técnica de recuperación del cromo, precipitación y disolución permite evitar sobre - controles, garantiza hacer una curtición normal de la piel y una recuperación del cromo residual.

A pesar de que el método de alto agotamiento permita disminuir el consumo de cromo y reducir la concentración del mismo en el efluente; requiere de tiempos prolongados para terminar el proceso, sobre – controles, y no permite la recuperación de los baños para su recirculación (sea directa o indirecta) lo que en algún momento podría ocasionar descargas de aguas residuales con concentraciones altas de cromo.
Uno de los aspectos negativos de la tecnología es que no es viable su implementación en pequeñas empresas, debido a que no poseen los espacios para instalar la infraestructura o por la baja producción que generan. Sin embargo, lo que más se recomienda para este tipo de industrias, es que si se unen varias de ellas, teniendo en cuenta que estas estén ubicadas en un mismo sector (como ocurre con las curtiembres del sector de La María en Calarca), puedan unir los baños residuales de curtido generados en cada una en un colector central e implementar la tecnología, y podrían acceder más fácilmente a recursos de SINA (financiación a proyectos de producción más limpia) para implementar la tecnología de forma conjunta.

4.2.1 Recuperación y redisolución de los baños de curtido para recirculación

4.2.1.1 Descripción del diseño de la tecnología.

El método más empleado, a nivel mundial, para la recuperación de cromo y su posterior reuso, consiste en precipitar el cromo de los baños residuales de curtido, en medio alcalino controlado. Una vez separado y lavado el precipitado, éste puede ser redispersado, por ejemplo, con ácido sulfúrico para su reuso en un nuevo ciclo de curtido, o darle el tratamiento necesario según el tipo de uso que se le quiera dar en cualquier otra actividad.

El hidróxido de cromo es soluble tanto en medio básico como en medio ácido. Como se sabe el cromo empieza a precipitar a partir de pH 4.5.

Por otro lado según las experiencias del CPTS 2003, a pesar de que se encontró que la precipitación del cromo a pH 8.5 da buenos resultados, puede también lograrse una buena precipitación con soluciones de curtido a pH 12.7. Probablemente los otros compuestos presentes en los baños de curtido tengan influencia en estos resultados por ello se debe investigar en mayor profundidad esta situación.

Generalmente, los baños residuales de curtido al cromo convencional son los que se emplean en la recuperación de cromo, y no así los baños residuales de curtido de alto agotamiento debido al poco contenido de cromo que poseen.

La recuperación de cromo es una técnica que requiere de un control operativo riguroso, ya que la cantidad de impurezas y reactivos presentes puede aumentar y afectar negativamente la calidad del cuero, en caso de que éste sea utilizado nuevamente en el curtido.
Las impurezas del baño de curtido son de dos tipos. Una de ellas son partículas sólidas, del cuero las cuales deben ser eliminadas mediante filtración antes de la precipitación. El otro tipo de impurezas son sustancias orgánicas disueltas, provenientes de los complejos de cromo usados en algunos sistemas de alto agotamiento o de la adición de agentes engrasantes al baño de curtido. La mejor manera de eliminar estas sustancias orgánicas es elevando la temperatura durante la re-dissolución del precipitado. En la práctica se debe eliminar primero el agua del precipitado, tanto como sea posible, y luego disolverlo en ácido sulfúrico concentrado (W. Frendrup Citado por CPTS 2003).

Debido al uso de bases y otros reactivos, utilizados en la precipitación y recuperación de cromo, se incrementa la cantidad de sales descargadas al efluente.

La implementación de la medida debe tener precaución en: Costos de inversión y operación, Descarga de sales, Uso de reactivos químicos adicionales, presencia de algunas diferencias en el color del cuero (si se va a reutilizar el cromo en curtido).

• **Precipitación del cromo**

Para la precipitación del cromo, se debe proceder de la siguiente manera:

i. Remover las grasas sobrenadantes y filtrar los baños residuales antes de procesarlos.

ii. Seleccionar el agente precipitante del cromo. Cuanto más insoluble sea el agente precipitante (de carácter básico) la velocidad de suministro de oxidrilos será más lenta, lo que conduce a la formación de un precipitado más grueso y, por lo tanto, más fácilmente separable, aunque, obviamente, se requiere de mayor tiempo para la precipitación total del cromo. Según los criterios antes mencionados, por su poca solubilidad, el agente precipitante ideal sería el óxido de magnesio (MgO), seguido del hidróxido de calcio (Ca(OH)₂), el carbonato de sodio (Na₂CO₃) y el hidróxido de sodio (NaOH) según las siguientes reacciones:

\[
3\text{MgO} + 3\text{H}_2\text{O} + 2\text{Cr}^{3+} \rightarrow 3\text{Mg(OH)}_2 + 2\text{Cr}^{3+} \rightarrow 2\text{Cr(OH)}_3 + 3\text{Mg}^{2+}
\]

\[
3\text{Ca(OH)}_2 + 2\text{Cr}^{3+} \rightarrow 3\text{Ca}^{2+} + 6\text{OH}^- + 2\text{Cr}^{3+} \rightarrow 2\text{Cr(OH)}_3 + 3\text{Ca}^{2+}
\]

\[
3\text{Na}_2\text{CO}_3 + 3\text{H}_2\text{O} + \text{Cr}^{3+} \rightarrow 6\text{Na}^+ + 3\text{HCO}_3^- + 3\text{OH}^- + \text{Cr}^{3+} \rightarrow 6\text{Na}^+ + 3\text{HCO}_3^- + \text{Cr(OH)}_2
\]

\[
3\text{NaOH} + \text{Cr}^{3+} \rightarrow 3\text{Na}^+ + 3\text{OH}^- + \text{Cr}^{3+} \rightarrow 3\text{Na}^+ + \text{Cr(OH)}_3
\]

Para seleccionar el reactivo precipitante debe considerarse, además, que:

- La adición de hidróxido de sodio o hidróxido de calcio, eleva rápidamente el pH, lo que ocasiona una rápida precipitación del hidróxido de cromo y la formación de un lodo voluminoso. Para separar los sólidos del agua ocluida en el lodo, se necesita un filtro prensa. Esta precipitación puede facilitarse y hacerse más exhaustiva con agentes
floculantes (polielectrolitos), con la ventaja de que la separación del precipitado solo requiere de un simple drenado del agua.

- En caso de emplear hidróxido de sodio, éste debe ser disuelto en la menor cantidad de agua posible y añadido al baño residual de curtido lentamente y con agitación continua, controlando el pH, para que éste no pase del rango óptimo.
- En caso de emplear hidróxido de calcio, éste debe ser añadido en forma sólida, con agitación continua.

- La adición de óxido de magnesio (MgO), base débil, eleva lentamente el pH, ocasionando una lenta precipitación del hidróxido de cromo, el cual forma un lodo denso, con cristales grandes, lo que permite su fácil decantación. El MgO es un sólido y puede adicionarse lenta o rápidamente, debido a que cualquier exceso no causará que el pH suba más allá de 10, de modo que la redisolución del lodo no es significativa. Para el equivalente a 1 kg de Cr_2O_3 en baños residuales, se requiere 0.25 – 0.4 kg MgO, dependiendo del pH inicial de la solución residual (mientras más ácida sea esta solución, se requerirá de una mayor cantidad de MgO).

Otro criterio a tomarse en cuenta es el económico: el precipitante más barato es el hidróxido de calcio, seguido del hidróxido de sodio, el carbonato de sodio y, el más costoso, el óxido de magnesio.

iii. Añadir lentamente el agente precipitante del cromo, con agitación continua.

iv. Controlar el pH durante la precipitación. Como se mencionó anteriormente el valor del pH debe ser probado y estudiado en la práctica, ya que existe diferencias en cuanto a las referencias de los autores. Si va a utilizarse MgO, el pH no subirá más de 10, pero si se utilizan bases como el Ca(OH)_2 o el NaOH puede subir a valores mayores.

En una de las pruebas realizadas por el CPTS 2003, se encontraron los siguientes datos para la precipitación de cromo con hidróxido de calcio:

Cuadro 3. Pruebas de precipitación del cromo en los proyectos demostrativos para curtientres

<table>
<thead>
<tr>
<th>Solución de curtido</th>
<th>Valor de pH</th>
<th>Cromo en la solución luego de la precipitación [mg/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original (antes de iniciar el proceso de curtido)</td>
<td>8.0</td>
<td><0.15</td>
</tr>
<tr>
<td></td>
<td>12.7</td>
<td>0.25</td>
</tr>
<tr>
<td>Agotada (después de terminar el curtido)</td>
<td>8.3</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>12.7</td>
<td>0.35</td>
</tr>
</tbody>
</table>

v. Controlar la temperatura de precipitación. Según un estudio de J. Ludvik, citado por CPTS, la temperatura de precipitación adecuada se encuentra entre 35 a 40°C y para baños provenientes de alto agotamiento, entre 60 – 80°C. A mayor concentración de
agentes enmascarantes y otros compuestos orgánicos presentes, se requerirá temperaturas más altas.

vi. Controlar los tiempos de precipitación. Según el estudio de J. Ludvik citado por CPTS la precipitación generalmente toma hasta 3 horas. Cuando se usan agentes precipitantes como el Ca(OH)$_2$ o NaOH, se forma un lodo de óxido de cromo hidratado y una suspensión de partículas muy finas, por lo que se requieren tiempos más largos de sedimentación/filtración. La formación de lodos voluminosos se reduce usando polímeros floculantes. El óxido de cromo hidratado es un precipitado prácticamente insoluble en agua. El lodo debe sedimentarse mediante reposo de una noche o 24 horas.

vii. Eliminar el líquido sobrenadante y filtrar los lodos sedimentados mediante un filtro prensa. El residuo sólido filtrado tiene generalmente (dependiendo de la eficiencia del filtro prensa) un mínimo de 25 – 30% de materia seca.

Según el documento de la Comisión Europea tomado por CPTS se han reportado eficiencias de precipitación de cromo de 95 hasta 99.9%, por lo que las concentraciones de cromo en el líquido sobrenadante, según cálculos del CPTS, fluctuarían entre 120 y 4 mg/L.

Alternativamente, la primera parte de este método puede ser usada para la eliminación del cromo del efluente final, por precipitación del cromo en forma de lodos. Los lodos obtenidos de esta manera deben ser dispuestos en forma adecuada. En este caso, el control tecnológico no es tan riguroso y puede ser aplicado por industrias de todo tipo.

Redisolución del cromo

Una vez precipitado el cromo, como hidróxido de cromo, es necesario redisolverlo para introducirlo nuevamente al proceso de curtido. Para este objeto, según J. Ludvik, citado por CPTS, y el CNPML 2004, se debe seguir el siguiente procedimiento:

i. Disolver el precipitado filtrado (Cr(OH)$_3$) con ácido sulfúrico (H$_2$SO$_4$) concentrado. Según cálculos estequiométricos, se requiere 1.93 kg de ácido sulfúrico por kg de la cantidad equivalente de óxido de cromo contenido en el precipitado.

La adición del ácido debe hacerse con agitación permanente hasta alcanzar un pH de 2.5. La redisolución depende fundamentalmente de la antigüedad y pureza del residuo filtrado. Es recomendable redisolver el residuo lo más pronto posible, ya que éste se vuelve cada vez menos soluble conforme pasa el tiempo. Si el precipitado es muy antiguo, es posible que se requiera calentar hasta alcanzar la temperatura de la mezcla cerca al punto de ebullición. La reacción que se verifica en esta operación es:

$$\text{Cr}_2\text{O}_3 + 3 \text{H}_2\text{SO}_4 \rightarrow \text{Cr}_2(\text{SO}_4)_3 + 3 \text{H}_2\text{O}$$

ii. La solución de sulfato de cromo obtenida puede ser reciclada en el proceso del curtido, reemplazando hasta un 30% de las sales de cromo frescas J. Ludvik, tomado por CPTS.
Según el informe de la Comisión Europea citada por CPTS, las experiencias muestran que, en crosta o descarne, se puede usar hasta el 100% de la solución de sulfato de cromo.

La presencia de una concentración moderada de compuestos orgánicos contenidos en los baños del curtido (grasas, enmascarantes, auxiliares de alta fijación, taninos, biocidas y otros), no afecta adversamente a la precipitación de cromo y su redisolución. Sin embargo, estos compuestos presentes en baños de cromo recuperados, pueden causar algunos problemas en la producción de cueros de alta calidad al introducir defectos en la coloración del cuero.

Los baños de curtido recuperados deben tener una concentración de grasas menor a 45 mg/L, para evitar tintes indeseables en el cuero. Los polímeros floculantes no interfieren en la reutilización del cromo. Otros contaminantes presentes se descomponen por la acción del ácido sulfúrico caliente durante la etapa de solubilización.

Para la Comisión Europea citada por CPTS y el CNPML, desde el punto de vista químico, la recuperación del cromo es un proceso simple con excelentes resultados ambientales, pero es necesario un cuidadoso control analítico y requiere equipos especiales, tales como:

- Un tanque para colectar baños de cromo residuales.
- Material para analizar el contenido de cromo, acidez y alcalinidad.
- Un tanque con agitador y controlador de pH para adicionar la cantidad correcta de base para la precipitación.
- Un tanque de sedimentación para el hidróxido de cromo.
- Un filtro prensa para separar el lodo de hidróxido de cromo.

Si va a recuperarse el cromo para su reutilización, se necesita además:

- Un tanque con agitador y equipo de calentamiento para la redisolución del hidróxido de cromo con ácido sulfúrico (H₂SO₄) concentrado.

Así mismo, la OEA 2006 y el CNPML 2004 concluyen que la recuperación del cromo es el sistema más apropiado para disminuir la descarga de cromo a los cuerpos de agua y para disminuir el consumo de cromo en el curtido, por las siguientes razones:

- La técnica de recuperación de cromo es más eficiente
- El contenido de cromo en el licor recuperado es constante
- No hay concentración de sales (asociadas con las técnicas de recirculación)
- Las características de cuero no cambian
- El proceso de curtido requiere modificaciones mínimas
4.2.1.2 Entradas y salidas de la operación unitaria.

El punto crítico en el proceso de curtido es la estabilización de la estructura interfibral de la piel, en cuyo proceso se utiliza como insumo principal el Sulfato Básico de Cromo ya que por su capacidad curtiente y por la calidad de cueros que ofrece es el método más utilizado en el sector.

En este orden de ideas el producto esencial es el Sulfato Básico de Cromo y cuyas necesidades en el proceso son las siguientes (entradas):

60 kg de Sulfato Básico de Cromo por tonelada de pieles frescas.

De este proceso se generan las siguientes salidas:

10 kg de sólidos suspendidos totales por tonelada de piel procesada
11 kg de DQO por tonelada de piel procesada
4 kg de DBO por tonelada de piel procesada
5 kg de Cromo por tonelada de piel procesada.
50 kg de Cloruros por tonelada de piel procesada
40 kg de Sulfatos por tonelada de piel procesada.
FUENTE: Datos tomados del Centro Nacional de Producción Más Limpia.

Para un curtido diario de 6773 kg de pieles (teniendo en cuenta que el proceso demora hasta 24 horas), se descargan a los cuerpos de agua 8095 kg de Sulfato Básico de Cromo, lo que amerita hacer una recuperación y recirculación de los baños de curtido.

4.2.1.3 Cálculos a realizar para determinar la cantidad de Sulfato Básico de Cromo un baño residual de curtido.

A continuación se define la fórmula para hallar la cantidad equivalente de sal comercial de Sulfato Básico de Cromo (Cr(OH)SO₄) contenido en un baño residual de curtido de volumen conocido, a partir de la determinación de la concentración de Cromo (Cr) en laboratorio de dicho baño.

Para expresar las ecuaciones que siguen se definen los siguientes términos:

\[V = \text{Volumen de la solución en m}^3 \]

\[[\text{Cr}] = \text{Concentración de Cromo en el baño residual expresado en kg de Cr} / \text{m}^3 \text{ de solución del baño.} \]

\[\text{SC} = \text{Sal Comercial} \]

\[\text{PM} = \text{Peso Molecular} \]

\[\text{PA} = \text{Peso Atómico} \]

Fórmula para hallar la SC de Cr(OH)SO₄ en el baño residual.

Cantidad de Cr(OH)SO₄ = \[[\text{Cr}] \times V \times (100\% / \% \text{Pureza SC de Cr}_2\text{O}_3 \text{ en Cr(OH)SO}_4) \times \left(\frac{\text{PM Cr}_2\text{O}_3}{\text{PA Cr}}\right) \]

Según datos suministrados por Curtimbres Sierra Pérez, la concentración promedio de Cromo en el efluente de curtido es de 1927 mg/L, generándose una concentración total de 2 kg de Cr(OH)SO₄ por m³ de agua residual. En este orden de ideas el cálculo es el siguiente:

\[\text{Cr(OH)SO}_4 = [2 \text{ kg/m}^3] \times 1 \text{ m}^3 \times (100\% / 26\%) \times [(152 \text{ g/mol} / 52 \text{ g/mol})] = 22.48 \text{ kg} \]

Por lo tanto, la cantidad de Sulfato de Cromo en el efluente es de 22.48 kg, para una producción de 300 pieles con un peso de 6773 kg.

4.2.1.4 Determinación de la factibilidad técnica

La tecnología y las necesidades de cambios, no implican modificaciones complejas dentro de las empresas, pues implica métodos de trabajo fáciles de manejar. No obstante, como
se mencionó anteriormente, existen entidades que prestan el servicio de asesoría como el CNPML, así como otras empresas que ya han implementado con éxito dicha tecnología, tal es el caso de americana de curtidos, curtiembres Búfalo de Itagüí y de Barranquilla.

- **Requerimientos de infraestructura.**

La infraestructura necesaria para implementar la tecnología en el procesamiento de 1 tonelada de pieles es la siguiente:

1. Tamiz, criba o malla de 1m² con poros de 5 mm. Para separar sólidos
2. Tanque para almacenamiento de licor filtrado
3. Tanque de reacción fabricado de fibra de vidrio, con patas y escalera para acceso.
4. Agitador para el tanque de reacción
5. Tanque para regeneración del licor
6. Bomba para recirculación
7. Agitador para tanque de regeneración
8. Tanque para almacenamiento de licor regenerado
9. Tanque dosificador precipitante
10. Tanque dosificador de ácido
11. Agitador para tanque precipitante
12. Bomba dosificadora de ácido
13. Bomba de trasiego de licor desde el tanque de homogenización al tanque reactor
14. Bomba de trasiego de licor desde el tanque de regeneración al tanque de almacenamiento del licor.
15. Filtro prensa

- **Requerimientos para análisis de laboratorio.**

Para realizar los análisis de laboratorio para evaluar el contenido de cromo, se requiere de los siguientes reactivos e instrumentos:

1. Espectrofotómetro de absorción atómica
2. Acetona (C₃H₆O)
3. Ácido nítrico concentrado (HNO₃)
4. Ácido sulfúrico concentrado (H₂SO₄)
5. Dicromato de potasio (K₂Cr₂O₇)
6. 1,5 Difenilcarbazida (C₁₃H₁₄N₄O)

- **Reducciones en la concentración de contaminantes**

El cuadro siguiente muestra las concentraciones de algunos parámetros en las descargas finales después de haber implementado la tecnología de recuperación y recirculación de licores de cromo, por precipitación.
Cuadro 4. Cantidad descargada al efluente de cada parámetro generado en la implementación de la tecnología.

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>CURTIDO CON CROMO RECUPERADO</th>
<th>kg/ton de piel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sólidos suspendidos</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cromo</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Cloruros</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Sulfatos</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

FUENTE: CNPML 2004

Según el CNPML 2004, con la tecnología se puede reducir en un 90% los sólidos suspendidos totales contenidos en el efluente, un 98% el contenido de cromo, un 50% de cloruros y un 37.5% en sulfatos, lo que implica una disminución en el riesgo de ocasionar impactos ambientales negativos sobre el medio ambiente, principalmente en el recurso hídrico y sus ecosistemas.

4.3 Análisis económico en la recirculación de los flujos de agua residual.

Este análisis se hace con el fin de verificar la factibilidad económica de las medidas evaluadas en el item anterior.

4.3.1 Recirculación de las aguas residuales de pelambre

4.3.1.1 Costo de productos químicos utilizados en el proceso convencional de pelambrado.

Como se ha mencionado anteriormente, los productos más importantes en el proceso de pelambre son el Sulfuro de Sodio y la Cal, los cuales tiene potencial de ser recirculados nuevamente al proceso para procesar una nueva cantidad de pieles. Los costos por kilogramo de los productos se muestran en el siguiente cuadro.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Consumo kg/ton De piel</th>
<th>Costo $/kg</th>
<th>Costo total ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfuro de sodio</td>
<td>11</td>
<td>1650</td>
<td>18150</td>
</tr>
<tr>
<td>Cal</td>
<td>10</td>
<td>365</td>
<td>3650</td>
</tr>
</tbody>
</table>

Según datos suministrados por Curtimbres Sierra Perez (2008), al pelambrar 6165 kg de pieles al día, se descargarían aproximadamente 2065 kg de Na₂S al año, lo que representaría pérdidas por $ 3.406.528 al año.
4.3.1.2 Requerimientos de inversión inicial

Los datos de costo de inversión que se detallan a continuación son una referencia válida, para aquellas empresas que están analizando y comparando sus opciones a futuro. Los siguientes datos fueron tomados de la Guía Técnica de Producción más Limpia para Curtiembres (2003), sobre un caso exitoso en la Curtiembre Hércules ubicada en Cochabamba, Bolivia durante el año 2001.

- **Costo infraestructura**

El sistema desarrollado necesita de inversión en infraestructura, específicamente en la canalización de los efluentes desde los lugares de generación hasta su tratamiento. Para el procesamiento de los efluentes y para el procesamiento de los sólidos hay una importante necesidad de espacios en forma de pisos y techos, de la misma manera que el almacenaje.

El costo en infraestructura es de $ 48.922.771.

Equipos de almacenaje

Los equipos de almacenaje necesarios para las diferentes operaciones propias del reuso y otros tratamientos tienen un costo de $ 29.485.327,6.

Equipos de tratamiento

Los equipos de tratamiento como reactores, filtros, bandejas y otros tienen un costo de $ 15.690.762,02.

Equipos auxiliares

Los equipos auxiliares se refieren a bombas, mangueras, filtros, porta paletas y otros con un costo de $ 17.411.488,77.

Inversión total

La suma de los anteriores items es de $ 111.510.349.

Costo de operaciones (tratamiento y recuperaciones)

El costo de operación en tratamientos y recuperaciones, está basado en un mes de actividad con una producción de 3100 pieles.

Energía

El item más importante es la energía, consistente en consumo de energía eléctrica con un costo de $ 2.414.000,05/mes.
Mano de obra

El segundo item más importante, es el personal que en total ocupa a 1229 horas/hombre, con un costo de $ 1.000.000/mes por hombre.

Filtro de pelo.

El filtro de pelo tiene un costo aproximado de $ 6.800.000

• **Costo para hacer análisis de laboratorio**

A continuación se indicará el costo de cada uno de los materiales necesarios para hacer el análisis de laboratorio del contenido de sulfuros.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
<th>CANTIDAD</th>
<th>VR UNITARIO</th>
<th>% I.V.A</th>
<th>VR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>matraces de 500 ml</td>
<td>2</td>
<td>$ 55.000</td>
<td>16%</td>
<td>$ 127.600</td>
</tr>
<tr>
<td>2</td>
<td>bureta de 50 ml</td>
<td>1</td>
<td>$ 112.000</td>
<td>16%</td>
<td>$ 129.920</td>
</tr>
<tr>
<td>3</td>
<td>frascos erlenmeyer de 250 ml cada uno</td>
<td>3</td>
<td>$ 7.250</td>
<td>16%</td>
<td>$ 25.230</td>
</tr>
<tr>
<td>4</td>
<td>Pipetas de 1 ml</td>
<td>1</td>
<td>$ 6.300</td>
<td>16%</td>
<td>$ 7.308</td>
</tr>
<tr>
<td>5</td>
<td>Pipetas de 5 ml</td>
<td>1</td>
<td>$ 6.400</td>
<td>16%</td>
<td>$ 7.424</td>
</tr>
<tr>
<td>6</td>
<td>Pipetas de 10 ml</td>
<td>1</td>
<td>$ 7.400</td>
<td>16%</td>
<td>$ 8.584</td>
</tr>
<tr>
<td>7</td>
<td>Papel filtro</td>
<td>1</td>
<td>$ 12.000</td>
<td>16%</td>
<td>$ 13.920</td>
</tr>
<tr>
<td>8</td>
<td>Acido clorhídrico concentrado (HCl) 6 N</td>
<td>1</td>
<td>$ 65.000</td>
<td>16%</td>
<td>$ 75.400</td>
</tr>
<tr>
<td>9</td>
<td>Solución de almidón en agua</td>
<td>1</td>
<td>$ 50.000</td>
<td>16%</td>
<td>$ 80.000</td>
</tr>
<tr>
<td>10</td>
<td>Agua destilada</td>
<td>1</td>
<td>$ 37.000</td>
<td>16%</td>
<td>$ 42.920</td>
</tr>
<tr>
<td>11</td>
<td>Yoduro de potasio (KI)</td>
<td>1</td>
<td>$ 89.000</td>
<td>16%</td>
<td>$ 103.240</td>
</tr>
<tr>
<td>12</td>
<td>Yodo I₂</td>
<td>1</td>
<td>$ 129.000</td>
<td>16%</td>
<td>$ 149.640</td>
</tr>
<tr>
<td>13</td>
<td>Tiosulfato de sodio Na₂S₂O₃</td>
<td>1</td>
<td>$ 55.000</td>
<td>16%</td>
<td>$ 63.800</td>
</tr>
</tbody>
</table>

COSTO TOTAL $ 812.986

Basados en todos los rubros anteriormente mencionado, la inversión inicial para la implementación de la tecnología es de aproximadamente $ 121.622.585.

4.3.1.3 Beneficios económicos:

Entre los beneficios que podemos encontrar al implementar dicha tecnología tiene que ver con ahorros económicos y disminución de costos del producto, ya que se disminuye el consumo de insumos químicos (sulfuro y cal), debido a que su presencia en las aguas residuales y su recirculación pueden garantizar una disminución en el uso de producto
virgen entre un 40 a 50% en cada ciclo, es decir, si se utilizan 11 kg de Sulfuro de Sodio por tonelada de piel fresca, al recircular el baño se requiere únicamente de 4.4 a 5.5 kg de Sulfuro de Sodio.

Otro de los beneficios que podemos encontrar, es la reducción del costo de tratamiento de las aguas residuales, ya que posee menos carga contaminante por la previa separación de grasas, sólidos y el pelo. De igual manera se disminuyen los caudales de vertimiento.

En consecuencia, al disminuir la carga contaminante se disminuyen los costos que hay que pagar por tasa retributiva, ya que la tecnología permite separar grandes cantidades de sólidos y grasas en los tanques y filtraciones previas.

De igual manera, se hace una contribución al desarrollo sostenible, ya que la tecnología busca hacer un uso eficiente de los recursos naturales, en este caso no renovables, garantizando una disminución en el consumo de nuevos insumos.

Así mismo, Weiss Et. Al 2001, establece que las razones fundamentales para el reuso de los licores de pelambre, se entienden mejor a la luz de las ventajas económicas, estratégicas y organizativas que su aplicación trae. En el impacto económico, se plantean varias ventajas directas e indirectas. En la primera se ahorran químicos y hay una reducción en el consumo de agua. En forma indirecta el impacto económico se da porque el reuso en si, facilita otros procesos posteriores como ser la conversión de lodos en sólidos y permite un tratamiento selectivo además completo de los residuos.

En el campo estratégico de la problemática ambiental, el reuso posibilita estructurar un sistema de gestión ambiental que por su menor impacto ambiental permite demostrar con mayor facilidad el cumplimiento de la normatividad ambiental vigente. Este podría ser un paso inicial para entrar a nuevos mercados donde la preferencia por mercados verdes o productos con sello ecológico podría ser una estrategia competitiva para obtener mayor aceptabilidad.

En el campo de las disciplinas internas de producción en fábrica, el reuso obliga a contar con controles de calidad más estrictos, lo que induce además de dominar el tema ambiental, manejar un sistema de aseguramiento de la calidad. En esa medida las exigencias del reuso levantan la cultura empresarial hacia hacer bien las cosas.

En el cuadro 7. Se observa los ahorros obtenidos según el porcentaje de producto utilizado por kilogramo de piel fresca.

<table>
<thead>
<tr>
<th>Ahorros con el reciclaje de pelambre, por la reducción de un 50% en el consumo de insumos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂S (reducción de 2.5% a 1.25%) → Ahorro Na₂S (0.8 US$/kg) = 10 US$/t piel</td>
</tr>
<tr>
<td>Cl₂ (reducción de 3% a 1.5%) → Ahorro Cl₂ (0.14 US$/kg) = 2.1 US$/t piel</td>
</tr>
<tr>
<td>Agua (reducción de 100% a 50%) → Ahorro Agua Pozo (0.3 US$/m³) = 0.15 US$/t piel</td>
</tr>
<tr>
<td>Total ahorros = 12.3 US$/t piel</td>
</tr>
</tbody>
</table>

NOTA: Si el agua proviene de la red de agua potable, los ahorros deben calcularse con este costo.

FUENTE: CPTS 2003
Para el caso de una curtiembre que procesa 23 ton de pieles el flujo de caja es el siguiente:

FLUJO DE CAJA = AHORRO NETO (año n)

Ahorro neto = Ahorro bruto (año n) – Costo operativo (año n), esto es

Ahorro neto = $ 39.294.037,99 - $ 15.069.200,00

Flujo de caja = $ 24.224.837,99

Según los cálculos, el ahorro neto es de $ 24 millones de pesos aproximadamente tomando como base el ahorro de Sulfuro de Sodio únicamente durante el año, que es el que mayor impacto negativo genera sobre el ecosistema.

4.3.1.4 Período de recuperación de la inversión (PR)

Este concepto financiero se define como el número de periodos de tiempo (PR) que se requeriría para recuperar la inversión inicial (Io), asumiendo que en cada periodo se recupera un mismo monto de dinero, que es igual al valor del flujo de caja (FC) estimado para el primer periodo.

El periodo de recuperación de la inversión (PR) se expresa en términos de la inversión inicial (Io) y del flujo de caja (FC) mediante la siguiente ecuación:

PR = Io / FC

El concepto de flujo de caja (FC) se expresa solo en términos del ahorro neto que se deriva de la implementación de opciones de Producción Más Limpia, y no en términos del ingreso bruto total ni del costo imputado a las operaciones globales de producción de la empresa. En este contexto se definen los siguientes términos:

A = Ahorro bruto estimado para el primer período de la implementación del método de PML

C = Costo estimado para este mismo período, que se imputa solo a las operaciones asociadas a la opción de PML en evaluación.

Entonces el flujo de caja esta dado por:

FC = A – C
En base al concepto de periodo de recuperación de la inversión (PR), se puede establecer el siguiente criterio para evaluar las opciones en PML en términos económicos:

Si PR ≤ 3 años, la inversión es muy atractiva en términos económicos.
Si PR = 4 a 8 años, la inversión es aceptable en términos económicos.
Si PR ≥ 9 años, la inversión no es atractiva en términos económicos.

Para realizar este análisis ver el Cuadro 9. Anexo

La tabla muestra que para un pelambrado de 23100 kg de pieles se genera una pérdida de $ 15.625.705 por productos no fijados y que al implementar la tecnología de recirculación de baños de pelambre se considerarían como insumos. De igual manera, las pérdidas de agua descargada son de $ 32.643, que de igual manera la tecnología la consideraría como un insumo. En términos generales si la tecnología se implementara se generaría un ahorro en consumo de agua e insumos de aproximadamente $ 15.658.348 al año.

Si a lo anterior se suman los ahorros que se lograrían por la reducción del pago de tasa retributiva (minambiente define los montos a pagar $ 39.2/ kg SST y $ 91.6/ kg DBO para el año 2008) el ahorro se incrementaría a $ 39.294.037. De lo que se puede concluir que el mayor porcentaje de los beneficios no se lograrían por la recirculación en sí, sino por la disminución de la carga contaminante vertida a los cuerpos de agua.

Para el análisis de (PR), se puede observar que el periodo de recuperación de la inversión es de 4.9 años, lo que indica que la inversión es aceptable en términos económicos y es viable su implementación.

4.3.1.5 Rentabilidad de la inversión (RI)

Este concepto financiero se define como el porcentaje que representa el flujo de caja (FC) del primer periodo respecto al monto de la inversión (Io) y se expresa en términos de un porcentaje de rentabilidad por periodo (normalmente anual).

En este contexto, el FC corresponde exclusivamente al ahorro neto calculado para el primer periodo; y la RI se define como el porcentaje que representa dicho ahorro neto con respecto al monto de la inversión. Esta definición puede ser expresada de la siguiente manera:

$$ RI = \frac{FC}{Io} \times 100 $$

En base al concepto financiero de RI, se puede establecer el siguiente criterio para evaluar las opciones de PML en términos económicos:

Si RI > 33% anual, la inversión es muy atractiva en términos económicos.
Si RI = 12 a 33% anual, la inversión es aceptable en términos económicos.
Si RI < 12% anual, la inversión no es atractiva en términos económicos.
En el cuadro 9. Se observa que la RI es de 20.4% anual, de lo que se concluye que la inversión es aceptable en términos económicos y es viable la implementación de dicha tecnología.

4.3.2 Recuperación y redisolución de los baños de curtido para recirculación

4.3.2.1 Costo de productos químicos utilizados en el proceso convencional de curtido.

Como se ha mencionado anteriormente, el producto más importante en el proceso de curtido es el Sulfato Básico de Cromo, el cual, previa separación de los demás flujos de agua residual, tiene potencial de ser recirculados nuevamente al proceso para procesar una nueva cantidad de pieles. Los costos por kilogramo del producto se muestran en el cuadro 8.

Cuadro 8. Costo de insumos en curtido.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Consumo por ton de piel</th>
<th>Costo por kg ($)</th>
<th>Costo total ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfato básico de cromo</td>
<td>60</td>
<td>2450</td>
<td>147000</td>
</tr>
</tbody>
</table>

Según datos suministrados por Curtimbres Sierra Pérez 2008, para el curtido de 6773 kg de pieles al día, se descargarían aproximadamente 8095 kg de Cr(OH)SO₄ al año, lo que representaría pérdidas por $19.831.953 al año.

4.3.2.2 Costo infraestructura

Según información de Tecnologías y Procesos de Soluciones Ambientales (TEPSA) 2006, el costo de toda la infraestructura para el montaje de la tecnología es de $114.546.994 aproximadamente + 1 filtro prensa de $65.000.000.

4.3.2.3 Beneficios económicos

- Ahorro en el costo de reactivos de cromo (si se va a reutilizar el cromo recuperado en el curtido).
- Disminución de los costos del tratamiento final de efluentes.
- Muchas curtimientos, por requerimientos de licencia ambiental o planes de manejo ambiental, están obligadas a instalar plantas de tratamiento de aguas residuales industriales (PTARI), las cuales, en los procesos de sedimentación de materia orgánica generan lodos, que por su contenido de cromo, pueden tener restricciones para su manejo en rellenos sanitarios y es posible que se consideren como peligrosos por su...
potencial tóxico. Sin embargo, la tecnología puede garantizar una disminución de las concentraciones de cromo en los lodos a tal punto que estos se puedan utilizar para elaboración de abono orgánico o como adecuadores de suelos, y se disminuyen o se evitan los costos generados en el transporte y disposición en rellenos especiales autorizados, que, en la mayoría de los casos quedan en departamentos o ciudades diferentes a los de la ubicación de la empresa.

Por otra parte, para citar casos reales, algunas organizaciones grandes del nivel nacional tales como Curtiembres Búfalo de Itagüí, Americana de Curtidos y Curtimbres Búfalo de Barranquilla, han implementado la tecnología con buenos resultados. La primera reporta ahorros aproximados de $ 23.000.000 mensuales, lo que amerita un análisis profundo para hacer la implementación.

La inversión total inicial teniendo en cuenta los anteriores rubros es de $ 179.546.994.

4.3.2.4 Periodo de recuperación de la inversión (PR)

En el Cuadro 10 anexo. Se observa que al curtir 13548 kg de pieles, se generan pérdidas anuales de $ 55.370.775 por descarga de Sulfato de Cromo a los cuerpos de agua, y que con la implementación de la tecnología, este residuo se podría convertir en insumo y por ende en ahorros para la empresa por reducir la compra nuevos insumos. De igual manera, la tecnología permite remover carga contaminante en términos de SST por lo que se reducen los pagos de tasa retributiva por un valor de $ 836.453, que también puede tomarse como un ahorro.

Por lo tanto, los beneficios al reutilizar dichos efluentes pueden llegar a un valor de $56.207.229.

De esto, el periodo de recuperación de la inversión en la implementación de la tecnología para el reuso de cromo proveniente de los baños residuales de curtido es de 4.36 años, lo que indica que la inversión es aceptable en términos económicos.

4.3.2.5 Rentabilidad de la inversión (RI)

La rentabilidad de la inversión en la implementación de la tecnología de recuperación y reuso de cromo en los baños residuales de curtido es de 23%, lo que indica que la inversión es aceptable en términos económicos y por lo tanto es viable. Ver cuadro 10 anexo.
Bajo el esquema de PML la recirculación de aguas residuales generadas en dichos proceso, producen una reducción tanto del costo de tratamiento de desechos, como de los impactos negativos en el medio ambiente, por lo tanto, el incremento de la eficiencia productiva, implica beneficios económicos y ambientales simultáneos que pueden no solo solventar las acciones de PML, sino mejorar la competitividad de las empresas. Por lo tanto, la PML debe concebirse como una estrategia empresarial, que al minimizar los daños ambientales y maximizar los rendimientos económicos es ambientalmente sostenible y económicamente viable por lo que podría ser aplicada por cualquier tipo de empresa.

Si se aborda el enfoque piramidal en el análisis se pueden identificar todos los aspectos relevantes de la PML en la implementación de las tecnologías de recirculación de aguas residuales de pelambre y curtido. En primera instancia, hay un enfoque directo en la prevención de la contaminación, haciendo un uso eficiente de recursos como agua e insumos químicos y las reducciones en carga contaminante.

De igual manera, si se actúa dentro de cada proceso productivo y se analiza como un sistema, se pueden implementar buenas prácticas ambientales, evitando que se generen impactos ambientales negativos al final de todo el proceso industrial. En segundo lugar, al identificar alternativas de prevención como es el caso del Reciclaje, reuso o recuperación, las tecnologías evaluadas en el presente trabajo permiten implementar cada uno de los conceptos, pues se incentiva la recuperación de los flujos de agua para ser reusada directamente, o reciclada mediante tratamientos y controles previos; no obstante al ser una tecnología que debe ser ajustada al proceso productivo y mejorada continuamente, es obvio que se generen salidas que no pueden manejarse a través de métodos preventivos y por lo tanto se requiere un tratamiento previo a su disposición final. De esto, es de resaltar que la tecnología permite reducir los impactos ambientales negativos, pues las cantidades desechadas para tratamiento y disposición final serán muy bajas.

Así, el conocimiento preciso del proceso de curtido permite determinar formulaciones óptimas. Sin embargo, para asegurar la efectividad del proceso de curtido, generalmente se utilizan recetas con exceso de productos que incrementan la carga contaminante. La Compañía Ambiental del Estado de São Paulo, Brasil (CETESB 1989) demostró que 80% de la cal utilizada permanece en las aguas residuales y que el porcentaje de cromo descartado oscila entre 30-60% de la cantidad inicial utilizada. Se ha demostrado también que la cantidad de cal que generalmente se usa es de 3-4% del peso de la piel, pudiéndose reducir a la mitad sin afectar la calidad del producto. Todo esto justifica la implementación de las tecnologías aquí planteadas y verificar con casos exitosos que su aplicación es ambientalmente sostenible y económicamente viable.

Todo esto se plantea con el fin de permitir reducir las cantidades de sulfuro y cromo en las aguas residuales de una curtiembre y disminuir su toxicidad para que, finalmente se pueda implementar una PTARI que garanticé aguas residuales menos contaminadas, bajos costos de tratamiento y operación de la misma.
Para hacer un análisis de los resultados en la recirculación de aguas residuales de pelambre, se abordaron algunos casos que han sido exitosos. Uno de ellos es la evaluación que se realizó a la tecnología en algunas curtiembres de Bolivia, con el fin de validar si han sido exitosas y cuáles han sido las principales limitantes.

Inicialmente, el equipo (CPTS 2003) concluye que el pelambre con recirculación de sus baños residuales es una medida que facilita el manejo de residuos (líquidos y sólidos), reduce la dosificación de sulfuro y de cal y permite obtener una mejor calidad de la piel en tripa. Así mismo, la medida genera mejores resultados si va acompañado de un sistema de pelambrado sin destrucción del pelo para su filtrado. Los análisis se hicieron en la Curtiembre Bonanza XXI de La Paz, así como en la Curtiembre CURMA de Cochabamba, con resultados positivos.

Al hacer tres ciclos de recirculación se concluyó que: En el primer ciclo de recirculación se observaron buenos resultados. La mayor parte del pelo se separó de la piel sin ser destruido y, prácticamente, no quedó pelo remanente en la piel. Las pieles adquirieron un hinchamiento y una turgencia adecuados, ya que se observó que los poros de la piel estaban bien abiertos y, al estrujar la piel, se comprobó que salía agua de los mismos. En este ciclo se utilizó 50% del licor de pelambre de la primera prueba, obtenida después del filtrado del pelo. Esta modificación permitió ahorrar 0.25% de sulfuro y 0.5% de cal, los que, en caso de usar agua fresca, hubieran tenido que ser añadidos de acuerdo a la receta del pelambre sin destrucción de pelo. El tiempo de depilado fue mayor que el anterior, probablemente porque no se realizó el remojo.

En el segundo ciclo se recicló el licor de pelambre del primer ciclo, ahorrándose un 0.25% de sulfuro y 0.5% de cal. Sin embargo, se observó que el pelo de algunas pieles todavía permanecía adherido a la piel, por lo que presumiblemente sólo se podrían hacer dos reciclados del licor de pelambre.

Este estudio permite concluir, en un principio que el proceso de recirculación de aguas residuales de pelambre no es factible puesto que solo se podrían hacer dos recirculaciones para posteriormente desechar el baño, lo cual no es viable económicamente ni sostenible ambientalmente. Sin embargo es necesario indagar otros casos.

La OEA 2006 muestra una experiencia significativa en el reuso de los baños residuales de pelambre en una Empresa mexicana. El sistema de recirculación de baños residuales implantado por la empresa consiste en el reúso del agua residual de los baños químicos que se le aplican a la piel, en cada una de las etapas del proceso, enviándola a unas piletas mediante un sistema de decantado, para subirlas finalmente al tanque de almacenamiento de cada una de las etapas en donde se le añaden los químicos necesarios para obtener la concentración adecuada y posteriormente reusarlos. Los beneficios logrados en el aspecto ambiental es que se dejaron de arrojar al drenaje municipal de manera mensual 658 m3 de agua, los cuales contenían 10.28 ton de productos químicos los que iban diluidos en el agua. Tuvo un ahorro anual del 85 % de agua y 60% en la utilización de productos químicos. En el aspecto económico se han generado beneficios de hasta $227,000 (mexicanos) en un periodo de 3 meses.
Técnicamente se mejoró la calidad del producto final y con las tablas de refuerzo y controles implantados, se ha logrado estandarizar la calidad de la producción, lo que demuestra que si es ambientalmente sostenible y económicamente viable la implementación de la tecnología.

De igual manera, EPA 2006 identifica otros casos exitosos referentes a beneficios económicos en la ciudad de León en México, en donde se implementó sistemas de recirculaciones de baños tanto de pelambre como de curtido. Benjamín Aguilar citado por EPA 2006, proporcionó la información de una tenería de ese estudio, los cuales demuestran los beneficios económicos obtenidos por la empresa al pagar menos por el agua consumida y por otro concepto denominado "cargo por saneamiento" que cobra el Sistema de Agua Potable y Alcantarillado de León (SAPAL).

Es necesario especificar que en las recirculaciones el licor recuperado se devuelve al siguiente lote de la misma operación, mientras que en los reusos, el agua resultante de una operación se envía a otra operación diferente.

De otra parte, el CEPIS 1997 explica algunas experiencias exitosas en Uruguay. Estas experiencias se efectuaron en una curtiembre, reutilizándose el licor original de pelambre 5 veces con los refuerzos de insumos químicos al finalizar cada ciclo.

Luego de cada ciclo, se repuso en promedio un 65% del sulfuro (ahorro del 36%), un 60% de la cal (ahorro del 40%) y un 20% del agua empleada en el pelambre original (ahorro del 80%). Al finalizar el primer ciclo, el licor de pelambre recuperado se filtró. Esta operación, además de eliminar parcialmente dichos pelos, grasa, etc., posibilita el menor consumo de sulfuro en el siguiente ciclo, sin complicar el reciclado del pelambre. Al completar el 2º pelambre, el licor (previo a su reciclado) fue filtrado luego del primer ciclo. Se observó que el pelo no era retenido, pues había sido atacado en mayor grado que en el primer pelambre. Esto indicaría que los tenores de sulfuro repuestos estarían por encima de lo necesario; no obstante, se continuó operando en exceso para asegurar el depilado de las pieles.

De tal manera, en los ciclos posteriores, el pelambre se operó con recirculación total del licor, sin la separación de sólidos efectuada luego del primer ciclo. Los resultados obtenidos señalan que en los cinco ciclos la calidad del depilado fue igualmente buena, la recirculación del licor de pelambre no afecta negativamente las propiedades físicas o químicas del cuero semiterminado, habiendo coincidencia al respecto en todas las escalas experimentadas en este estudio (laboratorio, piloto e industrial), y por último, parece aconsejable la recirculación intermitente (cinco ciclos) de los baños de pelambre en la forma aquí estudiada; queda abierta la posibilidad de extender el número de ciclos de reuso.

Así mismo, el CEPIS 1995 reporta en un estudio de minimización de residuos en curtiembres, un ahorro de Sulfuro de Sodio del 54%, una reducción del 70% en el consumo de agua y una reducción de más del 90% en la concentración de Sulfuro de Sodio en el efluente (de 2.7 g/L a 0.2 g/L). En el curtido, se presentaron ahorros de materia prima del 27%, se obtuvo una reducción del 80% en el consumo de agua y una reducción del 65% de la concentración de cromo en el efluente (de 3.5 g/L a 1.3 g/L).
En la recuperación y recirculación de aguas residuales de curtido, el CEPIS 1997 cita un informe del Proyecto desarrollado conjuntamente entre el Laboratorio Tecnológico del Uruguay (LATU) y el Instituto de Ingeniería Química de la Facultad de Ingeniería (1992-1995). Cuyo objetivo general del mismo fue investigar tecnologías de producción de cueros que disminuyan la contaminación de los efluentes industriales mejorando la viabilidad económica de las empresas.

En el análisis se estudiaron las distintas alternativas posibles para tratar el problema del cromo en los efluentes. En ella se evaluó la sustitución parcial o total por otros elementos curtientes; la disminución de la concentración residual de cromo mediante la utilización de procesos que aumenten la fijación de cromo en el cuero y por último la reutilización del cromo contenido en los baños agotados. Si bien la sustitución del cromo por otros curtientes sería la alternativa más radical y efectiva, estas propuestas no aparecen como opciones posibles en un futuro próximo. En primer lugar, con ninguno de los productos comerciales conocidos es posible obtener cueros con las características conferidas por el curtido al cromo. Además, desde el punto de vista ecológico los problemas no se eliminan, sino que son sustituidos por otros provenientes de las sustancias alternativas que son volcadas a los cursos de agua.

Adaptar el proceso de curtido de modo que permita de aumentar la fijación del cromo en el cuero y reducir el contenido del mismo en los baños residuales a valores compatibles con la legislación al respecto, tendría la ventaja adicional de reducir la emisión de cromo en los procesos posteriores al curtido, ya que en el proceso normal parte del cromo queda fijado débilmente a la fibra de cuero y es eliminado en los procesos de recitación y teñido. Si se considera el contenido de cromo en los efluentes totales de la curtiembre, se obtiene en el mejor de los casos un contenido de cromo en el efluente total cercano a las 20 ppm. No obstante, en la legislación colombiana existe un vacío en la concentración de cromo total en los efluentes dependiendo de los puntos de descarga, puesto que únicamente se habla de cromo en estado de oxidación +6 (Cromo Hexavalente). (Decreto 1594 de 1984)

La recirculación directa es posible, y de hecho es utilizada en alguna medida en muchas curtiembres de cueros ovinos. En una investigación previa realizada en el LATU se realizaron hasta 15 ciclos de recirculación con resultados satisfactorios. Como contrapartida es de señalar que un sistema de recirculación efectivo requiere de un control de laboratorio muy estricto. Por otro lado, las curtiembres vacunas utilizan más de una fórmula de curtido, debido, entre otras cosas a que procesan materias primas de distinto tipo. En esas condiciones resulta complejo implementar un sistema de recirculación.

En cuanto a precipitar el cromo contenido en los baños residuales, y regenerar la sal de cromo curtiente a partir del precipitado obtenido. Esta solución es la más efectiva para eliminar el cromo de los efluentes, ya que además del baño de curtido, es posible recuperar también el cromo proveniente del escurrido y aun el del primer baño de lavado luego del rebajado. Desde el punto de vista de la curtiembre, presenta la ventaja de que no es necesario casi modificar los procesos de producción, ya que el cromo recuperado ingresa al ciclo en la misma forma que el cromo "fresco". La única modificación consiste
en que la curtiembre debe adaptarse a manejar la sal de cromo en forma líquida, lo cual no presenta a priori mayores dificultades.

De esto, la OEA 2006 encontró varios casos exitosos en la recuperación de cromo para su reutilización, tal es el caso de Cueros Industrializados del Bajío, la cual es una empresa localizada en León, Guanajuato, México. En ella se estudiaron e implementaron algunas medidas para la recuperación de sulfato básico de cromo mediante técnicas de filtración. Con estas medidas se recuperó el 74% del cromo presente en el efluente. Las inversiones involucradas en la implantación de la tecnología de recuperación del cromo presentaron un período de recuperación de la inversión de tres años y generaron ahorros anuales a la empresa por $4,100 dólares.

De todo esto, una vez eliminados del efluente el sulfuro y cromo, el efluente resultante tiene características asimilables al agua residual de origen doméstico, no significando esto que los parámetros del residuo de curtiembre sean similares en orden de magnitud a los de origen domiciliario, sino que debido a la ausencia de tóxicos pueden ser tratados en forma similar, y más aún, en forma conjunta. Es de resaltar, que al tomar la decisión de instalar dichas tecnologías es necesario establecer métodos para verificar la calidad del producto final (piel pelambrada, cuero curtido y cuero terminado) con el fin de garantizar que el producto cumpla con los criterios establecidos para su uso final.

Ahora bien, desde un punto de vista económico, generalmente la adopción de estas medidas puede tener un costo inicial alto debido al precio de los equipos involucrados y a la probable baja de productividad, asociada a un período de marcha blanca. Sin embargo, a la larga, no tan sólo se logra disminuir la carga contaminante, sino que en la mayoría de los casos se consiguen efectos positivos en la productividad y por ende, en la rentabilidad. De igual manera, en el análisis económico se muestra que en la aplicación de dichas tecnologías, el retorno de la inversión es menor a 5 años, de lo cual se puede concluir que es viable su implementación, y se requiere mostrar las bondades tanto económicas como ambientales; pues la mayoría de los empresarios prefieren hacer inversiones cuantiosas en modernización tecnológica o mejoramiento de infraestructura.

Finalmente, todos los autores y estudios consultados apuntan a que la implementación de las tecnologías analizadas en el presente trabajo son viables desde el punto de vista técnico y económico, teniendo en cuenta controles de calidad y verificando variables que puedan desviarlo el proceso. Esto es, se reducen tanto los costos de producción como los impactos ambientales generados por productos potencialmente tóxicos. Sin embargo, todos apuntan de igual manera a que debe hacerse un estudio minucioso sobre la cantidad de reciclaje que pueden hacerse de cada uno de los esfuerzos, pues en la mayoría de los estudios se señala que hay un límite, el cual debe ser definido por la curtiembre que los implemente según la metodología y controles aplicados en cada caso.

En los documentos analizados se puede evidenciar que el sistema más utilizado es el de precipitación y reúso de cromo de las aguas residuales de curtido, mostrando resultados positivos en los porcentajes de reúso de agua e insumos y los beneficios tanto económicos como ambientales que se pueden conseguir con la implementación de dicha tecnología. En el caso de Colombia, algunas curtiembres con altos índices de producción
la han implementado con excelentes resultados, ejemplo de esto son Americana de Curtidos, Curtiembres Búfalo de Barranquilla, Curtiembres Búfalo de Itagüí, entre otras.

Para el caso de recirculación de aguas residuales de pelambre, la tecnología no ha sido implementada a escala industrial en Colombia, que, a pesar de los beneficios ambientales y económicos que genera, no ha tenido el atractivo debido a las escasas experiencias que se han tenido a escala real. De esto, el reciclado de baños es una de las medidas más recomendadas en las publicaciones y a la vez más sugeridas por los consultores e institutos tecnológicos sin experiencia, olvidando a veces un par de condiciones básicas para su viabilidad:

- Que el baño lleve poca contaminación intrínseca. Las materias procedentes de la piel saturan pronto los baños en detrimento de su acción específica.

- Que su reutilización sea factible mediante operaciones simples. Por ejemplo un tamizado elemental seguido de un ajuste fácil de los productos ofertados. Los reciclados sofisticados no han tenido implantación industrial debido a su costo y a la necesidad de una dedicación especializada.

En cuanto a las técnicas “end of pipe”, se observa que por su alto costo de implementación y ante la baja rentabilidad del mercado, en la mayoría de los casos se está esperando el último momento para cumplir con los requisitos impuestos por la normativa, no siendo inexistentes las empresas que se plantean cerrar sus actividades en ese momento. Esto último, no deja de tener importancia considerando que el rubro del cuero es altamente intensivo en mano de obra, tanto en las curtiembres, como en los mataderos y talleres de fabricación de calzado.
6 CONCLUSIONES

- Todos los estudios consultados coinciden en una conclusión, la cual se refiere a que el sulfuro y el cromo son los de mayor interés desde el punto de vista ambiental ya que son los que generan un impacto negativo significativo sobre los cuerpos de agua, el suelo, el aire y sobre la salud humana por su potencial toxicidad y ecotoxicidad.

- Los beneficios económicos logrados al implementar las tecnologías de recirculación y reuso, no solo permiten disminuir los costos de producción, sino también permiten reducir los pagos de tasa retributiva, dadas las remociones de carga contaminante que en ellas se genera.

- Los conceptos establecidos anteriormente demuestran que la teoría no es una utopía, esto es, se pueden conseguir la reducción de consumo de agua, se pueden reciclar licores y se pueden reducir considerablemente el grado de contaminación, cuando se tienen los medios y la voluntad para realizar los cambios en los procesos de producción para alcanzar los objetivos que establecen las regulaciones de las leyes ambientales, mismas que habrán de permitir o no la supervivencia de las diferentes industrias (entre ellas las del cuero) en un futuro inmediato.

- Las tecnologías de producción más limpia implementadas, no solo buscan la prevención de la contaminación y la eficiencia en el uso de insumos, también puede ser un punto estratégico para lograr mejorar la calidad del producto y ser más competitivos en el sector.

- A pesar de que existen varios métodos para reducir el consumo de insumos y para disminuir la concentración de los mismos en los efluentes de los procesos, ninguno permite cerrar los ciclos y evitar pérdidas; lo que sí puede ocurrir con los métodos de recirculación estudiados en este documento, teniendo en cuenta un minucioso seguimiento y medición y control de la calidad del producto en el proceso y final.

- Es posible introducir el principio de minimización de residuos mediante el desarrollo de un programa de actividades que reduzca la generación de residuos en la fuente y el reuso de aquellos que representan un valor económico.

- La aplicación de un programa de esta naturaleza conduce a una serie de beneficios económicos para la industria, principalmente ahorro de agua e insumos químicos. Otros beneficios importantes son la protección ambiental, la protección de la salud ocupacional y la capacitación de técnicos y trabajadores de la planta.

- En lo que se refiere a los residuos industriales líquidos, la minimización surge como una interesante alternativa frente al tratamiento tradicional de estos residuos. Tomando en cuenta el tamaño y las condiciones económicas de la industria latinoamericana, es aún más atractiva porque los sistemas que se requieren para cumplir con los objetivos de la minimización no demandan gran espacio ni fuerte inversión, y además ofrecen posibilidades de retorno monetario.
- Una vez analizado el proceso productivo de curtiembres, se puede concluir que se trata de un sector que por la importante contaminación que genera durante su proceso, se encuentra enfrentado al cumplimiento de normativas ambientales con un pronóstico de altos costos de tratamientos y sin que ellos signifiquen, en un balance total neto, ningún ahorro.

- Debe tenerse presente que por lo general, las tecnologías asociadas a la prevención de la contaminación en curtiembres son de bajo costo de implementación y aplicación, no siendo raros los casos en que una racionalización del proceso productivo, produce ahorros en costos de producción y mejoras en la calidad del producto final. Llama la atención que con estas características, este tipo de tecnologías tenga a la fecha una bajísima difusión al interior de las curtiembres, no siendo una excepción los casos en que el industrial está dispuesto a hacer mayores inversiones en el sector “end of pipe” a condición de no “tocar” el proceso productivo. Esto se debe generalmente a que se teme ante la posibilidad de que la calidad del producto final pueda verse afectada.
7 REFERENCIAS BIBLIOGRÁFICAS

- JOHN, Gerhard. POSIBLES FALLAS EN EL CUERO Y EN SU PRODUCCIÓN, Conceptos, causas, consecuencias, remedios y tipos de cuero, Lampertheim, Alemania, Mayo. 1998.

- Paginas de Internet.

<table>
<thead>
<tr>
<th>Cuadro 9. Análisis económico en reciclo de licor de pelambre</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO TOTAL</td>
</tr>
<tr>
<td>SULFURO DE SODIO</td>
</tr>
<tr>
<td>AGUA</td>
</tr>
<tr>
<td>DESCARGA DE AGUA</td>
</tr>
<tr>
<td>CONCENTRACIÓN DE SULFURO EN AGUA RESIDUAL</td>
</tr>
<tr>
<td>1214 mg/L</td>
</tr>
<tr>
<td>0,001214 kg/L</td>
</tr>
<tr>
<td>1,214 kg/m³</td>
</tr>
<tr>
<td>Concentración S kg/m³</td>
</tr>
<tr>
<td>1,214</td>
</tr>
<tr>
<td>Cantidad de Na₂S</td>
</tr>
<tr>
<td>Cantidad total de Na₂S</td>
</tr>
<tr>
<td>Cantidad total de Na₂S descargada en el año</td>
</tr>
<tr>
<td>PÉRDIDAS EN $ POR DESCARGA DE PRODUCTOS NO FIJADOS</td>
</tr>
<tr>
<td>PÉRDIDA EN $ DE AGUAS RESIDUALES</td>
</tr>
<tr>
<td>TOTAL ASUMIBLE A RECUPERAR Y RECIRCULAR</td>
</tr>
<tr>
<td>Costo operativo anual</td>
</tr>
<tr>
<td>FLUJO DE CAJA= AHORRO NETO (año n)</td>
</tr>
<tr>
<td>AHORRO NETO= Ahorro bruto (año n) - Costo operativo (año n)</td>
</tr>
<tr>
<td>AHORRO NETO= $ 24.224.837,99</td>
</tr>
<tr>
<td>PERIODO DE RECUPERACION DE LA INVERSIÓN</td>
</tr>
<tr>
<td>PR= Io/FC</td>
</tr>
<tr>
<td>RENTABILIDAD DE LA INVERSION</td>
</tr>
<tr>
<td>*Rl= (FC/Io)100</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>cobro $/kg</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ANTES DE REUSO</th>
<th>CON REUSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg en la descarga final</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST EN kg/ton</td>
<td>97</td>
<td>26</td>
</tr>
<tr>
<td>DBO EN kg/ton</td>
<td>45</td>
<td>27</td>
</tr>
</tbody>
</table>

| COBRO SST | 15371202 | 4120116 |
| COBRO DBO | 16663185 | 4278582 |

$ 15.658.348,99

BENEFICIO TOTAL POR REUSO Y POR DISMINUCION EN PAGO DE TASA RETRIBUTIVA

$ 23.635.689,00

$ 39.294.037,99
Cuadro 10. Análisis económico en recuperación de licor de curtido

<table>
<thead>
<tr>
<th>ENTRADAS</th>
<th>DIAS LABORADOS</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO PIEL</td>
<td>22,58</td>
<td></td>
</tr>
<tr>
<td>PIELES</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>PESO TOTAL</td>
<td>13548</td>
<td></td>
</tr>
<tr>
<td>SULFATO DE CROMO</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td>AGUA</td>
<td>0,44</td>
<td></td>
</tr>
<tr>
<td>DESCARGA DE AGUA</td>
<td>5961,1</td>
<td></td>
</tr>
</tbody>
</table>

2450 COSTO en $/kg

<table>
<thead>
<tr>
<th>CONCENTRACIÓN DE CROMO EN AGUA RESIDUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1927 mg/L</td>
</tr>
<tr>
<td>0,001927 kg/L</td>
</tr>
<tr>
<td>1,927 kg/m³</td>
</tr>
</tbody>
</table>

Concentración S kg/m³ volumen m³ % pureza PM g/mol PA g/mol

| 1,927 | 1 | 26 | 152 | 52 |

Cantidad de Cr(OH)SO₄ 21,664497 Kg
Cantidad total de Cr(OH)SO₄ 129,144667 Kg
Cantidad total de Cr(OH)SO₄ descargada en el año 22600,317 Kg

PÉRDIDAS EN $ POR DESCARGA DE PRODUCTOS NO FIJADOS

COSTO INVERSIÓN INICIAL PARA RECIRCULACION

Costo infraestructura $179.546.994,00 INVERSIÓN INICIAL (Io)
Costo operativo/mes $1.506.920,00
Costo operativo anual $15.069.200,00

FLUJO DE CAJA= AHORRO NETO (año n)

Ahorro bruto (año n) - Costo operativo (año n)

AHORRO NETO= $41.138.029,33

PERIODO DE RECUPERACION DE LA INVERSIÓN

PR= Io/FC

PR= 4,36

RENTABILIDAD DE LA INVERSIÓN

RI= (FC/Io)*100

RI= 23 %
<table>
<thead>
<tr>
<th>Cobro $/kg</th>
<th>SST</th>
<th>DBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTES DE REUSO</td>
<td>CON REUSO</td>
<td></td>
</tr>
<tr>
<td>kg en la descarga final</td>
<td>kg en la descarga final</td>
<td></td>
</tr>
<tr>
<td>SST EN kg/ton</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>COBRO SST</td>
<td>929392,8</td>
<td>92939,28</td>
</tr>
</tbody>
</table>

$ 55.370.775,81
TOTAL ASUMIBLE A RECUPERAR Y RECIRCULAR

$ 55.370.775,81
AHORRO POR MENOR PAGO DE TASA RETRIBUTIVA

<table>
<thead>
<tr>
<th>Cobro $/kg</th>
<th>SST</th>
<th>DBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTES DE REUSO</td>
<td>CON REUSO</td>
<td></td>
</tr>
<tr>
<td>kg en la descarga final</td>
<td>kg en la descarga final</td>
<td></td>
</tr>
<tr>
<td>SST EN kg/ton</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>COBRO SST</td>
<td>929392,8</td>
<td>92939,28</td>
</tr>
</tbody>
</table>

$ 836.453,52
BENEFICIO TOTAL POR REUSO Y POR DISMINUCION EN PAGO DE TASA RETRIBUTIVA

$ 56.207.229,33