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Abstract

Modeling club structures as bipartite directed networks, we formulate the
problem of club formation as a noncooperative game of network formation and
identify conditions on network formation rules and players’ network payoffs suf-
ficient to guarantee that the game has a potential function. Our sufficient con-
ditions on network formation rules require that each player be choose freely and
unilaterally those clubs he joins and also his activities within these clubs (subject
to his set of feasible actions). We refer to our conditions on rules as noncooper-
ative free mobility. We also require that players’ payoffs be additively separable
in player-specific payoffs and externalities (additive separability) and that payoff
externalities — a function of club membership, club activities, and crowding —
be identical across players (externality homogeneity). We then show that under
these conditions, the noncooperative game of club network formation is a po-
tential game over directed club networks and we discuss the implications of this
result.
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1 Introduction

Club theory and the theory of local public good provision has a long history in eco-
nomics, dating back to seminal papers of Charles Tiebout (1956) and James Buchanan
(1965). Three types of approaches have been applied: price taking equilibrium the-
ory; cooperative game theory, and; non-cooperative models of club/jurisdiction for-
mation. There has been very little study, however, of club models where players can
belong to multiple clubs. Also, even in situations allowing multiple memberships in
clubs, no account is taken of the fact that individuals may be connected in different
ways to the same club and have different connections with different clubs. Networks
appear to provide a promising approach to modeling strategic club formation where
players can have multiple club memberships with different connections within clubs
and across clubs.

Modeling club structures as bipartite directed networks, we formulate the prob-
lem of club formation as a noncooperative game of network formation and identify
conditions on network formation rules and players’ network payoffs sufficient to guar-
antee that the game has a potential function. Our sufficient conditions on network
formation rules require that each player be choose freely and unilaterally those clubs
he joins and also his activities within these clubs (subject to his set of feasible ac-
tions). We refer to our conditions on rules as noncooperative free mobility. We also
require that players’ payoffs be additively separable in player-specific payoffs and ex-
ternalities (additive separability) and that payoff externalities — a function of club
membership, club activities, and crowding — be identical across players (externality
homogeneity). We then show that under these conditions, the noncooperative game
of club network formation is a potential game over directed club networks and we
discuss the implications of this result.

The feature of free and unilateral choice of club membership in our model also
appears in other non-cooperative models of club/jurisdiction formation; see, for ex-
ample, Demange (1994, 2004) and Konishi, Le Breton and Weber (1997, 1998). The
models and results of these papers have inspired our work. In particular, Konishi, Le
Breton and Weber (1998) show that their game has a potential function, Our model
differs most substantially in two important respects: players may engage in activities
within multiple clubs and engage in different activities in different clubs1 and; there
may be externalities between clubs — the activities of one player in a club may affect
the payoffs to players in another club. Nevertheless, we are able to demonstrate that
network formation games satisfying our conditions are potential games.

Our research is also related to that of Kalai and Schmeidler (1977) who introduce
the concept of the “admissible set”.2 To define their admissible set, take as given a
set of feasible alternatives, denoted by S, a dominance relation M and the transitive
closure of M , denoted by fM . The admissible set is the set A(S,M) = {x ∈ S :

y ∈ S and yfMx imply xfMy}. The admissible set describes those outcomes that
1Allouch and Wooders (2007) present a discussion of this branch of the literature, primarily

concerned with nonemptiness of cores, existence of equilibrium, and core-equilibrium equivalence.
2See also Kalai, Pazner and Schmeidler (1976).
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are likely to be reached by any dynamic process that respects preferences. The
admissible set concept can be applied to a host of game-theoretic situations, ranging
from non-cooperative games, where a coalition consists of an individual player, to
fully cooperative games, where any coalition can be allowed to form. As shown by
Kalai and Schmeidler through a series of examples, the relationship of the admissible
set to the set of Nash equilibrium depends on the definition of the dominance relation
and, in some situations, the set of Nash equilibrium and the admissible set coincide.
It is interesting to note that if the dominance relation is defined based on a notion
of “possible replies”, which can be thought of as “improving replies” (rather than
best replies in the usual sense), then the admissible set is equivalent to the set of
Nash equilibrium. The admissible set is related to “basins of attraction” for network
formation games (Page and Wooders 2005, 2008). In the framework of the current
paper, in part because of the finiteness of the strategy sets, each Nash equilibrium
strategy profile is a basin of attraction and the union of all basins of attraction
coincides with (the network rendition of) the admissible set. Our current paper
demonstrates a class of situations where there exists singleton basins of attraction,
what appears to be an important property.

2 Club Networks with Multiple Memberships

We begin by introducing the notion of a club network where players can have multiple
club memberships. Using bipartite networks we are able to represent any such club
structure in a compact and precise way.

Let D be a finite set of players consisting of two or more players with typical
element denoted by d and let C be a finite set of club types (or alternatively, a set
of club labels or club locations) with typical element denoted by c. Finally, let A be
a finite set of arcs (or actions) potentially available to all players. For each player d
and club c, denote by A(d, c) the feasible set of actions that can be taken by player
d in club c.

Definitions 1 (Club Networks with Multiple Memberships)

(a) A club network G is a nonempty subset of A × (D × C) such that (i) for all
players d ∈ D, the section of G at d given by

G(d) := {(a, c) ∈ A× C : (a, (d, c)) ∈ G} (1)

is nonempty; and (ii) for all (a, (d, c)) ∈ G, a ∈ A(d, c). Let K denote the collection
of all such club networks.

(b) A player d club network Gd is a nonempty subset of A × ({d} × C) such that
for all (a, (d, c)) ∈ Gd, a ∈ A(d, c). Let Kd denote the collection of all player d
club networks.
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Given club network G ∈ K, (a, (d, c)) ∈ G means that player d is a member of
club c and takes action a ∈ A(d, c) in club c. The section of G at d is the set of
action-club pairs listing the clubs to which player d belongs and the action taken by
player d in each of those clubs. The set

G(a, c) := {d ∈ D : (a, (d, c)) ∈ G } (2)

(i.e., the section of G at (a, c)) is the set of all players who, in club network G ∈ K,
are members of club c and take action a in club c. Thus, the cardinality of the set
G(a, c), denoted by |G(a, c)|, is the total number of players who are members in club
c and take action a in club c, and the sum

S
a∈A |G(a, c)| is the total number of

players active in club c.3

Note that the set of club networks is given by the union of all player networks
over all players. In particular, K = ∪d∈DKd. Also note that given any club network
G ∈ K,

G = ∪d�∈DGd�
where

Gd� = {(a, (d, c)) ∈ G : d = d�}.
In particular, any club network G is given by the union ∪d�∈DGd� of a collection of
player club networks (Gd�)d� , with one player club network for each player.

Example 1 (Marketing Networks as Club Networks with Multiple Memberships)
Suppose there are five firms D = {d1, d2, d3, d4, d5}, two markets C = {c1, c2}, where
c1 = New York and c2 = Paris, and three possible product lines A = {a1, a2, a3}.
Each firms feasible product lines appear in the list below:

A(d1, c) = {a1, a3} for all c ∈ C,

A(d2, c) = {a1, a2} for all c ∈ C,

A(d3, c) = {a2, a3} for all c ∈ C,

A(d4, c) = {a2, a3} for all c ∈ C,

A(d5, c) = {a1, a3} for all c ∈ C.

Marketing network G0 depicted in Figure 1 represents one possible product line-

3 If G(a, c) = ∅, then |G(a, c)| = 0.
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market profile for firms D.

d1

d2

d3

d4

d5

c1

c2

a2

a1

a3

a1

a1

G0

a3

a3

a1

a3

a1

a3

a1

a2

a3

Figure 1: Marketing Network G0

Observe, for example, that in marketing network G0 both firms d1 and d5 offer
product line a1 in the Paris market (i.e., in the c2 market). While all three product
lines are offered in the New York market, only two product lines, a1 and a3, are offered
in the Paris market, and only firm d4 offers product line a3 in the Paris market. Also
note that all product line offerings are feasible (see the list above). Finally, note that
four firms are active in the New York market; that is

G0(c1) := ∪a∈AG0(a, c1) = {d1, d2, d3, d4} ,
while only three firms are active in the Paris market, that is,

G0(c2) := ∪a∈AG0(a, c2) = {d1, d4, d5} .
We shall maintain the following assumption throughout:

(A-1) (noncooperative free mobility) Each player can move freely and unilaterally
from one club to another and each player can choose freely and unilaterally his
feasible activity within the club.

Thus any player can drop his membership and activity in any given club and join
any other club and take any other feasible action without bargaining with or seeking
the permission of any player or group of players. In this sense, our model of club
formation is noncooperative. The assumption of noncooperative free mobility is quite
common in other models of noncooperative network formation (see, for example, Bala
and Goyal 2000).

Example 2 Figure 2 depicts the marketing network which results when firm d1
noncooperatively changes its product line-market profile from

G0(d1) = {(a3, c1), (a1, c2)} to G1(d1) = {(a3, c1), (a1, c2), (a3, c1)} .
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Figure 2: Marketing Network G1

By thinking of marketing network G0 as the 5-tuple of player networks,

(G0d1 , G
0
d2 , . . . , G

0
d5),

such that G0 = ∪diG0di , we can represent the noncooperative move by firm 1 in the
usual way as

(G0d1 ,G
0
d2 , . . . , G

0
d5) = (G

0
d1 , G

0
−d1)→ (G1d1 ,G

0
−d1) = (G

1
d1 , G

0
d2 , . . . ,G

0
d5),

where

G0d1 = {(a1, (d1, c2)), (a3, (d1, c1))} ∈ Kd1
and

G1d1 = {(a1, (d1, c2)), (a3, (d1, c1)), (a3, (d1, c2))} ∈ Kd1 ,
and where

G1 = G1d1 ∪
�∪di �=d1G0di � .

Thus, we can think of the move from G0 to G1 as being brought about by firm d�1s
noncooperatively changing its strategy from G0d1 in strategy set Kd1 to G

1
d1
in strategy

set Kd1 .

3 Noncooperative Club Network Formation Games

We will assume that (i) each players payoffs are additively separable in player specific
payoffs, internal effects, and external effects; and (ii) that internal effects and external
effects are homogenous across players. In particular, we will maintain the following
assumption throughout:
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(A-2) (additive separability and externality homogeneity) Each player’s real-valued
payoff function vd(·) defined on the set club networks K is given by

vd(G) =
[

(a,c)∈G(d)
rd(a, c) +

[
(a,c)∈G(d)

I(a,c)(|G(a, c)|) +
[

(a,c)∈G(d)c
E(a,c)(|G(a, c)|),

(3)

where,

G(d)c is the complement of the set G(d) in A× C,
rd(a, c) is the player-specific payoff generated by the action-club pair, (a, c) ∈ G(d),

chosen by player d in network G,

I(a,c)(|G(a, c)|) is the payoff externality generated by the number of players who
choose the action-club pair, (a, c), chosen by player d in network G,

E(a,c)(|G(a, c))|) is the payoff externality generated by the number of players who
choose an action-club pair (a, c) in network G not contained in the set of action-
club pairs G(d) chosen by player d in network G.

Note that for each action-club pair (a, c), the functions I(a,c)(·) and E(a,c)(·) are
the same for all players. The internal effect I(a,c)(|G(a, c)|) accrues to a player d if and
only if (a, c) is contained in the set of action-club pairs chosen by player d in network
G; that is, if and only if (a, c) ∈ G(d), whereas the external effect E(a,c)(|G(a, c)|)
accrues to a player d if and only if (a, c) is not contained in the set of action-club
pairs chosen by player d in network G; that is, if and only if (a, c) /∈ G(d). Our
specification of player payoffs given in (3) is a network rendition of a specification
introduced in Hollard (2000).

Definitions 2 (Club Network Formation Games and Nash Equilibrium)

(a) A noncooperative club network formation game is specified by a D-tuple of pairs

(Kd, ud(·))d∈D
where

(i) Kd is player d’s strategy set (see Definition 1 (b)), and

(ii) ud(·) is player d’s real-valued payoff function defined on
T
dKd and specified as

follows: for all (Gd,G−d) ∈
T
dKd,

ud(Gd, G−d) := vd(G)

where G = ∪dGd and vd(G) is given by expression (3).
(b) A club network G∗ = ∪dG∗d is a Nash club network if for all players d ∈ D

ud(G
∗
d, G

∗
−d) ≥ ud(Gd, G∗−d) for all Gd ∈ Kd.
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4 Potentials and Nash Club Networks

Our objective in this section is to show that under the assumptions of noncooperative
free mobility (A-1) and additive separability and externality homogeneity (A-2), the
club network formation game, (Kd, ud(·))d∈D, with multiple club memberships is a
finite potential game. This will allow us to conclude, in a manner similar to Monderer
and Shapley (1996), that under assumptions (A-1) and (A-2) all noncooperative club
network formation games with multiple memberships possess Nash club equilibria.

We begin by defining the notion of a potential game over club networks.

Definition 3 (Potential Games and Noncooperative Club Network Formation)

The noncooperative club network formation game (Kd, ud(·))d∈D is an exact poten-
tial game if there exists a real-valued function P (·) defined on the set of club
networks K such that for all noncooperative changes

(G0d, G
0
−d)→ (G1d, G

0
−d)

brought about by any player d ∈ D
ud(G

1
d, G

0
−d)− ud(G0d, G0−d) = P (G1)− P (G0). (4)

where

G0 = ∪dG0dand G1 = G1d ∪
�∪d� �=dG0d� �

and
ud(G

1
d,G

0
−d)− ud(G0d,G0−d) := vd(G1)− vd(G0).

We shall refer to any function satisfying equation (4) for all noncooperative changes
as an exact potential function or as a potential.

It is easy to see that if (Kd, ud(·))d∈D is an exact potential game with potential
P (·), then any club network contained in argmaxG∈K P (G) is a Nash club network
for (Kd, ud(·))d∈D. Moreover, since K is finite, argmaxG∈K P (G) is nonempty. Thus,
one way to resolve the Nash problem for club network formation games is to show
that these games possess potential functions. Our next objective, therefore, is to
show that for club network formation games satisfying noncooperative free mobility
(A-1) and additive separability and externality homogeneity (A-2) an exact potential
function can be constructed.

Following Hollard (2000), let

Φ(a,c)(k) = I(a,c)(k)−E(a,c)(k − 1), k = 0, 1, . . . , |D| .
In club network G ∈ K, if player d chooses action-club pairs G(d) and (a, c) ∈ G(d),
then

Φ(a,c)(|G(a, c)|) = I(a,c)(|G(a, c)|)−E(a,c)(|G(a, c)|− 1)
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is the difference between the internal effect derived by player d in network G from
being in the group G(a, c) taking action a in club c and the external effect player d
would derive from group G(a, c) if player d were to leave that group.

Our main result is the following:

Theorem (Club network formation games are potential games).

Let (Kd, ud(·))d∈D be a club network formation game satisfying noncooperative free
mobility (A-1), payoff separability, and externality homogeneity (A-2). Then
the function P (·) : K→ R given by

P (G) =
[

(a,c)∈A×C

⎡⎣ [
d∈G(a,c)

rd(a, c) +

|G(a,c)|[
k=0

Φ(a,c)(k)

⎤⎦ , (5)

is an exact potential function for this game.

Since the proof consists primarily of long and tedious elementary algebra it is
relegated to the appendix.

The following result is an immediate corollary of Theorem 1 above and Corollary
2.2 in Monderer and Shapley (1996).

Corollary (Club network formation games possess Nash club networks).

Let (Kd, ud(·))d∈D be a club network formation game satisfying noncooperative free
mobility (A-1), payoff separability, and externality homogeneity (A-2). Then
the set of Nash club networks NCN is nonempty and for any potential, and in
particular, for the potential given in expression (5),

argmax
G∈K

P (G) ⊆ NCN. (6)

In fact the argmax set corresponding to any weighted or any ordinal potential
is also contained in the set of Nash club networks (see for example Monderer and
Shapley (1996) for definitions and results).

Note that if we replace the set of clubs C with the set of players D in the club
network formation above, then under assumptions (A-1) and (A-2) the resulting
network formation game is still a potential game. In such a game, the typical network
G is a nonempty subset of the Cartesian product A× (D ×D) with typical element
(a, (d, d�), where (a, (d, d�)) ∈ G means that player d initiates a feasible (or socially
acceptable) action a ∈ A(d, d�) towards player d�. As in the case of club networks,
these networks - which we might call social interaction networks - can be represented
as the union of player networks Gd ⊂ A × ({d} × D), where each player network
Gd represents a player’s social interaction strategy, and in particular, represents the
actions a player directs toward the other players in network G = ∪dGd.
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5 Consequences and Conclusions

5.1 The Kalai-Schmeidler Admissible Set, Basins of Attraction, and
The Noncooperative Path Dominance Core

Because all club network formation games satisfying noncooperative free mobility
(A-1) and additive separability and externality homogeneity (A-2) are potential
games, much more can be said about stability with respect to noncooperative net-
work changes. In particular, we can conclude that no noncooperative improvement
path forms a circuit and that each club network in K is either a Nash club network
or is a network on a finite, noncooperative improvement path leading to a Nash club
network (e.g., see section 3.3.3 and Theorem 1 in Page and Wooders, 2008). Thus,
all club network formation games satisfying (A-1) and (A-2) have singleton basins of
attraction (i.e., basins containing only one network), and thus all such games have
unique, nonempty noncooperative path dominance cores (see Page and Wooders,
2008, Theorem 4). Moreover, in all club network formation games satisfying (A-1)
and (A-2), the path dominance core is equal to the Kalai-Schmeidler admissible set
(Kalai and Schmeidler, 1977) which is in turn equal to the set of Nash club networks.

5.2 The Ui Shapley Value Representation

Having done the tedious work of showing that club network formation games satis-
fying noncooperative free mobility (A-1) and having Hollard-type player payoff func-
tions (A-2) are potential games, we can then use a remarkable Theorem due to Ui
(2000) to conclude that, in fact, player payoff functions can be restated in terms of
network-dependent Shapley values. In particular, by Theorem 2 in Ui (2000), for club
network formation game (Kd, ud(·))d∈D satisfying (A-1) and (A-2) there exists a col-
lection of network-dependent TU games {υG(·)}G∈K such that for all club networks
G ∈ K

ud(G) = φd(υG(·)) :=
[

S∈N , d∈S

(|S|− 1)!(|D|− |S|)!
|D|! (υG(S)− υG(S\{d}))

where ud(·) is player d’s payoff function given in expression (3), N is the collection of
all subsets of player setD, and υG(·) : N → R with υG(∅) = 0 is a network-dependent
TU game in characteristic function form.

5.3 Other Relationships to the Literature

Relative to the applications of the admissible set concept in Kalai and Schmeidler
(1977), our model is restrictive in that both the number of arcs and nodes are finite.
Much of the depth and beauty in the Kalai-Schmeidler results is in their treatment
of situations with continuous strategy spaces and payoff sets. Fortunately, the Kalai-
Schmeidler methods can all be applied to infinite networks, as we demonstrate in
research in progress.

The literature on economies with local public goods or clubs most closely related
to the current paper is the line of literature including, for example, Demange (1994,

10



2005) and Konishi, Le Breton and Weber (1997, 1998), who study economies with a
fixed number of jurisdictions and free mobility of agents between jurisdictions.

In the literature on potential games, as we have already noted our results are re-
lated to those of Hollard (2000). Other important references in this literature include
Rosenthal (1973), Myerson (1977), Hart and Mas-Colell (1989), Slade (1994), Mon-
derer and Shapley (1996), Facchini, van Megen, Borm, and Tijs (1997), Ui (2000),
Slikker, Dutta, van den Nouweland, and Tijs (2000), Voorneveld (2000), Slikker and
van den Nouweland (2002), and Dubey, Haimanko, and Zapechelnyuk (2006).

6 Appendix

PROOF of the Theorem: Let (G0d1 , G
0
−d1) →d1 (G

1
d1
,G0−d1) be a noncooperative

network change brought about by player d1 ∈ D. We have
ud1(G

1
d1
, G0−d1)− ud1(G0d1 ,G0−d1)

=
�S

(a,c)∈G1(d1) rd1(a, c)−
S
(a,c)∈G0(d1) rd1(a, c)

�
+
�S

(a,c)∈G1(d1) I(a,c)(
��G1(a, c)��)−S(a,c)∈G0(d1) I(a,c)(

��G0(a, c)��)�
+
�S

(a,c)∈G1(d1)c E(a,c)(
��G1(a, c)��)−S(a,c)∈G0(d1)c E(a,c)(

��G0(a, c)��)� .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7)

First, observe that,S
(a,c)∈G1(d1) rd1(a, c)−

S
(a,c)∈G0(d1) rd1(a, c)

=
S
(a,c)∈G1(d1)\G0(d1) rd1(a, c)−

S
(a,c)∈G0(d1)\G1(d1) rd1(a, c).

⎫⎬⎭ (8)

Second, observe that

for all (a, c) ∈ �G1(d1) ∩G0(d1)� ∪ �A× C\(G1(d1) ∪G0(d1)� ,��G1(a, c)�� = ��G0(a, c)�� .
⎫⎬⎭ (9)

Thus, S
(a,c)∈G1(d1) I(a,c)(

��G1(a, c)��)−S(a,c)∈G0(d1) I(a,c)(
��G0(a, c)��)

=
S
(a,c)∈G1(d1)\G0(d1) I(a,c)(

��G1(a, c)��)
−S(a,c)∈G0(d1)\G1(d1) I(a,c)(

��G0(a, c)��),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10)
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and S
(a,c)∈G1(d1)c E(a,c)(

��G1(a, c)��)−S(a,c)∈G0(d1)c E(a,c)(
��G0(a, c)��)

=
S
(a,c)∈G0(d1)\G1(d1)E(a,c)(

��G1(a, c)��)
−S(a,c)∈G1(d1)\G0(d1)E(a,c)(

��G0(a, c)��)
=
S
(a,c)∈G0(d1)\G1(d1)E(a,c)(

��G0(a, c)��− 1)
−S(a,c)∈G1(d1)\G0(d1)E(a,c)(

��G1(a, c)��− 1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(11)

From (8)-(11) we conclude therefore that

ud1(G
1
d1
,G0−d1)− ud1(G0d1 , G0−d1)

=
S
(a,c)∈G1(d1)\G0(d1) rd1(a, c)

+
kS

(a,c)∈G1(d1)\G0(d1)
�
I(a,c)(

��G1(a, c)��)−E(a,c)(��G1(a, c)��− 1)�l
−S(a,c)∈G0(d1)\G1(d1) rd1(a, c)

−
kS

(a,c)∈G0(d1)\G1(d1)
�
I(a,c)(

��G0(a, c)��)−E(a,c)(��G0(a, c)��− 1)�l
=
S
(a,c)∈G1(d1)\G0(d1)

�
rd1(a, c) +Φ(a,c)(

��G1(a, c)��)�
−
�S

(a,c)∈G0(d1)\G1(d1)
�
rd1(a, c) + Φ(a,c)(

��G0(a, c)��)�� .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

Next consider P (G1)− P (G0). We have,

P (G1)− P (G0)

=
S
(a,c)

�S
d∈G1(a,c) rd(a, c) +

S|G1(a,c)|
k=0 Φ(a,c)(k)

�

−S(a,c)

�S
d∈G0(a,c) rd(a, c) +

S|G0(a,c)|
k=0 Φ(a,c)(k)

�
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(13)

For G ∈ K let

H(G) := {(a, c) ∈ A× C : (a, (d, c)) ∈ G for some d ∈ D} ,

and note that

H(G1)\ �G1(d1) ∪G0(d1)� = H(G0)\ �G1(d1) ∪G0(d1)� .
Letting

S :=
�
H(G1)\G1(d1)

� ∪G0(d1) = �H(G0)\G1(d1)� ∪G0(d1),
12



now observe thatS
(a,c)

S
d∈G1(a,c) rd(a, c)−

S
(a,c)

S
d∈G0(a,c) rd(a, c)

=
S
(a,c)∈S∪(G1(d1)∩G0(d1))

�S
d∈G1(a,c) rd(a, c)−

S
d∈G0(a,c) rd(a, c)

�
+
S
(a,c)∈G1(d1)\G0(d1)

�S
d∈G1(a,c) rd(a, c)−

S
d∈G0(a,c) rd(a, c)

�
+
S
(a,c)∈G0(d1)\G1(d1)

�S
d∈G1(a,c) rd(a, c)−

S
d∈G0(a,c) rd(a, c)

�
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(14)

Moreover, note thatS
(a,c)∈S∪(G1(d1)∩G0(d1))

�S
d∈G1(a,c) rd(a, c)−

S
d∈G0(a,c) rd(a, c)

�
= 0

S
(a,c)∈G1(d1)\G0(d1)

�S
d∈G1(a,c) rd(a, c)−

S
d∈G0(a,c) rd(a, c)

�
=
S
(a,c)∈G1(d1)\G0(d1) rd1(a, c)

andS
(a,c)∈G0(d1)\G1(d1)

�S
d∈G1(a,c) rd(a, c)−

S
d∈G0(a,c) rd(a, c)

�
= −S(a,c)∈G0(d1)\G1(d1) rd1(a, c).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15)

Therefore, S
(a,c)

S
d∈G1(a,c) rd(a, c)−

S
(a,c)

S
d∈G0(a,c) rd(a, c)

=
S
(a,c)∈G1(d1)\G0(d1) rd1(a, c)−

S
(a,c)∈G0(d1)\G1(d1) rd1(a, c).

⎫⎬⎭ (16)

Next, observe that

S
(a,c)

S|G1(a,c)|
k=0 Φ(a,c)(k)−

S
(a,c)

S|G0(a,c)|
k=0 Φ(a,c)(k)

=
S
(a,c)∈S∪(G1(d1)∩G0(d1))

�S|G1(a,c)|
k=0 Φ(a,c)(k)−

S|G0(a,c)|
k=0 Φ(a,c)(k)

�
+
S
(a,c)∈G1(d1)\G0(d1)Φ(a,c)(

��G1(a, c)��)
−S(a,c)∈G0(d1)\G1(d1)Φ(a,c)(

��G0(a, c)��).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(17)

Moreover, given the definition of the set S,

[
(a,c)∈S∪(G1(d1)∩G0(d1))

⎛⎜⎝|G1(a,c)|[
k=0

Φ(a,c)(k)−
|G0(a,c)|[
k=0

Φ(a,c)(k)

⎞⎟⎠ = 0. (18)

13



From (14)-(18) we conclude that

P (G1)− P (G0)

=
S
(a,c)∈G1(d1)\G0(d1) rd1(a, c) +

S
(a,c)∈G1(d1)\G0(d1)Φ(a,c)(

��G1(a, c)��)
−S(a,c)∈G0(d1)\G1(d1) rd1(a, c)−

S
(a,c)∈G0(d1)\G1(d1)Φ(a,c)(

��G0(a, c)��)
=
S
(a,c)∈G1(d1)\G0(d1)

�
rd1(a, c) +Φ(a,c)(

��G1(a, c)��)�
−
�S

(a,c)∈G0(d1)\G1(d1)
�
rd1(a, c) + Φ(a,c)(

��G0(a, c)��)�� .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(19)

Thus, we conclude that for all noncooperative changes, (G0d, G
0
−d) → (G1d, G

0
−d),

brought about by any player d ∈ D,

ud(G
1
d,G

0
−d)− ud(G0d,G0−d) = P (G1)− P (G0),

where

ud1(G
1
d, G

0
−d)− ud(G0d, G0−d) := vd(G1)− vd(G0),

and
G0 = ∪d�∈DG0d� and G1 = G1d ∪

�∪d� �=dG0d�� .
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