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Abstract

This paper examines how the estimation results for a standard New Keynesian

model with constant gain least squares learning is sensitive to the stance taken on

agents beliefs at the beginning of the sample. The New Keynesian model is estimated

under rational expectations and under learning with three di�erent frameworks for how

expectations are set at the beginning of the sample. The results show that initial beliefs

can have an impact on the predictions of an estimated model; in fact previous literature

has exposed this sensitivity to explain the changing volatilities of output and in�ation

in the post-war United States. The results indicate statistical evidence for adaptive

learning, however the rational expectations framework performs at least as well as the

learning frameworks, if not better, in in-sample and out-of-sample forecast error cri-

teria. Moreover, learning is not found to better explain time varying macroeconomic

volatility any better than rational expectations. Finally, impulse response functions

from the estimated models show that the dynamics following a structural shock can

depend crucially on how expectations are initialized and what information agents are

assumed to have.
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1 Introduction

Recently there has been a growing amount of literature concerning the e�ects of least squares

learning, a type of adaptive expectations mechanism, on empirical puzzles encountered in

monetary economics. Least squares learning is an expectations framework where agents in a

model do not know the parameters that govern the economy and therefore form expectations

by collecting past data and computing forecasts from least squares estimation results. Or-

phanides and Williams (2005b) show with a simple calibrated model and simulated impulse

response functions that such a learning framework can cause prolonged periods of in�ation,

that would not occur under rational expectations, following an in�ation shock. Learning has

also been suggested to be responsible for the slowdown in macroeconomic volatility since

the middle 1980s, a phenomenon commonly referred to as the Great Moderation. For exam-

ple, Orphanides and Williams (2005a) suggest in another paper that the monetary authority

forms their expectations by learning and was under-estimating the natural rate of unemploy-

ment during the 1970s, causing an incorrect prescription for expansionary monetary policy.

Primiceri (2006) takes this argument further and suggests that over the course of the 1970s

and early 1980s the monetary authority gradually gained precision in their estimates, causing

policy prescription to correctly adjust to stabilize output and in�ation.

Milani (2007) has suggested that learning can better explain persistence in output and

in�ation in the context of a New Keynesian model better than traditional means of modeling

persistence such as habit formation and in�ation indexation. Milani also estimates the size

of the constant learning gain, the parameter responsible for the degree to which expectations

evolve, and �nds that expectations are adaptive over a post-war sample period.

The results in Milani (2007) and Primiceri (2006) depend on calibrated values for expec-

tations at the beginning of the sample. Moreover, the dynamics predicted by learning can be

in�uenced by the assumptions regarding agents information sets. The purpose of this paper

is to examine the role constant gain learning, a speci�c type of least squares learning, has

on the predictions of an estimated standard New Keynesian model. Moreover, this paper

carefully considers di�erent frameworks for how initial expectations are speci�ed and what

information agents are able to collect to form their forecasts. Through examining forecast er-
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rors, rational expectations is shown to explain the data nearly as well, if not better, than the

various learning frameworks. Even so, the estimates for the learning gain indicate statistical

evidence for adaptive expectations. Impulse response functions are examined to determine

the e�ects the various learning frameworks have on the dynamics of the model following a

structural shock. The results indicate that the impulse response functions can vary depend-

ing on the assumptions for agents' information sets and initial expectations. Moreover, the

�ndings indicate that learning can lead to some prolonged e�ects in output and in�ation

following a structural shock.

The results do not con�rm, however, previous literature that suggests learning can explain

periods of excessive volatility in in�ation and output followed by the subsequent decline in

volatility. Evolution of the forecast errors over the sample indicate the rational expectations

model and learning models all make similar errors, and all models make the largest errors

during the 1970s and early 1980s when in�ation and output were especially volatile.

The next section describes the basic setup of the New Keynesian model. Section 3

describes the learning procedure and how learning is incorporated into a standard linear

dynamic stochastic general equilibrium (DGSE) model. Section 4 describes the estimation

procedure and the issues involved in initializing expectations and determining agents' infor-

mation sets. Section 5 presents the results, and Section 6 concludes.

2 Model

Learning is examined within the context of a standard New Keynesian model. The New Key-

nesian model is one of the most commonly used models in monetary economics as it provides

a convenient framework to examine theoretical and empirical issues for monetary policy and

in�ation and output determination. This section describes the set-up and log-linearization

of the rational expectations model and in the next section the rational expectations are

replaced by expectations under learning.1

1This is perhaps the most common way to incorporate learning into dynamic macroeconomic models.
However, as Marcet and Sargent (1989) point out and Preston (2005) further demonstrates, this method is
not consistent with learning in the microfoundations of the model because the least squares expectations
operator does not follow the law of iterated expectations, a property that is assumed when solving for the
log-linear solution.
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The model consists of three sectors that describe consumer behavior, producer behavior

under imperfectly �exible prices, and monetary policy. The �rst sector is an equation or

system of equations that describes optimal consumer behavior. When this sector can be

conveniently written in one equation, this is often called the �IS equation�. The second

sector is a single equation, referred to as the Phillips curve, that describes optimal producer

behavior when �rms are subject to a pricing friction. The �nal sector is the monetary

authority, which is usually assumed to follow a simple nominal interest rate rule. The

sectors jointly determine the dynamics of the output gap (the percentage di�erence between

real GDP and potential GDP), the in�ation rate, and the nominal interest rate.

2.1 Consumers

There are a continuum of consumer types and a continuum of intermediate good producers,

each on the unit interval. Each consumer type has a speci�c type of labor skill that can

only be hired by a corresponding intermediate good �rm. It is assumed that there many

consumers of each type so that no consumer has market power over their wage. Moreover,

it is assumed that there are the same number of consumers in each type, so that the output

levels of intermediate goods do not depend on the distribution of consumer types. Di�erent

intermediate goods �rms may pay di�erent wages, so labor income may be di�erent for

each consumer type. To simplify the model, it is further assumed that there is a perfect

asset market so despite di�erences in labor income, all consumers choose the same level of

consumption.

Each consumer of type i ∈ (0, 1) chooses consumption, ct, labor supply, nt(i), and pur-

chases of real government bonds, bt(i), to maximize lifetime utility,

E0

∞∑
t=0

βt

 1

1− 1
σ

ξt (ct − ηct−1)
1− 1

σ − 1

1 + 1
µ

nt(i)
1+ 1

µ

 , (1)

subject to the budget constraint,

ct + bt(i) =
1 + rt−1

1 + πt
bt−1(i) +

wt(i)

pt
nt(i) + Πt − τt. (2)
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where ξt is an aggregate preference shock, wt(i)/pt is the real wage paid to type i labor; Πt is

the total value of pro�ts consumers earn by owning stock in �rms, and τt is the real value of

lump sum taxes. The preference parameters are the intertemporal elasticity of substitution,

denoted by σ ∈ (0,∞); the elasticity of labor supply, denoted by µ ∈ (0,∞); and the degree

of habit formation, denoted by η ∈ [0, 1).

When the degree of habit formation is greater than zero, consumers' utility from current

consumption depends on their previous level of consumption. Habit formation introduces

persistence in consumption, and therefore output. Signi�cant output persistence is com-

monly found in empirical studies of DSGE models. For example, Smets and Wouters (2005)

�nd point estimates of habit formation close to unity. Furthermore, Fuhrer (2000) �nds

that habit formation leads to �hump-shaped� impulse response functions, a characteristic

commonly supported by U.S. and European data. Milani (2007) �nds a signi�cant degree

of habit formation, but only under rational expectations. When estimating the model with

constant gain learning, he �nds an estimate for the degree of habit formation close to zero.

Log-linearizing consumers' �rst order conditions leads to the following log-linear Euler

equation,

λ̂t = Etλ̂t+1 + r̂t − Etπt+1, (3)

where λ̂t is the percentage deviation from the steady state of the Lagrange multiplier on

the budget constraint, (2), and is therefore interpreted as the marginal utility of real in-

come. A hat indicates the percentage deviation of a variable from its steady state.2 Utility

maximization leads to the following log-linear marginal utility of income,

λ̂t =
1

(1− βη)(1− η)

[
βησEtĉt+1 − σ(1 + βη2)ĉt + σηĉt−1

]
+
(
ξ̂t − βηEtξ̂t+1

)
. (4)

The marginal utility of income, (4), and the Euler equation, (3), make up the IS sector of

the model.

2A hat is omitted from πt because it is necessary to assume the steady state level of in�ation is equal to
zero when deriving the log-linear supply relationship.
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2.2 Producers

There is one �nal good used for consumption which is sold in a perfectly competitive market

and produced with a continuum of intermediate goods according to the production function,

yt =
[∫ 1

0
yt(i)

θ−1
θ di

] θ
θ−1

, (5)

where yt is the output of the �nal good, yt(i) is the output of intermediate good i, and

θ ∈ (1,∞) is the elasticity of substitution in production. Pro�t maximization leads to the

following demand for each intermediate good,

yt(i) =

[
pt(i)

pt

]−θ
yt, (6)

where pt(i) is the price of intermediate good i and pt is the price of the �nal good. Substi-

tuting equation (6) into equation (5) leads to the following expression for the price of the

�nal good in terms of the prices of intermediate goods,

pt =
[∫ 1

0
pt(i)

1−θdi
] 1

1−θ

. (7)

Each intermediate good is sold in a monopolistically competitive market and is produced

according to the production function, yt(i) = ztnt(i), where zt is an aggregate technology

shock. It can be shown that intermediate goods �rms' optimal choices for labor demand and

labor market clearing leads to the following aggregate log-linear marginal cost,

ψ̂t =
1

µ
ŷt − λ̂t −

(
1

µ
+ 1

)
ẑt. (8)

Firm's pricing conditions are subject to the Calvo (1983) pricing friction, where only a

constant fraction of �rms are able to re-optimize their price in a given period. The �rms

that are able to re-optimize their price is randomly determined, completely independently of

�rms' prices or any other characteristics or history. I suppose that �rms who are not able to

re-optimize their price do adjust their price by a fraction, γ ∈ [0, 1), of the previous period's

in�ation rate. A positive degree of price indexation introduces a source of persistence in
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in�ation which is often found to be statistically signi�cant when estimating New Keynesian

models (see for example, Smets and Wouters (2003), (2003), (2007), and Milani (2007)).

Let ω ∈ (0, 1) denote the fraction of �rms that are not able to re-optimize their prices

every period. Since these �rms are randomly determined, ωT is the probability that a �rm

will not be able to re-optimize its price for T consecutive periods. A �rm who is able to

re-optimize chooses its price to maximize the following present discounted utility value of

pro�ts earned while the �rm is unable to re-optimize its price again:

Et
∞∑
T=0

(ωβ)T
λt+T
λt

{(
pt(i)π

∗
t+T

pt+T

)
yt+T (i)−Ψ [yt+T (i)]

}
, (9)

where Ψ [yt+T (i)] is the real total cost function of producing yt+T (i) units, given the optimal

decision for labor, and π∗t+T =
∏T
j=1(1+γπt+j−1) is degree to which the �rm's price is able to

adjust according to in�ation indexation. It can be shown that the �rst order condition for

pt(i) combined with the �nal good price index, equation (7), leads to the log-linear Phillips

equation3,

πt =
1

1 + βγ

[
γπt−1 + βEtπt+1 +

µ(1− ω)(1− ωβ)

ω(µ+ θ)
ψ̂t

]
. (10)

2.3 Fully Flexible Prices

The IS equations and Phillips equations can be re-written in terms of the di�erence from

the outcome under fully �exible prices. This allows the model to be taken to data on the

output gap, the percentage deviation of real GDP from real potential GDP, as measured by

the Congressional Budget o�ce.

Let ỹt = ŷt − ŷft and λ̃t = λ̂t − λ̂ft denote the percentage deviation of output and

marginal utility from their fully �exible price outcomes, where a superscript f denotes the

outcome under fully �exible prices. Under �exible prices the linearized Euler equation, (3),

and marginal utility of income, (4), still hold. Using these conditions and imposing goods

3It is assumed during the log-linearization that there is a steady state level of the price level, which
implicitly assumes the steady state level of in�ation is equal to zero.
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market clearing that consumption is equal to output implies,

λ̃t = Etλ̃t+1 + r̂t − Etπt+1 − rnt , (11)

λ̃t =
1

(1− βη)(1− η)

[
βησEtỹt+1 − σ(1 + βη2)ỹt + σηỹt−1

]
, (12)

where rnt is the percentage deviation of the natural interest rate from its steady state. The

�natural interest rate� is the interest rate that would occur under fully �exible prices. I

suppose that rnt follows the stochastic exogenous process,

rnt = ρnr
n
t−1 + εn,t, (13)

where εn,t is an independently and identically distributed shock.

When prices are fully �exible, it can be shown that intermediate goods �rms will all

choose the same price in a given period, and the marginal cost of production is constant,

and therefore always will be equal to its steady state value. Under fully �exible prices,

equation (8) implies,

ψ̂ft =
1

µ
ŷft − λ̂ft −

(
1

µ
+ 1

)
ẑt = 0.

One can solve this equation for ẑt and substitute it back into the equation for marginal

cost, (8). Plugging this expression for marginal cost into equation (10) yields the following

Phillips curve in terms of the output gap,

πt =
1

1 + βγ

[
γπt−1 + βEtπt+1 +

(1− ω)(1− ωβ)

ω(µ+ θ)
(ỹt − µλ̃t)

]
.

While this expression for the Phillips curve is not subject to a structural shock, when esti-

mating the model by maximum likelihood it is convenient to have a shock here to avoid the

problem of stochastic singularity. The Phillips curve is amended with a �cost-push� shock

so the form that is estimated is given by,

πt =
1

1 + βγ

[
γπt−1 + βEtπt+1 + κ(ỹt − µλ̃t) + ut

]
, (14)
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where κ is the reduced form coe�cient on the marginal cost and ut is an exogenous cost-push

shock that evolves according to,

ut = ρuut−1 + εu,t, (15)

where εu,t is an independently and identically distributed shock.

2.4 Monetary Policy

The nominal interest rate is determined jointly with output and in�ation by monetary policy.

In this paper I assume the monetary authority follows a Taylor (1993) type rule where the

interest rate is set in response to expected output and in�ation, with a preference for interest

rate smoothing, according to,

r̂t = ρrr̂t−1 + (1− ρr) (ψπEtπt+1 + ψyEtỹt+1) + εr,t (16)

where ρr ∈ [0, 1) is the degree of exogenous interest rate persistence, ψπ ∈ (0,∞) is the

degree to which monetary policy responds to expectations of future in�ation above the

steady state level of in�ation, ψy ∈ (0,∞) is the degree to which monetary policy responds

to the expected output gap, and εr,t is an independently and identically distributed exogenous

monetary policy shock with mean zero and variance given by σ2
r .

Alternative policy rules may replace expected in�ation and output with current or lagged

realizations. For example, McCallum (1997) argues that a policy rule that depends on current

realizations of output and in�ation does not accurately depict actual information available

to central banks when monetary policy decisions are made, since it takes about a full quarter

to produce actual data on real GDP and price levels. He argues that the monetary policy

rule should instead be expressed as a function of past data. The Taylor rule in (16) is subject

to this criticism under rational expectations, but it is shown in the next section that when

agents learn, expectations of future variables are completely functions of past data.
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2.5 Complete Model

The complete linear New Keynesian model is represented by �IS relationship�, given in equa-

tions (12) and (11); the Phillips curve in equation (14), and the Taylor rule in equation

(16). These equations determine the dynamics of the output gap (ỹt), the marginal utility

of income gap (λ̃t), the in�ation rate (πt), and the interest rate (rt). The model is subject to

three structural shocks: the natural rate shock, which has an autoregressive evolution given

in equation (13); the cost push shock, whose evolution is given in equation (15), and the

monetary policy shock.

3 Learning

The log-linearized model in the previous section can be expressed in the form,

Ω0xt = Ω1xt−1 + Ω2E
∗
t xt+1 + Ψvt, (17)

vt = Avt−1 + εt (18)

where x′t = [ỹt λ̃t πt r̂t]
′, v′t = [rnt ut εr,t]

′, and E∗
t denotes possibly non-rational expectations.

Under rational expectations, the solution of the model has the form,

xt = Gxt−1 +Hvt, (19)

where the elements of the matricesG andH are a function of the parameters of the model and

may be determined by the method of undetermined coe�cients. Under rational expectations,

agents know the parameters of the model and form the expectation,

Etxt+1 = Gxt +HEtvt+1.

Under learning, agents do not know the parameters of the model that make up the elements

of matrices G and H. Instead, agents form expectations by estimating a linear model and

using this model to make forecasts for xt+1. It is popular to assume that agents know the
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structure of the reduced form in equation (19), then collect data to and estimate G and H by

least squares. This method is employed in this paper, but there are �ve important questions

to consider concerning agents information sets:

1. What are the most recent observations agents have in their datasets?

2. Do agents collect data on structural shocks?

3. If so, what are the most recent observations for structural shocks?

4. Do agents estimate a constant term?

5. Do agents include as explanatory variables those associated with a column of zeros in

G?

I assume agents can only collect data for variables in xt up through the previous period.

This is both a realistic and greatly simplifying assumption. While current information about

interest rates are available in real life, data such as real GDP and price level released by

statistical agencies such as the Bureau of Labor Statistics is typically available only months

after the fact. Assuming agents have only past data greatly simpli�es solving the model

since xt depends on agents' expectations. Under learning, expectations are equal to least

squares forecasts, which is a non-linear function of the data agents use. Assuming xt is not

part of this data avoids the problem of solving a complex, non-linear model.

This paper explores both answers to the second question on whether data on structural

shocks are available to agents. Since such data is not directly observable to an econome-

trician, it is quite realistic to suppose agents cannot observe this data either. When agents

only have data on xt, they form estimates for the coe�cient matrix G and simply ignore the

term with the structural shocks (this is appropriate since the unconditional expectation for

vt is equal to zero).

One of the goals of this paper is to identify the impact of learning on the predictions

of an estimated New Keynesian model. Under rational expectations agents know current

period shocks, so to isolate the e�ects of learning from the e�ects of simply assuming a more

limited information set I also examine the case when agents do have data on the current

period structural shocks. Since structural shocks are exogenous, there are no non-linearity

issues in assuming agents have current period shocks. Moreover, equation (19) shows that
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under rational expectations, assuming that agents can observe current period xt is equivalent

to assuming agents have data up to the previous period for the state vector and data up to

the current period for the structural shocks. Therefore letting agents have access to data

on current period shocks leads to the exact same information set under learning as rational

expectations.

There is no constant term in the general form of the model, given in equation (17), or in

the rational expectations solution of the model, equation (19), since all the variables in the

New Keynesian model are expressed in percentage deviations from either the steady state

or the �exible price outcome. However, when agents learn, they are not endowed with the

values of the parameters that govern the economy, so it is unreasonable to suppose agents

know the steady state of the economy. A constant term is augmented to agents regressions

to capture this lack of knowledge. Agents estimate the system,

xt = g +Gxt−1 +Hvt,

or in the case when structural shocks are not observable,

xt = g +Gxt−1.

Finally, I assume that agents exclude from their datasets the variables in xt that corre-

spond with a column of zeros in the rational expectations solution for G. In terms of the New

Keynesian model, the only variables that agents exclude is the marginal utility of income,

λ̃t. The marginal utility of income does not include any predictive power that the output

gap does not, so agents exclude this from their explanatory variables in their regression.

Agents do still forecast the marginal utility of income in order to make optimal consumption

decisions according to the Euler equation, (11).

Let Φt denote the time t estimate of the all the coe�cients to be estimated in the learning

process. These coe�cients include a vector of constants, the non-zero columns in G, and all

the columns in H in the case where shocks are used as explanatory variables. Let Yt denote

the time t dependent variables used in the learning process. Since time t data is not available

to agents, Yt = xt−1. Let Xt denote the vector of time t explanatory variables. If agents
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include the stochastic shocks in their explanatory variables, X ′
t = [1 x′t−2 v

′
t−1], otherwise

X ′
t = [1 x′t−2]. If agents use OLS they form the estimate,

Φ′
t =

(
1

t− 1

t∑
τ=2

XτX
′
τ

)−1 (
1

t− 1

t∑
τ=2

XτY
′
τ

)
. (20)

The OLS estimate Φt can be rewritten into the convenient recursive form:

Φt = Φt−1 + gt(Yt − Φt−1Xt)X
′
tR

−1
t , (21)

Rt = Rt−1 + gt(XtX
′
t −Rt−1), (22)

where gt = 1/(t − 1) is the learning gain.4 The recursive form demonstrates precisely how

expectations are adaptive. Agents take the previous period's estimates, Φt−1 and Rt−1, and

correct them according to the residual between the previous period's forecast and the new

observation. The amount of the correction depends on the learning gain. The larger is

the learning gain, the more expectations respond to the latest forecast error. With OLS

and in�nite memory, the learning gain approaches zero as time approaches in�nity, so the

e�ect new observations have on updating the beliefs of Φ and R diminish as the number of

observations already in the sample approaches in�nity.

This paper instead examines the e�ects of constant gain learning, where the learning

gain is assumed constant over time so that gt = g. This type of expectations formation

is appealing because unlike OLS, it allows learning to explain macroeconomic dynamics in

the long run. This is a popular framework in the learning literature and is the same type

of learning that Orphanides and Williams (2005b) use to explain in�ation scares, Primiceri

(2006) uses to explain in�ation volatility in the 1970s, and Milani (2007) uses to explain

macroeconomic persistence.

Constant gain learning is equivalent to estimation by weighed least squares, where the

most weight is given to the most recent observation and the weights decline geometrically

with age. This is a convenient framework to examine expectations when agents believe

structural changes are possible. Agents do not have any information as to what types of

4To show this, let Rt = 1
t−1

∑t
τ=2 XτX ′

τ and Φ′ = R−1
t

(
1

t−1

∑t
τ=2 XτY ′

τ

)
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structural changes are possible, or with what probabilities. Rather, they have constant

suspicion that the way the economy operates may have changed, so most recent observations

are given the most weight. It has also been suggested, for example by Evans and Honkapohja

(2001) and Sargent (1999), that the constant gain learning algorithm in equations (21) and

(22) closely resembles expectations when agents use ordinary least squares, but with a rolling

window of data where the sample size is approximately 1/g. The constant gain learning

algorithm is not identical to this scenario since it implies a weighted least squares procedure.

However, the weight an additional observation under the rolling window algorithm is equal

to the inverse of the sample size, which is equal to the constant learning gain.

Let ĝ0,t denote the estimated constant term in Φt, and let Ĝt and Ĥt denote the time t

estimate of G and H, respectively, obtained from Φt, where Ĥt is simply set equal to zero in

the case when structural shocks are not observable. Agents' expectation of xt+1 is given by,

E∗
t xt+1 = ĝ0,t + ĜtE

∗
t xt + ĤEtvt+1 (23)

Note that equation (23) assumes that expectations about future shocks, vt+1, are rational.

This is a common simplifying assumption made in learning models. It is possible to allow

agents to also estimate the coe�cients in the shock process, but the dynamics deriving from

this additional complication are negligible. Since time t observations are not yet available to

agents, agents must also estimate xt by least squares. The time t estimate of xt is given by,

Etx
∗
t = ĝ0,t + Ĝtxt−1 + Ĥvt. (24)

Plugging this into equation (23) yields,

E∗
t xt+1 = (I + Ĝt)ĝ0,t + Ĝ2

txt−1 +
(
ĜtĤt + ĤtA

)
vt. (25)

Plugging the agents' forecast, (25), into the structural form of the model, (17), leads to

the following actual law of motion for xt,

xt = Ω−1
0 Ω2

(
I + Ĝt

)
ĝ0,t + Ω−1

0

(
Ω1 + Ω2Ĝ

2
t

)
xt−1 + Ω−1

0

[
Ψ + Ω2

(
ĜtĤt + ĤtA

)]
vt. (26)
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4 Estimation

4.1 Maximum Likelihood

The model is estimated with quarterly U.S. data from 1960:Q1 through 2007:Q1 on the

output gap, as measured by the congressional budget o�ce, the in�ation rate of the consumer

price index, and the federal funds rate. The model is estimated by maximum likelihood using

the Kalman �lter procedure described by Hamilton (1994) that maps the state equations (26)

and (18) and a system of observation equations to a log-likelihood function. The observation

equations are given by,

GAPt = 100ỹt,

INFt = π∗ + 400πt,

FFt = r∗ + π∗ + 400r̂t,

where GAPt denotes data on the output gap, INFt denotes data on the annualized quar-

terly in�ation rate, and FFt denotes the annualized quarterly federal funds rate. The state

variables are multiplied by 100 to convert the decimals into percentages, and the in�ation

rate and federal funds rate are further multiplied by 4 to convert the quarterly rates to

annualized rates. The New Keynesian model assumes that the steady state in�ation rate is

equal to zero, but since this is not likely the case in the data, the annualized steady state

in�ation rate, given by π∗, is estimated along with the other parameters of the model. The

steady state gross real interest rate is set equal to the inverse of the discount factor; therefore

r∗ = 400(1/β − 1).

The log-likelihood is maximized with respect to the learning gain, g; the New Keynesian

parameters η, σ−1, γ, ρr, ψy, ψπ, ρn, ρu, σn, σu, and σr; and the steady state in�ation rate,

π∗. Instead of estimating the intertemporal elasticity of substitution, preliminary results

indicated very elastic intertemporal substitution e�ects so it is easier to identify the inverse

of this parameter. Three parameters are not estimated. The discount factor, β, is set

equal to 0.9925. This corresponds to a steady state annual real interest rate of 3% which

is close to the average di�erence between the federal funds rate and the in�ation rate over

the sample period. Preliminary results indicated di�culty in identifying the elasticity of

labor supply, µ. The only place this parameter appears in the model is on the Phillips curve



Initial Expectatations in New Keynesian Models with Learning 15

multiplying the marginal utility of income, λ̃t. Equation (12) shows that when carrying out

this multiplication, µ and σ appear multiplicatively, causing weak identi�cation. Therefore,

the elasticity of labor supply is set equal to zero. This implies that there are no changes in

labor supply decisions that e�ect �rms' marginal costs, and therefore there are no changes

in labor supply that arise from �rms altering pricing decisions. Finally, the coe�cient on

the output gap in the Phillips curve, κ, is set equal to 0.1. Preliminary results indicated

estimates of κ in�nitely close to zero with a very high degree of precision, which has the

unrealistic implication that prices are completely �xed for all time. Ireland (2004) reports

the same di�culty and also sets κ = 0.1 prior to estimating the model.

4.2 Initial Conditions

Before estimating the model, it is necessary to specify initial conditions for the learning

process given in equations (21) and (22). Unlike specifying initial conditions for the Kalman

�ltering procedure, the choices for initial learning matrices, Φ0 and R0, can have a dramatic

e�ect on the estimation results. Despite this dependence, there is little general consensus

for how initial expectations should be speci�ed.

Williams (2003) shows that using the rational expectations solution for initial expecta-

tions produces nearly identical dynamics as assuming expectations are rational throughout

the sample. Given the model is E-stable, this result is not too surprising. If the conditions

for E-stability are met, under a decreasing learning gain consistent with OLS, the model will

converge to the rational expectations solution when in the neighborhood of this solution.

Williams shows with simulations that with a constant gain, the dynamics under learning do

not signi�cantly di�er than under rational expectations.

Most initialization methods are therefore based on pre-sample evidence. Slobodyan and

Wouters (2007) estimate the rational expectations version of the model on pre-sample data,

and use the implied expectations as the initial condition for the sample. Milani (2007) sets

initial expectations based on statistical evidence with de-meaned pre-sample data, with a

few exceptions. For example he argues that agents perceived zero persistence in in�ation at

the beginning of the sample, when pre-sample evidence indicated it was low. Moreover, he

assumes agents do observe structural shocks and so sets the initial coe�cients in H equal
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to zero. Primiceri (2006) calibrates initial conditions with the argument that the initial

conditions are close to observed pre-sample evidence, and that the initial conditions describe

well the behavior of the economy in the opening periods of the sample.

In this paper, I examine the following four speci�cations for how agents form expectations,

and how expectations are initialized:

Case 1. Rational expectations.

Case 2. Learning with observable shocks and initial conditions set equal to rational expec-

tations.

Case 3. Learning without observable shocks and initial conditions set equal to rational

expectations.

Case 4. Learning without observable shocks and initial conditions set equal to pre-sample

evidence.

Rational expectations is estimated as a baseline case for which to make comparisons. Case

2 can be viewed as the smallest step away from rational expectations. Agents have the same

information set and expectations at the beginning of the sample. This implies that rational

expectations is actually the special case of this learning framework where the learning gain

is equal to zero. As the learning gain is estimated jointly with the other parameters of the

model, the statistical signi�cance of this parameter from zero can formally reject or fail to

reject the null hypothesis that expectations are rational.

Case 3 makes another incremental step away from rational expectations. Agents again

learn according to constant gain least squares, and their initial conditions for the learning

matrices are equal to the rational expectations values, but agents are not able to collect data

on past shocks in order to use them as explanatory variables. Due to this di�erence, Case 3

does not nest rational expectations.

Case 4 assumes the agents have the same information set as Case 3, but the initial

conditions for the learning process matrices are di�erent from the rational expectations

solution. The initial conditions are set equal to constant gain least squares estimates from

pre-sample data. Equations (21) and (22) describe the least squares learning process with

any given learning gain, gt. When the learning gain is constant, repeated substitution of
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these equations can show that the learning matrices are given by,

Rt =
t−1∑
τ=0

(1− g)tXt−τX
′
t−τ (27)

Φt =

(
t−1∑
τ=0

(1− g)tXt−τX
′
t−τ

)−1 (t−1∑
τ=0

(1− g)tXt−τY
′
t−τ

)
(28)

Pre-sample data on the output gap, in�ation rate, and federal funds rate are collected

for the period 1954:Q3 through 1959:Q4. Pre-sample data on the output gap is divided by

100 to convert it to pre-sample data for ỹt. The steady state levels for the in�ation rate and

nominal interest rate are removed from pre-sample data on the in�ation rate and federal

funds rate and these are divided by 400 to be put in terms of quarterly rates in the model.

The weighted least squares procedure in equations (27) and (28) is run on this pre-sample

data to form matrices for Φ0 and R0 for the beginning sample period 1960:Q1.

5 Results

In this section I present the maximum likelihood estimation results for each of the four

expectations frameworks. To determine the role learning, initial expectations, and agents

information sets have on the estimation results I look at the parameter results for each model

in turn. After understanding di�erences in parameter estimates I compare the relative �t

of the models in terms of in-sample residuals and out-of-sample forecast errors. Finally I

show the roles the structural shocks play on the dynamics of model by examining impulse

response functions and the predicted paths of the structural shocks over the sample period.

5.1 Parameter Estimates

Case 1: Rational Expectations

Table 1 shows the parameter estimates for all four speci�cations. The �rst two columns

are the results for the rational expectations model. The results show habit formation is a very

strong source of output persistence, with η = 0.99. The high estimate for habit formation

is similar to Smets and Wouters (2005) and (2007) estimates from a larger New Keynesian
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estimated by Bayesian methods on U.S. data. This result is also consistent with Milani

(2007) �nding that habit formation is signi�cant when expectations are rational. Despite

the evidence for strong persistence in output, the estimated degree of price indexation is

essentially equal to zero. This is in contrast with Smets and Wouters and Milani who �nd

degrees of price indexation very close to unity. However, estimates for these degrees of

persistence vary substantially across the empirical macroeconomics literature. For example,

Ireland (2004) estimates a similar model by maximum likelihood and �nds small degrees of

persistence in both output and in�ation. Nason and Smith (2005) use method of moments

procedures to identify the Phillips curve and �nd point estimates for indexation close to 0.3.

Cogley and Sbordone (2005) also use method of moments procedures and indexation is equal

to 0.0.

The inverse intertemporal elasticity of substitution is σ−1 = 0.0015 which is very small

compared to much of the macroeconomics literature. This implies that consumption de-

cisions are very sensitive to changes in the expected real interest rate. Milani (2007) for

example �nds an estimate for the inverse elasticity of substitution approximately equal to

0.26 when expectations are rational. Other papers �nd much higher estimates. Giannoni

and Woodford (2003) �nd the inverse elasticity approximately equal to 1.51, and Smets and

Wouters (2005) �nd this parameter approximately equal to 1.62. Some empirical work, such

as Ireland (2004), simply uses a log utility function which implicitly assumes the elasticity is

equal to 1. It will be seen in the cases below that the estimate for this parameter is sensitive

to the expectations framework.

Case 2: Learning with RE Initial Conditions

The next two columns of Table 1 show the parameter estimates under learning, when

agents have the same information set as rational expectations and when initial expectations

are set equal to the rational expectations solution. As mentioned above, rational expecta-

tions is the special case of this model where the constant learning gain is equal to zero. The

estimate for the learning gain is small, g = 0.0119, but is statistically signi�cantly greater

than zero, which implies signi�cant statistical evidence for learning. This learning gain cor-

responds to agents using approximately the last 84 observations to form their expectations,
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or about 21 years of data.

Many parameters estimates are very di�erent than under rational expectations. The

degree of habit formation dropped to about η = 0.65 and the degree of in�ation indexa-

tion increased dramatically from zero to γ = 0.71. This implies when agents learn, past

in�ation is signi�cant in explaining forecasts for future in�ation. The inverse elasticity of

substitution jumped to σ−1 = 0.42, which is closer to other estimates found in the literature.

The lower intertemporal elasticity of substitution implies that consumption decisions are less

responsive to the expected real interest rate. The monetary policy parameters also indicate

that dynamics in the data are less responsive to expectations under learning. The response

of monetary policy to expected output and expected in�ation decreased to ψy = 0.08 and

ψπ = 1.74, respectively.

Case 3: Learning with Unobservable Shocks and RE Initial Conditions

In the next learning case agents do not collect data on structural shocks. Because shocks

cannot directly in�uence expectations, all other things remaining the same, agents' forecasts

should be less volatile. The fourth and �fth columns of results in Table 1 show the parameter

estimates for this framework. The learning gain is approximately, g = 0.0202, which is nearly

twice the size as in Case 2, and given the small standard errors, the estimate is signi�cantly

higher. Since the shocks do not directly in�uence the volatility of expectations, the estimation

results predict volatility in expectations is due to a higher learning gain. This di�erence in

the learning gain may appear small, but when interpreting it from the viewpoint of the

number of past observations agents use helps put it in perspective; in Case 3 agents use

about 50 observations to form their expectations, or just over 12 years of data.

The parameter estimates for inverse intertemporal elasticity of substitution and monetary

policy parameters indicate that expectations play a larger role in in�ation and output deter-

mination when agents do not observe structural shocks. The inverse elasticity of substitution

is σ−1 = 0.03 which is smaller than in Case 2, but not nearly as small as under rational expec-

tations. Monetary policy parameters indicate stronger responses to expectations of in�ation

and the output gap, but still predict responses smaller than rational expectations.

Assuming learning with a limited information set therefore still leads to the conclusion
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that in�ation and output dynamics are less responsive under learning than under rational

expectations. However, the limited information set leads to greater volatility of expectations

and greater sensitivity of consumption choices and monetary policy to expectations than

under learning with a full information set.

Case 4: Learning with Pre-Sample Initial Conditions

The �nal case uses the same limited information set as Case 3, but sets expectations

for the beginning sample period equal to pre-sample weighted least squares results. The

estimate for the learning gain is approximately g = 0.0175 which corresponds to a rolling

window of over 57 observations or just over 14 years of data. Again the learning gain is

statistically signi�cantly greater than zero. This implies that expectations are adaptive over

the sample period.

The estimates for the degrees of persistence are all signi�cantly positive, but are not so

close to unity. Habit formation is η = 0.71 and in�ation indexation is γ = 0.63. This is in

direct contrast to the Milani (2007) �nding that these degrees of persistence are signi�cant

under rational expectations, but learning causes these to fall close to zero. One possible

explanation for the di�erence in these �ndings is the estimation procedure. That paper uses

Bayesian methods, whereas this paper uses maximum likelihood. The initial conditions for

expectations are also somewhat di�erent. Milani calibrates the initial expectations according

to pre-sample estimation results from a �rst order vector autoregression (VAR(1)), but with

some exceptions. In his paper, initial expectations for in�ation persistence are set equal to

zero, output gap persistence is set below pre-sample evidence, and the sensitivity of in�ation

to the output gap is set above pre-sample sample evidence. Moreover, the initial conditions

based on pre-sample evidence for Case 4 of this paper is not set according to pre-sample

VAR(1), but the pre-sample results from the weighted least squares vector autoregression

given in equation (28) that is consistent with constant gain learning, for a given estimate of

the learning gain.

5.2 Model Fit Comparisons

Given the di�erent predictions of the four models, I turn to examine how well each model �ts

the data, and examine whether any of the learning models provides a better �t to the data
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during periods of the sample that is characterized by excess volatility, as it has been proposed

by some authors that learning may help explain run-ups of in�ation and subsequent declines.

The �rst three rows of Table 2 show the root mean squared residuals for each model. The

results indicate a very similar performance of all four models for all three variables. The

best performing model is actually the rational expectations model, but the improvement is

very small.

To determine whether the learning models can explain the time varying volatility in

macroeconomic activity throughout the sample, the bottom three rows of Table 2 report

the autocorrelation of the square of the residuals. If a model is well speci�ed and can ex-

plain changes in volatility in the data, then the volatility of the residuals should be constant

throughout the sample and therefore the autocorrelation should equal zero. The autocor-

relation of the squared residuals are small but do indicate some persistence in volatility of

the residuals. The best performing model under this criteria for the output gap and federal

funds rate is the learning model based on pre-sample initial conditions. The autocorrelation

for the output gap in Case 4 is approximately 0.09, compared to values above 0.13 in the

other frameworks. There is a small improvement in the autocorrelation for the federal funds

rate, but it is still signi�cantly above zero. The best performing model for in�ation using

this criteria is Case 3, learning when agents do not have data on the structural shocks. In

this case the autocorrelation of the residuals is approximately 0.11 compared to values of

about 0.18 and above for the other cases.

To see where the models are making their largest errors, Figure 1 shows the plots of

the forecast errors over the sample period for each of models. The shaded regions indicate

periods of recession as determined by the National Bureau of Economic Research. The

numbers in parentheses for the learning models are the correlation with the evolution of the

forecast errors predicted by the rational expectations model. Looking across the �gure one

can see the forecast errors for all the variables for all the learning frameworks are highly

correlated with the forecast errors under rational expectations. This implies that none of

the learning models can explain any better the changes in macroeconomic volatility than

the rational expectations model. The largest forecast errors for the output gap are made in

the recessions of the 1970s and early 1980s, the period characterized by high in�ation and
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relatively large macroeconomic volatility. The forecast errors for the output gap become

relatively small after 1984 for every model, the period commonly referred to in the empirical

monetary literature as the Great Moderation. The forecast errors for in�ation similarly are

largest in the middle 1970s and the early 1980s, then become relatively smaller.

The models all have similar in-sample performance, but to to determine if learning dy-

namics can better explain data out-of-sample, the models are re-estimated using data from

1960:Q1 through 1989:Q4 and using these sets of parameters, the models are forecast over

1990:Q1 through 2008:Q1 for long horizons. Figure 2 shows the root mean squared error of

the out-of-sample forecast errors for forecast horizons of one quarter through 12 quarters.

The best performing model for the output gap for forecast horizons 1 quarter through 6

quarters is the rational expectations model. However, at longer horizons, the learning model

with expectations based on pre-sample data, is the best performing model. The same is not

true for in�ation and interest rate forecasts. For these variables, Case 4 is by far the worst

performing model over the entire three year forecast horizon. For all three variables rational

expectations and learning under Cases 2 and 4 have very similar out-of-sample performance

over the forecast horizon.

5.3 Structural Shocks

Despite the mixed performance of the four models in in-sample and out-of-sample �t, the

signi�cance of the learning gain combined with the di�erences in the parameter estimates

could lead to di�erent predictions for the relative importance of the structural shocks in

explaining the data. Figure 3 shows the estimated evolutions for the structural shocks,

which are computed using the Kalman smoothing algorithm proposed by de Jong (1989).

Again, periods of recession in the United States are shaded and the correlation of the shocks

in the learning models with the rational expectations model are shown in parentheses. The

correlations indicate there are some similarities in the predictions of the models, but the

correlations are not quite so high as they are for the forecast errors.

The natural rate shock is highly correlated over the four models. The largest volatility

of the natural rate shock is during the 1970s and early 1980s. The natural rate shock also

appears responsible for the recession in 2001. The scale of the natural rate shocks show that
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Case 3 predicts the largest volatility this shock. This is the case when expectations are least

volatile because expectations are initialized the rational expectations solution, and structural

shocks do not directly impact expectations. The cost push shock is somewhat correlated

across the four models. The shock is more persistent under rational expectations, but all

the models predict the largest shocks come during the periods of stag�ation in the middle

1970s and early 1980s. The monetary policy shock shows that all models completely fail to

deliver the change in monetary policy that occurred after Paul Volcker became chairman of

the Federal Reserve. Recall, previous authors such as Primiceri (2006) and Orphanides and

Williams (2005a) have suggested that the change in monetary policy was due to changes

in expectations caused by learning. The results in this paper do not support such a claim.

Instead the models predict very volatile monetary policy shocks start in late 1979 and become

very small after 1984.

Figures 4, 5, and 6 show the predicted impulse response functions that arise from a one

standard deviation shock to each of the structural shocks. Impulse responses for learning

models depend on the values of the learning matrices Φt and Rt at the time of the impulse.

The impulse response functions computed in this paper are for the state of the learning

matrices at the �rst quarter of 2008, the last period of the sample. If the learning matrices

are not equal to the rational expectations solution, then even in the absence of shocks

the state variables evolve as expectations converge to the rational expectations solution.

Therefore, to expose only the impact of the shocks, the plots in Figures 4, 5, and 6 show

the di�erence between the evolution of the variables after the shock and the evolution the

variables would take in the absence of any shocks.

Figure 4 shows the impulse responds functions for the natural rate shock. The results

show that learning can create signi�cant �hump-shaped� impulse responses, especially in

Cases 3 and 4 when agents do not have data on structural shocks. The unit these impulse

response functions are measured in is the percentage deviation of each variable from its

steady state. The results indicate that Cases 3 and 4 create the largest and most prolonged

e�ects following a shock. Because in these cases agents do not have data on structural

shocks, expectations are only in�uenced indirectly through the e�ect the shocks have on the

state variables. As time progresses the realizations of these state variables become data in
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agents regressions, and therefore in�uence expectations for long periods of time. In Case 2,

agents can see the structural shock and they know it is temporary, therefore a shock does

not in�uence expectations over a long horizon.

Figure 5 shows the impulse responses due to a cost push shock. The response to in�ation

is very similar over all three models, with the exception of Case 4 in which in�ation dies

down signi�cantly after about 6 periods, but takes a very long time to completely converge

to the steady state. This �nding is in contrast with Orphanides and Williams (2005b) who

suggest using simulated impulse response functions from a calibrated model that an in�ation

shock can lead to prolonged periods of in�ation. The bottom right graph in Figure 5 shows

that initial expectations can lead to a very di�erent prediction for the impact of the cost-

push shock. Instead of output decreasing due to higher costs, expectations by the end of the

sample are at such a point that the shock causes output to increase for a prolonged period

of time, which leads to a very di�erent path for the interest rate. This would be consistent

if the increase in in�ation caused by the cost push shock is instead interpreted by agents as

an increase in demand.

Finally, Figure 6 shows the impulse responses from a contractionary monetary policy

shock. The shape of the impulse responses in Cases 1 and 2 are very similar. However, the

scale indicates that the negative impact on the output gap is much larger in Case 2 than

under rational expectations. The response to the output gap in Cases 3 and 4 is much longer

lived, and appears to have a oscillatory pattern after many years. Again Case 4 expectations

at the end of the sample are in such a state that leads to a very di�erent response to in�ation.

The contractionary monetary shock causes only a small one period decrease in the in�ation

rate, as the increase in interest rate causes an intertemporal substitution e�ect that decreases

demand. The subsequent positive e�ect on in�ation and continued negative e�ect on output

is consistent with agents perceiving the change in interest rate as a response to a negative

shock to supply.
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6 Conclusion

Constant gain learning is not found to out-perform rational expectations in the context of

an estimated standard Keynesian model. Previous research has suggested that constant

gain learning can explain periods of prolonged in�ation, run-ups of in�ation and volatility

and subsequent decline, and macroeconomic persistence. These claims are tested in the

context of the New Keynesian model, the most popular speci�cation for monetary models

for the use of estimating and examining the impacts of monetary policy on the economy.

To examine the e�ects of learning, initial expectations, and information sets, the rational

expectations model is estimated along with three speci�cations for learning that di�er on

the assumed expectations at the beginning of the sample and whether agents can observe

structural shocks.

Estimation results show that the learning gain is statistically signi�cant in every case,

indicating statistical evidence that expectations are not rational and are indeed adaptive.

Moreover, the di�erent models deliver very di�erent parameter estimates that are responsible

for the impact expectations have on consumption behavior and monetary policy. However,

when comparing the models on criteria for in-sample and out-of-sample forecast errors, the

rational expectations model delivered nearly as good as performance of the learning models,

and compared to a learning model with initial expectations set to pre-sample evidence, the

rational expectations model greatly out-perform the learning model in out-of-sample �t.

Analysis of impulse response functions showed despite the weak evidence for di�erences

in �t, learning can have very di�erent predictions for the e�ects structural shocks have on

the dynamics of the model. When agents are assumed to not be able to collect data on

structural shocks, the shocks produce prolonged impulse responses. Moreover, even the

directions of some of the impulse response functions were shown to be quite sensitive to

initial expectations.
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Table 2: Model Fit Comparisons

Root Mean Squared Error
Case 1 Case 2 Case 3 Case 4

Output Gap 0.7554 0.7885 0.7793 0.7903
In�ation 2.3967 2.5560 2.4324 2.4373
Federal Funds Rate 1.2497 1.2557 1.2294 1.2744

Autocorrelation Squared Error
Case 1 Case 2 Case 3 Case 4

Output Gap 0.1379 0.1771 0.1345 0.0867
In�ation 0.2098 0.1792 0.1145 0.2454
Federal Funds Rate 0.3225 0.4033 0.3386 0.2602
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Figure 1: Forecast Errors

Case 1: Rational Expectations
Output Gap In�ation Fed Funds

Case 2: Learing with RE Initial Conditions
Output Gap (0.9777) In�ation (0.9271) Fed Funds (0.9486)

Case 3: Learing with RE Initial Conditions, Shocks Unobservable
Output Gap (0.9687) In�ation (0.9027) Fed Funds (0.9521)

Case 4: Learning with Unobservable Shocks and Pre-Sample Initial Conditions
Output Gap (0.9237) In�ation (0.8876) Fed Funds (0.9084)



Initial Expectatations in New Keynesian Models with Learning 31

Figure 2: Out of Sample Multiperiod Forecast Errors

Output Gap

In�ation

Federal Funds Rate



Initial Expectatations in New Keynesian Models with Learning 32

Figure 3: Smoothed Estimates of Structural Shocks

Case 1: Rational Expectations
Natural Rate Cost-Push Monetary Policy

Case 2: Learning with RE Initial Conditions
Natural Rate (0.8334) Cost-Push (0.7733) Monetary Policy (0.9590)

Case 3: Learning with Unobservable Shocks and RE Initial Conditions
Natural Rate (0.8754) Cost-Push (0.6215) Monetary Policy (0.8371)

Case 4: Learning with Unobservable Shocks and Pre-Sample Initial Conditions
Natural Rate (0.8444) Cost-Push (0.4461) Monetary Policy (0.8271)
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Figure 4: Natural Rate Shock Impulse Responses

Case 1: Rational Expectations
Output Gap In�ation Interest Rate

Case 2: Learning with RE Initial Conditions
Output Gap In�ation Interest Rate

Case 3: Learning with Unobservable Shocks and RE Initial Conditions
Output Gap In�ation Interest Rate

Case 4: Learning with Unobservable Shocks and Pre-Sample Initial Conditions
Output Gap In�ation Interest Rate
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Figure 5: Cost-Push Shock Impulse Responses

Case 1: Rational Expectations
Output Gap In�ation Interest Rate

Case 2: Learning with RE Initial Conditions
Output Gap In�ation Interest Rate

Case 3: Learning with Unobservable Shocks and RE Initial Conditions
Output Gap In�ation Interest Rate

Case 4: Learning with Unobservable Shocks and Pre-Sample Initial Conditions
Output Gap In�ation Interest Rate



Initial Expectatations in New Keynesian Models with Learning 35

Figure 6: Monetary Policy Shock Impulse Responses

Case 1: Rational Expectations
Output Gap In�ation Interest Rate

Case 2: Learning with RE Initial Conditions
Output Gap In�ation Interest Rate

Case 3: Learning with Unobservable Shocks and RE Initial Conditions
Output Gap In�ation Interest Rate

Case 4: Learning with Unobservable Shocks and Pre-Sample Initial Conditions
Output Gap In�ation Interest Rate


