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Abstract

The competing risks technique is applied to the analysis of times to execution

and cancellation of limit orders submitted on an electronic trading platform. Time-

to-execution is found to be more sensitive to the limit price variation than time-to-

cancellation, even though it is less sensitive to the limit order size. More importantly,

investors who aim to reduce the expected time-to-execution for their limit orders with-

out inducing any significant increase in the risk of subsequent cancellation should sub-

mit their orders when the market depth is smaller on the side of their orders or when

the market depth is greater on the opposite side of their orders. We also provide a new

diagnostic plots method for evaluating the goodness-of-fit of different competing risks

models.
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I. Introduction

The role of limit orders in the process of price discovery in financial markets has been

extensively studied. Limit orders, defined as price-contingent instructions to buy or sell

a financial security at the specified (limit) price, represent the major part of liquidity on

organized exchanges. Most electronic equity markets around the globe are organized as pure

limit order books; even on hybrid markets such as the New York Stock Exchange (NYSE),

limit orders account for more than half of all trading activities.

Much of the related literature discusses the following aspects of limit order markets: (1)

transaction costs, (2) spread decomposition, (3) order submission strategies, and (4) price

formation.1 Parlour (1998) presents a model of limit order book using a stochastic dynamic

game and characterizes the optimal order choice between submitting a limit order and a

market order. However, in her model limit order cancellations are not allowed. Hollifield

et al. (2004) build a structural model of a pure limit order market which captures the

trade-off among the order price, the order execution probability, and the winner’s curse

risk associated with different feasible order choices. Battalio et al. (2002) gauge execution

quality across markets by comparing the limit order fill rates and times to execution on

primary and regional exchanges. Harris and Panchapagesan (2005) examine whether the

limit order book has a signaling effect on the future price change and whether the NYSE

specialists take advantage of this information. Overall, the focus has been on limit order

executions. Little attention has been paid to limit order cancellations.2 In this paper we

explicitly model cancellation of limit orders (jointly with execution) and show that limit order

cancellations contain information that should also be incorporated into decisions regarding

order submission strategies.

Limit order traders face two types of risk: (i) execution uncertainty, since trade at the

limit price is not guaranteed; and (ii) adverse selection (also known as a “pick-off” risk),

realized when better informed market participants take advantage of slow (or less informed)

limit order traders. Limit order traders need analytical tools for efficient management of these

risks. In particular, models that predict the possible outcomes (execution or cancellation) of

their orders given these two types of risk should be of benefit to such traders. In this paper

we will develop three general classes of models, separately for buy and sell orders, and study

their properties.

Duration of limit order (defined as the time interval between the limit order arrival

and its termination) plays an important role in the determination of transactions cost and

1See Henker and Martens (2003), Peterson and Sirri (2002), Biais et al. (1995, 1999).
2Notable exceptions are Lo et al (2002) and Hollifield et al (forthcoming).
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opportunity cost of limit orders. Although a limit order trader does not face the price risk

associated with a market order, at the time of limit order submission it is unknown how long

it will take to fill the order, and whether the limit order will be executed at all. Expected limit

order execution and cancellation times also affect market liquidity and are likely to be major

factors driving the dynamics of the bid-ask spread. Lo et al. (2002) estimate an econometric

model for the conditional distribution of limit order execution times as a function of economic

variables such as the limit price, order size, and current market conditions. They find that

limit order execution times are very sensitive to the limit price, but are not sensitive to limit

order size. In a related strand of literature, Bisière and Kamionka (2000) and Tyurin (2003)

use the competing risk methodology popular in survival analysis to model the hazard rates of

order arrival, execution, and cancellation on limit order markets. Their models can be viewed

as price formation models, which capture the interaction between quotes, transactions, and

cancellation events in financial markets. In a study that is most closely related to this one,

Hollifield et al (forthcoming) consider both executions and cancellations of limit orders on

the Vancouver Stock Exchange to estimate gains from trade in a limit order trading platform.

In spite of the relative lack of focus on limit order cancellations, it is interesting to

note that cancellation events represent the most common cause of limit order termination

in modern electronic limit order markets. For example, according to Hasbrouck and Saar

(2004) more than 80% of all limit orders submitted on Island ECN do not receive execution

and are ultimately cancelled. Yeo (2004) reports that approximately 40% of all limit orders

submitted on NYSE in 2001 were cancelled. Ellul et. al. (2003) and Lo and Sapp (2005)

examine the determinants of order choice strategies of investors, including the option to

cancel previously placed limit orders, while Yeo (2004) studies investors’ strategies after

cancellation of limit orders. All three papers are implemented in a discrete time framework

and use discrete choice models to study traders’ decisions.

In this paper we further investigate executions and cancellations of limit orders, extending

the previous studies in several directions. We analyze recent data from the INET trading

platform — a completely automated limit order book. We use the ITCH R° data feed, which

contains information on the entry, processing, and execution of all orders submitted to INET.

The rich and detailed data in the ITCH R° files allow us to investigate the relationship between

the duration times and alternative outcomes of limit orders, and study the dependence of

duration times on order characteristics and market conditions.

We find that of the various models we empirically test, the Weibull proportional hazard

model with independent competing risks best describes the times to limit order executions

and cancellations. Our results agree with previous findings and intuition. Time-to-execution

is found to be more sensitive to the limit price variation than time-to-cancellation, even
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though it is less sensitive to the limit order size. Therefore, a safe way to reduce the time-

to-execution for both buy and sell orders with a minimal increase in non-execution risk is

to increase the price aggressiveness of the order. More importantly, investors who aim to

reduce the expected time-to-execution for their limit orders without inducing any significant

increase in the risk of subsequent cancellation should submit their orders when the market

depth is smaller on the side of their orders or when the market depth is greater on the

opposite side of their orders.

Our paper contributes to the existing literature in several ways. First, in a continuous

time framework we model jointly the limit order cancellation and execution events. From an

econometric perspective, the process of limit order execution is best approached by the use of

competing risk models that are popular in the survival analysis literature. In the competing

risks framework, several risk factors compete against each other for the termination event.

After a limit order is placed, the limit order can be executed, cancelled/modified, or expires

if expiration time is provided. Therefore, the execution and cancellation outcomes can be

treated as competing risks, and the expiration outcome can be treated as a censoring time

for those competing risks. Our models allow us to capture the information in cancellations,

in addition to executions of limit orders.

Second, we treat limit order cancellation as a random event rather than an investor’s

choice as in Ellul et al. (2003) or as a censoring event as in Lo et al. (2002). Although

traders are free to choose whether and when to cancel the limit orders they submit, they

might have little if any knowledge at the time of order submission as to whether their orders

would be ultimately cancelled or executed. Therefore, it is reasonable to consider cancellation

as an additional risk that could cause the termination of a limit order.

Third, the competing risk model allows us to obtain different effects of the explanatory

variables on different risks. This is not only of academic interest but also has useful practical

implications. For example, if an investor increases her limit price for a buy limit order, then

the probability of the order being executed is increased. But at the same time, she conveys

information to the market by increasing the limit buy price, indicating that her private

valuation of the asset is high. In response, other investors might place more aggressive limit

orders or marketable limit orders, and the bid-ask spread changes accordingly. This causes

changes in the market conditions, which might induce the investor who placed the limit

order at the beginning to cancel her order, submit a new one, or stay away from the market

altogether. Thus, an increase in the limit order price might also increase the probability of

later cancellation. Our methodology recognizes this interdependence, and provides a way for

investors to develop optimal limit order submission strategies. Modeling this interdependence

is a contribution of our methodology.
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Fourth, we test several competing models that can be used to analyze limit order exe-

cutions and cancellations jointly. We consider three general classes of models: (a) Weibull

proportional hazard model with independent competing risks, (b) the Accelerated Failure

Time (AFT) model, and (c) Gamma Frailty model. Weibull is the most popular model

specification in duration analysis, AFT is used to benchmark against the findings of Lo et.

al (2002), and finally we consider the case where the two competing risks, execution and

cancellation, depend on each other through an unobserved latent variable (frailty). Frailty

allows us to control for the unobserved heterogeneity of limit orders and market conditions,

and is an important econometric issue. Unobserved heterogeneity refers to the factors that

are observed by investors placing the orders but unobserved (or uncaptured) by the econo-

metrician. In general, failure to control unobserved heterogeneity in empirical research could

severely bias the estimates for the parameters of interest and yield misleading conclusions

and strategy recommendations (Lancaster, 1990). We introduce diagnostic plots as a useful

method of verifying the goodness-of-fit for all three models.

Last but not least, our empirical data covers a very recent period in which we have

Regulation NMS, decimal pricing, and even subpenny pricing for some stocks. Chung et al.

(2004) and Chakravarty et al. (2004) studied the impact of decimalization on transaction

costs, market quality and liquidity, and found that quoted depth as well as the quoted and

effective bid-ask spreads declined significantly following decimalization.

The rest of the paper is organized as follows. Section II presents the econometric model.

We introduce the data, explanatory variables, and provide their summary statistics in Sec-

tion III. Section IV discusses empirical results and their implications. Section V describes

goodness-of-fit diagnostics of the alternative models. A brief summary and an outline for

future research conclude this paper in Section VI. The technical derivations are relegated to

the Appendix.

II. The Econometric Model

To develop an econometric model for the times to limit order execution and cancellation,

it is important not only to distinguish between these two causes of limit order termination,

but also incorporate all observed characteristics of the limit order and capture the influence

of market conditions at the time of the limit order submission. We accomplish this through

the application of a well-known statistical technique — competing risks analysis.

Competing risks analysis is typically applied in situations where we have multiple fail-

ure types. A prototypical competing risks situation was first considered in the eighteenth
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century when small pox vaccination was discovered and popularized.3 For many years, com-

peting risks models have been a popular tool for analyses of failure time data in various

disciplines, such as biostatistics, medicine, and engineering. Recently the competing risks

model found numerous applications in actuarial science, criminal justice, economics, finance,

and many other areas. Following the seminal papers of Heckman and Honoré (1989), Han

and Hausman (1990), Sueyoshi (1992), and McCall (1996), competing risks models became

popular in the economic analysis of time to an economic event, where the duration intervals

can have multiple causes of termination. For example, an unemployment spell may end due

to transition out of unemployment into either a new job or recall. Similarly, a mortgage

loan contract can terminate because of the homeowner’s default or prepayment of the loan.4

In the context of duration analysis of limit orders, we intend to capture the effects of

market-wide conditions and order-specific characteristics, such as the level of market activity,

stock price volatility, limit order price, limit order size, bid and ask quotes, market depth,

and other covariates, on the survival probability of limit orders. For different risks of failure,

these variables may have different effects, in magnitude and direction, on the risk-specific

limit order duration. There are several empirical papers on limit orders that extensively use

a single risk analysis, but little work has been done in a multiple risks framework.

The idea behind our econometric model can be best explained using the latent failure

time approach. Often one wishes to analyze the failure time data where one of the several

mutually exclusive causes (or types) of failure (i.e. competing risks) is assigned as the reason

for the failure.5 Since in most real life situations one cannot observe each of the latent causes

of failure separately (e.g., the different possible causes of death; types of recidivism among

released prisoners; possible reasons for ending a spell of unemployment), each individual

survival time can be interpreted as if it represents a component of an unobserved random

vector of survival times associated with different causes of failure (risks). The failure can

happen because of any of these competing risks. The system is said to have failed because of

the cause (or type) that happens to realize first. The lack of observability of the underlying

paths of each component of the random vector of failure times and the posterior knowledge

of the cause that actually triggers the failure justify the term “latent” duration. So, one can

only observe the shortest time to failure and the cause (or type) of that failure.

3Daniel Bernoulli (1766) posed the question: “How much would the mortality be reduced or expected life
be increased if the risk of death due to small pox is totally eliminated, the other risks persisting as before?”

4Ciochetti et al. (2003) applies the proportional hazard model with competing risks to the analysis of
time to termination of commercial mortgage contacts.

5In some studies more complicated failure patterns may emerge. In the current framework, such patterns
may be handled by defining additional failure types. For example, in our application to the limit order
market, a limit order might be partially executed, with the remainder of the order staying on the book and
being cancelled eventually.
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Formally, let T1, T2, . . . , Tm denote the latent failure times of an individual subjected to

m competing risks. What is actually observed is the time to failure T = min (T1, T2, . . . , Tm)

and the cause of failure J = argmin
j=1,2,...,m

Tj.6 Denote by δ the right-censoring indicator (δ = 0

if censored, δ = 1 if uncensored) and denote by Tc the right-censoring time.7 Often it is

also useful to assume that the sample includes only the orders that have survived by time t0
since the beginning of the duration episode, which implies that the observed times to failure

are larger than t0. In summary, observation for the ith individual included in the sample

is either in the form (ti, ji, δi = 1) or (ti, δi = 0) , where ti ∈ (t0; tci] is the realized time to
failure in the uncensored case, and ti = tci is the censoring time if observation i is censored.

In our context, for each uncensored observation of a limit order, its termination can

be triggered by two mutually exclusive competing risks: execution and cancellation.8 We

observe the duration to one and only one of those two causes, whichever occurs first. Hence,

the observed survival time is T = min (T1, T2), where (T1, T2) is the random vector of the

two underlying failure times of the limit order. In addition, we observe the cause of the

termination J , which can be execution (J = 1) or cancellation (J = 2). As a result, the

random vector (T, J) gives us the observable part of our data. Let T > t0 and assume that

the random vector (T1, T2) has a well defined absolutely continuous distribution function.

Then the joint survival function

S (t1, t2|t0) = Pr{T1 > t1, T2 > t2|T1 > t0, T2 > t0} (1)

is defined as the joint probability that the limit order surviving by time t0 will not be

terminated due to cause 1 (not executed) until time t1 > t0 and will not be terminated due

to cause 2 (not cancelled) until time t2 > t0.

The sample censoring is said to exist when certain subsets of the population cannot be

sampled, but the econometrician either knows or can consistently estimate the probability of

not sampling this subset of the population. Here, censored observations may correspond to

6Random variables T1, T2, . . . , Tm are assumed to have continuous distribution, so that the cause of failure
J is uniquely defined.

7The realizations of random variable Tc can vary across limit orders and generally depend on the market
conditions. However, for day limit orders considered in this paper it is useful to assume that the right-
censoring occurs at 4 p.m. EST or 10 minutes after the limit order submission, whichever comes first. Since
the time of such right-censoring is known in advance, this censoring scheme can be considered deterministic.
Note that although INET operates after the major exchanges close, we do not consider the extended hours
in our analysis since market quality in the after hours is different from the regular trading hours (Barclay
and Hendershott, 2003).

8In this paper we focus on the bivariate case, and assume that there are only two distinct causes of limit
order termination. Generalization to the multivariate case is conceptually straightforward. Implementation
of the multivariate competing risks model, possibly including revised and resubmitted orders, is left for future
analysis.
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the limit orders staying on the book until the end of the analyzed time interval or duration

episode without being executed or cancelled. Even though neither execution nor cancellation

events can be observed for such limit orders within the duration episode, partial information

is still available. Specifically, it is known that limit order i survived by the censoring time

tci corresponding to the duration between the time of limit order submission and the end of

the analyzed duration episode. The probability of right-censoring for limit order i can then

be expressed in terms of its joint survival function as follows

Pr{δi = 0|T1i > t0, T2i > t0} = S (tci, tci|t0) . (2)

Assuming in the above setup that the censoring rule is defined exogenously, the log-

likelihood function takes the form9

lnL =
n

Π
i=1
[(1− δi) lnS (tci, tci|t0) + δi ln f (ti, ji|t0)] , (3)

where δi ∈ {0, 1}, ti ∈ (t0, tci], ji ∈ {1, 2} are the sample observations indexed by i =

1, 2, . . . , n, and the risk-specific density function f (·, ·|t0) is given by

f (t, j|t0) = −
∂S (t1, t2|t0)

∂tj

¯̄̄̄
t1=t2=t

, j = 1, 2. (4)

It can be clearly seen from the expression (3) that to carry out the likelihood-based estimation

one only needs to specify the bivariate survival function S (t1, t2|t0). Equivalently, one can
specify F (t1, t2|t0), the joint distribution function of (T1, T2) for limit orders surviving at least
t0 seconds since the onset of the duration episode, or the joint density function f (t1, t2|t0).
Indeed, the values of S (t1, t2|t0) and F (t1, t2|t0) are linked by the following relationship10

S (t1, t2|t0) = F (tc, tc|t0)−F (t1, tc|t0)−F (tc, t2|t0)+F (t1, t2|t0) , (t1, t2) ∈ (t0, tci]×(t0, tci].
(5)

In the analysis of failure time data, researchers often prefer to specify the cumulative

hazard rate H(t1, t2|t0) = − ln(S(t1, t2|t0)), providing yet another way to characterize the
underlying distribution of the bivariate failure times. Often there are compelling reasons

to model the cumulative hazard rate directly, as it may be more convenient to think of the

limit order as a survivor subjected at any moment of its lifetime to instantaneous risks,

characterized by partial derivatives of the joint cumulative hazard function. Formally, the

9See the Appendix for derivation of formula (3).
10See the Appendix for derivation of formula (5).
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cause-specific hazard functions are defined for t > t0 as follows

hj (t|t0) =
∂H(t1, t2|t0)

∂tj

¯̄̄̄
t1=t2=t

= lim
4t→0

P (t ≤ Tj < t+4t |Tj ≥ t > t0)

4t
, j = 1, 2. (6)

In other words, the cause-specific hazard rates hj (t|t0) (j = 1, 2) can be viewed as the

instantaneous rates of type j failure at time t, t ∈ (t0; tci).
In the special case where random variables T1 and T2 are independent, we have

H (t1, t2|t0) =
Z t1

t0

h1 (τ |t0) dτ +
Z t2

t0

h2 (τ |t0) dτ, (7)

and the following relationship between S (t1, t2|t0) and h1 (t|t0) and h2 (t|t0) holds true11

S (t1, t2|t0) = exp
∙
−
µZ t1

t0

h1 (τ |t0) dτ +
Z t2

t0

h2 (τ |t0) dτ
¶¸

. (8)

Therefore, in the case of independent competing risks, it would be sufficient to specify the

two cause-specific hazard functions hj (t), j = 1, 2.12

Finally, it must be emphasized that the above discussion can be reformulated in terms of

the conditional joint distribution function F (t1, t2|t0, z), conditional joint survival functions
S (t1, t2|t0, z), conditional joint hazard rate H (t1, t2|t0, z) = − ln(S(t1, t2|t0, z)), as well as
conditional risk-specific densities f (t, j|t0, z) or risk-specific hazard rates hj (t|t0, z), j = 1, 2,
given the vector of exogenous covariates Z = z. Components of the covariate vector z may

include attributes of the limit order such as its size and transparency, as well as the variables

characterizing the market conditions at the time of limit order submission.

III. Data

We use a sample of four randomly selected stocks — American Capital Strategies Ltd.

(ACAS), Associated BanCorp (ASBC), Imclone Systems Inc. (IMCL), and Career Edu-

cation Corp (CECO), — and the stock of Intel Corp (INTC), which is one of the most liquid

equities traded on US markets. The sample period is July—December, 2005. We estimate

and test our competing risk models using order book data for these five stocks from INET.

INET is an automated limit order platform for trading equities. Thus, unlike the NYSE

11See the Appendix for derivation of formula (8).
12Later in this paper we will relax the conditional independence assumption for the competing risks by

specifying the unobserved factor V affecting the joint hazard rate multiplicatively. It will be shown that the
survival function obtained by integrating V out of the formula will imply dependence between the latent
durations of the competing risks.
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or NASDAQ, trading on INET is completely order driven. INET is open when the U.S.

equity markets are open, and generally accepts orders between 7 a.m. and 8 p.m. EST.

Only broker-dealers can submit orders to INET, and the only type of order allowed is limit

order, which can be either open for display or hidden. A trader who wants an immediate

INET execution can place a marketable limit order that meets or crosses the best price on

the opposite side of the limit order book. A trader who is prepared to wait and deal with

uncertainty of INET execution can place a non-marketable limit order that does not hit the

best price instantaneously available on the opposite side of the limit order book.

Upon receiving an order and performing a series of checks to establish its validity, the

INET trading system scans its limit order book to determine if a matching order is present

in the system. If a matching order is found, the incoming order is executed immediately. If a

matching order for the newly arrived display order does not exist, the display order is placed

on the limit order book and remains visible until a matching order is received or until the

display order originally submitted to the system is cancelled. If the newly arrived order was

entered as a non-display (hidden) order, and a matching order is not available immediately,

the non-display order is also placed on the electronic limit order book but remains hidden

from view by other traders. All unmatched orders are automatically cleared from the book

at the end of the trading day.

The INET electronic trading platform matches incoming orders with existing orders in

the book based on the following priorities:

(a) Price: the limit order price specified at the time of order arrival,

(b) Display: non-display (hidden) orders have lower execution priority than display

orders with the same limit order price, and

(c) Time: the exact time of limit order arrival (in milliseconds).

The information from the ITCH R° database that is relevant for our empirical work is as

follows: the limit order reference number, the limit price, size, time stamps (in milliseconds)

at order entry, execution information (partial or complete, as can be inferred by compar-

ing the order reference numbers), cancellation (partial or complete, as can be inferred by

comparing the order reference numbers). We follow Odders-White (2000) in inferring the

buy-sell direction of orders by assuming that the initiator of a transaction is the investor

who places his or her order last, chronologically. To construct the National Best Bid and

Offer (NBBO) quotes, we use quote data from the NYSE Trade and Quote (TAQ) database.

A. Data Cleaning

To reduce the influence of outliers and data errors, we apply the following filters to the raw

ITCH R° data:

9



(1) We confine our analysis to buy and sell limit orders submitted between 10 a.m. to

4 p.m. EST. The orders that are not executed or cancelled before 4 p.m. EST are treated

as right-censored observations. The beginning time of 10 a.m. EST is chosen because some

of the covariates that we are going to use are based on the previous hour’s limit order book

activity. Since the dynamics of limit order executions and cancellations are believed to be

driven by a different set of factors for orders submitted after 4 p.m. EST (the market closing

time for major US-based exchanges), such limit orders are also not covered by the analysis

in the present paper.13

(2) For each submitted limit order, we classify its termination event as execution or

cancellation and compute its failure time. We treat all partially executed limit orders as

executed orders, no matter whether they are subsequently fully executed or cancelled after

one or several partial executions. Therefore, the failure time of a limit order is defined

as the time to its first fill (partial or complete) or, if no executions are reported, to its

cancellation. The limit orders that are not executed and not cancelled within 10 minutes

after their submission are treated as right-censored observations.

(3) We delete all orders with limit price more than $0.25 away from the bid-ask mid-quote

at the time of submission,14 since we believe that such distant limit orders have a different set

of factors driving their execution and cancellation dynamics. The median distance between

the mid-quote and limit order price for our sample is $0.025, while the 99% percentile of

this variable is $0.21. Therefore, limit orders with the distance between mid-quote and the

limit price larger than $0.25 are quite rare and can be treated as outliers that should be

approached with a separate model.

(4) All orders with durations less than or equal to two seconds are excluded. It should be

emphasized that over 90% of limit orders in our data set are terminated with cancellations

and most of these cancellations occur within two seconds or less since the time of limit order

submission. We exclude such fleeting limit orders15 from our sample and set t0 = 2 seconds

in all formulas of Section II used in the subsequent analysis. Executions and cancellations

that occur shortly after submission of a limit order require a separate model since their

dynamics are likely to be driven by factors different from those for the limit orders surviving

at least two seconds.
13See Barclay and Hendershott (2003) for a discussion of after-hours trading.
14The distance between the limit order price and the bid-ask mid-quote is captured by the covariate

MQLP defined below. The bid-ask mid-quote is calculated from the NBBO quotes.
15Hasbrouck and Saar (2004) provide more information on fleeting limit orders.
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B. Covariates

The covariates (exogenous or pre-determined explanatory variables) are chosen to capture

the effect of limit order characteristics and market conditions prevailing at the time of order

arrival on the time-to-execution and time-to-cancellation of the limit order. Therefore, the

dependence between execution and cancellation risks is partially captured by the covari-

ates included in the model. The residual dependence between the two risks is due to the

unobserved factors, which can be viewed as the covariates left out of the model.

Define Pl as the limit order price, Pb and Po as the NBBO quotes, Pq ≡ 1
2
(Pb+Po) as the

NBBO mid-quote, Sb and So as the number of round lots (100 shares) available at the NBBO

quotes, Sl as the limit order size measured in round lots, and BSID as the buy/sell indicator

of the previous transaction. Similar to Lo et al. (2002), in the buy limit order models we

use the following covariates that are all measured at the time of limit order submission16

MQLP = 100(Pq − Pl),

BSID =

(
1 if last trade was a sell trade,

−1 if last trade was a buy trade,

MKD1 =

(
ln (Sb) (1 + 100(Pb − Pl)) if Pl ≤ Pb,

0 if Pl > Pb,

MKD2 =

(
ln (So) /(1 + 100(Po − Pl)) if Po ≥ Pl,

ln (So) if Po < Pl,

SZSD =

⎧⎪⎨⎪⎩
ln (Sl) (1 + 100(Po − Pl)) if Po > Pl,

ln (Sl − So) if Po = Pl and Sl > So,

0 otherwise,

STKV =
# of trades in the last half-hour
# of trades in the last hour

,

TURN = ln (# of trades in the last hour) , (9)

Three of the above covariates are redefined for the sell limit-order models in order to retain

uniformity in the underlying interpretation of these variables. The redefined covariates are

16As discussed in Section VI, this paper applies only to the case of exogenous covariates that are assumed
to be fixed or predetermined at the time of limit order submission. Extending the analysis to the case of
time-varying and endogenous covariates is left for future research.
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listed below:

MKD1 =

(
ln (So) (1 + 100(Pl − Po)) if Pl ≥ Po,

0 if Pl < Po,

MKD2 =

(
ln (Sb) /(1 + 100(Pl − Pb)) Pb ≤ Pl,

ln (Sb) Pb > Pl,

SZSD =

⎧⎪⎨⎪⎩
ln (Sl) (1 + 100(Pl − Pb)) Pl > Pb,

ln (Sl − Sb) Pl = Pb and Sl > Sb,

0 otherwise.

(10)

The covariates defined above attempt to capture the current state of the market and

accommodate the dynamic nature of the marketplace. The variable MQLP measures the

distance between the limit order price and the NBBO mid-quote at the time of limit order

submission. BSID is an indicator of whether the prior transaction was buyer-initiated or

seller-initiated, determined using the Odders-White (2000) chronology test. BSID equals

1 (−1) if the last trade in TAQ database was a seller (buyer)-initiated trade. MKD1 is a

proxy for the minimum number of shares that have a higher priority of execution. MKD2

measures liquidity on the opposite side of the market. SZSD is a measure of liquidity

demanded by the marketable limit order scaled by the distance between the limit order price

and the best quote on the opposite side of the market. STKV is a variable that attempts

to capture the lower-frequency shifts in the absolute level of trading activity; it indirectly

approximates the fluctuations of market volatility at the intraday frequencies comparable to

common time horizons of limit order traders. TURN is an absolute measure of past trading

activity. As previously mentioned, some of these variables are created from the TAQ data

set. In the process of merging ITCH R° data and TAQ data, we assume that the time stamps

in the two data sets are consistent with each other.17

C. Descriptive Statistics

Table 1 reports some descriptive statistics for the five stocks analyzed in this paper. It shows

the average daily number of outcomes for buy and sell limit orders and some characteristics

of daily trading activity in each stock. Note that the reported statistics are for the orders

that survive at least two seconds since their submission. Each of the five stocks have well over

half million observations (buy and sell limit orders) for the sample period (July—December

2005).18 More than 90% of all orders get cancelled, and most execution and cancellation
17See Chakrabarty et al. (2005) for details on mapping ITCH R° to TAQ times.
18Our sample contains 588, 000 observations for ACAS, 685, 000 observations for ASBC stock, almost

979, 000 observations for IMCL stock, and more than 1.16 mln. observations for CECO stock. The INTL
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events occur within the first several seconds of order arrival. The price averages for our

sample securities range between $25 and $40 per share. More than half of all executions for

the four moderately liquid stocks chosen for this study have small size (100 shares), even

though the market depth available at the best bid and ask quotes is typically between 400

and 800 shares. For the most liquid stock, INTC, the median transaction size is 300 shares,

and the median market depth available at the best bid and ask quotes is around 26, 000

shares. The average bid-ask spread for the four moderately liquid stocks is slightly higher

than two ticks, which means that the competing limit order traders can typically offer a one

tick price improvement without making their limit orders marketable. Two of the stocks

(ACAS and ASBC) are low-volatility stocks, whereas two other stocks (IMCL and CECO)

are high-volatility stocks. As expected, the realized volatility of the four chosen stocks tends

to increase as the sampling frequency goes up frommonthly to hourly, suggesting the presence

of substantial microstructure noise. On the other hand, the realized volatility of the INTC

stock is practically invariant to the sampling frequency, suggesting very little microstructure

noise even at the hourly frequency.

Table 2 presents some descriptive statistics for durations and covariates used in the

estimation of alternative competing risks models for the ACAS stock. Note that Table 2

and the subsequent Tables 3—6 report the estimation results for the single stock — ACAS

— using the subsamples for two months only (July and December of 2005). We summarize

the results for all sample stocks and time intervals in Table 7. The properties of durations

for buy and sell limit orders appear to be very similar. For example, the median duration

time for ACAS buy limit orders (13.66 seconds) is almost identical to the one for sell limit

orders (13.64 seconds). As expected, the difference between the limit order price and the

market mid-quote has different signs for buy and sell orders due to the definition of the

covariate MQLP . The average distance between the limit order price and the mid-quote of

the bid-ask spread is close to three ticks ($0.03). The properties of other covariates are also

very similar for buy and sell limit orders. Notice that most covariates are slightly (and some

significantly) leptokurtic and skewed.

IV. Estimation Results and Interpretation of Parameters

A. Model Specification

As explained in Section II, it is sufficient for estimation of the competing risks model in the

range of durations t > t0 to specify its joint conditional survival function S (t1, t2|t0, z) used
in the expression of the log-likelihood function (3). Equivalently, one can start with the

stock stands out with more than 10.64 mln. observations.
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specification of the joint conditional distribution function F (t1, t2|t0, z) or joint conditional
cumulative hazard rate H (t1, t2|t0, z), and then derive the function S (t1, t2|t0, z).19 In this
section, we offer three alternative specifications of the conditional survival function that are

subsequently used in our empirical analysis. First we discuss two specifications where the

underlying risk-specific durations T1 and T2 are assumed to be conditionally independent,

and then turn to our last specification where the risk-specific duration T1 and T2 depend on

a common unobserved risk factor.

A.1. Generalized Gamma AFT Model with Independent Risks

We adopt the accelerated failure time (AFT) specification of Lo et al. (2002)

Tj = T0j exp(z
0
βj), j = 1, 2, (11)

where T0j is the risk-specific baseline failure time, z is a vector of covariates that capture

market-wide conditions and limit order characteristics, βj is a risk-specific parameter vector.

The distribution of T0j is called the baseline distribution. The risk-specific durations Tj are

modeled as scaled transformations of the baseline failure times T0j, where the covariates and

the parameter values determine the degree of scaling. If we assume that the baseline failure

times T0j have generalized gamma distribution with shape parameters κj and pj, then the

risk-specific conditional survival functions for the risk-specific durations Tj > t0 (j = 1.2)

are given by

Sj (t|t0, z;ωj) =
1 {pj > 0} · Γ(κj)− sign(pj) · Γ(κj, (t exp(−z

0
βj))

pjκj)

1 {pj > 0} · Γ(κj)− sign(pj) · Γ(κj, (t0 exp(−z0βj))
pjκj)

, (12)

where ωj=(κj, pj,β
0

j)
0
is the parameter vector, 1 {·} is the indicator function which takes

the value of 1 if the statement in parentheses is valid and 0 otherwise, sign(·) is the sign
function which takes the value of 1 if its argument is positive and −1 otherwise,

Γ (a, x) =

Z x

0

ya−1e−ydy (13)

is the incomplete gamma function, and Γ (a) ≡ Γ (a,∞) is the complete gamma function.
The corresponding density functions for the risk-specific conditional durations Tj are positive

19In fact, it is sufficient to specify any of these functions in a small neighborhood of the main diagonal
t1 = t2 on the latent duration space.
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on the support t > t0 and have the following form

fj (t|t0, z;ωj) =
exp(−z0βj) |pj|κ

κj
j (t exp(−z

0
βj))

pjκj−1 exp(−(t exp(−z0βj))
pjκj)

1 {pj > 0} · Γ(κj)− sign(pj) · Γ(κj, (t0 exp(−z0βj))
pjκj)

. (14)

The generalized gamma distribution is chosen since it nests a number of other popular

distributions (gamma, Weibull, log-normal) as special cases. Since T1 and T2 are assumed to

be independent, given the observed covariates z and starting time t0, the joint conditional

survival function S (t1, t2|t0, z) is obtained as

S (t1, t2|t0, z;ω1,ω2) = S1 (t|t0, z;ω1)S2 (t|t0, z;ω2) , t1 > t0, t2 > t0, (15)

where Sj (t|t0, z;ωj), j = 1, 2, are the risk-specific conditional survival functions defined by

(12).

A.2. Weibull and Cox Proportional Hazard Models with Independent Risks

Alternatively, if we pursue the hazard function approach, a popular fully parametric specifi-

cation for the risk-specific conditional hazard rates is provided by the Weibull proportional

hazard model. In this specification, it is assumed that the risk-specific hazard rates hj (t|t0, z)
(j = 1, 2) are conditionally independent of each other at all times t > t0, given the observed

vector of covariates z, and have the form

hj (t|t0, z;θj) = γjt
γj−1 exp(z

0
βj), t > t0, (16)

where θj= (γj,β
0

j)
0
are the model parameters (j = 1, 2).

In this setup, the joint survival function for risk-specific durations T1 and T2 conditional

on the observed covariates z and starting time t0 can be obtained as follows20

S (t1, t2|t0, z;θ1,θ2) = exp
h
−
³
(t
γ1
1 − t

γ1
0 ) exp(z

0
β1) + (t

γ2
2 − t

γ2
0 ) exp(z

0
β2)
´i

. (17)

For estimation, the expression (17) is plugged into the expression (3) of the log-likelihood

function.

The Weibull proportional hazard specification (16) and (17) is a fully parametric model.

The parameter estimates based on this specification are efficient if the model is correct but

would be biased if the model is misspecified. If the assumption that T1 and T2 are condi-

tionally independent given the observed covariates z and starting time t0 is maintained, one

20Derivation of formula (17) is given in the Appendix.
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can use the Cox proportional hazard model, which is robust to the Weibull baseline hazard

misspecification. The Cox proportional hazard model, due to Cox (1972), has a long his-

tory of use in medical statistics and biostatistics, and it also gained popularity in economics

and finance. Similar to the Weibull proportional hazard model, the Cox proportional haz-

ard model is formulated for the risk-specific conditional hazard rates. It assumes that the

risk-specific conditional hazard rates at time t > t0 are given by

hj(t|t0, z,βj) = h0j (t|t0) exp(z
0
βj), t > t0, j = 1, 2, (18)

where z is the vector of observed covariates and h0j (t|t0) are the covariate-free risk-specific
baseline hazard rates. The Cox proportional hazard model is semiparametric since no as-

sumptions (other than mild regularity conditions) are made about the shape of the baseline

hazard rates h0j (t|t0).
Cox (1972) shows that inference on the covariate effects βj (j = 1, 2) in the Cox pro-

portional hazard model can be based on the partial likelihood function instead of the full

likelihood derived in Section II. Moreover, since the Cox proportional hazard competing risks

model includes, as a special case, the proportional hazard model with Weibull independent

risks, we can compare the estimates of covariate coefficients coming from the two models. If

the coefficient vectors bβ1 and bβ2 coming from the two models are close to each other, the

Weibull proportional hazard assumption is justified (at least indirectly) and can be accepted

as a good working hypothesis.21 To this end, we also estimate the Cox proportional hazard

model with conditionally independent competing risks and report our estimation results in

Table 5.

A.3. Weibull Proportional Hazard Model with Gamma Frailty

In the last two subsections, we maintained the assumption that T1 and T2 are conditionally

independent given the observed covariates z and the starting time t0. However, allowing

T1 and T2 to be dependent given the observed covariates often may be a more realistic

assumption. For example, if there are some economic factors that could plausibly affect the

times to limit order execution and cancellation but cannot be incorporated in the model

as components of the covariate vector z, then the risk-specific durations T1 and T2 would

be dependent random variables, even after their dependence on the observed covariates is

controlled. Our last model specification allows for such a possibility.

In this specification, we assume that the risk-specific hazard rates at time t are indepen-

dent of each other, provided that not only the covariate vector z but also the value of an

21A formal specification test similar to the standard Hausman test (Hausman, 1978) can also be applied.
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additional latent factor (frailty) V are observed. We assume the following specification for

the risk-specific hazard rates

hj(t|z,v;θj) = γjt
γj−1v exp(z

0
βj), j = 1, 2, (19)

where z is the vector of observed covariates, v is the value of latent factor V realized at

the beginning of the episode (at time t = 0) but unobserved by the econometrician, and

θj=(γj,β
0

j)
0
are the model parameters as in the Weibull proportional hazard model (16).

As a consequence of dependence on the common factor V , the risk-specific hazard rates

hj(t|z;θj), t > t0, j = 1, 2, will be dependent given the observed covariates z only, and hence

the risk-specific durations T1 and T2 will also be dependent conditional on the observed

covariates and the starting time t0.

If we assume that random variable V has gamma distribution with mean τα and variance

τ 2α, characterized by the density

f (v|ϕ) = 1

τΓ (α)

³v
τ

´α−1
exp

³
−v
τ

´
, (20)

where ϕ =(τ , α)
0
is the vector of its scale and shape parameters, then the joint survival

function for T1 and T2 conditional only on the observed covariate vector z (given that the

limit order survived until time t0 since its submission) can be obtained as follows22

S (t1, t2|t0, z;Θ) =
µ
1 + τ(t

γ1
0 exp(z

0
β1) + t

γ2
0 exp(z

0
β2))

1 + τ(t
γ1
1 exp(z

0β1) + t
γ2
2 exp(z

0β2))

¶α

, t > t0, (21)

where Θ =
³
α, γ1, γ2,β

0

1,β
0

2

´0
is the vector of model parameters.23 As usual, the expression

(21) can be plugged into the formula (3) to obtain the maximum likelihood estimates of the

model parameters.

B. Estimation Results

Each of the models discussed in the previous section is estimated twice — once for buy orders

and once for sell orders. In our interpretation of the estimation results, we distinguish

between two modeling schemes. In the accelerated failure time (AFT) framework, where we

model the risk-specific conditional durations directly, positive estimated values of covariate

22Derivation of formula (21) can be found in the Appendix.
23It can be inferred from the expression of log-likelihood function (3) based on formulas (19) and (21)

that parameters τ and α cannot be identified simultaneously. Imposing a restriction on parameter τ (for
instance, τ = 1) makes the competing risks model based on the gamma frailty just-identified and leads to a
well-defined maximum of the log-likelihood function.
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effects imply that larger values of those covariates are associated with longer risk-specific

durations. In the second approach, where we model the risk-specific conditional hazard

rates, the interpretation of covariate effects is opposite. Positive estimated values of covariate

effects imply that an increase in those covariates tends to increase the risk-specific conditional

hazard rate and decrease the expected time to realization of the risk under consideration.

Estimation results based on July 2005 and December 2005 subsamples of limit orders

for alternative competing risks model specifications are reported in Tables 3—6 for the ticker

ACAS; summary results for the entire sample are provided in Table 7. The following dis-

cussion is based on the estimates for ACAS limit order data in July 2005. As emphasized in

the discussion of Section III, only the orders submitted no further than $0.25 away from the

current NBBO mid-quote, between 10 a.m. and 4 p.m. EST are considered. In addition,

orders with less than two-second durations are eliminated and all limit orders with durations

larger than 10 minutes are assumed to be right-censored at 600 seconds. Similarly, any limit

order that survives by 4 p.m. EST is assumed to be right-censored at the duration equal to

the time interval between 4 p.m. and the time of this limit order submission. Additionally,

as a robustness check, we report all estimation results based on the ACAS limit order data

in December 2005. At the end of this section we briefly discuss robustness of our estimates

across stocks and time periods.24

B.1. Generalized Gamma AFT Model with Independent Risks

Table 3 reports parameter estimates of the generalized gamma accelerated failure time model

for buy and sell orders, along with their t-statistics. Note that the effect of covariateMQLP

associated for the execution risk of buy (sell) limit orders equals +0.99 (−1.14) and is highly
significant, whereas the same covariate effect for the cancellation risk of buy (sell) limit orders

is only +0.05 (+0.01) with a much smaller t-ratio. This demonstrates that the further away

the limit order price is relative to the midquote level, the longer it takes to execute the order,

and the sooner that order would be cancelled.

The positive sign (+0.12) on the covariate effect of BSID for the buy limit order time

to execution suggests that if the prior trade occurred below the current midquote (BSID =

−1), then the smaller time to execution of that buy limit order is expected. The covariate
effect ofBSID for the buy limit order cancellation risk is quantitatively small, which suggests

that the high-frequency mean reversal effect, which is apparently quite substantial for the

execution risk, is negligible for the cancellation risk of buy limit orders.

The positive coefficients (+0.32 and +0.04) on the covariate effects of MKD1 indicate

that the time-to-execution and the time-to-cancellation of a buy limit order are both in-
24Detailed estimates for all five stocks are available upon request.
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creasing with the amount of liquidity provided on the same side of the market with a higher

price and time priority. The coefficient is much larger for execution risk, which leads to

the tentative conclusion that the deeper market on the buy side would be associated with

a higher percentage of cancellations (relative to executions) of the buy orders submitted at

the inferior limit order prices.

On the other hand, the negative coefficient (−0.21) (the positive coefficient (+0.01))
on the covariate effect of MKD2 indicate that the time-to-execution (time-to-cancellation)

of a buy limit order is decreasing (increasing) with the amount of liquidity provided on

the opposite side of the market and with the distance between the buy limit order price

and the best offer quote available on the opposite side. To put it differently, the increasing

competition among the sellers implies shorter time-to-execution (longer time-to-cancellation)

for the outstanding buy limit orders.

Since SZSD is a measure of liquidity demanded by the buy limit order trader scaled by

its price aggressiveness, we expect the coefficient of that variable on time-to-first-execution

of the buy limit order to be negative. This is exactly the case as we observe the covariate

effect for SZSD associated with the execution risk to be negative (−0.05). Interestingly, the
effect of SZSD on time-to-cancellation is also negative, but its absolute value is much larger

(−0.20) with a much larger t-ratio. This can be viewed as evidence of the fleeting character
of aggressively priced buy limit orders; such orders are more likely to be executed but also

more likely to be cancelled before the seller arrives.

The absolute values of coefficients corresponding to the last two covariates (STKV and

TURN) are much larger for the execution risk than for the cancellation risk. All coefficients

are significantly negative, suggesting the negative effect of both relative and absolute levels of

market activity on the time-to-execution and time-to-cancellation of buy limit orders. This

indicates that the increase of trading activity causes more buy limit orders to be picked up

by aggressive sellers and also induces the buy limit order traders to cancel their previously

submitted limit orders more urgently.

The four rightmost columns of Table 3 report the parameter estimates of the generalized

gamma accelerated failure time model for sell orders, along with their t-statistics. The effects

of most covariates on the time-to-execution and time-to-cancellation of sell limit orders are

in agreement with the effects of the corresponding covariates for buy limit orders.

B.2. Weibull and Cox Proportional Hazard Models with Independent Risks

The conclusions based on the estimates of the Weibull and Cox proportional hazard models

(Tables 4 and 5) are generally in agreement with the interpretation of the estimated para-

meters of the generalized gamma AFT model. The difference between the two models is
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that the proportional hazard models focus on the hazard rates of competing risks while the

generalized gamma AFT model focuses on the risk-specific durations, so the signs of the

coefficients of all variables in the proportional hazard models are opposite to those in the

generalized gamma AFT model for buy orders, as expected. Discrepancies between the signs

on the covariate effects for sell limit orders are predominantly confined to the coefficients

that appear to be small and economically insignificant.25

We emphasize once again that the coefficients on the variable MQLP characterizing

the price aggressiveness of the limit order are large, highly economically and statistically

significant, and have opposite signs for buy (−0.97) and sell (+1.14) limit order executions.
The effect of the price aggressiveness on the cancellation hazard rates are still significant

but much smaller in magnitude for buy (−0.06) and sell (+0.03) limit orders. This clearly
indicates that the hazard rates of buy and sell order executions and cancellations tend to

increase with the limit price aggressiveness, but the execution risk is much more sensitive

to changes in the limit order price. This also indicates that the instantaneous odds that

an order will be terminated by cancellation rather than execution tend to increase for less

aggressively priced orders.

Once again, we find that the effects of the past buy/sell indicator variable BSID are only

economically and statistically significant for buy order execution risks. The same qualitative

conclusion generally applies to the effects of variablesMKD1 andMKD2 on execution and

cancellation hazards; the hazard rates of executions appear to be much more sensitive to

the variation of those variables than the hazard rates of cancellations. Parlour (1998) shows

that if the market depth is greater on the buy side (variableMKD1), then the probability of

execution of a subsidiary limit buy order is smaller. However, if the market depth is thicker

on the sell side (variable MKD2), then the probability of execution of a subsidiary limit

order is greater. Our results provide some support for this prediction. The reasoning is as

follows. Suppose a trader enters the market and observes that there are so many limit sell

orders on the book that she becomes reluctant to submit a sell limit order since it has a

low chance of being executed. Instead, this trader may jump the queue by bettering the

current book or submitting a marketable sell order to cross the best opposing price. Thus,

the execution probability of buy orders on the book will increase.

The only covariate whose variation has a substantial effect on the cancellation risk and

negligible effect on the execution risk is SZSD, which measures the liquidity demanded by

limit orders scaled by the limit order price aggressiveness. This can be viewed as an evidence

25Due to the large sample size, small and economically insignificant coefficients are often statistically
significant. Therefore, one should be cautious about making inferences based on their t-statistics. Also see
our discussion of the estimates for the competing risks model with gamma frailty below.
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that, other things being the same, large limit orders tend to be cancelled much sooner than

small limit orders. The size effect magnifies when a large limit order is submitted further

away from the best quote on the opposite side of the market. In other words, small order

traders are willing to wait longer than large order traders before cancelling their orders,

especially if the limit order has been submitted close to the best quote on the opposite side

of the market.

According to our model, the limit order size does not seem to affect the probability of

its execution. This is likely to be a consequence of our treatment of partial executions (see

our discussion at the beginning of Section III for details). We treat all executions — partial

and complete — similarly, interpreting the time-to-first-fill of a limit order as its execution

time. As a result, aggressive traders demanding only a small amount of liquidity, would still

be filling the limit orders, no matter whether they are large or small, just taking as much

liquidity as necessary and leaving the rest of the limit order unfilled.

Again, the magnitude of the coefficients on the last two covariates (STKV and TURN)

generally tends to be larger for execution risk than for cancellation risk. Both coefficients

are significantly positive, suggesting the positive effect of relative and absolute levels of past

trading activity on the hazard rates of executions and cancellations.

Finally, the estimates of γ1 and γ2 are both smaller than unity, indicating that the two

competing risks hazard both decline as the limit order stays on the book longer. Since γ1
tends to be much larger than γ2, the baseline hazard rate tends to decline much faster for

cancellation risk. We interpret this as evidence of the fleeting character of limit orders, which

tend to be cancelled much more frequently early in their lifetimes. Surprisingly, this effect is

substantial even after we excluded from the analysis the limit orders executed or cancelled

within the first two seconds of their lifetime.

B.3. Weibull Proportional Hazard Model with Gamma Frailty

The estimation results for the Weibull competing risks model with gamma frailty are pre-

sented in Table 6. Since this model focuses on estimating the hazard rates, we expect the

coefficients in Table 6 to have similar signs to the coefficients in Tables 4 and 5 discussed in

subsection B.2. A thorough comparison of those tables reveals that most coefficients indeed

tend to have similar signs, which means that the Weibull model with gamma frailty and

the model with conditionally independent competing risks might have qualitatively similar

implications. However, there are several important differences.

Before discussing those differences and similarities, note that the coefficients on the co-

variates in Table 6 should be interpreted as the sensitivities of hazard rates for cancellation

and execution risks conditional on the observed covariates and an unobserved state variable
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(frailty), which affects both competing risks multiplicatively. This should be always kept

in mind when the signs and magnitude of the coefficients in Table 6 are compared to those

from Tables 4 and 5; the estimates reported in Tables 4 and 5 represent the sensitivities of

execution and cancellation hazard rates conditional on the observed covariates only.

The coefficient on the variable of MQLP in the hazard rates for execution of buy limit

orders is significantly negative (−1.19) and larger than the corresponding coefficient (−0.97)
in the model with independent Weibull competing risks. Similarly, the magnitude of the

coefficient of this variable tends to increase in the gamma frailty model for cancellation rate

of buy limit orders (−0.13) relative to the same coefficient in the model with independent
competing risks (−0.06). Indeed, conditioning on the unobserved frailty parameter appears
to reduce the noise, which in turn tends to boost the hazard rate sensitivities.

The negative signs of the coefficients corresponding to the covariate BSID in the con-

ditional hazard rates of execution and cancellation indicate that if the prior transaction

has been on the buy side, a shorter time-to-execution (−0.16) and a slightly shorter time-
to-cancellation (−0.04) of a buy limit order are expected. Our results are consistent with
previous studies. For example, Lo et al. (2002) reports that if the prior transaction was

seller-initiated, a longer time-to-execution is expected for buy orders.

The coefficients on the variable of MKD1 are significantly negative in the hazard func-

tions of both execution and cancellation of buy limit orders. This indicates that a longer

time-to-execution and a longer time-to-cancellation are expected if the proxy for the number

of shares having higher priority to execution on the buy side is larger. In contrast, the coeffi-

cients on the variable ofMKD1 tend to be less significantly negative in the hazard functions

of sell order execution and tend to be closer to zero in the hazard functions of sell order can-

cellation. This provides some evidence that a large number of shares having higher priority

to execution on the sell side does not tend to increase substantially the time-to-cancellation

of a lower priority sell limit order, suggesting that sell limit order traders tend to be more

patient.

On the other hand, the positive signs of the estimated coefficients ofMKD2 in the models

for buy and sell order execution (+0.24 and +0.29, respectively), indicate that the greater is

the depth on the opposite side of the market, the shorter is the expected time-to-execution,

and the effect is stronger for sell limit order execution. At the same time, the estimated

coefficient ofMKD2 for the cancellation risk is essentially close to zero for buy limit orders,

and negative (−0.10) for sell limit orders, indicating that the large depth on the opposite
side of the market tends to discourage sell limit order cancellations but does not seem to

affect buy limit order cancellations.

In contrast to the competing risks model with conditionally independent Weibull com-
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peting risks, the coefficients of the variable SZSD become significantly positive for both

executions and cancellations of limit orders. This indicates that both execution and cancel-

lation risks are increasing with the size of the limit order and the distance between its limit

price and the best price on the opposite side. Still, the cancellation rates grow faster with

the size of SZSD than execution rates for both sell and buy limit orders suggesting that

even though executions tend to be spurred by the larger limit order size, the cancellation

rates of such limit orders also tend to increase, and they increase at somewhat higher rate,

even after the common frailty factor is taken into consideration.

We also observe, once again, that the coefficients of the last two covariates (STKV and

TURN) are much larger for the execution risk than for the cancellation risk. All coefficients

are significantly positive, suggesting the positive effect of both relative and absolute levels of

market activity on the execution and cancellation hazard rates for buy and sell limit orders.

Finally, the estimates of γ1 and γ2 are both significantly larger than unity, which indicates

that the hazard rates of the two competing risks (conditional on the covariates and an

unobserved frailty parameter) are increasing, while the rate of increase appears to be much

faster for the conditional baseline hazard rate of execution relative to the conditional baseline

hazard rate of cancellation. The unobserved heterogeneity appears to be important, as it

affects the size and, occasionally, the sign of the covariate effects. The unobserved covariates

that affect proportionally the execution and cancellation hazard rates but are not included

as explanatory variables appear to be a probable cause for dependence between the risks of

limit order execution and cancellation.

B.4. Comparison Across Stocks and Time Periods

Table 7 summarizes the signs and significance of the estimated covariate effects based on

the Weibull proportional hazard model with conditionally independent competing risks for

buy and sell limit orders across the alternative stocks and time periods.26 We estimated

our model separately for buy and sell orders in each of the four moderately liquid stocks

month-by-month for each month (July—December 2005). Because of the huge number of

observations, our estimation for the liquid ticker INTC was performed using the data from a

randomly selected business day of each month. Since all our estimates have similar qualitative

interpretations, we focus our discussion in this subsection on the stability of the signs of

covariate effects across time periods and the robustness of our results across different stocks.

Clearly, most of the covariates are robust in both direction and magnitude across the

sample stocks. For example, effects of MQLP is negative (positive) and significant for

26The numerical values of estimated coefficients for the alternative stocks and time periods can be requested
from the authors.
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all stocks and both execution and cancellation risk, for buy (sell) orders. Likewise, the

coefficients of BSID, MKD1, MKD2, TURN , and STKV are all significant and have

expected and consistent direction for both buy and sell order executions, although the sign

of these coefficients are more variable and less stable for cancellations.

The only covariate that changes the sign for both executions and cancellations is SZSD.

We think that the reason this covariate changes sign across stocks and months reflects the

asymmetric variation in the depth of the limit order book on the buy and sell sides across

months, likely driven by stock-specific information events such as earnings announcements

and other news arrivals. A similar explanation can be proposed for the relatively unsta-

ble signs of most covariates for the cancellation risk. The detailed exploration of factors

underlying this instability is left for future research.

V. Goodness of Fit and Model Selection

We compare the goodness-of-fit of alternative models using the modified cumulative probabil-

ity plots in combination with the numerical diagnostics (percentile statistics). Our approach

parallels the method of Lo et al. (2002); however, we explicitly account for the presence of

multiple risks and right-censoring.27

A. Cumulative Probability Plots for Competing Risks

The idea of probability plots can be described as follows. Denote by

Q1(t|t0, z) = Pr{T1 < t, T2 ≥ T1|t > t0, z},
Q2(t|t0, z) = Pr{T2 < t, T1 ≥ T2|t > t0, z},

the true conditional incidence rates of the two competing risks defined for durations t ∈
(t0; tc(z)], where tc(z) is the deterministic right-censoring time, which may be a function of

market conditions Z = z prevailing at the time of the limit order submission. For any vector

of risk-specific durations (T1, T2) and auxiliary uniform [0; 1] random variable S (independent

of T1, T2, and Z), we construct the random function

Q(T1, T2, S|t0, z) =

⎧⎪⎨⎪⎩
Q1(T1|t0, z) if T1 < min(T2, tc(z)),

Q2(T2|t0, z) if T2 < min(T1, tc(z)),

Qc(t0, z) · S if tc(z) ≤ min(T1, T2),
(22)

27Without loss of generality, we can assume that all observations with ti ≤ t0 have been eliminated from
the empirical sample of durations {ti}ni=1.
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which must be uniformly distributed on [0; 1], where

Qc(t0, z) = 1−Q1(tc(z)|t0, z)−Q2(tc(z)|t0, z)

is the conditional probability of right-censoring of the limit order given the information

that the order has survived for t0 seconds since its submission at the market conditions

characterized by the covariate vector z. The vector of exogenous covariates Z d∼ ΦZ(·) and
the auxiliary uniform [0; 1] random variable S can be integrated out of the expression (22)

to obtain the random variable

Q(T1, T2|t0) =
ZZ

Q(T1, T2, s|t0, z) · 1[0;1](s)dsdΦZ(z)

which must be uniformly distributed on [0; 1].

Now assume that we have a sample of data {(ti, ji, δi, zi)}ni=1, where ti > t0, ji = 1 or

2, δi = 0 or 1, and zi are the observed covariates. Augmenting this sample by an auxiliary

sequence of uniformly distributed random numbers {si}ni=1, and transforming it into the
sequence of

πi = π(ti, ji, δi, si|t0, zi) =

⎧⎪⎨⎪⎩
Q1(ti|t0, zi) if ji = 1 and δi = 1,

Q2(ti|t0, zi) if ji = 2 and δi = 1,

Qc(t0, zi) · si if δi = 0,

(23)

should yield an approximately uniformly distributed random sample on [0; 1]. If the sample

of exogenous covariates {zi}ni=1 is “representative,” so that its empirical distribution functionbΦz1,...,zn(z) is close to the theoretical cdf ΦZ(z), then the sample of random numbers {πi}ni=1
obtained by the formula (23) should be approximately uniformly distributed on [0; 1]. As a

result, a valid test of the hypothesis that the sequence of {πi}ni=1 is drawn from a uniform

[0; 1] distribution would serve as a test that Q1(t|t0, z) and Q2(t|t0, z) indeed provide the true
functional forms of the conditional incidence rates for the competing risks in the interval of

durations t ∈ (t0; tc(z)].
In practice, the parametric functional forms of the conditional incidence rates Q1(t|t0, z)

and Q2(t|t0, z) are unknown and must be estimated. We use the estimates bΘ of our

model’s unknown parameters to obtain proxies for the incidence rates Q1(t|t0, zi; bΘ) and
Q2(t|t0, zi; bΘ). Then we plug those proxies into formula (23) to obtain the sequence of πi(bΘ)
that could be subsequently used to construct a diagnostic plot of our model’s goodness-of-fit.

If the model is specified correctly, then the estimated conditional incidence ratesQ1(t|t0, z; bΘ)
and Q2(t|t0, z; bΘ) should be close to the true incidence rates π1(t|t0, z) and π2(t|t0, z), and
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the estimated conditional right-censoring probability Qc(t0, z; bΘ) = 1−Q1(tc(z)|t0, z; bΘ)−
Q2(tc(z)|t0, z; bΘ) should be close to the true conditional right-censoring probability Qc(t0, z).

Properties of the sequence of random numbers

bπi =
⎧⎪⎨⎪⎩

Q1(ti|t0, zi; bΘ) if ji = 1 and δi = 1,

Q2(ti|t0, zi; bΘ) if ji = 2 and δi = 1,

Qc(t0, zi; bΘ) · si if δi = 0,

(24)

should be similar to those of the sequence {πi}ni=1 obtained by formula (23) from the exact

expressions of the conditional rates Q1(t|t0, z), Q2(t|t0, z), and Qc(t0, z). If the model is

correctly specified, the sample {bπi}ni=1 would be approximately uniformly distributed on
[0; 1]. Equivalently, the probability plot of the sample

©bπ(i)ªni=1, obtained from {bπi}ni=1 by
lexicographic ordering (first by δi ∈ {1, 0}, then by ji ∈ {1, 2}, and finally by ti > t0), would

be close to a straight line with a unit slope, and the sequence of the dynamic gaps (“scores”)©bπ(i) − i
n+1

ªn
i=1
for all values of i would not deviate too far from the origin.28 Unusually large

positive (negative) slopes on the plot of “scores”
©bπ(i) − i

n+1

ªn
i=1

against
©

i
n+1

ªn
i=1

indicate

the range of incidence rates (and, by implication, the range of durations and the type of

events) where the model tends to overpredict (underpredict) the empirical frequencies of

those events.

The same idea can be used to construct diagnostic plots for evaluation of alternative com-

peting risks model performance out-of-sample. The only difference is that the estimates bΘ of

the unknown parameters used to obtain the parametric functional forms of the conditional

rates Q1(t|t0, z; bΘ), Q2(t|t0, z; bΘ), and Qc(t0, z; bΘ) are obtained using the training sample,
while the sample {(ti, ji, δi, zi)}ni=1 used for construction of the random sequence {bπi}ni=1
must come out-of-sample, for example, using the limit order data for a different stock or a

different time period.

Details of this general algorithm customized for the construction of diagnostic plots for

the three alternative competing risks models of this paper appear in Appendix II.

B. Model Selection

Figure 1 displays the diagnostic cumulative probability plot based on the predicted risk-

specific incidence rates for the Weibull proportional hazard model with independent com-

peting risks of execution and cancellation for buy limit orders. Superimposed on this plot

28In the covariate-free case, the distribution of the random process
©bπ([nr]) − r

ª
r∈[0;1] must be identi-

cal to that of a Brownian bridge. In the more general case with covariates, the distribution of process©bπ([nr]) − r
ª
r∈[0;1] would depend on the properties of covariates, even though it would still cluster around

the origin if the model is correctly specified.
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are similar plots for the gamma frailty model with Weibull baseline hazard functions and

for the generalized gamma AFT model. The sample of limit order durations is left-censored

at t0 = 2 seconds and right-censored at tc = 600 seconds or the duration corresponding to

4 p.m. EST, whichever occurs earlier. Among the three models, the Weibull proportional

hazard with conditionally independent competing risks model demonstrates a much better

overall goodness-of-fit performance relative to the other two models (generalized gamma

AFT and Weibull PH model with gamma frailty). Similar plots for alternative competing

risks models of sell limit order execution and cancellation support the same conclusion.29

Figures 2a and 2b provide an even more striking illustration as they show the goodness-

of-fit for the risk-specific incidence rates as functions of duration since the limit order arrival

(only the duration range between 2 and 120 seconds is shown on the plots). These plots give

a more nuanced picture in support of the conclusion that the Weibull proportional hazard

specification with conditionally independent competing risks predicts the empirical incidence

rates of execution and cancellation events much better than the AFT model with the risk-

specific durations modeled by the generalized gamma distribution. Since the generalized

gamma AFT model severely overpredicts the risk of execution and underpredicts the risk

of cancellation, the inference based on this model should be approached with caution and

this model’s predictions of limit order execution and cancellation events would generally

be unreliable. Both Weibull proportional hazard models (with and without gamma frailty)

generally perform much better in fitting the incidence rates of execution events, although the

Weibull proportional hazard model with conditionally independent competing risks tends to

perform slightly better.

In terms of fitting the incidence rates of cancellation events, the Weibull proportional

hazard model with independent competing risks significantly outperforms not only the gen-

eralized gamma AFT model, but also the Weibull hazard model with gamma frailty. For

example, the Weibull gamma frailty model predicts that a randomly selected buy limit order

will be cancelled between 2 and 7 seconds after its submission with probability of approxi-

mately 25% (provided that it is not cancelled or executed prior to the two-second duration

mark). In contrast, the empirical probability of buy order cancellation within the same time

interval is slightly higher than 45% (As a result, the cumulative scrore differential at 7 sec-

onds is −0.2 for this model in Figure 2b). The generalized gamma AFT model fares much
worse, predicting only the 10% cancellation probability in the duration interval between 2

and 7 seconds after the limit order submission. The gap between predicted and empirical

probabilities of cancellations for the generalized gamma AFT model tends to be even larger

for longer durations.

29Those plots are available from the authors upon request.
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In summary, the generalized gamma accelerated failure time model of competing risks

fails miserably, severely overpredicting the execution risk and underpredicting the cancel-

lation risk. The Weibull proportional hazard competing risks model with gamma frailty

performs better for the risk of limit order execution, but still fails to adequately capture the

cancellation risk. The Weibull proportional hazard model with conditionally independent

competing risks demonstrates the best overall performance among the three models con-

sidered in this paper, adequately capturing the execution and cancellation risks in-sample

and providing satisfactory predictions out-of-sample.30 Therefore, we believe that the char-

acterization of competing risks provided by the Weibull proportional hazard model with

conditionally independent competing risks appears to be more plausible, and the estimates

of covariate effects based on this model are more reliable.

VI. Conclusion and Future Research

In this paper we build and estimate three econometric models of limit order execution and

cancellation using competing risk analysis and the INET datafeed for five Nasdaq stocks. Of

particular importance is our formulation of dependent competing risks models that provides

adequate characterization for the times to limit order executions and cancellations. We also

offer a way to graphically demonstrate the goodness-of-fit of the alternative models. Time-

to-execution is found to be more sensitive to the limit price than time-to-cancellation, but

time-to-cancellation appears to be more sensitive to the limit size than the time-to-execution

(measured as time-to-first-fill). Therefore, a safe way to reduce the time-to-execution with

minimal increase in the risk of later cancellation is to increase the price aggressiveness of

the submitted limit order. More importantly, we find that if investors want to reduce the

expected time-to-execution for their limit orders without inducing any significant increase

in the risk of subsequent cancellation should submit their orders when the market depth is

smaller on the side of their orders or when the market depth is greater on the opposite side

of their orders.

Our future research plans include (but are not limited to) the following. First, since the

order size (related to the covariate SZSD) appears to be an important factor influencing

the cancellation risk, and often is used to distinguish retail orders from institutional orders,

we plan to compare results by splitting orders according to order size. Similarly, since

cancellation strategies used by limit order traders are likely to depend on price aggressiveness

(determined by the covariateMQLP ), it may be advantageous to compare results by splitting

orders according to their price aggressiveness. This may reveal some important differences

30The out-of-sample diagnostic plots are available from the authors upon request.
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in the trading strategies employed by market participants.

Second, introducing time-varying covariates in our models is an important direction for

future research. Traders submit their limit orders based on current market conditions and

their anticipation of future changes in market conditions, so it is reasonable to expect that

the limit order trading strategy is a dynamic process unfolding in real time. Introducing

time-varying covariates would allow us to capture the effect of adjustments that many limit

order traders are likely to make in response to changes in market conditions over the lifetime

of the order.

Finally, the large fraction of cancelled orders suggests that it would be important to

consider what a trader does after cancelling an order. For example, if the trader wants to

buy a certain number of shares, then we can think of an expected price and time-to-execution

trade-off. The typical trader on INET will submit multiple orders to meet his objective and

we could use the competing risks model estimates to generate a forecast for the time until

completion for a given policy; where a policy may be defined as a distance between the quote

and the order price. An interesting question might be to determine the price-time trade-off,

which is a potential measure of traders’ demand for liquidity.
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Appendix I: Technical Derivations
Derivation of (3)
Note that we observe only a sample of realizations of (T, J, δ). We know that if δ = 0,

then T = t ≥ tc and if δ = 1, we observe either (T = T1 = t, J = j = 1) or (T = T2 = t,

J = j = 2). Furthermore, the left censoring assumption T1 > t0, T2 > t0 is always maintained

and for notational simplicity, we use Pr (·|t0) and Pr (·|T1 > t0, T2 > t0) interchangeably.

Therefore, assuming that the censoring rule is exogenous, which is the case of limit orders,

the log-likelihood function for a single observation (T, J, δ) takes the form

lnL = (1− δ) lnPr(δ = 0|T > t0) + δ ln Pr (T = t, J = j|δ = 1, T > t0) , (A1)

where

Pr (T = t, J = j|δ = 1, T > t0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pr(T = T1 = t|δ = 1, j = 1, T = T1 > t0)

×Pr(δ = 1, j = 1|T = T1 > t0) if j = 1,

Pr(T = T2 = t|δ = 1, j = 2, T = T2 > t0)

×Pr(δ = 1, j = 2|T = T2 > t0) if j = 2,

(A2)

is the joint probability density for (T, J) conditional on δ = 1. As a result, in order to derive

the likelihood function, we just need to obtain expressions for Pr(δ = 0|T > t0) and each of

the probabilities on the right-hand side of (A2). We derive each of them in turn.

First,

Pr(δ = 0|T > t0) = Pr(T ≥ tc|T > t0)

= Pr(T1 ≥ tc, T2 ≥ tc|T1 > t0, T2 > t0) = S(tc, tc|t0). (A3)

Second,

Pr(T = T1 = t|δ = 1, j = 1, T = T1 > t0) Pr(δ = 1, j = 1|T = T1 > t0)

=
Pr(T = T1 = t|T = T1 > t0)

Pr(δ = 1, j = 1|T = T1 > t0)
Pr(δ = 1, j = 1|T = T1 > t0)

= Pr(T = T1 = t|T = T1 > t0)

= Pr (T2 > t |T1 = t, T = T1 > t0) Pr(T1 = t|T = T1 > t0). (A4)

Therefore, in order to derive Pr(T = T1 = t|δ = 1, j = 1, T = T1 > t0) Pr(δ = 1, j = 1|T =
T1 > t0), we just need to obtain Pr (T2 > t |T1 = t, T = T1 > t0) Pr(T1 = t|T = T1 > t0),
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which can be obtained as follows

Pr (T2 > t |T1 = t, T = T1 > t0) Pr(T1 = t|T = T1 > t0)

= lim
ε→0

Pr (T2 > t | t ≤ T1 ≤ t+ ε, T1 > t0, T2 > t0)

×Pr(T1 = t|T1 > t0, T2 > t0)

= lim
ε→0

Pr (t+ ε > T1 > t, T2 > t|T1 > t0, T2 > t0)

Pr (t+ ε > T1 > t|T1 > t0, T2 > t0)

×Pr(T1 = t|T1 > t0, T2 > t0)

=
lim
ε→0

1
ε
Pr (t+ ε > T1 > t, T2 > t|T1 > t0, T2 > t0)

lim
ε→0

1
ε
Pr (t+ ε > T1 > t|T1 > t0, T2 > t0)

Pr(T1 = t|T1 > t0, T2 > t0)

= −∂S (t1, t2|t0)
∂t1

¯̄̄̄
t1=t2=t

= f (t, 1|t0) , (A5)

that is

Pr(T = T1 = t|δ = 1, j = 1, T = T1 > t0) Pr(δ = 1, j = 1|T = T1 > t0)

= −∂S (t1, t2|t0)
∂t1

¯̄̄̄
t1=t2=t

= f (t, 1|t0) (A6)

and, similarly,

Pr(T = T2 = t|δ = 1, j = 2, T = T2 > t0) Pr(δ = 1, j = 2|T = T2 > t0)

= −∂S (t1, t2|t0)
∂t2

¯̄̄̄
t1=t2=t

= f (t, 2|t0) . (A7)

Therefore, the conditional log-likelihood function for a sample of n observations is

lnLc =
nY
i=1

((1− δi) lnS (tci, tci|t0) + δi ln f (ti, ji|t0)) (A8)

where

S (t1, t2|t0) = Pr (T1 > t1, T2 > t2|T1 > t0, T2 > t0) , (A9)

and

f (t, j|t0) = −
∂S (t1, t2|t0)

∂tj

¯̄̄̄
t1=t2=t

, j = 1, 2. (A10)
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Derivation of (5)

S (t1, t2|t0) = Pr(tc ≥ T1 > t1, tc ≥ T2 > t2|t0)
= Pr (T1 ≤ tc, T2 ≤ tc|t0)− Pr (T1 ≤ t1, T2 ≤ tc|t0)

−F (T1 ≤ tc, T2 ≤ t2|t0) + F (T1 ≤ t1, T2 ≤ t2|t0)
= F (tc, tc|t0)− F (t1, tc|t0)− F (tc, t2|t0) + F (t1, t2|t0) . (A11)

Derivation of (8)
Since T1 and T2 are independent, given that each of these durations exceeds t0, we have

S (t1, t2|t0) = S (t1, t2|T1 > t0, T2 > t0) = S1 (t1|T1 > t0)S2(t2|T2 > t0). On the other hand,

hj (t|t0) = lim
4t→0

P (t ≤ Tj < t+4t |Tj ≥ t, Tj > t0)

4t

= lim
4t→0

P (t ≤ Tj < t+4t|Tj > t0)

4tPr(Tj ≥ t|Tj > t0)

=
fj(t|t0)
Sj(t|t0)

= −∂ lnSj(t|t0)
∂t

(A12)

where j = 1, 2, fj(t|t0) is the marginal density for Tj conditional on Tj > t0 and the last

equality follows from the relationship Sj(t|t0) = 1− Fj(t|t0). Integrating both sides of (25),
we have

Sj(t|t0) = exp
µ
−
Z t

t0

hj (τ |t0) dτ
¶
, j = 1, 2. (A13)

Therefore,

S (t1, t2|t0) = exp
∙
−
µZ t1

t0

h1 (τ |t0) dτ +
Z t2

t0

h2 (τ |t0) dτ
¶¸

. (A14)

Derivation of (17)
Since hj (t|t0,Z; θj), j = 1, 2, are independent conditional on Z = z, then Sj (t|t0,Z; θj),

j = 1, 2, are also independent conditional on Z = z. Therefore, we have

S (t1, t2|t0, z;θ1,θ2) = S1 (t1|t0, z;θ1) · S2 (t2|t0, z;θ2)

= exp

µ
−
Z t1

t0

h1 (τ |t0, z;θ1) dτ
¶
· exp

µ
−
Z t2

t0

h2 (τ |t0, z;θ2) dτ
¶

= exp

∙
−
µZ t1

t0

γ1τ
γ1−1 exp

³
z
0
β1

´
dτ +

Z t2

t0

γ2τ
γ2−1 exp

³
z
0
β2

´
dτ

¶¸
= exp

h
−
³
exp

³
z
0
β1

´
(t
γ1
1 − t

γ1
0 ) + exp

³
z
0
β2

´
(t
γ2
2 − t

γ2
0 )
´i

, (A15)
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where the first equality follows from Sj(t|t0, z) = exp
³
−
R t
t0
hj (τ |t0, z) dτ

´
, j = 1, 2, which

is a result in the derivation of (8).

Derivation of (21)
Since hj (t|Z,V ; θj), j = 1, 2, are independent conditional on Z = z and V = v, then

the functions Sj (t|Z,V ; θj), j = 1, 2, are also independent conditional on Z = z and V = v.

Therefore, we have

S (t1, t2|z, v;θ1,θ2) = S1 (t1|z, v;θ1) · S2 (t2|z, v;θ2)

= exp

µ
−
Z t1

0

h1 (τ |z, v;θ1) dτ
¶
× exp

µ
−
Z t2

0

h2 (τ |z, v;θ2) dτ
¶

= exp

∙
−
µZ t1

0

γ1τ
γ1−1 exp

³
z
0
β1

´
dτ +

Z t2

0

γ2τ
γ2−1 exp

³
z
0
β2

´
dτ

¶
v

¸
= exp

h
−
³
exp

³
z
0
β1

´
t
γ1
1 + exp

³
z
0
β2

´
t
γ2
2

´
v
i
, (A16)

where the first equality follows from Sj(t|z) = exp
³
−
R t
t0
hj (τ |z) dτ

´
, j = 1, 2, which is in

turn a result of the derivation of (8), while the second equality follows from the specification

(19).

Since V is not observable, S (t1, t2|z, v;θ1,θ2) cannot be used for estimation. We have to
integrate v out of the above expression to obtain the joint survival function conditional on

Z = z but unconditional on V . With the assumed gamma density for the random variable

V as (20), we have

S (t1, t2|z;Θ) =
Z ∞
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=
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with parameter vector Θ =
³
τ , α, γ1, γ2, ζ1, ζ2,β

0

1,β
0

2

´0
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Then we can write

S (t1, t2|t0, z;Θ) = S (t1, t2|z;Θ) /S (t0, t0|z;Θ)

=
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(A18)

Note that 1
ηΓ(α)

³
v
η

´α−1
exp

³
−v

η

´
is the gamma density with mean ηα and variance η2α.

Therefore,
R∞
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1
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dv = 1 and, similarly,
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1. As a result, the expression (A18) simplifies as follows

S (t1, t2|t0, z;Θ) =
µ
η

η0

¶α

=
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Appendix II: Construction of Diagnostic Plots

1. Step 1 of the algorithm depends on the functional form of the evaluated model. There-

fore, it will be described separately for each of the three alternative competing risks

model evaluated in this paper.

(a) For the generalized gamma AFT independent competing risks model with the

estimated parameter vector bΘ = (bω1, bω2), where bωj=(bκj, bpj, bβ0

j)
0
characterize the

shape of the generalized gamma distributions and the covariate effects (j = 1, 2),

use the expressions for the risk-specific conditional duration (11) and conditional

survival function (12) to generate a pseudo-random sample
©
(et1i,et2i)ª of risk-

specific durations

etji = µ 1bκjΓ−1(bκj, ujiΓ (bκj))
¶1/bpj

exp(z
0
i
bβj), j = 1, 2, (A20)

where {zi}ni=1 is the sequence of observed covariates, {(u1i, u2i)}
n
i=1 is the sequence

of i.i.d. uniformly distributed pseudo-random vectors, and Γ−1(κ, y) is the inverse

gamma function of y (i.e., the solution a of equation Γ(κ, a) = y).
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(b) For the model of conditionally independent Weibull proportional hazard compet-

ing risks with the estimated parameter vector bΘ = (bθ1, bθ2), where bθj=(bγj, bβ0

j)
0

characterize the shape of the Weibull baseline hazard functions and the covari-

ate effects (j = 1, 2), use the expressions for the risk-specific conditional survival

function (17) to generate a pseudo-random sample
©
(et1i,et2i)ª of risk-specific du-

rations

etji = Ã − ln(uji)
exp(z

0
i
bβj)

!1/bγj
, j = 1, 2, (A21)

where {zi}ni=1 is the sequence of observed covariates, and {(u1i, u2i)}
n
i=1 is the

sequence of i.i.d. uniformly distributed pseudo-random vectors.

(c) For the gamma frailty model of Weibull proportional hazard competing risks with

the estimated parameter vector bΘ = (bα, bγ1, bγ2, bβ0

1,
bβ0

2), first obtain the pseudo-

random simulated values of frailty coefficients {evi}ni=1 by drawing them as i.i.d.

gamma(bα, 1) pseudo-random numbers, then use the expressions for the risk-specific
conditional hazard functions (17) and the simulated frailty coefficients {evi}ni=1 to
generate a pseudo-random sample

©
(et1i,et2i)ª of risk-specific durations

etji = Ã − ln(uji)evi exp(z0ibβj)

!1/bγj
, j = 1, 2, (A22)

where {zi}ni=1 is the sequence of observed covariates, and {(u1i, u2i)}
n
i=1 is the

sequence of i.i.d. uniformly distributed pseudo-random vectors.

2. For each value of index i = 1, . . . , n such that eti ≡ min(et1i,et2i) ≤ t0, discard this value

of eti and return to step 1.
3. Using etji, j = 1, 2, obtained at steps 1 and 2, determine the sample {(eti,eji,eδi, z0i)}ni=1,
where eti = min(et1i,et2i) > t0, eji = argmin

j=1,2

etji, eδi = 0 if eti > tc(zi) and eδi = 1 ifeti ≤ tc(zi), and zi is the observed covariates that pre-determine the right-censoring

duration tc(zi). Generate the auxiliary sequence {si}ni=1 of i.i.d. uniformly distributed
pseudo-random numbers.

4. Construct the ordered sequence
©bπ(i)ªni=1 of the predicted risk-specific incidence rates
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by formula (24) to obtain

bπi =
⎧⎪⎨⎪⎩

Q1(eti|t0; bΘ) if eji = 1 and eδi = 1,
Q2(eti|t0, zi; bΘ) if eji = 2 and eδi = 1,
Qc(t0, zi; bΘ) · si if eδi = 0, (A23)

where the incidence rates Qj(t|t0;Θ) for t > t0 and j = 1, 2 are approximated by

eQj(t|t0; bΘ) = 1

n

nX
k=1

1{etk ≤ t and ejk = j}, (A24)

and the proxy for the right-censoring rate Qc(t0;Θ) can be obtained as

eQc(t0; bΘ) = 1− eQ1(∞|t0; bΘ)− eQ2(∞|t0; bΘ). (A25)
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Tables and Figures

Table 1: Descriptive statistics for the sample

This table presents basic numerical characteristics of the four stocks — American Capital Strategies
Ltd. (ticker: ACAS), Associated BanCorp (ticker: ASBC), Imclone Systems Inc. (ticker: IMCL),
and Career Education Corp (ticker: CECO) — randomly selected for this study, as well as a highly
liquid stock, Intel Corp (ticker: INTC). All medians and averages are reported for the period of
July—December 2005, unless indicated otherwise.

ACAS ASBC IMCL CECO INTC
Average daily # of buy orders 2268 2694 3838 4505 44694
Median buy order size (round lots) 1 1 1 1 3
Average daily # of buy orders executed 208 169 325 406 5547
Average daily # of buy orders cancelled 2061 2525 3512 4100 39146
Average daily # of sell orders 2359 2697 4145 4852 45323
Median sell order size (round lots) 1 1 1 1 3
Average daily # of sell orders executed 236 194 329 420 5715
Average daily # of sell orders cancelled 2123 2506 3816 4432 39518
Average transaction price ($ per share) 37.48 32.02 32.64 36.15 25.41
Median INET transaction size (lots) 1 1 1 1 3
Average daily # of INET transactions 652 363 654 826 11262
Average daily INET trade volume (lots) 685 485 1097 1144 58644
Average NBBO quoted spread ($) 0.022 0.024 0.021 0.021 0.01
Median NBBO depth at bid (lots) 5 4 8 5 260
Median NBBO depth at ask (lots) 4 4 8 4 264
Average monthly realized volatility 8.8% 13.9% 21.2% 21.2% 23.9%
Average weekly realized volatility 13.3% 11.8% 30.9% 32.6% 21.1%
Average daily realized volatility 15.9% 14.4% 44.3% 35.3% 21.3%
Average hourly (10 am—4 pm) volatility 18.9% 16.2% 40.3% 31.2% 22.5%
Price-to-earnings ratio in July, 2005 9.36 12.73 10.25 12.80 16.53
Market capitalization in July, 2005 ($ bn) 4.67 4.15 2.73 2.78 104.71
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Table 2: Descriptive statistics of risk-specific durations and covariates for the ACAS stock

This table provides the descriptive statistics for durations (times-to-termination) and covariates
used in the competing risks analysis based on buy and sell limit orders for the American Capital
Strategies Ltd. (ACAS) stock. The sample includes all INET limit orders submitted between 10
a.m. and 4 p.m. EST in July—December 2005. Limit orders submitted more than $0.25 away from
the bid-ask mid-quote are excluded. Limit orders executed or cancelled within two seconds after
their submission are excluded. The upper triangle of the correlation matrix is for Sell orders, and
the lower triangle is for Buy orders. All variable definitions are in Section III, B. of the text.

Variable Mean St.Dev. Skew Kurt. 1%-tile 50%-tile 99%-tile
Duration 45.57 190.71 40.2 2646 2.08 13.66 425.12
MQLP 3.05 3.09 3.31 18.1 0.5 2.5 19.5
BSID −0.02 0.97 0.03 1.07 −1 0 1

Buy MKD1 6.17 1.05 −1.14 9.39 4.61 6.23 8.57
orders MKD2 5.73 0.96 0.40 2.99 4.22 5.76 8.33

SZSD 5.58 0.87 0.39 4.66 4.11 5.51 7.88
STKV 0.53 0.13 0.12 3.05 0.23 0.53 0.85
TURN 11.48 0.55 0.86 5.24 10.42 11.45 13.07
Duration 44.66 194.25 39.2 2396 2.08 13.64 393.80
MQLP −2.95 3.00 −3.36 18.8 −19 −2 −0.5
BSID 0.08 0.96 −0.16 1.10 −1 1 1

Sell MKD1 6.08 1.15 −1.20 9.66 0 6.22 8.75
orders MKD2 5.80 0.93 0.21 2.76 4.26 5.86 8.20

SZSD 5.54 0.86 0.51 4.39 4.40 5.46 7.82
STKV 0.53 0.13 0.08 3.03 0.23 0.53 0.85
TURN 11.46 0.55 0.84 5.05 10.41 11.43 13.04

Correlation matrix for Buy and Sell orders

Sell orders
MQLP BSID MKD1 MKD2 SZSD STKV TURN

MQLP 0.044 −0.024 0.112 −0.271 −0.062 −0.076
BSID 0.018 −0.043 0.036 −0.043 −0.007 −0.037

Buy MKD1 0.005 0.057 −0.013 0.270 −0.027 −0.017
orders MKD2 −0.094 −0.018 −0.021 −0.003 −0.049 −0.045

SZSD 0.300 0.031 0.230 −0.018 0.017 0.037
STKV 0.058 −0.016 −0.019 −0.041 0.019 0.026
TURN 0.075 −0.034 −0.018 −0.032 0.017 0.027
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Table 3: Competing risks estimates for the generalized gamma accelerated failure time model

This table provides the fully parametric maximum likelihood estimates of the generalized gamma
accelerated failure time (AFT) model with two independent competing risks for American Capital
Strategies Ltd. (ACAS) buy and sell limit orders in July 2005 and December 2005. The estimates
in the upper panel correspond to the execution risk, while those in the lower panel correspond to
the cancellation risk. Parameters κ1, p1 are, respectively, the scale and shape parameters of the
generalized gamma distribution for the duration time to buy (sell) limit order execution; parameters
κ2, p2 are, similarly, the scale and shape parameters of the generalized gamma distribution for the
duration time to buy (sell) limit order cancellation. The reported log-likelihood numbers are the
log-likelihood value per observation.

Buy Orders Sell Orders
July 2005 December 2005 July 2005 December 2005

Parameter Est. t-stat. Est. t-stat. Est. t-stat. Est. t-stat.
MQLP 0.994 39.1 1.071 41.3 −1.141 −48.3 −1.181 −49.1
BSID 0.118 5.51 0.130 6.63 −0.023 −1.27 −0.083 −5.10
MKD1 0.315 18.2 0.283 18.3 0.238 18.6 0.277 23.9
MKD2 −0.214 −10.3 −0.263 −13.6 −0.291 −15.3 −0.322 −19.5
SZSD −0.046 −1.64 −0.032 −1.27 −0.031 −1.31 0.097 4.28
STKV −1.407 −8.74 −0.481 −3.42 −1.005 −7.64 −0.805 −6.79
TURN −0.689 −14.7 −0.658 −14.9 −0.601 −15.6 −0.584 −16.2

Const ×10−2 0.126 21.9 0.121 22.4 0.120 25.2 0.108 23.6
p1 0.187 6.94 0.151 6.89 0.220 9.85 0.160 8.96
κ1 11.252 19.06 15.976 27.8 9.272 21.3 17.482 32.3

MQLP 0.046 16.1 0.038 13.1 0.014 5.27 −0.060 −21.0
BSID 0.018 3.10 0.040 5.41 −0.006 −1.31 −0.011 −1.48
MKD1 0.036 5.81 0.088 12.3 −0.021 −4.55 0.035 5.38
MKD2 0.012 2.13 −0.002 −0.23 0.041 7.90 0.071 9.79
SZSD −0.196 −28.1 −0.190 −22.2 −0.167 −28.8 −0.287 −33.8
STKV −0.263 −5.92 −0.702 −11.9 −0.272 −7.45 −0.586 −10.4
TURN −0.257 −19.5 −0.304 −17.2 −0.147 −14.1 −0.312 −18.6

Const ×10−2 0.058 34.2 0.070 31.56 0.047 34.3 0.074 35.4
p2 −0.962 −39.1 −0.463 −30.5 −1.118 −47.6 −0.453 −30.8
κ2 0.830 15.9 2.618 59.3 0.677 10.7 2.697 64.3
lnL −4.5629 −4.9062 −4.5438 −4.8733
# obs. 42683 35759 56311 40336
# exec. 2924 4124 3946 5836
# canc. 39507 31391 52141 34176

# right-cens. 252 244 224 324
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Table 4: Competing risks estimates for the Weibull proportional hazard model

This table gives the fully parametric maximum likelihood estimates for weibull model with two
independent competing risks for the American Capital Strategies Ltd. (ACAS) buy and sell limit
orders in July 2005 and December 2005. The estimates in the first panel are associated with
execution risk and the estimates in the second panel are associated with cancellation risk. The
Weibull parameter estimates bγ1 and bγ2 are both smaller than unity, which can be interpreted
as an evidence of decreasing baseline hazards for both execution and cancellation risks, after the
effect of observed covariates have been factored out. The reported log-likelihood numbers are the
log-likelihood value per observation.

Buy Orders Sell Orders
July 2005 December 2005 July 2005 December 2005

Parameter Est. t-stat. Est. t-stat. Est. t-stat. Est. t-stat.
MQLP −0.967 −35.5 −0.978 −41.9 1.137 43.0 1.149 44.9
BSID −0.123 −6.03 −0.107 −6.36 0.031 1.64 0.076 4.93
MKD1 −0.221 −14.0 −0.172 −12.5 −0.143 −10.7 −0.169 −14.8
MKD2 0.202 11.0 0.218 13.6 0.266 13.8 0.298 19.1
SZSD 0.026 1.01 0.016 0.76 −0.015 −0.64 −0.127 −6.34
STKV 1.083 7.15 0.301 2.63 0.833 6.61 0.628 5.71
TURN 0.574 13.0 0.541 14.4 0.567 15.1 0.507 15.1

Const ×10−2 −0.104 −19.3 −0.096 −20.9 −0.108 −22.8 −0.090 −20.7
γ1 0.728 48.8 0.662 53.8 0.759 55.8 0.688 61.4

MQLP −0.061 −30.2 −0.029 −14.8 0.034 15.1 0.049 24.9
BSID −0.013 −2.43 −0.019 −3.26 0.002 0.34 −0.003 −0.47
MKD1 −0.024 −4.65 −0.040 −6.99 0.031 7.28 0.001 0.18
MKD2 −0.009 −1.68 0.005 0.73 −0.034 −6.78 −0.055 −9.08
SZSD 0.246 38.0 0.170 24.2 0.187 33.6 0.262 36.7
STKV 0.319 7.97 0.516 11.5 0.299 8.52 0.511 11.6
TURN 0.289 25.3 0.280 20.0 0.145 14.8 0.292 21.6

Const ×10−2 −0.052 −34.9 −0.055 −30.8 −0.035 −27.5 −0.060 −34.5
γ2 0.386 93.1 0.469 103.6 0.388 110.9 0.470 106.0
lnL −4.4616 −4.8366 −4.4572 −4.7992
# obs. 42683 35759 56311 40336
# exec. 2924 4124 3946 5836
# canc. 39507 31391 52141 34176

# right-cens. 252 244 224 324
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Table 5: Competing risks estimates for the Cox proportional hazard model

This table reports the semiparametric maximum likelihood estimates for the Cox proportional
hazard (CPH) model of independent competing risks for the American Capital Strategies Ltd.
(ACAS) buy and sell limit orders in July 2005 and December 2005. The estimates in the first panel
pertain to the hazard rate of execution risk, and the estimates in the second panel pertain to the
hazard rate of cancellation risk.

Buy Orders Sell Orders
July 2005 December 2005 July 2005 December 2005

Parameter Est. t-stat. Est. t-stat. Est. t-stat. Est. t-stat.
MQLP −0.967 −41.3 −0.976 −43.8 1.137 51.7 1.146 50.3
BSID −0.123 −6.38 −0.108 −6.60 0.031 1.83 0.077 5.37
MKD1 −0.221 −18.2 −0.172 −17.2 −0.143 −15.6 −0.170 −21.3
MKD2 0.201 11.3 0.217 13.8 0.267 16.2 0.299 21.0
SZSD 0.031 1.19 0.014 0.70 −0.016 −0.71 −0.130 −6.60
STKV 1.083 7.58 0.303 2.71 0.830 6.98 0.620 6.11
TURN 0.576 13.6 0.541 14.8 0.568 15.9 0.508 16.1

MQLP −0.063 −30.4 −0.029 −14.5 0.036 19.0 0.049 23.7
BSID −0.012 −2.36 −0.019 −3.28 0.001 0.21 −0.003 −0.46
MKD1 −0.026 −4.88 −0.040 −7.29 0.031 7.41 0.001 0.22
MKD2 −0.008 −1.48 0.005 0.74 −0.033 −6.63 −0.054 −9.07
SZSD 0.249 38.8 0.169 24.1 0.188 34.4 0.260 38.5
STKV 0.314 7.98 0.519 12.0 0.301 8.71 0.516 12.2
TURN 0.287 25.2 0.283 20.8 0.144 14.7 0.295 22.4

# obs. 42683 35759 56311 40336
# exec. 2924 4124 3946 5836
# canc. 39507 31391 52141 34176

# right-cens. 252 244 224 324
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Table 6: Competing risks estimates for the Weibull model with gamma frailty

This table reports the parametric maximum likelihood estimates for the Weibull model with two
dependent competing risks for the American Capital Strategies Ltd. (ACAS) buy and sell limit
orders in July 2005 and December 2005. The dependence between competing risks is captured by
the latent variable (frailty), which is assumed to have the gamma distribution with mean α and
variance α. The estimates in the first panel are associated with the execution risk and the estimates
in the second panel are associated with the cancellation risk. The Weibull parameter estimates bγ1
and bγ2 are both larger than unity, which can be interpreted as an evidence of increasing baseline
hazards for both execution and cancellation risks, after conditioning on the values of observed
covariates and the unobserved gamma factor.

Buy Orders Sell Orders
July 2005 December 2005 July 2005 December 2005

Parameter Est. t-stat. Est. t-stat. Est. t-stat. Est. t-stat.
MQLP −1.189 −36.5 −1.163 −42.2 1.296 42.1 1.412 45.0
BSID −0.155 −6.59 −0.168 −8.56 0.048 2.19 0.103 5.73
MKD1 −0.404 −18.2 −0.339 −18.0 −0.261 −13.9 −0.339 −20.4
MKD2 0.235 10.8 0.269 14.5 0.290 12.9 0.332 18.5
SZSD 0.305 10.2 0.128 5.17 0.290 9.87 0.019 0.76
STKV 1.793 10.4 0.997 7.07 1.465 9.07 1.275 9.63
TURN 1.110 21.5 0.828 18.5 0.889 19.2 0.795 19.6

Const ×10−2 −0.189 −30.1 −0.149 −27.0 −0.175 −29.5 −0.145 −27.9
γ1 1.745 47.3 1.374 69.0 2.065 37.2 1.471 77.4

MQLP −0.126 −23.1 −0.073 −18.4 −0.020 −2.09 0.106 28.3
BSID −0.040 −3.42 −0.058 −5.45 0.022 1.87 0.021 2.07
MKD1 −0.100 −7.96 −0.130 −11.4 0.029 2.48 −0.062 −6.21
MKD2 −0.030 −2.62 0.023 2.17 −0.102 −8.24 −0.072 −7.07
SZSD 0.443 31.3 0.266 21.7 0.443 28.0 0.401 32.6
STKV 0.780 8.95 1.078 13.3 0.813 9.28 0.954 12.2
TURN 0.670 27.1 0.500 20.4 0.433 17.4 0.497 21.1

Const ×10−2 −0.123 −40.6 −0.104 −34.1 −0.103 −31.4 −0.109 −37.5
γ2 1.358 44.5 1.138 84.7 1.643 31.4 1.160 92.5

α 0.360 22.1 0.555 32.0 0.256 18.7 0.540 35.3
lnL −5.2407 −5.5767 −5.2322 −5.5319
# obs. 42683 35759 56311 40336
# exec. 2924 4124 3946 5836
# canc. 39507 31391 52141 34176

# right-cens. 252 244 224 324
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Table 7: Summary of covariate effects for alternative stocks and time periods

These tables provide the summary of signs for the estimated covariate coefficients in the Weibull
proportional hazard model with conditionally independent competing risks for each of the six
months in July—December 2005. The top panel of each table gives the signs for the covariate
sensitivities of execution risk, while the bottom panel of each table gives the signs for the covariate
sensitivities of cancellation risk. We assign +(−) sign if the t -statistic of the estimated parameter
is larger than 3.29 (smaller than −3.29), which corresponds to the nominal p-value 0.0005 for the
one-sided t-test of statistical significance. = stands for a t -statistic between −3.29 and 3.29.
Each sign corresponds to one month.

Buy Orders (July—December 2005)
Parameter ACAS ASBC IMCL CECO INTC

070809101112 070809101112 070809101112 070809101112 070809101112

MQLP −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−
BSID −−−−−− −−− = −− − = −−−− −−−−−− −− == − =
MKD1 −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−
MKD2 + +++++ ++++++ + = ++++ ++++++ ++++ = +
SZSD = − ==== === −− = + === −+ +++ == + −−−−− =
STKV ++++++ ++++++ ++++++ ++++++ ++ = + = +
TURN ++++++ ++++++ ++++++ ++++++ ++ = +++

MQLP −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−
BSID == −− == − ===== + = − = ++ ====== = + == + =
MKD1 −−−−−− === − = + + == −+ = +− = − = − = +− = −−
MKD2 = −−−− = === − == −+−−−− +−+ == − −+−+−−
SZSD ++++++ = −−−−− = ++ == + ++++ = + −−−−++
STKV ++++++ ++++++ ++++++ ++++++ ++ = +++
TURN ++++++ ++++++ ++++++ = +++++ ++ = +++

Sell Orders (July—December 2005)
Parameter ACAS ASBC IMCL CECO INTC

070809101112 070809101112 070809101112 070809101112 070809101112

MQLP ++++++ ++++++ ++++++ ++++++ ++++++
BSID = ++ == + ++++++ +++ = ++ ++ = +++ = ++ = + =
MKD1 −−−−−− −−−−−− −−−−−− −−−−−− −−−−−−
MKD2 ++ = +++ ++++++ + = ++++ ++++++ ++++++
SZSD = − = − = − == −− == + ===== ++++ = + −−−−+ =
STKV +++ = ++ ++++++ ++++++ ++++++ ++++++
TURN ++++++ ++++++ ++++++ ++++++ ++ = +++

MQLP ++++++ ++−+++ ++++++ ++++++ ++++++
BSID ====== ====== == ++ = + == −− = − −−−− ==
MKD1 +−− === = + = +++ ++ === + = −+ = −− −+− = − =
MKD2 −−−−−− + = −−−− − == −−− +− = −−− = +− = − =
SZSD ++++++ = −−−−− −+−−++ ++++++ +−− = ++
STKV ++++++ ++++ = + ++++++ ++++++ ++++++
TURN ++++++ ++++++ ++++++ ++++++ ++−+++
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