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Abstract

Given the preferences of players and the rules governing network formation,
what networks are likely to emerge and persist? And how do individuals and
coalitions evaluate possible consequences of their actions in forming networks?
To address these questions we introduce a model of network formation whose
primitives consist of a feasible set of networks, player preferences, the rules of
network formation, and a dominance relation on feasible networks. The rules of
network formation may range from noncooperative, where players may only act
unilaterally, to cooperative, where coalitions of players may act in concert. The
dominance relation over feasible networks incorporates not only player prefer-
ences and the rules of network formation but also assumptions concerning the
degree of farsightedness of players. A specification of the primitives induces an
abstract game consisting of (i) a feasible set of networks, and (ii) a path domi-
nance relation defined on the feasible set of networks. Using this induced game
we characterize sets of network outcomes that are likely to emerge and persist.
Finally, we apply our approach and results to characterize the equilibrium of well
known models and their rules of network formation, such as those of Jackson and
Wolinsky (1996) and Jackson and van den Nouweland (2005).
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1 Introduction

1.1 Overview of the questions, the model and the main results

In many economic and social situations the totality of interactions between individ-
uals and coalitions can be modeled as a network. We address the following question:
given preferences of individuals and rules governing network formation, what net-
works are likely to emerge and persist? To address this question we introduce a
model of network formation whose primitives consist of a feasible set of networks,
player preferences, the rules of network formation, and a dominance relation. The
rules of network formation may range from noncooperative, where players may only
act unilaterally, to fully cooperative, where coalitions consisting of multiple players
may act in concert. The dominance relation may be either direct or indirect. Under
direct dominance players are concerned with immediate consequences of their net-
work formation strategies whereas under indirect dominance players are farsighted
and consider the eventual consequences of their strategies. As we will discuss, our
framework can accommodate a wide variety of social and economic situations.

A specification of the primitives induces an abstract game consisting of (i) a
feasible set of networks and (ii) a path dominance relation defined on the feasible
set of networks. Under the path dominance relation, a network G path dominates
another networkG if there is a finite sequence of networks, beginning with G and
ending with G where each network along the sequence dominates its predecessor.1

Using this induced abstract game as our basic analytic tool we demonstrate that for
any set of primitives the following results hold:

1. The feasible set of networks contains a unique, finite, disjoint collection of
nonempty subsets each constituting a strategic basin of attraction. Given pref-
erences and the rules of governing network formation, these basins of attraction
are the absorbing sets of the process of network formation modeled via the
game.

2. A stable set (in the sense of von Neumann Morgenstern) with respect to path
dominance consists of one network from each basin of attraction.

3. The path dominance core, defined as a set of networks having the property that
no network in the set is path dominated by any other feasible network, consists
of one network from each basin of attraction containing a single network. Note
that the path dominance core is contained in each stable set and is nonempty

1Stated formally, given feasible set of networks G and dominance relation >, network G ∈ G
(weakly) path dominates network G ∈ G, written G ≥p G, if G = G or if there exists a finite
sequence of networks {Gk}nk=0 in G with G = G0 and G = Gn such that for k = 1, 2, . . . , n

Gk > Gk−1.

The path dominance relation ≥p induced by the dominance relation > is sometimes referred to as
the transitive closure of >.
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if and only if there is a basin of attraction containing a single network.2 As a
corollary, we conclude that any network contained in the path dominance core
is constrained Pareto efficient. Thus, by considering the network formation
game with respect to path dominance — and thus by considering the long run -
we identify networks that, given the rules of network formation, are both stable
and Pareto-efficient with respect to the original dominance relation.

4. From the results above it follows that if the dominance relation is transitive
and irreflexive, then the path dominance core is nonempty.

We also demonstrate specializations of our model to treat network formation games
over linking networks as well as hedonic games and we discuss how our results apply
to these examples.

There are interesting connections between our notions of stability (basins of at-
traction, path dominance stable sets, and path dominance core) and some of the
basic notions of stability and equilibrium found in the existing literature - such as,
strong stability (Jackson and van den Nouweland 2005), pairwise stability (Jackson
and Wolinsky 1996), consistency (Chwe 1994), and Nash equilibrium. We show that
in general (for all primitives) the path dominance core is contained in the set of
strongly stable networks. We conclude from our general results therefore that, for all
primitives, the existence of at least one basin of attraction containing a single network
is sufficient for the existence of a strongly stable network. We also demonstrate that,
depending on how we specialize the primitives of the model, the path dominance core
is equal to the set of strongly stable networks, the set of pairwise stable networks, or
the set of Nash networks.

Of particular interest are the connections between the rules of network formation,
the dominance relation inducing path dominance, and stability.3 We provide a unified
and systematic analysis of these connections. For example, we show that:

(a) If path dominance is induced by a direct dominance relation (as opposed to
an indirect dominance relation as in Chwe 1994, for example), then the path
dominance core is equal to the set of strongly stable networks.

(b) If, in addition, the rules of network formation are the Jackson-Wolinsky rules,
then the path dominance core is equal to the set of pairwise stable networks.4

(c) If path dominance is induced by a direct dominance relation and if the rules of
network formation only allow network changes brought about by individuals,
then the path dominance core is equal to the set of Nash networks.

2Put differently, the path dominance core is empty if and only if all basins of attraction contain
multiple networks.

3Although she treats a more specialized model, the questions addressed in Demange (2004) are
related.

4Under the Jackson-Wolinsky rules arc addition is bilateral (i.e., the two players that would be
involved in the arc must agree to adding the arc), arc subtraction is unilateral (i.e., at least one
player involved in the arc must agree to subtract or delete the arc), and network changes take place
one arc at a time (i.e., in any one play of the game, only one arc can be added or subtracted). See
section 3.2.1 for a formal definition.
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We then conclude from (3) above, the existence of at least one basin of attraction
containing a single network is, depending on how we specialize primitives, both nec-
essary and sufficient for either (i) the existence of a strongly stable network, or (ii) a
pairwise stable network, or (iii) a Nash network.5

For path dominance induced by an indirect dominance relation as in Chwe (1994),
we show that for all primitives - and in particular for all rules of network formation
- each strategic basin of attraction has a nonempty intersection with the largest
consistent set of networks (i.e., the Chwe set of networks, see Chwe 1994).6 This
fact, together with (2) above, implies that there always exists a path dominance
stable set contained in the largest consistent set. Thus, the path dominance core is
contained in the largest consistent set. In light of our results on the path dominance
core and stability (both strong and pairwise), we conclude that if path dominance is
induced by an indirect dominance relation, then any network contained in the path
dominance core is not only consistent but also strongly stable, as well as pairwise
stable.7

We remark that solution concepts defined using dominance relations have a dis-
tinguished history in the literature of game theory. First, consider the von-Neuman-
Morgenstern stable set. The vN-M stable set is defined with respect to a dominance
relation on a set of outcomes and consists of those outcomes that are externally and
internally stable with respect to the given dominance relation.8 Similarly, Gilles
(1959) defines the core based on a given dominance relation. These solution con-
cepts, with a few exceptions, have typically been applied to models of economies
or cooperative games where the notion of dominance is based on what a coalition
can achieve using only the resources owned by its members (cf., Aumann 1964) or a
given set of utility vectors for each possible coalition (cf., Scarf 1967). Particularly
notable exceptions are Schwartz (1974), Panzer, Kalai and Schmeidler (1976), Kalai
and Schmeidler (1977) and Shenoy (1980). Their motivations are in part similar to
ours in that they take as given a set of possible choices of a society and a dominance
relation and, based on these, describe a set of possible or likely social outcomes called,
by Kalai and Schmeidler, the admissible set. While their examples treat direct domi-
nance, their general results have wider applications. We return to a discussion of the
admissible set in our concluding section.

5For Jackson-Wolinsky linking networks, Calvo-Armengol and Ilkilic (2004) provide necessary
and sufficient conditions on the network link marginal payoffs such that the set of pairwise stable,
pairwise Nash, and proper equilibrium networks coincide.

6Consistency with respect to indirect dominance and the notion of a largest consistent set were
introduced by Chwe (1994) in an abstract game setting. We provide a detailed discussion of Chwe’s
notion in Section 5.3.

7Other papers on indirect dominance and consistency in games include Xue (1998), Diamantoudi
and Xue (2003), and Mauleon and Vannetelbosch (2003).

8Richardson (1953) gives properties an irreflexive dominance relation must satisfy relative to a
given set of outcomes in order to guarantee the existence of a vN-M stable set.
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1.2 A further discussion of the model

In addition to introducing abstract games of network formation, our modeling ap-
proach contributes to the literature by extending the class of primitives used in the
analysis of network formation in three respects. These extensions, listed below, sig-
nificantly broaden the set of potential applications.
1. Directed Networks with Heterogenous Arcs and Multiple Uses of Arcs of the Same
Type: First, we focus on directed networks rather than on linking networks9 and
distinguish between nodes and decision making players (i.e., the set of players and
the set of nodes are not necessarily the same). Connections are represented by arcs
and each arc possesses an orientation or direction: arc a connecting nodes i and
i must either go from node i to node i or must go from node i to node i.10 For
example, an individual may have links on his web page to the web pages of all Nobel
Laureates in economics but it may be that no Nobel Laureate has a link to that
individual’s web page. Connections between nodes (i.e., arcs), besides having an
orientation, are allowed to be heterogeneous. To illustrate, if the nodes in a given
network represent players, an arc a going from player i to player i might represent
a particular type and intensity of interaction (identified by the arc label a) initiated
by player i towards player i . Player i might direct great affection toward player i as
represented by arc type a, but player i may direct only lukewarm affection toward
player i as represented by arc type a .

Under our extended definition nodes are allowed to be connected by multiple, dis-
tinct arcs. Thus, we allow nodes to interact in multiple, distinct ways. For example,
nodes i and i might be connected by arcs a and a , with arc a running from node i
to i and arc a running in the opposite direction (i.e., from node i to node i).11 If
node i represents a seller and node i a buyer, then arc a might represent a contract
offer by the seller to the buyer, while arc a might represent a counter offer or the
acceptance or rejection of the contract offer. Finally, loops are allowed and arcs are
allowed to be used multiple times in a given network.12 For example, arc a might be
used to connect nodes i and i as well as nodes i and i . Thus, under our definition
nodes i and i as well as nodes i and i are allowed to engage in the same type of
interaction as represented by arc type a.

Allowing each type of arc to be used multiple times makes it possible to distinguish
coalitions by the type of interaction taking place between coalition members and to
give a network representation of such coalitions. For example, if the nodes in a given
network represent players, an ‘a-coalition’ could consist of all players i having an
a-connection with at least one other player i . Such an a-coalition would then have a
network representation as the directed subnetwork consisting of pairs of nodes, i and

9In particular, we focus on the notion of directed networks introduced in Page, Wooders, and
Kamat (2005).
10We denote arc a going from node i to node i via the ordered pair (a, (i, i )), where (i, i ) is also

an ordered pair. Alternatively, if arc a goes from node i to node i, we write (a, (i , i)).
11Under our extended definition, arc a might also run in the same direction as arc a. However,

our definition does not allow arc a to go from node i to node i multiple times.
12A loop is an arc going from a given node to that same node. For example, given arc a and node

i, the ordered pair (a, (i, i)) is a loop.

5



i , connected by arc type a.
Until now, most of the economic literature on networks has focused on linking

networks (see Jackson 2005 for an excellent survey). In an undirected (or linking)
network, an arc (or link) is identified with a nonempty subset of nodes consisting
of exactly two distinct nodes, for example, {i, i }, i = i . Thus, in an undirected
network, a link has no orientation and simply indicates a connection between two
players. Moreover, links are typically not distinguished by type (or by label) — that
is, links are homogeneous. By allowing arcs to possess direction and the same type
of arc to be used multiple times and by allowing loops and nodes to be connected
by multiple arcs, our definition makes possible the application of networks to a rich
set of economic environments. For example, a job opportunity market model may
embody the features introduced above; individuals may have different relationships
with their superiors in an organization and other individuals both within and outside
of the organization. This may well affect social interactions and job opportunities.

2. The Rules of Network Formation: We explicitly model the rules of network forma-
tion and thus provide a systematic treatment of the relationship between rules and
stability. The rules of network formation specify which players must be involved in
adding, subtracting, or replacing an arc as well as how many and what types of arcs
can be added, subtracted, or replaced in any one play of the game.

In much of the literature, it is assumed (sometimes implicitly) that network for-
mation is governed by the Jackson-Wolinsky rules.13 Other rules are possible. For
example, the addition of an arc might require that a simple majority of the players
agree to the addition while the deletion of an arc might require that a two-thirds ma-
jority agree to the deletion. Under our approach, such rules are allowed. We achieve
this flexibility by representing the rules of network formation via a collection of coali-
tional effectiveness relations, {→S}S , defined on the feasible set of networks. Given
feasible networks G and G , if the relation G→S G holds, the players in coalition S
can change network G to network G . In constructing our abstract game of network
formation, we will equip the feasible set of networks with a dominance relation which
incorporates - or represents - both the preferences of individuals and coalitions and
the rules of network formation as represented via the coalitional effectiveness relations
{→S}S . Thus, the stability results we obtain using the path dominance relation will
reflect both preferences and rules.

3. The Dominance Relation Defined on Feasible Networks: While all of our main
results (Section 4) hold for path dominance induced by any binary relation, we will
focus primarily on path dominance induced by either direct dominance or indirect
dominance (Sections 3.3.1 and 3.3.2).

13Jackson-van den Nouweland (2005) focus on linking networks and assume that link addition is
bilateral while link subtraction is unilateral. But in their model, network changes are not required to
take place one link at a time - multiple link changes can take place in any one play of the game. We
shall refer to these rules as the Jackson-van den Nouweland rules. Calvo-Armengol and Ilkilic (2004)
also consider linking networks under bilateral-unilateral rules and allow multiple link changes.
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1.3 Examples

To demonstrate the flexibility of our approach and the wide applicability of our re-
sults, we consider three examples. Our first example treats noncooperative network
formation games and shows that any such network formation game possessing a po-
tential function has basins of attraction each consisting of a single network - and
thus shows that any noncooperative network formation game possessing a potential
function has a nonempty path dominance core. Our second example demonstrates
how our approach can be applied to Jackson-Wolinsky linking networks and provides
necessary and sufficient conditions for nonemptiness of the set of pairwise stable link-
ing networks. Finally, our third example, proposed to us by Salvador Barbera and
Michael Maschler in private correspondence, shows how our framework also encom-
passes hedonic games — games where players’ preferences are defined over the set
of coalitions in which they may be members. The example illustrates how, through
indirect dominance, outcomes in a game might move from one hedonic core point
to another. From our prior results, this demonstrates that, even though the hedonic
core, that is the core with respect to direct dominance, is nonempty, the hedonic
farsighted core, that is the core with respect to indirect dominance, is empty. (In
related work Diamantoudi and Xue 2003 also investigate hedonic games with indirect
dominance, but with a different set of effectiveness relations than we consider here).

2 Directed Networks

2.1 The Definition

Let N be a finite set of nodes, with typical element denoted by i, and let A be a finite
set of arcs types (or simply arcs), with typical element denoted by a. Arcs represent
potential types of connections between nodes, and depending on the application,
nodes can represent economic players or economic objects such as markets or firms.
The following definition is from Page, Wooders, and Kamat (2001).

Definition 1 (Directed Networks)
Given node set N and arc set A, a directed network, G, is a nonempty subset of
A× (N ×N). The collection of all directed networks is denoted by P (A× (N ×N)).

A directed networkG ∈ P (A×(N×N)) specifies how the nodes inN are connected
via the arcs in A. Note that in a directed network order matters. In particular, if
(a, (i, i )) ∈ G, this means that arc a goes from node i to node i . Also, note that
loops are allowed - that is, we allow an arc to go from a given node back to that given
node. For example, in a network model of journal citations loops could represent self-
cites.14 Finally, an arc can be used multiple times in a given network and multiple
arcs can go from one node to another. However, under our definition an arc a is not
allowed to go from a node i to a node i multiple times.

14Other examples could be developed. For example, in a network model of information sharing,
the fact that each player knows his own information would be represented by a loop.
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The following notation is useful in describing changes in networks and the prop-
erties of networks. Given directed network G ∈ P (A × (N ×N)), let G ∪ (a, (i, i ))
denote the network obtained by adding arc a from node i to node i to network G,
and let G\(a, (i, i )) denote the network obtained by subtracting (or deleting) arc a
from node i to node i from network G. Also, let

G(a) := (i, i ) ∈ N ×N : (a, (i, i )) ∈ G ,

and

G(i) := a ∈ A : for some i ∈ N either (a, (i, i )) ∈ G or (a, (i , i)) ∈ G .

 (1)

Thus, G(a) is the set of node pairs connected by arc a in network G, and G(i) is the
set of arcs going from node i or coming to node i in network G.

Note that if for some arc a ∈ A, G(a) is empty, then arc a is not used in network
G.Moreover, if for some node i ∈ N , G(i) is empty then node i is not used in network
G, and node i is said to be isolated relative to network G.

Suppose that the node set N is given by N = {i1, i2, . . . , i5} , while the arc set A
is given by A = {a1, a2, . . . , a5, a6, a7} . Consider network G in Figure 1.

i 1

i 2

i3

i4 i5

a1

a1

a2
a3

a1

a6

a5

a4

Figure 1: Network G

Note that in network G nodes i1 and i2 are connected by two a1 arcs running in oppo-
site directions and that nodes i1 and i3 are connected by two arcs, a1 and a3, running
in the same directions from node i3 to node i1. Thus, G(a1) = {(i1, i2), (i2, i1), (i3, i1)}
and G(a3) = {(i3, i1)}. Observe that (a6, (i4, i4)) ∈ G is a loop. Thus, G(a6) =
{(i4, i4)}. Also, observe that arc a7 is not used in network G. Thus, G(a7) = ∅.15
15The fact that arc a7 is not used in network G can also be denoted by writing

a7 /∈ projAG,
where projAG denotes the projection onto A of the subset

G ⊆ A× (N ×N)
representing the network.
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Finally, observe that G(i4) = {a4, a5, a6}, while G(i5) = ∅. Thus, node i5 is isolated
relative to G.16

2.2 Linking Networks, Directed Graphs, and Directed Networks

As before, let N denote a finite set of nodes. A linking network, say g, consists
of a finite collection of subsets of the form {i, i }, i = i . Thus, {i, i } ∈ g means
that nodes i and i are linked in network g. For example, g might be given by g =
{{i, i },{i , i }} for i, i , and i in N . Note that all connections or links are the
same (i.e., connection types are homogeneous), direction does not matter, and loops
are ruled out. Letting gN denote the collection of all subsets of N of size 2, the
collection of all linking networks given N is given by P (gN ) where P (gN) denotes
the collection of all nonempty subsets of gN (e.g., see the definition in Jackson and
Wolinsky 1996).17

A directed graph, say E, consists of a finite collection of ordered pairs (i, i ) ∈
N × N . For example, E might be given by E = {(i, i ), (i , i )} for (i, i ) and (i , i )
in N ×N . Stated more compactly, a directed graph E is simply a subset of N ×N .
Thus, in any directed graph connection types are again homogeneous but direction
does matter and loops are allowed.

Under our definition, a directed network G is a subset of A× (N ×N), where as
before A is a finite set of arcs. Thus, in a directed network, say G ∈ P (A × (N ×
N)), connection types are allowed to be heterogeneous (distinguished by arc labels),
direction matters, and loops are allowed.

Formally, linking networks are not a special cases of directed networks. However,
any linking network can be given an alternative representation as a directed network.
To see this, consider linking network g ∈ P (gN ) and suppose nodes i and i are linked
in network g (i.e., {i, i } ∈ g). Next consider a directed network G ∈ P (A× (N ×N))
where the set of arc types A contains one arc, A = {1}, and say that nodes i and i
are directly linked in G if and only if there is an arc from i to i and another arc from
i to i.18 We say that directed network G is an alternative representation of linking
network g provided

{i, i } ∈ g if and only if i and i are directly linked in G.
With multiple arc types, directed networks allow us to differentiate links by types
or intensity levels, and thus allow us to consider a richer collection of links between
nodes. For example, suppose that A contains multiple arc types each specifying a
type of connection or an intensity level of a connection. We say that i and i are
a-linked in network G ∈ P (A× (N ×N)) provided both (a, (i, i )) and (a, (i , i)) are
in G. Thus, various sorts of links between players can be modelled and analyzed.
16 If the loop (a7, (i5, i5)) were part of network G in Figure 1, then node i5 would no longer be

considered isolated under our definition. Moreover, we would have G(i5) = {a7}.
17 In section 6.3, we show how our approach to network formation games, as well as some of our

main results, can be applied to linking networks.
18Thus, nodes i and i are directly linked in G if and only if (1, (i, i )) and (1, (i , i)) are in G.

Whereas, nodes i and i are connected if and only if (1, (i, i )) or (1, (i , i)) is in G (i.e., mutual arcs
raise a connection to the level of a link).
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As we shall show in Section 6.2, in addition to the fact that linking networks can be
given alternative representations as directed networks, the game theoretic approach to
network formation we shall develop here can be applied directly to linking networks.

3 Preferences, Rules, and Dominance Relations

3.1 Preferences

Let D denote the set of players (or economic decision making units) with typical
element denoted by d, and let P (D) denote the collection of all coalitions (i.e., non-
empty subsets of D) with typical element denoted by S. Note that, the set of players
D and the set of nodes N are not necessarily the same set.

Given a feasible set of directed networks G ⊆ P (A× (N ×N)), we shall assume
that each player’s preferences over networks in G are specified via an irreflexive
binary relation d. Thus, player d ∈ D prefers network G ∈ G to network G ∈ G
if G d G and for all networks G ∈ G, G d G (irreflexivity). Coalition S ∈ P (D)
prefers network G to network G, written G S G, if G d G for all players d ∈ S .

In many applications, a player’s preferences are specified via a real-valued network
payoff function, vd(·). For each player d ∈ D and each directed network G ∈ G, vd(G)
is the payoff to player d in network G. Player d then prefers network G to network
G if vd(G ) > vd(G). Moreover, coalition S ∈ P (D) prefers network G to network
G if vd(G ) > vd(G) for all d ∈ S . Note that the payoff vd(G) to player d depends on
the entire network. Thus, the player may be affected by directed links between other
players even when he himself has no direct or indirect connection with those players.
Intuitively, ‘widespread’ network externalities are allowed.

Remark 1 All of our results on basins of attraction, path dominance stable sets, and
the path dominance core (Theorems 1-4 below) remain valid even if coalitional pref-
erences { S}S∈P (D) over networks are based on weak preference relations { d}d∈D.
If G d G then player d either strictly prefers G to G (denoted G d G) or is
indifferent between G and G (denoted G ∼d G). Given weak preferences { d}d∈D,
coalition S ∈ P (D) prefers network G to network G, written G S G, if for all
players d ∈ S , G d G and if for at least one player d ∈ S , G d G. Note
that if coalitional preferences { S}S∈P (D) are defined in this way (i.e., using weak
preferences { d}d∈D), then they are irreflexive (i.e., G S G for all G ∈ G and
S ∈ P (D)).

3.2 Rules

The rules of network formation are specified via a collection of coalitional effectiveness
relations {→S}S∈P (D) defined on the feasible set of networks G. Each effectiveness
relation →S represents what a coalition S can do. Thus, if G→S G this means that
under the rules of network formation coalition S ∈ P (D) can change network G ∈ G
to network G ∈ G by adding, subtracting, or replacing arcs in G.
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3.2.1 Examples of Network Formation Rules

Jackson-Wolinsky Rules: To illustrate, consider Figure 2 depicting two networks G1
and G2 in which the nodes represent players. Thus, D = N = {i1, i2, i3} .

i 1

i 2

i3

a1

a1

a2
a3

Network G1

i 1

i 2

i3

a1

a1

a2
a3

a1

Network G2
Figure 2

Observe that

G2 = G1 ∪ (a1, (i3, i1)) and G1 = G2\(a1, (i3, i1)).

Assume that

(i) adding an arc a from player i to player i requires that both players i and i agree
to add arc a (i.e., arc addition is bilateral);

(ii) subtracting an arc a from player i to player i requires that player i or player i
agree to subtract arc a (i.e., arc subtraction is unilateral);

(iii) for any pair of networks G and G in G, if G→S G , then G = G and

either G = G ∪ (a, (i, i )) for some (a, (i, i )) ∈ A× (N ×N)
or

G = G\(a, (i, i )) for some (a, (i, i )) ∈ A× (N ×N).

For the case D = N (i.e., players = nodes), we shall refer to rules (i)-(iii) above as
Jackson-Wolinsky rules. Note that rules (i) and (ii) imply that if G →S G , then
1 ≤ |S| ≤ 2. Referring to Figure 2, the effectiveness relations over networks G1 and
G2 under Jackson-Wolinsky rules are given by

G1 −→{i1,i3}
G2 G2 −→{i1,i3}

G1 G2 −→{i1} G1 G2 −→{i3} G1.
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Jackson-van den Nouweland rules: Consider networks G0 and G3 depicted in Figure
3 and again suppose that nodes represent players.

i 1

i 2

i3

a1

a1

a2

Network G0

i 1

i 2

i3

a1

a2
a3

a1

Network G3
Figure 3

Observe that

G3 = (G0\(a1, (i2, i1))) ∪ (a1, (i3, i1)) ∪ (a3, (i3, i1))
and

G0 = (G3\ ((a1, (i3, i1)) ∪ (a3, (i3, i1)))) ∪ (a1, (i2, i1)).
Assume that

(i) adding an arc a from player i to player i requires that both players i and i agree
to add arc a (i.e., arc addition is bilateral);

(ii) subtracting an arc a from player i to player i requires that player i or player i
agree to subtract arc a (i.e., arc subtraction is unilateral);

For the case D = N (i.e., players = nodes), we shall refer to rules (i)-(ii) above as
Jackson-van den Nouweland rules. Thus, the Jackson-van den Nouweland rules are
the Jackson-Wolinsky rules without the one-arc-at-a-time restriction. Note that if arc
addition is bilateral and arc subtraction is unilateral (i.e., if rules (i) and (ii) hold),
then G→S G implies that G is obtainable from G via coalition S, that is,

(i) (a, (i, i )) ∈ G and (a, (i, i )) /∈ G
⇒ {i, i } ⊆ S;

(ii) (a, (i, i )) /∈ G and (a, (i, i )) ∈ G
⇒ {i, i } ∩ S = ∅.

Referring to Figure 3, the effectiveness relations over networks G0 and G3 under
Jackson-van den Nouweland rules are given by

G0 −→
{i1,i2,i3}

G3 G0 −→{i1,i3}
G3 G3 −→{i1,i2}

G0 G3 −→
{i1,i2,i3}

G0.

Noncooperative Rules: Again suppose that nodes represent players and assume that

12



(i) adding an arc a from player i to player i requires only that player i agree to
add the arc (i.e., arc addition is unilateral and can be carried out only by the
initiator, player i);

(ii) subtracting an arc a from player i to player i requires only that player i agree
to subtract the arc (i.e., arc subtraction is unilateral and can be carried out
only by the initiator, player i);

(iii) G →S G implies that |S| = 1 (i.e., only network changes brought about by
individual players are allowed).

We shall refer to rules (i)-(iii) as noncooperative. Note that a player i can add or
subtract an arc to player i without regard to the preferences of player i . Thus in
general under noncooperative rules, effectiveness relations display a type of symmetry,
and in particular, if G −→

{i}
G , then G −→

{i}
G.

Under noncooperative rules, the effectiveness relations over networks G1 and G2
in Figure 2 are given by

G1 −→{i3} G2 G2 −→{i3} G1.

Note that under noncooperative rules, networks G0 and G3 in Figure 3 are not related
under the effectiveness relations →{i} i∈N . However, referring to the networks in
Figures 2 and 3, under the noncooperative rules we have, for example, the following
effectiveness relations

G3 →{i2} G2 G2 →{i3} G0
and

G0 →{i3} G2 G2 →{i2} G3.

(12 ,
2
3)-Voting Rules: All of the rules above require that arc addition and arc subtrac-

tion involve at least one player who is a party to the arc. Consider now arc addition
and arc subtraction based on voting. If nodes represent players, then under certain
voting rules, arcs can be imposed on players. To see this, consider the following rules
for arc addition and arc subtraction.

(i) adding an arc a from player i to player i requires a simple majority agree to add
arc a;

(ii) subtracting an arc a from player i to player i requires a 2
3 majority agree to

subtract arc a;

(iii) for any pair of networks G and G in G, if G→S G , then G = G and

either G = G ∪ (a, (i, i )) for some (a, (i, i )) ∈ A× (N ×N)
or

G = G\(a, (i, i )) for some (a, (i, i )) ∈ A× (N ×N)

(i.e., networks changes take place one arc at a time).

13



We shall refer to rules (i)-(iii) above as (12 ,
2
3)-voting rules. Thus, under rules

(i)-(iii), if G→S G , then G = G and either

G = G ∪ (a, (i, i )) for some (a, (i, i )) ∈ A× (N ×N) and |S|
|D| >

1
2

or
G = G\(a, (i, i )) for some (a, (i, i )) ∈ A× (N ×N) and |S|

|D| >
2
3 .

Referring to Figure 2, the effectiveness relations over networks G1 and G2 under
(12 ,

2
3)-voting rules are given by

G1 −→{i1,i2}
G2 G1 −→{i1,i3}

G2 G1 −→{i2,i3}
G2

and
G2 −→

{i1,i2,i3}
G1.

Note that under (12 ,
2
3)-voting rules the move from network G1 to network G2 may

involve the imposition of arc a1 from player i3 to player i1 upon player i1 by players
i2 and players i3. Also, note that under (12 ,

2
3)-voting rules in order to move from

network G2 back to network G1 (i.e., in order to remove arc a1 from player i3 to
player i1) requires the agreement of all three players.
Nonuniform Rules and the Network Representation of Network Formation Rules: In
all of the examples above, the rules for arc addition and arc subtraction are uniform
across pairs of networks. In some applications, such uniformity is not present. One
very concise way to write down such nonuniform network formation rules is to use a
network representation. In particular, suppose we write

(S, (G,G )) if and only if G→S G .

Thus, (S, (G,G )) if and only if under the rules coalition S ∈ P (D) can change
network G to network G . Letting the set of arcs be given by the collection of all
coalitions P (D) and letting the set of nodes be given by the feasible set of networks G,
the rules of network formation can be represented by a networkG ⊆ P (D)×(G×G).
Then the set of all possible network formation rules is given by the set of all such
networks.

3.3 Dominance Relations

We will focus primarily on two types of dominance relations on the feasible set of
networks G ⊆ P (A× (N ×N)), direct and indirect dominance.

3.3.1 Direct Dominance

Network G ∈ G directly dominates network G ∈ G, sometimes written G G, if for
some coalition S ∈ P (D),

G ≺S G
and

G −→
S
G .

14



Thus, network G directly dominates network G if some coalition S prefers G to G
and if under the rules of network formation coalition S has the power to change G
to G .

3.3.2 Indirect Dominance

Network G ∈ G indirectly dominates network G ∈ G, written G G, if there is a
finite sequence of networks,

G0, G1, . . . ,Gh,

with G = G0, G = Gh, and Gk ∈ G for k = 0, 1, . . . , h, and a corresponding sequence
of coalitions,

S1, S2, . . . , Sh,

such that for k = 1, 2, . . . , h
Gk−1 −→

Sk
Gk,

and
Gk−1 ≺Sk Gh.

Note that if network G indirectly dominates network G (i.e., if G G), then what
matters to the initially deviating coalition S1, as well as all the coalitions along the
way, is that the ultimate network outcome G = Gh be preferred. Thus, for example,
the initially deviating coalition S1 will not be deterred from changing network G0 to
network G1 even if network G1 is not preferred to network G = G0, as long as the
ultimate network outcomeG = Gh is preferred toG0, that is, as long asG0 ≺S1 Gh.19

3.3.3 Path Dominance

Each dominance relation > induces a path dominance relation on the set of networks.
In particular, corresponding to dominance relation > on networks G there is a cor-
responding path dominance relation ≥p on G specified as follows: network G ∈ G
(weakly) path dominates network G ∈ G with respect to > (i.e., with respect to the
underlying dominance relation >), written G ≥p G, if G = G or if there exists a
finite sequence of networks {Gk}hk=0 in G with Gh = G and G0 = G such that for
k = 1, 2, . . . , h

Gk > Gk−1.

We refer to such a finite sequence of networks as a finite domination path and we say
network G is >-reachable from network G if there exists a finite domination path
from G to G . Thus,

G ≥p G if and only if G is > -reachable from G, or
G = G.

(2)

19 In order to capture the idea of farsightedness in strategic behavior, Chwe (1994) analyzes abstract
games equipped with indirect dominance relations in great detail, introducing the equilibrium notions
of consistency and largest consistent set. The basic idea of indirect dominance goes back to the work
of Guilbaud (1949) and Harsanyi (1974).
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If network G is reachable from network G, that is, if there is a finite domination
path from G back to G then we call this path a circuit. Finally, if network G is not
reachable from any network in G and if no network in G is reachable from G, then
network G is isolated (i.e., network G ∈ G is isolated if there does not exist a network
G ∈ G with G ≥p G or G ≥p G ).

3.3.4 The Directed Graph of a Dominance Relation

It is often useful to represent the dominance relation over networks using a directed
graph. For example, Figure 3 depicts the graph of dominance relation > on the
feasible set of networks G = {G0,G1, . . . , G7} .

G0

G2

G4

G2 G3G2G2G5

G1 G6

G7G2

Figure 4: Directed Graph of Dominance Relation >

The arrow (or >-arc) from network G3 to network G4 in Figure 4 indicates that G4
dominates G3. Given primitives (G, { S} , {→S} , >)S∈P (D) and given that > is a
direct dominance relation, the >-arc from network G3 to network G4 means that for
some coalition S, G4 is preferred to G3 and more importantly, that coalition S has
the power to change network G3 to network G4. Thus, G3 ≺S G4 and G3 →S G4.
But notice also that there is a >-arc in the opposite direction, from network G4
to network G3. Thus, G3 also dominates G4, and thus for some other coalition S
distinct from coalition S, that is, some coalition S with S ∩ S = ∅, G4 ≺S G3 and
G4 →S G3.20

Note that network G3 is >-reachable from network G3 via two paths. Thus, the
graph of dominance relation > depicted in Figure 4 contains two circuits. Defining
the length of a domination path to be the number of >-arcs in the path, these two
circuits are of length 4 and length 2.
20Note that if preferences over networks are weak as in Remark 1, then the statement, ‘for some

other coalition S distinct from coalition S’ can be weakened to ‘for some other coalition S not equal
to coalition S’. With this weakening, the requirement that the intersection of S and S be empty is
no longer required.
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Because networksG2 andG5 in Figure 4 are on the same circuit, G5 is >-reachable
from G2 and G2 is >-reachable from G5. Thus, G5 path dominates G2 (i.e., G5 ≥p
G2) and G2 path dominates G5 (i.e., G2 ≥p G5). The same cannot be said of networks
G1 and G5 in Figure 4. In particular, while G5 ≥p G1, it is not true that G1 ≥p G5
because G1 is not >-reachable from G5. Finally, note that network G0 is isolated.

4 Network Formation Games and Stability

We can now present our main results. Using the abstract network formation game
with respect to path dominance given by the pair

( G,≥p) (3)

and induced by primitives

(G, { S} , {→S} , >)S∈P (D) , (4)

we introduce and characterize the notions of (i) strategic basins of attraction, (ii) path
dominance stable sets, and (iii) the path dominance core. All of the results presented
in this section hold for any path dominance relation induced by an irreflexive domi-
nance relation constructed from coalitional preferences, { S}S∈P (D) and coalitional
effectiveness relations, {→S}S∈P (D).21

4.1 Networks Without Descendants

If G1 ≥p G0 and G0 ≥p G1, networks G1 and G0 are equivalent, written G1 ≡p G0.
If networks G1 and G0 are equivalent then either networks G1 and G0 coincide or
G1 and G0 are on the same circuit (see Figure 4 above for a picture of a circuit). If
G1 ≥p G0 but G1 and G0 are not equivalent (i.e., not G1 ≡p G0), then network G1
is a descendant of network G0 and we write

G1 >p G0. (5)

Referring to Figure 4, observe that network G5 is a descendant of network G1, that
is, G5 >p G1.

Network G ∈ G has no descendants in G if for any network G ∈ G
G ≥p G implies that G ≡p G .

Thus, if G has no descendants then G ≥p G implies that G and G coincide or lie
on the same circuit.22

In attempting to identify those networks which are likely to emerge and persist,
networks without descendants are of particular interest. Here is our main result
concerning networks without descendants.
21 In fact, all the results in this section hold for any abstract game ( G,≥p) where G is a finite set

of outcomes and ≥p is a path dominance relation induced by any binary relation on G.
22Note that any isolated network is by definition a network without descendants (e.g., network G0

in Figure 3).
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Theorem 1 (All path dominance network formation games have networks without
descendants)

Let (G,≥p) be a network formation game. For every network G ∈ G there exists
a network G ∈ G such that G ≥p G and G has no descendants.

Proof. Let G0 be any network in G. If G0 has no descendants then we are done.
If not choose G1 such that G1 >p G0. If G1 has no descendants then we are done.
If not, continue by choosing G2 >p G1. Proceeding iteratively, we can generate a
sequence, G0, G1, G2, . . . . Now observe that in a finite number of iterations we must
come to a network Gk without descendants. Otherwise, we could generate an infinite
sequence, {Gk}k such that for all k,

Gk >p Gk−1.

However, becauseG is finite this sequence would contain at least one network, sayGk ,
which is repeated an infinite number of times. Thus, all the networks in the sequence
lying between any two consecutive repetitions of Gk would be on the same circuit,
contradicting the fact that for all k, Gk is a descendant of Gk−1 (i.e., Gk >p Gk−1).

By Theorem 1, in any network formation game (G,≥p), corresponding to any
network G ∈ G there is a network G ∈ G without descendants which is >-reachable
from G. Thus, in any network formation game the set of networks without descen-
dants is nonempty. Referring to Figure 4, the set of networks without descendants is
given by

{G0,G2, G3, G4,G5, G7} .
We shall denote by Z the set of networks without descendants.

4.2 Basins of Attraction

Stated loosely, a basin of attraction is a set of equivalent networks to which the
strategic network formation process represented by the game might tend and from
which there is no escape. Formally, we have the following definition.

Definition 2 (Basin of Attraction)
Let (G,≥p) be a network formation game. A set of networks A ⊆ G is said to be

a basin of attraction for (G,≥p) if

1. the networks contained in A are equivalent (i.e., for all G and G in A, G ≡p G)
and for no set A having A as a strict subset is this true that all the networks
in A are equivalent,23 and

2. no network in A has descendants (i.e., there does not exist a network G ∈ G
such that G >p G for some G ∈ A).

23A is a strict subset of A if
A ⊂ A and A \A = ∅.
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As the following characterization result shows, there is a very close connection
between networks without descendants and basins of attraction.

Theorem 2 (A characterization of basins of attraction)
Let (G,≥p) be a network formation game and let A be a subset of networks in G.

The following statements are equivalent:

1. A is a basin of attraction for (G,≥p).
2. There exists a network without descendants, G ∈ Z, such that

A = G ∈ Z : G ≡p G .

Proof. (1) implies (2): Because the sets A and {G ∈ Z : G ≡p G}, G ∈ Z, are
equivalence classes, A = {G ∈ Z : G ≡p G} implies that

A∩ G ∈ Z : G ≡p G = ∅ for all G ∈ Z.
Thus, if (2) fails, this implies that A contains a network with descendants. Thus, A
cannot be a basin of attraction for (G,≥p), and thus, (1) implies (2).24

(2) implies (1): Suppose now that

A = G ∈ Z : G ≡p G
for some network G ∈ Z. If A is not a basin of attraction, then for some network
G ∈ G, G >p G for some G ∈ A. But now G >p G and G ≡p G imply that
G >p G, contradicting the fact that G ∈ Z. Thus, (2) implies (1).

In light of Theorem 2, we conclude that in any network formation game (G,≥p), G
contains a unique, finite, disjoint collection of basins of attraction, say {A1,A2, . . . ,Am},
where for each k = 1, 2, . . . ,m (m ≥ 1)

Ak = AG : = G ∈ Z : G ≡p G
for some network G ∈ Z. Note that for networks G and G in Z such that G ≡p G,
AG = AG (i.e. the basins of attraction AG and AG coincide). Also, note that if
network G ∈ G is isolated, then G ∈ Z and

AG : = G ∈ Z : G ≡p G = {G}
is, by definition, a basin of attraction - but a very uninteresting one.

Example 1 (Basins of attraction)
In Figure 4 above the set of networks without descendants is given by

Z = {G0, G2, G3, G4, G5, G7} .
Even though there are six networks without descendants, because networks G2,G3, G4,
and G5 are equivalent, there are only three basins of attraction:

A1 = {G0} , A2 = {G2,G3, G4, G5} , and A3 = {G7} .
Moreover, because G2, G3, G4, and G5 are equivalent,

AG2 = AG3 = AG4 = AG5 = {G2,G3, G4, G5} .
24Note that if G ∈ Z and G ≡p G, then G ∈ Z.
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4.3 Stable Sets with Respect to Path Dominance

The formal definition of a ≥p-stable set is as follows.25

Definition 3 (Stable Sets with Respect to Path Dominance)
Let (G,≥p) be a network formation game. A subset V of networks in G is said to

be a stable set for (G,≥p) if

(a) (internal ≥p -stability) whenever G0 and G1 are in V, with G0 = G1, then
neither G1 ≥p G0 nor G0 ≥p G1 hold, and

(b) (external ≥p -stability) for any G0 /∈ V there exists G1 ∈ V
such that G1 ≥p G0.

In other words, a nonempty subset of networks V is a stable set for (G,≥p) if
G0 and G1 are in V, with G0 = G1, then G1 is not reachable from G0, nor is G0
reachable from G1, and if G0 /∈ V, then there exists G1 ∈ V reachable from G0.

We now have our main results on the existence, construction, and cardinality of
stable sets.26

Theorem 3 (Stable sets: existence, construction, and cardinality)
Let (G,≥p) be a network formation game, and without loss of generality assume

that (G,≥p) has basins of attraction given by

{A1,A2, . . . ,Am} ,

where basin of attraction Ak contains |Ak| many networks (i.e., |Ak| is the cardinality
of Ak). Then the following statements are true:

1. V ⊆ G is a stable set for (G,≥p) if and only if V is constructed by choosing one
network from each basin of attraction, that is, if and only if V is of the form

V = {G1, G2, . . . , Gm} ,

where Gk ∈ Ak for k = 1, 2, . . . ,m.
2. (G,≥p) possesses

|A1| · |A2| · · · · · |Am| :=M
many stable sets and each stable set, Vq, q = 1, 2, . . . ,M , has cardinality

|Vq| = |{A1,A2, . . . ,Am}| = m.
25By equipping the abstract network formation game with the path dominance relation rather

than the original dominance relation, we entirely avoid the famous Lucas (1968) example of a game
with no stable set.
26These results can be viewed as applications of some classical results from graph theory to the

theory of network formation games (e.g., see Berge 2001, Chapter 2).
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Proof. It suffices to prove (1). Given (1), the proof of (2) is straightforward. To
begin, let

V = {G1, G2, . . . ,Gm} ,
where Gk ∈ Ak for k = 1, 2, . . . ,m, and suppose that for Gk and Gk in V, Gk ≥p Gk.
Since Gk ∈ Ak has no descendants, this would imply that Gk ≡p Gk. But this is a
contradiction because Gk ∈ Ak and Gk ∈ Ak and the basins of attraction Ak and
Ak are disjoint. Thus, V is internally ≥p-stable. Now suppose that network G is not
contained in V. By Theorem 1, there exists a network G ∈ G without descendants
such that G ≥p G. By Theorem 2, G is contained in some basin of attraction Ak
and therefore G ≡p Gk where Gk is the kth component of {G1, G2, . . . , Gm}. Thus,
we have Gk ≥p G ≥p G implying that Gk ≥p G, and thus V is externally ≥p-stable.

Suppose now that V ⊆ G is a stable set for (G,≥p). First note that each network
G in V is a network without descendants. Otherwise there exists G ∈ G\V such that
G >p G. But then because V is externally ≥p-stable, there exists G ∈ V, G = G,
such that G ≥p G implying that G ≥p G and contradicting the internal ≥p-
stability of V. Because each G ∈ V is without descendants, it follows from Theorem
2 that each G ∈ V is contained in some basin of attraction Ak. Moreover, because V is
internally ≥p-stable and because all networks contained in any one basin of attraction
are equivalent, no two distinct networks contained in V can be contained in the same
basin of attraction. It only remains to show that for each basin of attraction, Ak,
k = 1, 2, . . . ,m,

V ∩Ak = ∅.
Suppose not. Then for some k , V ∩ Ak = ∅. Because all networks in Ak are without
descendants, for no network G ∈ Ak is it true that there exists a network G ∈ V
such that G ≥p G. Thus, we have a contradiction of the external ≥p-stability of V.

Example 2 (Basins of attraction and stable sets)
Referring to Figure 4, it follows from Theorem 3 that because

|A1| · |A2| · |A3| = 1 · 4 · 1 = 4,

the network formation game (G,≥p) has 4 stable sets, each with cardinality 3. By
examining Figure 4 in light of Theorem 3, we see that the stable sets for (G,≥p) are
given by

V1 = {G0, G2,G7} ,
V2 = {G0, G3,G7} ,
V3 = {G0, G4,G7} ,
V4 = {G0, G5,G7} .

4.4 The Path Dominance Core

Definition 4 (The Path Dominance Core)
Let (G,≥p) be a network formation game. A network G ∈ G is contained in the

path dominance core C ⊂ G if and only if there does not exist a network G ∈ G,
G = G, such that G ≥p G.
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Our next results give necessary and sufficient conditions for the path dominance
core of a network formation game to be nonempty, as well as a recipe for constructing
the path dominance core.

Theorem 4 (Path dominance core: nonemptiness and construction)
Let (G,≥p) be a network formation game, and without loss of generality assume

that (G,≥p) has basins of attraction given by

{A1,A2, . . . ,Am} ,

where basin of attraction Ak contains |Ak| many networks. Then the following state-
ments are true:

1. (G,≥p) has a nonempty path dominance core if and only if there exists a basin
of attraction containing a single network, that is, if and only if for some basin
of attraction Ak, |Ak| = 1.

2. Let
{Ak1 ,Ak2 , . . . ,Akn} ⊆ {A1,A2, . . . ,Am} ,

be the subset of basins of attraction containing all basins having cardinality 1.
Then the path dominance core C of (G,≥p) is given by

C = {Gk1 , Gk2 , . . . , Gkn} ,

where Gki ∈ Aki, for i = 1, 2, . . . , n.

Proof. It suffices to show that a network G is contained in the path dominance
core C if and only if G ∈ Ak for some basin of attraction Ak, k = 1, 2, . . . ,m, with
|Ak| = 1. First note that if G is in the path dominance core, then G is a network
without descendants. Thus, G ∈ Ak for some basin of attraction Ak. If |Ak| > 1,
then there exists another network G ∈ Ak such that G ≡p G. Thus, G ≥p G
contradicting the fact that G is in the path dominance core. Conversely, if G ∈ Ak
for some basin of attraction Ak with |Ak| = 1, then there does not exist a network
G = G such that G ≥p G.

Remark 2 If coalitional preferences { S}S∈P (D) over networks are based on weak
preference relations { d}d∈D rather than on strong preference relations { d}d∈D (see
Remark 1 above), then the corresponding path dominance core - the weak path dom-
inance core - is contained in the path dominance core based on strong preference
relations.

Example 3 (Basins of attraction and the path dominance core)
It follows from Theorem 4 that the path dominance core of the network formation

game (G,≥p) with feasible set

G = {G0, G1, . . . , G7}
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and path dominance relation ≥p induced by the dominance relation depicted in Figure
4 is

C = {G0, G7} .
Figure 5 contains the graph of a different dominance relation on G = {G0,G1, . . . , G7} .

G0

G2

G4

G2 G3G2G2G5

G1 G6

G7G2

Figure 5: Graph of a different dominance relation

Denoting the new dominance relation by , the network formation game G, p

with respect to the path dominance relation p induced by the dominance relation
has 3 circuits and 2 basins of attraction,

A1= {G2, G3, G4, G5} and A2= {G6, G7} .

Because |A1| = 4 and |A2| = 2, by Theorem 4 the path dominance core of G, p

is empty. By Theorem 3, G, p has 8 stable sets each containing 2 networks (i.e.,

each with cardinality 2). These stable sets are given by

V1 = {G2, G6} ,
V2 = {G3, G6} ,
V3 = {G4, G6} ,
V4 = {G5, G6} ,
V5 = {G2, G7} ,
V6 = {G3, G7} ,
V7 = {G4, G7} ,
V8 = {G5, G7} .

4.4.1 The Path Dominance Core and Constrained Pareto Efficiency

Given primitives (G, { S} , {→S} , >)S∈P (D), we say that a network G ∈ G is con-
strained Pareto efficient if and only if there does not exist another network G ∈ G
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such that (i) some coalition S can change network G to network G (that is, G→S G
for some coalition S ∈ P (D)) and (ii) G is preferred by all players (that is, G ≺d G
for all players d ∈ D). Letting E denote the set of all constrained Pareto efficient
networks, it is easy to see that the path dominance core C of network formation game
(G,≥p)is a subset of E, that is, C ⊆ E.

Under the classical notion of Pareto efficiency, a network G is said to be Pareto
efficient if and only if there does not exists another network G such that G ≺d G
for all players d ∈ D, regardless of whether or not some coalition S can change net-
work G to network G . Letting PE denote the set of all classically Pareto efficient
networks, it is easy to see that PE ⊆ E. Note, however, that if under primitives
(G, { S} , {→S} , >)S∈P (D), any network G can be changed to any other network G
via the actions of some coalition S, then the notions of constrained Pareto efficiency
and classical Pareto efficiency are equivalent. Thus, if the collection of coalitional
effectiveness relations {→S}S∈P (D) on G is complete, that is, if for any pair of net-
works G and G in G, G →S G for some coalition S ∈ P (D), then PE = E, and we
have C ⊆ PE = E.

5 Other Stability Notions for Network Formation Games

5.1 Strongly Stable Networks

We begin with a formal definition of strong stability for abstract network formation
games.

Definition 5 (Strong Stability)
Given primitives (G, { S} , {→S} , >)S∈P (D) and network formation game (G,≥p),

network G ∈ G is said to be strongly stable in (G,≥p) if for all G ∈ G and S ∈ P (D),
G→S G implies that G ⊀S G .

Thus, a network is strongly stable if whenever a coalition has the power to change
the network to another network, the coalition will be deterred from doing so because
not all members of the coalition are made better off by such a change.27 If nodes
represent players and arc addition is bilateral while arc subtraction is unilateral, then
our definition of strong stability is essentially that of Jackson-van den Nouweland but
for directed networks rather than linking networks. Note that under our definition
of strong stability a network G ∈ G that cannot be changed to another network by
any coalition is strongly stable.

We now have our main result on the path dominance core and strong stability.
Denote the set of strongly stable networks by SS.

27Our definition of a strongly stable network differs slightly from the definition given in Jackson-
van den Nouweland (2005). In particular, under their definition, a network is strongly stable if
whenever a coalition has the power to change the network to another network, the coalition will be
deterred from doing so because at least one member of the coalition is made worse off by the change.
If coalitional preferences, { S}S∈P (D) are based upon weak players preferences, { d}d∈D, then our
definition of strong stability is equivalent to that of Jackson-van den Nouweland (see Remark 1).
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Theorem 5 (The path dominance core and strong stability)
Given primitives (G, { S} , {→S} , >)S∈P (D) and network formation game (G,≥p),

where path dominance ≥p is induced by either a direct relation or an indirect domi-
nance relation, the following statements are true.

1. If the path dominance core C of (G,≥p) is nonempty, then SS is nonempty and
C ⊆ SS.

2. If the dominance relation > underlying ≥p is a direct dominance relation, then
C = SS and SS is nonempty if and only if there exists a basin of attraction
containing a single network.

Proof. 1. Let C ⊆ G, C = ∅, be the path dominance core of (G,≥p) and let network
G be contained in C. Then there does not exist a network G ∈ G, G = G, such that
G ≥p G. If for some coalition S and some network G ∈ G, G→S G and G ≺S G ,
then G ≥p G trivially, a contradiction. Thus, for G contained in C, G →S G for
coalition S implies that G ⊀S G , and thus G ∈ C implies G ∈ SS.

2. To see that SS ⊆ C if the dominance relation > underlying ≥p is a direct
dominance relation, consider the following. If G /∈ C, then there exists a network
G = G which path dominates G, that is, G ≥p G. This implies that there exists
a network G such that G ≥p G > G. Because > is a direct dominance relation,
for some coalition S we have G →S G and G ≺S G . Thus, G /∈ SS. By part 1
of Theorem 4, C = SS is nonempty if and only if there exists a basin of attraction
containing a single network.

Note that the set of strongly stable networks is contained in the set of constrained
Pareto efficient networks. Thus, C ⊆ SS ⊆ E.

5.2 Pairwise Stable Networks

The following definition is a formalization of Jackson-Wolinsky (1996) pairwise sta-
bility for abstract network formation games.

Definition 6 (Pairwise Stability)
Given networks P (A×(N ×N)) where nodes represent players (i.e., N = D) and

given feasible networks G ⊆ P (A×(N×N)) and primitives (G, { S} , {→S} , >)S∈P (D),
network G ∈ G is said to be pairwise stable in network formation game (G,≥p) if for
all (a, (i, i )) ∈ A× (N ×N),

1. G→{i,i } G ∪ (a, (i, i )) implies that G ⊀{i,i } G ∪ (a, (i, i ));
2. (a) G→{i} G (a, (i, i )) implies that G ⊀{i} G (a, (i, i )), and

(b) G→{i } G (a, (i, i )) implies that G ⊀{i } G (a, (i, i )).

Thus, a network is pairwise stable if there is no incentive for any pair of players
to add an arc to the existing network and there is no incentive for any player who
is party to an arc in the existing network to dissolve or remove the arc. Note that
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under our definition of pairwise stability a network G ∈ G that cannot be changed to
another network by any coalition, or can only be changed by coalitions of size greater
than 2, is pairwise stable.

Let PS denote the set of pairwise stable networks. It follows from the definitions
of strong stability and pairwise stability that SS ⊆ PS. Moreover, if the full set
of Jackson-Wolinsky rules are in force, then SS = PS. Jackson-van den Nouweland
(2005) provide two examples of the potential for strong stability to refine pairwise
stability (i.e., two examples where SS is a strict subset of PS). However, under
Jackson-Wolinsky rules because network changes can occur only one arc at a time
and because deviations by coalitions of more than two players are not possible such
refinements are not possible driving SS and PS to equality.28

We now have our main result on the path dominance core and pairwise stability.

Theorem 6 (The path dominance core and pairwise stability)
Given primitives (G, { S} , {→S} , >)S∈P (D) where nodes represent players (i.e.,

N = D) and given network formation game (G,≥p), where path dominance ≥p is
induced by either a direct relation or an indirect dominance relation, the following
statements are true.

1. If the path dominance core C of (G,≥p) is nonempty, then PS is nonempty and
C ⊆ PS.

2. If the dominance relation > underlying ≥p is a direct dominance relation and if
the Jackson-Wolinsky rules hold, then C = PS and PS is nonempty if and only
if there exists a basin of attraction containing a single network.

Proof. The proof of part 1 follows from part 1 of Theorem 5 and the fact that
SS ⊆ PS. For the proof of part 2, note that under the Jackson-Wolinsky rules
SS = PS. Thus, we have C ⊆ SS = PS. If in addition the path dominance relation
is induced by a direct dominance relation, then we have PS = SS ⊆ C. Thus, if the
path dominance is induced by a direct dominance and if the Jackson-Wolinsky rules
hold, then we have C = SS = PS. By part 1 of Theorem 4, C = SS = PS is nonempty
if and only if there exists a basin of attraction containing a single network.

Theorem 6 can be viewed as an extension of a result due Jackson and Watts (2002)
on the existence of pairwise stable linking networks for network formation games
28 In particular, under Jackson-Wolinsky rules, if

G→S G ,

then there are only three possibilities:
(i) G = G ∪ (a, (i, i )) for some a ∈ A and S = {i, i };
(ii) G (a, (i, i )) for some a ∈ A and S = {i}; or
(iii) G (a, (i, i )) for some a ∈ A and S = {i }.
Thus, under Jackson-Wolinsky rules, if a network is not strongly stable, automatically it is not

pairwise stable - and thus under Jackson-Wolinsky rules

PS ⊆ SS.
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induced by Jackson-Wolinsky rules. In particular, Jackson and Watts (2002) show
that for this particular class of Jackson-Wolinsky network formation games, if there
does not exist a closed cycle of networks, then there exists a pairwise stable network.
Our notion of a strategic basin of attraction containingmultiple networks corresponds
to their notion of a closed cycle of networks. Thus, stated in our terminology, Jackson
and Watts show that for this class of network formation games, if there does not exist
a basin of attraction containing multiple networks, then there exists a pairwise stable
network. Following our approach, if we specialize to this class of Jackson-Wolinsky
network formation games, then by part 2 of Theorem 6 the existence of at least one
strategic basin containing a single network is both necessary and sufficient for the
existence of a pairwise stable network.

5.3 Consistent Networks

We begin with a formal definition of farsighted consistency (Chwe 1994).

Definition 7 (Consistent Sets)
Let (G,≥p) be a network formation game where path dominance ≥p is induced by

an indirect dominance relation . A subset F of directed networks in G is said to
be consistent in (G,≥p) if

for all G0 ∈ F,
G0 →S1 G1 for some G1 ∈ G and some coalition S1 implies that

there exists G2 ∈ F
with G2 = G1 or G2 G1 such that,

G0 ⊀S1 G2.

In words, a subset of directed networks F is said to be consistent in (G,≥p) if
given any network G0 ∈ F and any deviation to network G1 ∈ G by coalition S1 (via
adding, subtracting, or replacing arcs in accordance with effectiveness relations→S),
there exists further deviations leading to some network G2 ∈ F where the initially
deviating coalition S1 is not better off - and possibly worse off. A network G ∈ G is
said to be consistent if G ∈ F where F is a consistent set in (G,≥p).

There can be many consistent sets in (G,≥p). We shall denote by F∗ the largest
consistent set. Thus, if F is a consistent set, then F ⊆ F∗. By Proposition 1 in Chwe
(1994) there exists uniquely a largest consistent set in (G,≥p). Moreover, by the
Corollary to Proposition 2 in Chwe (1994) this largest consistent set is nonempty and
externally stable with respect to indirect dominance .29

We now have our main result on the relationship between basins of attraction,
stable sets, the path dominance core, and the largest consistent set.

29Page and Kamat (2005) provide an alternative proof of the nonemptiness and external stability
of the largest consistent set (with respect to indirect dominance). In particular, Page and Kamat
modify the indirect dominance relation so as to make it transitive as well as irreflexive. They then
show that the unique stable set with respect to path dominance induced by this new transitive
indirect dominance relation is contained in the largest consistent set - and in this way show that the
largest consistent set is nonempty and externally stable.
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Theorem 7 (Basins of attraction, the path dominance core, and the largest consis-
tent set)

Given primitives (G, { S} , {→S} , >)S∈P (D) and given network formation game
(G,≥p),where path dominance is induced by an indirect dominance relation , as-
sume without loss of generality that (G,≥p) has nonempty largest consistent set given
by F∗ and basins of attraction given by

{A1,A2, . . . ,Am} .

Then the following statements are true:

1. Each basin of attraction Ak, k = 1, 2, . . . ,m, has a nonempty intersection with
the largest consistent set F∗, that is

F∗ ∩Ak = ∅, for k = 1, 2, . . . ,m.

2. If (G,≥p) has a nonempty path dominance core C, then

C ⊆ F∗.

Proof. In light of Theorem 4, (2) easily follows from (1). Thus, it suffices to prove
(1). Suppose that for some basin of attraction Ak

F∗ ∩Ak = ∅.

Let G be a network in Ak . Because F∗ is externally stable with respect to the
indirect dominance relation , G /∈ F∗ implies that there exists some network
G∗ ∈ F∗ such that G∗ G . Thus, G∗ ≥p G . Because the networks in Ak are
without descendants, it must be true that G ≥p G∗. But this implies that G∗ ≡p G ,
and therefore that G∗ ∈ Ak , a contradiction.

Remark 3 Recently, Herings, Mauleon, and Vannetelbosch (2005) introduced a no-
tion of pairwise farsighted stability. If in our model coalitional preferences { S

}S∈P (D) over networks are based on weak preference relations { d}d∈D (see Remark
1 above), if nodes represent players (i.e., N = D), and if the dominance relation un-
derlying the path dominance relation is indirect, then under Jackson-Wolinsky rules
the corresponding weak path dominance core is contained in the set of pairwise far-
sightedly stable networks.

5.4 Nash Networks

Definition 8 (Nash Networks)
Given primitives (G, { S} , {→S} , >)S∈P (D) and network formation game (G,≥p),

network G ∈ G is said to be a Nash network in (G,≥p) if for all G ∈ G and S ∈ P (D)
such that |S| = 1 , G→S G implies that G ⊀S G .
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Thus, a network is Nash if whenever an individual player has the power to change
the network to another network, the player will have no incentive to do so. We
shall denote by NE the set of Nash networks. Note that our definition of a Nash
network does not require that the network formation rules, as represented via the
effectiveness relations {→S}S∈P (D), be noncooperative (see subsection 3.2.1). Also,
note that under our definition any network that cannot be changed to another network
by a coalition of size 1 is a Nash network. Finally, note that the set of strongly stable
networks SS is contained in the set of Nash networks NE.

We now have our main result on the path dominance core and strong stability.

Theorem 8 (The path dominance core and Nash networks)
Given primitives (G, { S} , {→S} , >)S∈P (D) and network formation game (G,≥p),

where path dominance ≥p is induced by either a direct relation or an indirect domi-
nance relation, the following statements are true.

1. If the path dominance core C of (G,≥p) is nonempty, then NE is nonempty and
C ⊆ NE.

2. If the dominance relation > underlying ≥p is a direct dominance relation and if
the rules of network formation are such that G→S G implies that |S| = 1, then
C = NE and NE is nonempty if and only if there exists a basin of attraction
containing a single network.

Proof. The proof of part 1 follows from part 1 of Theorem 5 and the fact that
SS ⊆ NE. For the proof of part 2, note that if the rules of network formation are
such that G→S G implies that |S| = 1, then SS = NE. Thus, we have C ⊆ SS = NE.
If in addition the path dominance relation is induced by a direct dominance relation,
then we have NE = SS ⊆ C, and we conclude that C = SS = NE. Thus, if the path
dominance is induced by a direct dominance and if the rules are such that G →S

G implies that |S| = 1, then we have C = SS = NE. By part 1 of Theorem 4,
C = SS = NE is nonempty if and only if there exists a basin of attraction containing
a single network.

We close this section by noting that if the dominance relation > underlying ≥p
is a direct dominance relation and if the rules of network formation are such that
G →S G implies that |S| = 1, then the set of Nash networks NE is contained
in the set of constrained Pareto efficient networks E. Thus, for this case we have
C = SS = NE ⊆ E.

6 Examples

In the abstract games, ( G,≥p), that we have considered, the set of outcomes G is a
set of directed networks and we have focused on path dominance induced by either
direct dominance or indirect dominance. However, our main results, Theorems 1-4,
hold for any abstract game with a finite set of outcomes equipped with path domi-
nance induced by any dominance relation. With this in mind, in this section we will
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demonstrate the flexibility of our approach and the wide applicability of our results
by first considering network games with a potential function and then considering
games where the set of outcomes is, in one case, a set of linking networks and, in
another case, a set of coalition structures, and where the path dominance relation is
induced by a dominance relation other than a direct or an indirect dominance rela-
tion (as defined in sections 3.3.1 and 3.3.2). In particular, in our first example, we
consider noncooperative network formation games and show that any noncooperative
network formation game possessing a potential function has basins of attraction each
consisting of a single network and thus has a nonempty path dominance core. In
our second example, we show how our approach can be applied to Jackson-Wolinsky
linking networks and we provide necessary and sufficient conditions for nonemptiness
of the set of pairwise stable linking networks. Finally, we show via an example pro-
posed to us by Salvador Barbera and Michael Maschler (2006) how our approach can
be used to analyze hedonic games, and in particular, we show how farsightedness can
lead to instability (i.e., emptiness of the path dominance core) in hedonic games.

6.1 Noncooperative Network Formation Games Possessing a Poten-
tial Function.

Suppose the primitives (G, { S} , {→S} , >)S∈P (D) underlying the network formation
game (G,≥p) are such that:

1. the set of nodes N and the set of players D are one and the same (i.e., N = D
and G ⊆ P (A× (D ×D)));

2. preferences { S}S∈P (D) over networks G are specified via player payoff func-
tions vd(·), that is, coalition S ∈ P (D) prefers network G to network G if
vd(G ) > vd(G) for all d ∈ S ; 30

3. effectiveness relations {→S}S∈P (D) over networks G are such that,

(i) adding an arc a from player i to player i requires only that player i agree
to add the arc (i.e., arc addition is unilateral and can be carried out only
by the initiator, player i),

(ii) subtracting an arc a from player i to player i requires only that player
i agree to subtract the arc (i.e., arc subtraction is unilateral and can be
carried out only by the initiator, player i), and

(iii) G →S G implies that |S| = 1 (i.e., only network changes brought about
by individual players are allowed);

4. the dominance relation > over G is given by a direct dominance relation ,
that is, G G if and only if for some player d ∈ D, vd (G ) > vd (G) and
G→d G .

30This is a frequently used way of defining payoffs to coalitions; see for example, Jackson (2005)
and van den Nouweland (2005).
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We say that the noncooperative network formation game (G,≥p) is a potential
game if there exists a function

P (·) : G→R
such that for all G and G with G→d G for some player d ,

vd (G ) > vd (G) if and only if P (G ) > P (G).

It is easy to see that any noncooperative network formation game (G,≥p) possessing
a potential function has no circuits, and thus possesses strategic basins of attraction
each consisting of a single network without descendants.31 Thus, we can conclude
from our Theorem 4 that any noncooperative network formation game possessing a
potential function has a nonempty path dominance core. In addition, we know from
our Theorem 8 that in this example the path dominance core C is equal to the set of
Nash networks NE.32

6.2 Jackson-Wolinsky Linking Networks

Consider primitives (G, { S} , {→S} , >)S∈P (D) with corresponding network forma-
tion game ( G,≥p) where G is given by a feasible set of linking networks, coalitional
preferences { S}S∈P (D) are based on weak preferences (see Remarks 1 and 2 above),
effectiveness relations {→S}S∈P (D) are specified via Jackson-Wolinsky rules, and the
dominance relation > is direct. In particular, assume that the set of nodes N and
the set of players D are equal, let gN denote the collection of all subsets of N of size
2, and let G be a nonempty subset of P (gN), where P (gN) denotes the collection of
all nonempty subsets of gN (i.e., the set of all linking networks - see the definition in
Jackson and Wolinsky 1996). To simplify comparisons, we use the standard notation
for linking networks and let g denote a typical linking network.

Under Jackson-Wolinsky rules, if g →S g then g = g and either (i) g = g∪{i, i }
(a link is added between players i and i ) and S = {i, i } or (ii) g = g\{i, i }
(the link between players i and i is removed) and S = {i} or S = {i } or S =
{i, i }. Moreover, if coalitional preferences { S}S∈P (D) are based on weak preference
relations { d}d∈D, then coalition S ∈ P (D) prefers networkG to networkG, written
G S G, if for all players d ∈ S , G d G and if for at least one player d ∈ S ,
G d G.33 Finally, if the dominance relation > is direct with underlying weak
preferences, then g g if and only if either (i) g →{i,i } g and g {i,i } g where
g = g ∪ {i, i } or (ii) (a) g →{i} g and g {i} g where g = g\{i, i } or (b) g →{i } g
and g {i } g where g = g\{i, i }.
31As has been shown by Monderer and Shapley (1996), potential games are closely related to

congestion games introduced by Rosenthal (1973).
32Page and Wooders (2007) introduce a club network formation game which is a variant of the

noncooperative network formation game described above and show that this game possesses a po-
tential function. Prior papers studying potential games in the context of linking networks include
Slikker, Dutta, and van den Nouweland (2000) and Slikker and van den Nouweland (2002). These
papers have focused on providing the strategic underpinnings of the Myerson value (Myerson 1977).
33Recall from Remark 1 that if G d G then player d either strictly prefers G to G (denoted

G d G) or is indifferent between G and G (denoted G ∼d G).
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It follows from our Theorem 4 that any network formation game ( G,≥p) induced
by Jackson-Wolinsky primitives (i.e., primitives as specified above) has a nonempty
path dominance core if and only if there is at least one strategic basin of attraction
containing a single network. Moreover, it follows from our Theorem 6 that for any
such network formation game the path dominance core is equal to the set of pairwise
stable networks (as defined for linking networks in Jackson and Wolinsky 1996).

6.3 Hedonic games

Consider a hedonic game where a move from one coalition structure to another can be
initiated by any group of players defecting from the original structure, but in order for
the change to prevail all players in coalitions augmented or created by the defecting
players must prefer their new coalitions to their old coalitions - or must prefer their
eventual coalitions to their old coalitions if players are farsighted. Call the path
dominance core with respect to direct dominance, the hedonic direct core and the
path dominance core with respect to indirect dominance the hedonic farsighted core.
Note that the hedonic direct core is equivalent to the usual hedonic core. As the
following example will show, the hedonic farsighted core may be empty even when
the hedonic core is not.

Consider the following hedonic game proposed to us by Barbera and Maschler
(2006). Let the player set be given by D = {1, 2, 3, 4, 5, 6, 7, 8}. Player preferences
over coalitions are as follows:

player 1 (1, 2, 3, 4) (1, 2, 3) (1, 2) (1) . . .
player 2 (1, 2, 3, 4) (1, 2, 3) (1, 2) (2) . . .
player 3 (1, 2, 3, 4) (3, 4, 5, 6) (1, 2, 3) (3) (3, 6)
player 4 (1, 2, 3, 4) (3, 4, 5, 6) (4, 5) (4) . . .
player 5 (3, 4, 5, 6) (5, 6, 7, 8) (4, 5) (5) . . .
player 6 (3, 4, 5, 6) (5, 6, 7, 8) (6, 7, 8) (6) (3, 6)
player 7 (5, 6, 7, 8) (6, 7, 8) (7, 8) (7) . . .
player 8 (5, 6, 7, 8) (6, 7, 8) (7, 8) (8) . . .

Players’ Preferences Over Coalitions

Consider the row for player 1 in the table above. The interpretation is that 1 prefers
the coalition (1, 2, 3, 4) to the coalition (1, 2, 3), to the coalition (1, 2), and so on.
Player 1’s preferences over the remaining coalitions are irrelevant to the following
example so they are not specified. The same interpretation applies to the rows cor-
responding to other players.

A partition of the player set is in the hedonic core if there does not exist a coalition
that is preferred by all its members to their coalitions of membership in the original
partition (i.e., a partition is in the hedonic core if it is not directly dominated by
another partition). Consider the partition ((1, 2, 3, 4), (5, 6, 7, 8)) ∈ G. This is a core
point for the hedonic game because the only coalition that is preferred by players 5
and 6 is (3, 4, 5, 6) but two members of this coalition, 3 and 4, do not prefer it (i.e.,
((1, 2), (3, 4, 5, 6), (7, 8)) does not directly dominate ((1, 2, 3, 4), (5, 6, 7, 8))). If players
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4 and 5 are farsighted, however, and domination is indirect, 4 and 5 can decide to
form a coalition (4, 5) - thus bringing about the partition ((1, 2, 3), (4, 5), (6, 7, 8)).
Now players 3, 4, 5, and 6 could all benefit from forming a coalition. This brings
us to the partition ((1, 2), (3, 4, 5, 6), (7, 8)) a hedonic core point in which 4 and 5
are better off than in the original hedonic core point. Thus, ((1, 2), (3, 4, 5, 6), (7, 8))
indirectly dominates ((1, 2, 3, 4), (5, 6, 7, 8)). But the story is not finished. Starting
from ((1, 2), (3, 4, 5, 6), (7, 8)), players 3 and 6 can separate and form their own coali-
tion. Using an argument similar to the one above, this move by 3 and 6 can then
lead back to the original partition. Thus, ((1, 2, 3, 4), (5, 6, 7, 8)) indirectly dominates
((1, 2), (3, 4, 5, 6), (7, 8)).

We see here that, even though the hedonic core is nonempty, the hedonic far-
sighted core is empty. Another point illustrated is that for path dominance, it is only
necessary that a coalition perceive some path that would lead to a preferred situa-
tion; it is not required that a coalition perceive some preferred final (and presumably
stable) outcome. The example also suggests for those special cases of hedonic games
where the hedonic direct core (i.e., the hedonic core) is non-empty and not a sin-
gleton, then the path dominance core with respect to indirect dominance (i.e., the
hedonic farsighted core) is empty. (See Diamantoudi and Xue 2003 for related work
applying indirect dominance to hedonic games).34

7 Conclusions

From the viewpoint of the path dominance core with direct or indirect dominance,
there are a number of potential questions to be addressed. For example, what is the
relationship, if any, between basins of attraction and the path dominance core and
partnered (or separating) collections of coalitions, as in for example Page andWooders
(1996), Reny and Wooders (1997) or Maschler and Peleg (1967) and Maschler, Peleg
and Shapley (1971)? Or what is relationship between basins of attraction and the
path dominance core and the inner core, as in Qin (1993,1994)?

To conclude, we return to the prior research introducing concepts similar to the ab-
stract game defined in this paper and the union of basins of attractions; see Schwartz
(1974), Panzer, Kalai and Schmeidler (1976), Kalai and Schmeidler (1977) and Shenoy
(1980).35 For specificity, we focus on Kalai and Schmeidler (1977). These authors take
as given a set of feasible alternatives, denoted by S, a dominance relation, denoted by
M , and the transitive closure of M , denoted by M . Their admissible set is the set
34 In brief, the effectiveness relations in Diamantoudi and Xue differ from the effectiveness relations

in our rendition of the Barbera-Maschler example. In particular, in Diamantoudi and Xue all defect-
ing players must form a coalition in the new partition, whereas in the Barbera-Maschler example,
defecting players can join already existing coalitions in forming the new partition. Moreover, in
Diamantoudi and Xue only defecting players must prefer their new coalition in order for the change
to take place, whereas in the Barbera-Maschler example, not only must defecting players prefer their
new coalitions, but also all players in coalitions joined by the defecting players must prefer their new
coalitions in order for the change to take place.
35We thank Sylvia Thoron for brining this to our attention.
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A(S,M) := {x ∈ S : y ∈ S and yMx imply xMy}.36 Besides non-emptiness of the
admissible set, they also shown that the admissible set is equal to the union of certain
subsets — in our terminology, basins of attraction. While Kalai and Schmeidler apply
their concept to cooperative games and games in normal (strategic) form, they do not
consider networks, the focus of our research. Once our model of network formation is
developed, then our abstract game is a particular case of the abstract game of these
earlier authors. Our contribution differs in that we develop the network framework
and characterize several equilibrium concepts from network theory in terms of their
relationships to each other and to basins of attraction and the path dominance core.
In addition, we characterize the set of von-Neumann-Morgenstern solutions and the
path-dominance core (a case of the abstract core notion introduced in Gilles 1959) in
terms of their relationships to basins of attraction. It may well be that the insightful
examples developed by these authors will lead to new sorts of examples for networks,
a question we are currently addressing. Also, Kalai and Schmeidler (1977) allow an
infinite set of possibilities, which, in a network framework, introduces a host of new
questions. We plan to address some of these in future research.
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