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ASSET PRICES IN A TIME SERIES MODEL WITH PERPETUALLY
DISPARATELY INFORMED, COMPETITIVE TRADERS

KENNETH KASA, TODD B. WALKER, AND CHARLES H. WHITEMAN

Abstract. This paper develops a dynamic asset pricing model with persistent
heterogeneous beliefs. The model features competitive traders who receive idiosyn-
cratic signals about an underlying fundamentals process. We adapt Futia’s (1981)
frequency domain methods to derive conditions on the fundamentals that guarantee
noninvertibility of the mapping between observed market data and the underlying
shocks to agents’ information sets. When these conditions are satisfied, agents must
‘forecast the forecasts of others’. The paper provides an explicit analytical charac-
terization of the resulting higher-order belief dynamics. These additional dynamics
can explain apparent violations of variance bounds and rejections of cross-equation
restrictions.

JEL Classification Numbers: G12, D82

1. Introduction

The standard present value model has a difficult time explaining several features

of observed asset prices. From the perspective of this model, prices seem to be

excessively volatile. The model’s cross-equation and Granger causality restrictions

are typically rejected as well. As a result, the linear present value model has all but

disappeared from serious academic research on asset pricing.1 This paper returns to

that framework, and argues that informational heterogeneity can account for many

of the model’s apparent empirical shortcomings. In particular, we make one simple

change to the standard present value model–we assume fundamentals consist of a sum

of orthogonal components, and that individuals observe different pieces of this sum.

Date: September 19, 2006.
We would like to thank Ron Michener, Bart Taub, Pierre-Olivier Weill and seminar participants at
NYU, the Federal Reserve Board, Indiana University, VPI, UNC, and the Atlanta Fed for helpful
discussions. Support from the National Science Foundation under grant SES85-10505 is gratefully
acknowledged. This paper subsumes and extends Walker and Whiteman’s Equilibrium Volatility

and Heterogeneity in a Simple Asset Pricing Model and Kasa’s Asset Pricing with Heterogeneous

Beliefs: A Frequency Domain Approach.
1Cochrane (2001) discusses the empirical failings of constant discount rate models. He emphasizes
that many apparently distinct anomalies, such as predictability and excess volatility, can be inter-
preted as manifestations of the same underlying problem; namely, a misspecification of the discount
rate. He also emphasizes that the same problems show up in all asset markets, e.g., stocks, bonds,
foreign exchange, real estate, etc.
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The presence of asymmetric information places rational investors into a situation

where they must ‘forecast the forecasts of others’ (see, Townsend (1983), Singleton

(1987)). We demonstrate how the resulting higher-order belief dynamics can reconcile

standard present value models with several apparent empirical anomalies.

Of course, this is not the first paper to study the role of asymmetric information

in asset markets, nor is it the first to study higher-order beliefs.2 However, our ap-

proach is the first to combine several key ingredients. First, our model is dynamic, it

features persistent heterogeneous beliefs, and the equilibrium is stationary. Following

Grossman and Stiglitz (1980), most existing work on asset pricing with asymmetric

information is confined to static, or finite-horizon models. Although this is a useful

abstraction for some theoretical questions, it is obviously problematic when it comes

to empirical applications. There has been some work devoted to dynamic extensions

of the Grossman-Stiglitz framework (see, e.g., Wang (1993)), but following Gross-

man and Stiglitz, this literature postulates hierarchical information structures, with

‘informed’ and ‘uninformed’ traders. Again, this assumption has its uses, but from

our perspective it ‘throws the baby out with the bath water’, since it eliminates the

forecasting the forecasts of others problem (Townsend (1983)). Our model postulates

a more natural symmetric information structure.

Second, our approach features signal extraction from endogenous prices. This dis-

tinguishes our work from the flood of recent work on global games and imperfect

common knowledge (Morris and Shin (1998, 2000, 2003)). Although this literature

has made important contributions to our understanding of higher-order beliefs, it is

not directly applicable to asset pricing, since it abstracts from asset markets. As

Atkeson (2000) notes, prices play an important role in aggregating information, and

it remains to be seen how robust the work on global games is to the inclusion of asset

markets.3

Third, our approach delivers an analytical solution, with explicit closed-form ex-

pressions for the model’s higher-order belief dynamics. Although this may seem like

a minor contribution given the power of computation these days, it turns out that

analytical solutions are extremely useful in models featuring an infinite regress of

higher-order beliefs. Numerical methods in this setting are fraught with dangers. In

2See Brunnermeier (2001) for a nice overview of the existing literature.
3Recent work by Angeletos and Werning (2005) incorporates signal extraction from prices into the
Morris-Shin framework. However, their model is essentially static. Moreover, their informational
assumptions preclude even the possibility that prices could be fully revealing. In contrast, our work
focuses directly on the conditions required for a non-revealing equilibrium.
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particular, they require prior knowledge of the relevant state vector. As first noted

by Townsend (1983), it is not at all clear what the state is when agents forecast

the forecasts of others. Townsend argued that the logic of infinite regress produces

an infinite-dimensional state. He short-circuited the infinite regress and obtained a

tractable numerical solution by assuming that information becomes common knowl-

edge after a (small) number of periods. This truncation strategy has since been

applied by a number of subsequent researchers (see, e.g., Singleton (1987) and Bac-

chetta and van Wincoop (2006)). However, recent work by Pearlman and Sargent

(2005) and Walker (2006) demonstrates that numerical approaches can be quite mis-

leading. Pearlman and Sargent, employing a clever ‘guess and verify’ strategy based

on the incorporation of lagged forecast errors in the state, showed that Townsend’s

model in fact produces an equilibrium that is fully revealing, and that Townsend’s

higher-order belief dynamics are entirely an artifact of his numerical methods. Walker

(2006) does the same thing for Singleton’s asset pricing version of Townsend’s model.

Using the same approach as this paper, he obtains an analytical solution without

truncation, and shows that the equilibrium is in fact fully revealing.

Our approach adapts and extends the frequency domain methods of Futia (1981).

These methods exploit the power of the Riesz-Fischer Theorem. This theorem allows

us to transform a difficult time-domain/sequence-space signal extraction problem into

a much easier function space problem. Rather than guess a state vector and then solve

a Kalman filter’s Riccati equation, a frequency domain approach leads to the con-

struction of Blaschke factors. Finding these Blaschke factors is the key to solving the

agents’ signal extraction problems.4 In general, finding Blaschke factors is no easier

than solving Riccati equations. However, a key innovation in our approach is to work

backwards from postulated Blaschke factors to the supporting set of fundamentals.

This reverse engineering strategy allows us to isolate necessary conditions for the ex-

istence of a heterogeneous beliefs equilibrium. The advantages gained from knowing

these conditions cannot be overestimated. For example, recent work by Makarov and

Rytchkov (2006) also applies frequency domain methods to a linear present value

asset pricing model. In contrast to our approach, they begin by postulating a time

series process for fundamentals, and then search for an equilibrium price process. In-

terestingly, they argue that a finite-state equilibrium does not exist. However, their

4Kasa (2000) uses frequency domain methods to solve Townsend’s model. He comes to the same
conclusion as Pearlman and Sargent (2005).
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fundamentals specification does not satisfy our existence condition, which perhaps

explains why they are unable to find a finite-state equilibrium.

Besides Makarov and Rytchkov (2006), the only other paper we are aware of that

applies frequency domain methods to asset pricing is the recent work of Bernhardt,

Seiler, and Taub (2005). Like us, they analyze a dynamic model with symmetric,

heterogeneously informed traders. However, their work differs from ours in two im-

portant respects. First, following Kyle (1985), they focus on the strategic use of

information when individual traders influence asset prices, which are set in a compet-

itive dealership market. In contrast, our model is Walrasian. While strategic issues

are interesting, and of great practical importance, they add an additional layer of com-

plexity to the already difficult problem of characterizing higher-order belief dynamics.

Second, the complexity of their model requires numerical methods. This gives rise

to the above noted difficulties associated with guessing correct functional forms and

appropriate state vectors. It also makes it difficult to distinguish higher-order belief

dynamics from the strategic use of private information.

Our model’s solution takes the form of a nonfundamental (i.e., noninvertible)

moving-average representation, mapping the underlying shocks to agents’ informa-

tion sets to observed prices and fundamentals. Using Blaschke factors, one can easily

convert this to a Wold representation. The (statistical) innovations of the Wold

representation turn out to be complicated moving averages of the entire histories

of the underlying (economic) shocks. These moving averages encode the model’s

higher-order belief dynamics. A key virtue of our approach is that this equilibrium

representation can be taken to the data in a direct, quantitative way. In contrast, ex-

isting work on higher-order beliefs is purely qualitative. This allows us to revisit past

empirical failures of linear present value asset pricing models. We ask the following

question - Suppose asset markets feature heterogeneous beliefs, but an econometri-

cian mistakenly assumes agents have homogeneous beliefs. What will he conclude?

One might think, based on the conditioning down arguments of Hansen and Sargent

(1991a) and Campbell and Shiller (1987), that this would not create any problems.

Interestingly, this is not the case. Conditioning down does not work here. The ar-

guments of Hansen-Sargent and Campbell-Shiller apply to situations where agents

and econometricians have different information sets. They do not apply in general to

situations where there is informational heterogeneity among the agents themselves.

This is because the law of iterated expectations does not apply to the average beliefs

operator (Allen, Morris, and Shin (2006), Morris and Shin (2003)). We show that
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present value models with heterogeneous beliefs can easily produce violations of stan-

dard variance bounds and rejections of cross-equation restrictions. This sounds a note

of caution when interpreting previous rejections of present value models. Perhaps it

is not the constant discount rate that is the problem, but rather the (usually implicit)

assumption of homogeneous beliefs, or equivalently, a fully revealing equilibrium.

The remainder of the paper is organized as follows. The next section outlines Futia’s

model. Futia showed how to solve the model in two cases: (i) when the equilibrium

is fully revealing, and (ii) when information sets are hierarchical, so that some agents

know strictly more than others. He showed that the hierarchical equilibrium may

or may not be fully revealing. Section 3 shows how to solve the model in the more

realistic case of symmetric, yet disparate, information sets. Rather than working

from posited laws of motion for the fundamentals, our strategy is to work backwards

from an assumed nonrevealing equilibrium to the supporting stochastic process for

fundamentals. For comparison purposes, Section 4 briefly considers a full information

benchmark. Section 5 constructs the equilibrium Wold representation and discusses

the model’s empirical implications. Section 6 concludes by discussing some extensions

and applications.

2. A Model of Trade in Shares of a Risky Asset

2.1. Model. The model we work with below follows Futia’s (1981) ‘Land Specula-

tion in Hilbert Space’ setup closely. By working within the context of a well-defined

Hilbert space, we are ruling out phenomena like bubbles and sunspots. All stochastic

processes are restricted to be square-summable (potentially with discounting), and all

equilibria are restricted to lie in the space spanned by square-summable linear combi-

nations of past innovations to market fundamentals, which may, however, be a larger

space than the space spanned by the history of observed market data. In his model,

Futia considers investment in a single durable asset in fixed total supply. Demand

for the asset arises from two sources; a time- and state-varying nonspeculative com-

ponent (i.e., liquidity traders), and from competitive, price-taking speculators. The

presence of liquidity traders adds noise to the model, and serves to break the no-trade

theorem that would otherwise apply in Futia’s hierarchical information setup. It is

assumed that nonspeculative demand never exceeds total supply, and the residual,

denoted ft, is interpreted as ‘market fundamentals.’ Each investor has a demand for

the asset given by,

qi
t = Ei

tpt+1 − β−1pt (2.1)
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where β−1 = (1+r) > 1 is interpreted as the opportunity cost of funds. The important

thing to note here is that conditional expectations are indexed by agents, recognizing

the fact that information sets differ. Equation (2.1) simply says that demand is an

increasing function of the difference between the expected capital gain on the asset

and the opportunity cost of the funds. It is not infinite, however, due to risk aversion.

In fact, equation (2.1) can be derived from a simple portfolio choice problem in which

agents have exponential (CARA) preferences and a one-period investment horizon.

From this perspective, equation (2.1) implicitly normalizes to unity the product of

the coefficient of absolute risk aversion and the (constant) conditional variance of the

price.5

Equating aggregate speculative demand to aggregate speculative supply delivers

the following market-clearing condition:

pt = β

∫
1

0

Ei
tpt+1di − βft (2.2)

where it has been assumed that there is a measure one continuum of speculative

traders. Notice, following Singleton (1987), that the market price of the risky asset

depends on a weighted average of the market participants’ forecasts of pt+1. Thus

each agent’s forecast of pt+1 depends on his forecast of the market-wide weighted

average forecast of pt+2, and so on.6 Evidently, there is an infinite regress in expecta-

tions, a problem encountered in a different context by Townsend (1983). Townsend

and Singleton “broke” the infinite regress by completely revealing the state of the

economy, albeit with a lag. Such divine revelation leaves only a few objects unknown

at any date, and makes the regress problem manageable. In this paper, the infinite

regress problem is never broken (it is treated just like any other equilibrium prob-

lem) and there is no divine revelation; special assumptions about the nature of the

informational heterogeneity keep the problem manageable.

Given a stochastic process for the fundamentals, and assuming rational expecta-

tions, equation (2.2) determines the equilibrium stochastic process for prices. Note,

5Whiteman (1989) shows how to solve the model with the conditional variances retained. Doing so
would complicate the algebra, but would not change the results qualitatively.
6As recently emphasized by Allen, Morris, and Shin (2006), the law of iterated expectations does not

in general apply to the average expectations operator. One can interpret this result using Hansen
and Sargent (1991a) notion of an ‘exact’ rational expectations model. Traditional homogenous
beliefs present value models are examples of exact models. Although agents may have more infor-
mation than econometricians, there are no ‘missing fundamentals’ from these models. In contrast,
models with heterogeneous beliefs are ‘inexact’, since higher-order beliefs in effect become missing
fundamentals.
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however, that with the appropriate definition of ft, (2.2) is quite general. For exam-

ple, with −ft defined as dividends, it becomes a present value model for stock prices;

with −ft defined as the difference between national money supplies and income levels

it becomes the monetary model of exchange rates; with −ft defined as a short-term

interest rate it becomes the expectations hypothesis of the term structure; and so on.

In the analysis that follows, we consider two cases of this model. The first case

assumes that fundamentals are latent from (not observed by) traders. This is the

setup of Futia (1981). The second case assumes that net supply is identically equal to

zero (i.e., no liquidity traders), and fundamentals are observable. This model follows

the interpretation of the present value model for stock prices. The models have similar

informational structures and lead to the same empirical conclusions for asset prices.

2.2. Information. In specifying the nature of uncertainty and the structure of infor-

mation, we assume that the world is driven by an m-vector of serially and mutually

independent Gaussian N(0,1) random variables εt = (ε1t, ..., εmt). Admissible random

variables are linear combinations of current, past, and future values of {εt} that have

square-summable coefficients. The set H of all admissible random variables is a well-

known Hilbert space; ft, pt, E
i
t(·) ∈ H for all t. We also restrict equilibria to lie in H ,

which explicitly rules out bubbles and sunspot equilibria.

The common information at date t consists of past values of the price of the risky

asset. The space spanned by square-summable linear combinations of past values of

pt is denoted by Hp(t). The exogenous private information set of agent i at time

t is a subset U i
t of H satisfying U i

t ⊆ U i
t+1; U i

t is the space spanned by square-

summable linear combinations of current and past values of the variables other than

pt seen by agent i. Let Jt denote the space spanned by all exogenous information at

time t contained in the model (∪∞

i=1U
i
t ). Given these assumptions, the conditional

expectations are given by

Ei
tpt+1 = Π[pt+1|U

i
t

∨

Hp(t)], (2.3)

where Π denotes linear least squares projection, and X
∨

Y is standard notation

for “the linear space spanned by X and Y .” We now define a rational expectations

equilibrium (REE).

Definition 2.1. A rational expectations equilibrium is a stochastic process {pt} for

the price of the risky asset which satisfies (2.2) with conditional expectations formed

according to (2.3) and pt ∈ Jt

∨
Hp(t).
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The last condition is what Futia referred to as the ‘no divine revelation’ clause.

That is, the equilibrium price cannot rely on information that originates from outside

of the model. The equilibrium price must lie in the space spanned by past prices and

the exogenous information known by the traders.

Definition 2.2. The REE is symmetric if it is a rational expectations equilibrium in

which all agents make identical forecasts,

Ei
tpt+1 = Ej

t pt+1, ∀ i and j.

Notice that by observing “action” in the market, agents may glean information not

in their own private information sets that helps predict market fundamentals. To

preserve the asymmetric information structure in equilibrium, it must be the case

that privately held information is not revealed by observation of current and past

prices.

Agents in the model have asymmetric information regarding the stochastic process

of fundamentals, ft. Without loss of generality, we assume fundamentals consist of

the sum of orthogonal components:

ft =

m∑

i=1

ai(L)εit. (2.4)

It will be assumed that ai(L) is a polynomial (of possibly infinite order) in nonnegative

powers of the lag operator L, with square summable coefficients, and that ai(z) 6= 0

for any |z| ≤ 1 and ai(z) 6= aj(z) for any i 6= j. The orthogonal shocks are assumed to

be serially uncorrelated with Eεitεjs = 0 for all i 6= j, and constitute the fundamental

economic building blocks of the model, implying the price process will be square

summable sequences of {εi}.

We assume there are two types of speculative traders. Type 1 traders costlessly

observe realizations of ε1t, while type 2 traders costlessly observe realizations of ε2t.

Without loss of generality, we assume equal shares of the two types of traders. This

allows us to write (2.2) as

pt = β

{
1

2
E1[pt+1|Hp(t)

∨

Hε1
(t)] +

1

2
E2[pt+1|Hp(t)

∨

Hε2
(t)]

}

− βft. (2.5)

Of course when fundamentals are observable, each traders’ conditional expectation

will include Hf(t).
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3. Constructing a Nonrevealing Equilibrium

One of the main contributions of the paper is to establish conditions under which

the disparate expectations of (2.5) are preserved in a dynamic equilibrium. As men-

tioned above, the usual approach for solving rational expectations models (i.e., pa-

rameterize a conjectured law of motion, apply the Kalman filter to evaluate the

conditional expectations, and then match coefficients) cannot be employed due to

the complications of infinite regress. In models with asymmetric information, other

traders’ forecasts of future prices affect the current price of the asset, and therefore

these forecasts are relevant state variables. But in a dynamic setting, this relevant

state variable would become infinitely large because traders must forecast the average

forecast of the average forecast of ..., ad infinitum.

In solving the model, we apply the following solution method. First, each trader

uses all available information at time t to form beliefs about the current price pro-

cess. Second, every trader behaves optimally and the conditional expectation of pt+1

will be calculated via Wiener-Kolmogorov optimal prediction formulas. Third, the

appropriate form of equation (2.5) is then used to impose market clearing. In solving

the subsequent fixed-point problem, we appeal to the Riesz-Fischer Theorem and de-

rive the solution in the frequency domain. However, this process will only generate

a candidate equilibrium price process. Traders will surely condition on past prices,

so the candidate is in fact a rational expectations equilibrium provided it does not

reveal any additional information beyond what was initially assumed.

We consider two separate assumptions about the fundamentals. First we assume

aggregate fundamentals are unobservable. This is perhaps most descriptive of macroe-

conomic applications, e.g., present value models to the exchange rate, where relevant

aggregate fundamentals may not be known or reported.7 It turns out that prices must

be revealing in the case when there are just two trader-types. To support a heteroge-

neous beliefs equilibrium with observed aggregate fundamentals, we therefore extend

the analysis to three trader-types.

3.1. Latent Fundamentals. We begin with Futia’s set-up. Aggregate fundamentals

are

ft = a1(L)ε1t + a2(L)ε2t,

7Engel and West (2005) argue that unobserved fundamentals appear to be necessary to reconcile
present value models with observed exchange rates. Hamilton and Whiteman (1985) argue that
the mere possibility of unobserved fundamentals vitiates standard bubbles tests. Interestingly, our
results suggest a likely candidate for ‘missing fundamentals’, i.e., higher-order beliefs.
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where the polynomials a1(L) and a2(L) are taken as given (subject to some restrictions

given below). While no trader sees aggregate fundamentals directly, each type of

trader sees a stochastic process that is correlated with ft; specifically, type 1 traders

see realizations of ε1t, while type 2 traders see ε2t. In equilibrium, the information set

of type 1 traders is given by current and past values of the stochastic process ǫ1t, pt,

having the moving average representation
[

ε1t

pt

]

=

[

1 0

π1(L) π2(L)

] [

ε1t

ε2t

]

xt = M(L)ǫt. (3.1)

where the π1(L) and π2(L) polynomials are to be determined from the equilibrium

conditions of the model.

If the equilibrium is to be nonrevealing, it must be the case that the πi(L) poly-

nomials are noninvertible (in non-negative powers of L). Otherwise, an agent of one

type equipped with basic statistical knowledge (e.g., knowledge of VARs) could in-

fer the other type of agent’s information from observations of the price and his own

shock realizations. That is, if the πi(L) polynomials were invertible, Hε1
(t)

∨
Hp(t)

and Hε1
(t)

∨
Hε2

(t) would coincide, and the equilibirum would reveal agent 2’s infor-

mation to agent 1. This noninvertibility restriction corresponds to the assumption

that π1(z) and π2(z) have zeroes inside the unit circle. Thus to preserveve asymmetric

information in equilibrium we must seek and find equilibrium pricing polynomials of

the form

πi(L) = (L − λ)[ρi + Lgi(L)] (3.2)

where we now require |λ| < 1, and that the (ρi + zgi(z)) functions are analytic and

without zeroes inside the unit circle.8 That is, we assume the pricing function has a

single zero inside the unit circle and seek a λ, ρi, and gi(L) that satisfies the above

conditions.

The following lemma ensures that pricing functions of the form (3.2) imply that

by observing current and past prices and current and past realizations of ε1t, type 1

traders will not be able to infer ε2t, the private information of type 2 traders.

Lemma 3.1. The moving average representation given by (3.1) and (3.2) is not a

fundamental (Wold) representation.

8We can relax the assumption that π1 and π2 have the same zero (λ) at the cost of losing Proposition
1 below. The upside is that the analogue of Assumption 1 would be more easily met.
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Proof. A necessary and sufficient condition for (3.1) to be a Wold representation is

that the space spanned by past observables xt must be equivalent, in the mean square

sense, to the space spanned by ǫt. This requires that M(L) to have a one-sided inverse

in non-negative powers of L. A necessary condition for the existence of this inverse is

that the determinant of M(L) cannot have any zeros inside the unit circle. By direct

calculation,

det M(L) = (L − λ)[ρ2 + Lg2(L)]

has a zero inside the unit circle at λ. �

If type 1 traders do not observe ε2t directly, what information do they possess

in evaluating the conditional expectation? Type 1 traders have information set

Hp(t)
∨

Hε1
(t), and therefore any information gleaned from the past sequences of

{ε1t} and the price process {pt} will be used to evaluate the conditional expectation.

While pt and ε1t can be expressed as a square-summable linear combination of current

and past values of ε1t and ε2t, the converse is not true; Hε1
(t)

∨
Hε2

(t) spans a larger

space than Hε1
(t)

∨
Hp(t). Therefore, in order to evaluate the expectations of type 1

traders, we need to restrict attention to the subspace generated by Hp(t)
∨

Hε1
(t).

There are two ways to do this. The first is to work directly with the subspace seen

by the agent by employing Blaschke factors to “flip zeros” outside the unit circle. The

second is to work with the larger information set involving current and past values of

ε2t and then project this into Hε1
(t)

∨
Hp(t). Both ways are instructive.

The direct method involves employing Blaschke factors to find the unique (up to a

constant) fundamental representation associated with (3.1), which is given by

[

ε1t

pt

]

=

[

1 0

(L − λ)[ρ1 + Lg1(L)] (L − λ)[ρ2 + Lg2(L)]

][

1 0

0 1−λL
L−λ

]

︸ ︷︷ ︸

[

1 0

0 L−λ
1−λL

] [

ε1t

ε2t

]

︸ ︷︷ ︸

xt = M∗(L) ǫ
∗

t (3.3)

The Blaschke factor [(L− λ)/(1− λL)] transforms representation (3.1) into a funda-

mental representation. If we define

e2t ≡

[
L − λ

1 − λL

]

ε2t, (3.4)

then for type 1 traders, knowledge of {pt} is equivalent to knowledge of {e2t}, and

not {ε2t}. Moreover, notice that from (3.4), it is apparent that knowledge of current

and past ε2t is sufficient for e2t, but that the inverse of the Blaschke factor does not
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possess a valid expansion in and on the unit circle in L due to the pole at L = |λ|.

However, by setting F = L−1, it is easy to see that the Blaschke factor does have a

valid inverse in the forward operator F
[

F − λ

1 − λF

]

e2t = ε2t, ε2t = (L−1 − λ)

∞∑

j=0

λje2,t+j .

In other words, ε2t carries information about future e2’s.

The parameter λ may be interpreted as an information wedge. Notice that if

|λ| > 1, (3.1) becomes a fundamental representation and asymmetric information

will not be preserved in equilibrium. By observing current and past prices, traders

of both types will be able to infer the information of the other type by applying

VAR analysis. If |λ| < 1, then the equilibrium prices will not reveal information.

The subsequent excess volatility result discussed in Section 5 hinges upon the price

process being a nonrevealing equilibrium.

The conditional expectations (2.5) can then be found by using Wiener-Kolmogorov

optimal prediction formulas. That is,

E(xt+1) = L−1[M∗(L) − M(0)∗]ǫ∗t

E1[pt+1|Hp(t)
∨

Hε1
(t)] = [ρ1 + (L − λ)g1(L)]ε1t

+

[

ρ2 + (L − λ)g2(L) −
ρ2(1 − λ2)

1 − λL

]

ε2t (3.5)

The second way to determine the needed conditional expectation involves using

a ‘conditioning down’ argument. First, project pt+1 onto the space Hε1
(t)

∨
Hε2

(t).

That is, assume (counterfactually) that agents directly observe realizations of the

underlying shocks, ε1t and ε2t. Subsequently, we will condition down by ‘subtracting

off’ the appropriate orthogonal complements.9 From the orthogonality of ε1 and ε2,

and the Wiener-Kolmogorov prediction formula we have the projection onto the larger

space given by:

E[pt+1|Hε1
(t)

∨

Hε2
(t)] = L−1[π1(L) − π1(0)]ε1t + L−1[π2(L) − π2(0)]ε2t

= [ρ1 + (L − λ)g1(L)]ε1t + [ρ2 + (L − λ)g2(L)]ε2t (3.6)

As before, since |λ| < 1, then Hε1
(t)

∨
Hε2

(t) is a larger space than Hε1
(t)

∨
Hp(t),

and we need to condition down (i.e., project onto the subspace Hε1
(t)

∨
Hp(t)).

9Although we cautioned earlier that the law of iterated expectations does not apply to the average
expectations operator, it certainly does apply to each individual’s forecasting problem.
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Clearly, the first term on the right-hand side of (3.6) can be retained, since type

1 traders observe ε1t. The second term, however, needs to be modified. Due to Beurl-

ing’s Theorem, Blaschke factors play a fundamental role in constructing orthogonal

projections and invariant subspaces of analytic functions.10 Our required projection

follows as a special case of the following theorem:

Theorem 3.2 (Theorem 3.14 in Radjavi and Rosenthal (1973)). Let D denote the

open unit disk, H2 denote the Hardy space of square integrable analytic functions on

D. If λ1 · · ·λn are in D and if

φ(z) =

n∏

j=1

λj − z

1 − λ̄jz
(3.7)

then the orthogonal complement of φH2 in H2, H2 ⊖ φH2, has dimension n. Con-

versely, every invariant subspace of S (i.e., a shift operator) of co-dimension n has

this form.

The function φ(z) in (3.7) is an example of a Blaschke product. Note that |φ(z)| = 1

on D, implying that multiplication by φ(z) is norm-preserving. The theorem implies

that in our case, with n = 1, the part of Hε2
(t) that cannot be written as a linear

combination of current and past e2t is unidimensional–a single square summable linear

combination of current and past values of ε2t. In particular, Theorem 3.2 yields the

following result:

Lemma 3.3. The projection E[pt+1|Hε2
(t)] = [ρ2 +(L−λ)g2(L)]ε2t has the following

orthogonal decomposition:

[ρ2 + (L − λ)g2(L)]ε2t =

[

h(L)
L − λ

1 − λL

]

ε2t +
constant

1 − λL
ε2t (3.8)

where h(L) is an analytic function in D with zeroes outside D.

Proof. We begin with the decomposition of ε2t itself into a component that can be

written in terms of e2t =
[

L−λ
1−λL

]
ε2t and another orthogonal to it:

ε2t = K(L)

[
L − λ

1 − λL

]

ε2t + M(L)ε2t (3.9)

10Invariant subspaces can be thought of as playing the role of eigenvectors in infinite dimensional
function spaces. Just as it helps to visualize the action of a matrix by visualizing its projections onto
orthogonal eigenvectors, it helps to visualize the action of a z-transform by visualizing its (shift)
invariant subspaces. Loosely speaking, Beurling’s theorem tells us that shift invariant subspaces of
analytic functions consist of Blaschke products. (See theorem 3.9 of Radjavi and Rosenthal (1973)
for a statement and proof of Beurling’s theorem).



14 KENNETH KASA, TODD B. WALKER, AND CHARLES H. WHITEMAN

where K(L) and M(L) are one-sided polynomials in the lag operator with square-

summable coefficients. Orthogonality is enforced by the requirement that M(L)ε2t =

ε2t − K(L)
[

L−λ
1−λL

]
ε2t be orthogonal to e2t = L−λ

1−λL
ε2t, e2t−1 = L−λ

1−λL
ε2t−1, e2t−2, etc.

Thus

EM(L)ε2te2t−j =
1

2πi

∮
M(z)z−j(z − λ)

1 − λz

dz

z
= 0, j = 0, 1, 2, ...

Direct calculation using the residue calculus yields the restrictions M(λ) = M0/(1 −

λ2) and Mj = λMj−1 for j ≥ 1. This implies M(L) = M0/(1−λL). This immediately

gives (3.8) for some h(z). It is straightforward to verify the orthogonality of the two

components on the RHS of (3.8) for any anlaytic h(z)11:
(

h(z)
z − λ

1 − λz
,

1

1 − λz

)

=
1

2πi

∮

h(z)
z − λ

1 − λz
·

1

1 − λz−1

dz

z

=
1

2πi

∮

h(z)
z − λ

1 − λz
·

z

z − λ

dz

z

=
1

2πi

∮

h(z)
1

1 − λz
dz

= 0 (by Cauchy’s integral formula)

�

The usefulness of the decomposition in Lemma 3.3 derives from the fact that it

isolates exactly what type 1 traders cannot infer about ε2t from observations of market

data. To determine the constant, simply equate both sides at L = λ, which gives

the constant as ρ2(1 − λ2). The orthogonal decomposition yields the conditional

expectations.

Lemma 3.4. Given the hypothesized pricing functions in (3.2), the conditional ex-

pectations of type 1 traders are given by:

E[pt+1|Hp(t)
∨

Hε1
(t)] = [ρ1 +(L−λ)g1(L)]ε1t +

[

ρ2 +(L−λ)g2(L)−
ρ2(1 − λ2)

1 − λL

]

ε2t

(3.10)

and the conditional expectations of type 2 traders are given by:

E[pt+1|Hp(t)
∨

Hε2
(t)] =

[

ρ1 +(L−λ)g1(L)−
ρ1(1 − λ2)

1 − λL

]

ε1t +[ρ2 +(L−λ)g2(L)]ε2t

(3.11)

11For Hilbert space aficionados, notice that the second term on the right-hand side of (3.8) is a
reproducing kernel for H2, since for any f ∈ H2 we have (f(z), (1 − λz)−1) = f(λ). This is not
accidental.
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At this point it is useful to compare (3.10) and (3.11) to (3.6). Notice how condi-

tioning down onto the observable subspaces requires us to ‘subtract’ the orthogonal

complement of the subspace generated by a Blaschke factor constructed with the

presumed noninvertible root, λ. It is also useful to compare (3.10) and (3.11). The

following proposition demonstrates how the asymmetric information structure can

lead to ‘overreaction’ in financial markets.

Proposition 3.5. Traders respond ‘more aggressively’ to realizations of other traders’

(unobserved) signals.

Proof. This can be seen by differencing (3.10) and (3.11),

E1

t pt+1 − E2

t pt+1 =
1 − λ2

1 − λL
(ρ1ε1t − ρ2ε2t) . (3.12)

�

At any given point in time, the forecasts of the two traders differ as a function

of the histories of their observed signals. Hence, the trader who has received higher

signals (on average) tends to forecast higher prices. Interestingly, traders respond

‘more aggressively’ to realizations of other traders’ (unobserved) signals. For exam-

ple, if trader 2’s signals have been larger on average, trader 1 will have lower price

forecasts (remember, prices respond negatively to the εi’s, since they represent shocks

to supply). Moreover since knowledge of the other traders’ signals is only obtainable

by observing publicly-available prices, this result is tantamount to overreaction to

public signals (Allen, Morris, and Shin (2006)). As we will see, this overreaction to

public signals generates ‘excess volatility’.

The third step in the solution process is to impose the equilibrium condition (2.5)

and solve the subsequent fixed-point problem. Doing this yields:

Proposition 3.6. Under Assumption 3.7 (given below), there exists a unique het-

erogeneous beliefs rational expectations pricing function for the model given in (2.5),

with z-transforms given by:

π1(z) =(z − λ)

[

2a1(λ) +
z

z − β

{

−2a1(λ) +
β

z − λ

[

2a1(λ) − a1(z) −
a1(λ)(1 − λ2)

1 − λz

]}]

(3.13)

π2(z) =(z − λ)

[

2a2(λ) +
z

z − β

{

−2a2(λ) +
β

z − λ

[

2a2(λ) − a2(z) −
a2(λ)(1 − λ2)

1 − λz

]}]

(3.14)
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and |λ| < 1 given implicitly by the equation: 2λa1(λ) = β[a1(β) + a1(λ)(1− λ2)/(1−

λβ)].

The proof is by construction. Notice that it is sufficient to verify the result for π1(z),

due to symmetry. The equilibrium condition (2.5) and conditional expectations (3.10)

and (3.11) gives

(L − λ)(ρ1 + Lg1(L))ε1t = β

[

ρ1 + (L − λ)g1(L) −
1

2

ρ1(1 − λ2)

1 − λL

]

ε1t − βa1(L)ε1t.

Assuming that this expression holds for all realizations of ε1t, the coefficients on ε1s

must match for every s. In lieu of solving this infinite sequential problem, one can

solve an equivalent functional problem by invoking the Riesz-Fischer Theorem and

examining the corresponding power series equalities12

(z − λ)(ρ1 + zg1(z)) = β

[

ρ1 + (z − λ)g1(z) −
1

2

ρ1(1 − λ2)

1 − λz

]

− βa1(z). (3.15)

Evaluating (3.15) at z = λ immediately delivers the unknown constant, ρ1 = 2a1(λ).

To determine λ in terms of the exogenous parameter, plug in ρ1, divide both sides by

z − λ, and then collect terms. This yields,

(z − β)g1(z) = −2a1(λ) +
β

z − λ

[

2a1(λ) − a1(z) −
a1(λ)(1 − λ2)

1 − λz

]

(3.16)

Notice that the right-hand side is analytic by construction (i.e., the singularity at λ

has been ‘removed’). Since g1(z) has been assumed to be analytic, the right-hand

side of (3.16) must be zero when evaluated at z = β. Evaluating the right-hand side

at z = β and setting it to zero gives us the following equation characterizing λ

2λ = β

[
a1(β)

a1(λ)
+

1 − λ2

1 − λβ

]

, (3.17)

which is a slight re-arrangement of the equation given in 3.6. Notice that in general

λ will depend on a1(z), and thus we can expect a different λ when solving the fixed

point equation for π2(z). Since we’ve postulated a common λ for both π1(z) and

π2(z), we impose the following assumption.13

12The Appendix provides more detail concerning this solution method.
13A common λ in the price process is not required for the results presented in Section 5; thus
Assumption 1 is not, in general, restrictive. Assumption 3.7 is the bivariate generalization of Futia’s
(1981) Theorem 6.1.
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Assumption 3.7. There exists a unique |λ| < 1 with λ 6= β, that solves the two

equations:

2λ = β[ai(β)/ai(λ) + (1 − λ2)/(1 − λβ)] i = 1, 2

A trivial case where this is generally satisfied is when the dynamics of the two

unobserved components are the same (i.e., when a1(L) = a2(L)). However in order

to avoid a stochastic singularity in the bivariate representation for prices and fun-

damentals, this case is ruled out. Moreover a1(L) and a2(L) cannot both be AR(1)

processes, since in this case there is only one unique AR root for any given λ. How-

ever, it is not difficult to find representations satisfying Assumption 3.7. For example,

an ARMA(1,1) will satisfy the condition.

Finally, we can determine g1(z) by dividing both sides of (3.16) by z−β (remember,

by construction, the singularity at β has just been removed by the appropriate choice

of λ). Given g1(z), λ, and ρ1, the expression for π1(z) given by (3.13) follows from

plugging into π1(z) = (z − λ)(ρ1 + zg1(z)).

3.2. Observable Fundamentals. Although some asset markets might be well de-

scribed by unobserved aggregate fundamentals, in other cases it makes more sense to

assume aggregate fundamentals are observed. A leading example would be the prices

of individual stocks and bonds, where earnings and dividends are widely reported.14

The next result shows that when aggregate fundamentals are observed, equilibrium

prices must be revealing, i.e., a heterogeneous beliefs equilibrium does not exist.

Proposition 3.8. With just two trader types, there does not exist a heterogeneous

beliefs Rational Expectations Equilibrium if aggregate fundamentals are observable.

Prices must be fully revealing.

Proof. Suppose Type 1 traders observe (pt, ft, ε1t) and Type 2 traders observe (pt, ft, ε2t).

Then Type 1 effectively observes a2(L)ε2t. Since pt also depends on the history of

ε2t, the first corollary on p. 101 of Hoffman (1962) implies {pt, a2(L)ε2t} spans Hε2
(t)

unless a2(z) and π2(z) have identical noninvertible roots. However, a2(λ) 6= 0 by the

existence condition given in Assumption 3.7. �

There are several ways we could modify the model to support a heterogeneous

beliefs equilibrium. The most natural is to simply add more trader-types. The two

trader-type specification is very special, since in this case the number of types exactly

14Remember, we are imposing a constant discount rate from the outset, so the usual difficulty of
identifying the macroeconomic determinants of stochastic discount factors do not apply here.
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matches the number of aggregate observables. We now show that with more than

two types a heterogeneous beliefs equilibrium can be robustly supported even when

aggregate fundamentals are common knowledge.

Suppose now that fundamentals (2.4) are comprised of three orthogonal compo-

nents,

ft = a1(L)ε1t + a2(L)ε2t + a3(L)ε3t

and that the asymmetric information is the same as the previous section. That is,

type 1 traders costlessly observe ε1t, type 2 traders costlessly observe ε2t, and type

3 traders costlessly observe ε3t. Conjecturing the same pricing function for each

component as before then implies the following observer system for type 1 traders,






ε1t

ft

pt




 =






1 0 0

a1(L) a2(L) a3(L)

(L − λ)[ρ1 + Lg1(L)] (L − λ)[ρ2 + Lg2(L)] (L − λ)[ρ3 + Lg3(L)]











ε1t

ε2t

ε3t






yt = H(L)ǫt

Type 1 traders use this system to compute,

E1(pt+1|Hp(t)
∨

Hf (t)
∨

Hε1
(t)) = E1(pt+1|Hε1

(t)
∨

He2
(t)

∨

He3
(t)),

Notice that this now entails the use of two (identical) Blaschke factors, one mapping

ε2t to e2t, and another mapping ε3t to e3t. A completely symmetric argument applies

to traders 2 and 3.

Of course, the existence condition in Assumption 3.7 must be modified to reflect

the presence of the additional component. We now have

Assumption 3.9. There exists a unique |λ| < 1 with λ 6= β, that solves the three

equations:

2λ = β[ai(β)/ai(λ) + (1 − λ2)/(1 − λβ)] i = 1, 2, 3

In general, this is a more restrictive condition, but again, it is not hard to find

examples that satisfy it. Given Assumption 3.9, the entire analysis goes through as

before, with identical pricing functions. The only difference is that now the overall

price process consists of the sum of three symmetric pricing functions. Hence, in what

follows we focus on the latent fundamentals case, recognizing that any results obtained
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can be translated to the observed fundamentals case, assuming the somewhat more

restrictive existence condition in Assumption 3.9.

4. Equilibrium with Homogeneous Beliefs

To interpret the heterogeneous beliefs equilibrium given by equations (3.13) and

(3.14), it is useful to consider the benchmark case of homogeneous beliefs. The

appropriate modification of Assumption 3.7 allows for a fully revealing equilibrium.

Assumption 4.1. There exists a |λ| > 1 that solves the two equations:

2λ = β[ai(β)/ai(λ) + (1 − λ2)/(1 − λβ)] i = 1, 2

Given Assumption 4.1, the mapping in (3.1) has a one-sided inverse and by observ-

ing equilibrium prices, traders are able to infer the fundamental shocks ε1t and ε2t.

Traders will then guess the equilibrium price to be of the form

πs
i (L)εit = [ρi + Lhi(L)]εit

where the superscript s reminds us that we are solving for a fully revealing, symmetric,

equilibrium. Using this in (3.2) now delivers the fixed point conditions:

ρi + zhi(z) = βhi(z) − βai(z) i = 1, 2 (4.1)

Collecting terms gives,

(z − β)hi(z) = −ρi − βai(z) (4.2)

Removing the singularity at z = β then determines, ρi = −βai(β). Substituting this

back into (4.2) then gives

hi(z) =
−β

z − β
[ai(z) − ai(β)]

which finally gives us:

Proposition 4.2. Given Assumption 4.1, there exists a homogeneous beliefs rational

expectations equilibrium given by:

πs
i (z) = −β

{

ai(β) +
z

z − β
[ai(z) − ai(β)]

}

i = 1, 2 (4.3)

Although it may not be immediately apparent, equation (4.3) is a familiar result–

in a fully revealing, homogeneous expectations equilibrium, asset prices have an in-

novation variance that is increasing in the persistence of the fundamentals. To see
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this, note that

Et−1pt = h1(L)ε1t−1 + h2(L)ε2t−1

=
−βL

L − β
{[a1(L) − a1(β)]ε1t + [a2(L) − a2(β)]ε2t}

Using this with (4.3) then yields

pt = Et−1pt − βa1(β)ε1t − βa2(β)ε2t. (4.4)

Hence, price innovations represent the capitalized value of the innovations to funda-

mentals.

Equation (4.3) is useful because it facilitates interpretation of the heterogeneous

expectations equilibrium in equations (3.13) and (3.14). Maintaining comparability

between the two equilibria requires a given stochastic process that is consistent with

both a heterogeneous and a homogeneous expectations equilibrium. Clearly, this will

not be true in general because what is needed is a specification that is simultaneously

consistent with Assumptions 3.7 and 4.1. We state this explicitly as:

Assumption 4.3. There exist a1(L) and a2(L) polynomials that simultaneously sat-

isfy Assumptions 1 and 2.

This delivers the following relationship between heterogeneous expectations and ho-

mogeneous expectations equilibria.

Proposition 4.4. Given Assumption 4.3, there exists both a heterogeneous expec-

tations equilibrium and a homogeneous expectations equilibrium, with z-transforms

related as follows:

πi(z) = πs
i (z) + ai(λ)(1 − λ2) ·

β

z − β

(
β

1 − λβ
−

z

1 − λz

)

i = 1, 2 (4.5)

where the πs
i (z) are given by (4.3), and |λ| < 1 is given by (3.17).

The proof is again by construction. By using the equation characterizing λ in

(3.17), one can simplify equations (3.13) and (3.14) to obtain (4.5). As a consistency

check, one can verify that πi(λ) = 0.

The first term on the right-hand side of (4.5) tells us how prices respond to observ-

able shocks to fundamentals. The second term then exhibits the additional dynamics

induced when the shocks to fundamentals are unobservable, and traders must ‘fore-

cast the forecasts of others’. That is, the second term captures in a clear and precise
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way the higher-order belief dynamics associated with a heterogeneous beliefs equilib-

rium. By canceling the common root at z = β, it is clear that higher-order beliefs

exhibit AR(1) dynamics, with a persistence given by λ. Interestingly, Woodford

(2003) obtains a qualitatively similar result in a quite different setup.

It is clear from (4.5) that higher-order beliefs generate additional price volatility.

One manifestation of this is the following,

Corollary 4.5. Heterogeneous beliefs amplify the initial response of asset prices to

innovations in fundamentals.

Proof. Evaluate (4.5) at z = 0. This yields

πi(0) = πs
i (0) − βai(λ) ·

1 − λ2

1 − λβ
< πs

i (0)

which verifies the result since responses to supply shocks are negative. �

Before turning to empirical implications, it worthwhile working through an explicit

numerical example. If nothing else, this will at least verify that the various assump-

tions imposed can be satisfied with reasonable specifications of the fundamentals. To

illustrate the heterogeneous beliefs dynamics, we plot asset price impulse response

functions. The orthogonality of the two fundamentals components allows us to pro-

ceed on a shock-by-shock basis. Without loss of generality, we consider the case of

ε1t shocks.

When solving for a heterogeneous beliefs equilibrium it is easier to work backwards

from a pre-specified λ to a supporting fundamentals process than it is to start with

fundamentals, and then check whether they are consistent with the existence of a

heterogeneous beliefs equilibrium. Therefore, let λ = 0.5, and assume that a1(L)

takes the form (L − φ1)/(1 − γ1L), with |φ1| < 1 and |γ1| < 1. Hence, a1(L) is

noninvertible. Since we are confining our attention to ε1t shocks, we don’t need

to take a stand on a precise specification of a2(L), other than assume it satisfies

Assumption 2. At a minimum, this means its noninvertible root cannot equal φ1. To

be specific, we assume φ1 = 0.83 and β = 0.90. Plugging these into (3.17), one can

readily verify that γ1 must equal 0.476. Finally, given these values for (λ, φ1, γ1, β),

we can use (4.5) to generate and compare the impulse response functions for the

heterogeneous and homogeneous beliefs equilibria. We can also plot their differences,

which are the higher-order belief dynamics associated with the heterogeneous beliefs

equilibrium.
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The following plots illustrate the asset price response to a one-unit shock in ε1t. To

make the results more comparable to standard asset pricing models, where dividends

are the fundamentals, we’ve multiplied the responses by minus one, so that prices

increase following an innovation.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0
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Figure 1: Impulse Response and Higher-Order Belief Dynamics

These plots clearly reveal the additional volatility and persistence induced by het-

erogeneous information and higher-order belief dynamics. Notice that the initial price

response is more than twice as large in the heterogeneous beliefs equilibrium. In ad-

dition, the effects are persistent.

5. Empirical Implications

This section addresses the following question - Suppose the world is described by

a heterogeneous expectations equilibrium, but an econometrician interprets the data

as if it were generated from a homogeneous expectations equilibrium. What kind

of inferential errors could result? We focus on two empirical results that have been

common in the asset pricing literature: (1) violations of variance bounds, and (2)

rejections of cross-equation restrictions.
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5.1. Variance Bounds. Figure 1 and Corollary 4.5 suggest that higher-order belief

dynamics will generally make asset prices appear to be ‘too volatile’ relative to their

fundamentals. One of the main contributions of this paper is the ability to quan-

tify the degree of excess volatility associated with higher-order belief dynamics. One

way of doing this is to show that heterogeneous beliefs equilibria can violate stan-

dard variance bounds inequalities. Violations of these bounds are a robust empirical

finding.

Variance bounds are based on the idea that observed asset prices should be less

volatile than their perfect foresight counterparts (i.e., the subsequent realization of

discounted future fundamentals). Since prices represent expectations of discounted fu-

ture fundamentals, it makes sense that they should be smoother than the realizations

of discounted future fundamentals. To show that heterogeneous beliefs equilibria can

violate variance bounds, it therefore suffices to show that the variance of observed

prices can exceed the variance of perfect foresight prices. The following proposition

shows that this is indeed possible if λ (the persistence of higher-order belief dynamics)

is sufficiently close to β.

Proposition 5.1. If fundamentals are ARMA(1,1) (ie., ai(L) = (1−φiL)/(1−γiL)),

then asset prices violate the standard variance bound whenever λ is sufficiently close

to β and φi and γi are sufficiently small.

Proof. Given orthogonality, it is sufficient to consider only one of the two components.

Without loss of generality, we focus on the variance associated with ε1t. First note

that the z-transform of the perfect foresight price associated with this component is

given by:

πpf
1 (z) = −β(1 − βz−1)−1a1(z)

Using Parseval’s formula, we can evaluate its variance as

var(ppf
1 ) =

1

2πi

∮

πpf
1 (z)πpf

1 (z−1)
dz

z

=
β2

2πi

∮
(1 − φ1z)(1 − φ1z

−1)

(1 − γ1z)(1 − γ1z−1)(1 − βz)(1 − βz−1)

dz

z

=
β2

(β − γ1)(1 − γ1β)

[
(β − φ1)(1 − φ1β)

1 − β2
−

(γ1 − φ1)(1 − φ1γ1)

1 − γ2
1

]

= β2
(1 − φ1γ1)(1 − φ1β) + (φ1 − β)(φ1 − γ1)

(1 − γ1β)(1 − β2)(1 − γ2
1)
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Next, letting κ(z) denote the z-transform of the higher-order belief dynamics (i.e., the

second term on the right-hand side of (4.5)), we can write the variance of observed

asset prices as:

var(p1) =
1

2πi

∮

πs
1(z)πs

1(z
−1)

dz

z
+

1

2πi

∮

κ(z)κ(z−1)
dz

z
+

2

2πi

∮

πs
1(z)κ(z−1)

dz

z

=

(
β(1 − φ1β)

1 − γ1β

)2
(1 − xγ1)(1 − x/γ1)

1 − γ2
1

+

(
β(1 − φ1λ)

(1 − λβ)(1 − γ1λ)

)2

(1 − λ2)

+2
β2(1 − λ2)(1 − φ1β)(1 − φ1λ)(1 − xλ)

(1 − γ1β)(1 − λβ)(1 − γ1λ)2

where x = φ1(1 − βγ1)/(1 − βφ1), and where the second line again uses the residue

theorem. Setting λ = β and γ1 = φ1 = 0 yields var(ppf
1 ) = β2/(1− β2) and var(p1) =

β2/(1 − β2) + 3β2 > var(ppf
1 ). The proof follows by continuity. �

This result has a very intuitive interpretation. The heterogenous beliefs equilibrium

(4.5) contributes an additional component to the asset price which constitutes addi-

tional ‘fundamentals.’ Traders don’t just care about their own expectations of future

fundamentals, they also care about, and try to forecast, other traders’ expectations

about fundamentals. It is this additional component that leads to the violation of the

variance bound. If these higher-order beliefs were incorporated into fundamentals,

then asset prices would indeed satisfy the variance bound.
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Figure 2 demonstrates violations of the variance bound for specific parameter

values. Assuming fundamentals follow an ARMA(1,1) process with AR coefficient

ρ = 0.5, Figure 2 plots the variance of the heterogenous beliefs price divided by the

variance of the perfect foresight price by changing the MA component of fundamentals

to satisfy Assumption 1 (i.e., to ensure a heterogeneous beliefs equilibrium exists).

As the degree of asymmetric information (λ) approaches β = 0.98, the variance of the

heterogeneous beliefs price process is 19 times as large as the perfect foresight price.

5.2. Cross-Equation Restrictions. The Rational Expectations revolution ushered

in many methodological changes. One of the most important concerned the way

econometricians identify their models. Instead of producing zero restrictions, the

Rational Expectations Hypothesis imposes cross-equation restrictions. Specifically,

parameters describing the laws of motion of exogenous forcing processes enter the

laws of motion of endogenous decision processes. In fact, in a oft-repeated phrase,

Sargent dubbed these restrictions the ‘hallmark of Rational Expectations’. Hansen

and Sargent (1991b) and Campbell and Shiller (1987) proposed useful procedures for

testing these restrictions. It so happens that when these tests are applied to present

value asset pricing models, they are almost uniformly rejected, and in a resounding

way. There have been many responses to these rejections. Some interpret them as

evidence in favor of stochastic discount factors. Others intepret them as evidence

against the Rational Expectations Hypothesis. Looking on the bright side, Campbell

and Shiller (1987) argue that a model can still be useful even when its cross-equation

restrictions are statistically rejected. We offer yet another response. We show that

rejections of cross-equation restrictions may reflect an informational misspecification,

one that presumes a revealing equilibrium and homogeneous beliefs when in fact

markets are characterized by heterogeneous beliefs.

To study the model’s cross-equation restrictions, we need to derive its Wold rep-

resentation. We can do this by following the steps outlined in Hansen and Sargent

(1991b), which are based on the results in Rozanov (1967). The theoretical moving-

average representation is given by,
[

ft

pt

]

=

[

a1(L) a2(L)

π1(L) π2(L)

] [

ε1t

ε2t

]

(5.1)

where the pricing functions, π1(L) and π2(L), are given by equations (3.13) and (3.14).

Assuming a heterogeneous beliefs equilibrium, and defining the vectors xt = (ft, pt)
′
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and ǫt = (ε1t, ε2t)
′, write the MA representation as

xt = A(L)ǫt.

By construction, A(L) does not have a one-sided inverse in positive powers of L due

to the root inside the unit circle. Although not essential, we assume λ is the only

root inside the unit circle, and impose the following assumption.

Assumption 5.2. Write the determinant of A(z) as |A(z)| = (z − λ)∆(z), where

∆(z) is given by

∆(z) = a1(z)π̃2(z) − a2(z)π̃1(z)

where π̃i(z) = ρi +zgi(z). Then ∆(z) is a nonzero analytic function with roots outside

the unit circle.

Since equal ai(z)’s generate equal gi(z)’s, this assumption requires the components

to have different stochastic structures, which avoids stochastic singularities in the

bivariate representation.

The lack of a one-sided inverse prevents traders from inferring the signals of other

traders. The basic idea behind a Wold representation is to ‘flip’ this root outside the

unit circle. This can be accomplished by post-multiplying A(L) by the product of

two orthogonal matrices, and then pre-multiplying the shock vector by the transposes

of these same matices. This gives us,

xt = [A(L)WB(L)][B(L−1)′W ′
ǫt]

= A∗(L)ǫ∗t (5.2)

where W is a scalar orthogonal matrix and B(L) is a Blaschke matrix that flips the

root from z = λ to z = λ−1. These matrices are given by

B(z) =






1−λz
z−λ

0

0 1




 W =

1
√

1 + η2






−η 1

1 η




 (5.3)

where η = a2(λ)/a1(λ). Notice that B(z)B(z−1)′ = I on |z| = 1 and WW ′ =

I. By construction, A∗(L) is invertible, so the observable VAR representation is

A∗(L)−1xt = ǫ
∗

t . A key point here is that the residuals, ǫ
∗

t , are not the innovations to

agents’ information sets, ǫt. Instead, what is estimated are the linear combinations

defined by B(L−1)′W ′
ǫt. These encode the model’s higher-order belief dynamics.
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Although these linear combinations are mutually and serially uncorrelated by con-

struction, they span a strictly smaller information set. Hence, the variance of ǫt is

smaller than the variance of ǫ
∗

t .
Performing the matrix multiplication in (5.2) delivers the following Wold representation:






ft

pt




 =







(
L−λ

1−λL

)

[w11a1(L) + w21a2(L)] w12a1(L) + w22a2(L)

(
L−λ

1−λL

)

[w11K(a1(L)) + w12K(a2(L))] w12K(a1(L)) + w22K(a2(L))












ε∗
1t

ε∗2t






(5.4)

where wij are the elements of the W matrix in (5.3) and K(·) defines the Rational

Expectations pricing operator given by Proposition 3.6, i.e., πi(z) = K(ai(z)). We

can use this to state two results, one pertaining to the case where the econometrician

is alert to the possible existence of heterogeneous beliefs, and one pertaining to the

case where the econometrician ignores the potential for heterogenesou beliefs.

As noted by Hansen and Sargent (1991a), Rational Expectations can be interpreted

as placing restrictions across the rows of a model’s moving average representation.

In our case this means elements of the second row are exact functions of the corre-

sponding elements of the first row. From the results in Hansen and Sargent (1991b),

it is not too surprising that these restrictions continue to apply even in models with

heterogeneous beliefs, as long as the econometrician employs the correct pricing func-

tions.

Proposition 5.3. Standard cross-equation restriction tests are valid even when the

model features heterogeneous beliefs, as long as the econometrician is aware of this

possibility, and uses the correct pricing functions.

Proof. The proof follows directly from the fact that K is a linear operator. That is,

K(wija1(L) + wmna2(L)) = wijK(a1(L)) + wmnK(a2(L))

where wij and wmn are arbitrary scalars. Hence, the bottom row of (5.4) is an exact

function of the first. (The Blaschke factors in the first column can be folded into the

definitions of the ai(L) polynomials). �

This is good news in the sense that it suggests standard testing procedures can be

employed when evaluating models with heterogeneous beliefs.15 The bad news is that

ignoring the presence of heterogeneous beliefs can produce misleading results.

15However, note that without modification the clever VAR testing strategy of Campbell and Shiller
(1987) will not be valid, since it relies on the validity of the law of iterated expectations, which does
not apply in models featuring higher order beliefs.
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Proposition 5.4. Standard cross-equation restriction tests, which falsely presume a

common information set, can produce spurious rejections.

Proof. From the results in section 4, we can decompose the heterogeneous beliefs

pricing operator, K, into a traditional symmetric pricing operator, Ks, and a higher-

order beliefs operator, Kh, so that K = Ks + Kh. Neglecting heterogeneous beliefs

amounts to dropping the Kh component of the pricing operator. Evidently, if there are

heterogeneous beliefs, so that πi(L) = K(ai(L)), then cross-equation restriction tests

based on the false assumption of homogeneous beliefs can produce strong rejections

when Kh(ai(L)) is ‘big’ (in the operator sense). �

6. Conclusion

For more than twenty years now, economists have been rejecting linear present

value models of asset prices. These rejections have been interpreted as evidence in

favor of time-varying risk premiums. Unfortunately, linking these risk premiums to

observable data has proven to be quite challenging. Promising approaches for meeting

the challenge involve introducing incomplete markets and agent heterogeneity into the

models.

This paper has suggested that a different sort of heterogeneity, an informational

heterogeneity, offers an equally promising route toward reconciling asset prices with

observed fundamentals. Unfortunately, heterogeneous information does not automat-

ically translate into heterogeneous beliefs, and it is only the latter that generates

the ‘excess volatility’ that is so commonly seen in the data. The hard work in the

analysis, therefore, is deriving the conditions that prevent market data from fully

revealing the private information of agents in dynamic settings. We have argued that

frequency-domain methods possess distinct advantages over time-domain methods in

this regard. The key to keeping information from leaking out through observed as-

set prices is to ensure that the mappings between the two are ‘noninvertible’. These

noninvertibility conditions are easy to derive and manipulate in the frequency domain.

Our results demonstrate how informational heterogeneity can in principle explain

well-known empirical anomalies, such as excess volatility and rejections of cross-

equation restrictions. Ever since Townsend (1983) and Singleton (1987), (or in fact,

ever since Keynes!) economists have suspected that higher-order beliefs could be re-

sponsible for the apparent excess volatility in financial markets. Our results at last

confirm these suspicions. Although we believe we have made substantial progress,
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there are still many avenues open for future research. Two seem particularly impor-

tant. First, our existence conditions place restrictions on fundamentals. It remains to

be seen, however, whether heterogeneous beliefs equilibria can be supported with em-

pirically plausible specifications for fundamentals. We are optimistic that they can,

since the restrictions are fairly generic, but verification of this conjecture remains

the subject of future research. Second, the analysis here rests heavily on linearity.

However, most macroeconomic models feature nonlinearities of one form or another.

It is not at all clear whether standard linearization methods are applicable in mod-

els featuring higher-order beliefs. Resolving this issue will be important for future

applications.
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7. Appendix: Frequency Domain Techniques

This appendix offers a brief introduction to the frequency domain techniques used

to solve the model. In lieu of matching the infinite sequence associated with the

fixed-point (3.15), we employ the following theorem and solve for a functional fixed

point.

Theorem (Riesz-Fischer): Let {cn} be a square summable sequence of complex num-

bers (i.e.,
∑

∞

n=−∞
|cn|

2 < ∞). Then there exists a complex-valued function, g(ω),

defined for ω ∈ [−π, π], such that

g(ω) =

∞∑

j=−∞

cje
−iωj (7.1)

where convergence is in the mean-square sense

lim
n→∞

∫ π

−π

∣
∣
∣
∣
∣

n∑

j=−n

cje
−iωj − g(ω)

∣
∣
∣
∣
∣

2

dω = 0

and g(ω) is square (Lebesgue) integrable
∫ π

−π

|g(ω)|2dω < ∞

Conversely, given a square integrable g(ω) there exists a square summable sequence

such that

ck =
1

2π

∫ π

−π

g(ω)eiωkdω (7.2)

The Fourier transform pair in (7.1) and (7.2) defines an isometric isomorphism

(i.e., a one-to-one onto transformation that preserves distance and linear structure)

between the space of square summable sequences, ℓ2(−∞,∞), and the space of square

integrable functions, L2[−π, π]. The sequence space, ℓ2, is referred to as the ‘time

domain’ and the function space, L2, is referred to as the ‘frequency domain’. The

equivalence between these two spaces allows us to work in whichever is most conve-

nient. A basic premise of this paper is that in models featuring heterogeneous beliefs,

the frequency domain is analytically more convenient.

In the context of linear prediction and signal extraction, it is useful to work with

a version of Riesz-Fischer theorem that is generalized in one sense and specialized in

another. In particular, it is possible to show, via Poisson’s integral formula, that the

statement of the theorem applies not only to functions defined on an interval (the

boundary of the unit circle), but to analytic functions defined within the entire unit
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circle of the complex plane. However, when extending the theorem in this way we

exclude functions with Fourier coefficients that are nonzero for negative k. That is,

we limit ourselves to functions where c−k = 0 in equations (7.1) and (7.2). This turns

out to be useful, since it is precisely these functions that represent the ‘past’ in the

time domain. A space of analytic functions in the unit disk defined in this way is

called a Hardy space, with an inner product defined by the contour integral,

(g1, g2) =
1

2πi

∮

g1(z)g2(z)
dz

z
.

Rather than postulate a functional form and match coefficients, we solve for a sin-

gle analytic function which represents, in the sense of the Riesz-Fischer theorem, this

unknown pricing function. The approach is still ‘guess and verify’, but it takes place

in a function space, and it works because the Riesz-Fischer theorem tells us that

two stochastic processes are ‘equal’ if and only if their z-transforms are identical as

analytic functions inside the (open) unit disk. The real advantage of this approach

stems from the ease with which it handles noninvertibility (i.e., nonrevealing infor-

mation) issues. Invertibility hinges on the absence of zeroes inside the unit circle

of the z-transform of the observed market data. By characterizing these zeroes, we

characterize the information revealing properties of the equilibrium.
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