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Abstract

This paper examines the �bad luck� explanation for changing volatility in U.S. in-

�ation and output when agents do not have rational expectations, but instead form

expectations through least squares learning with an endogenously changing learning

gain. It has been suggested that this type of endogenously changing learning mecha-

nism can create periods of excess volatility without the need for changes in the variance

of the underlying shocks. Bad luck is modeled into a standard New Keynesian model

by augmenting it with two states that evolve according to a Markov chain, where one

state is characterized by large variances for structural shocks, and the other state has

relatively smaller variances. To assess whether learning can explain the Great Mod-

eration, the New Keynesian model with volatility regime switching and dynamic gain

learning is estimated by maximum likelihood. The results show that learning does lead

to lower variances for the shocks in the volatile regime, but changes in regime is still

signi�cant in di�erences in volatility from the 1970s and after the the 1980s.

Keywords: Learning, regime switching, great moderation, New Keynesian model, max-

imum likelihood.

JEL classi�cation: C13, E31, E50.

∗I am grateful for the advice and guidance of Eric Leeper, Kim Huynh, Brian Peterson, and Todd
Walker; for useful conversations with Fabio Milani and Bruce Preston; and for comments by the participants
of Indiana University economics department seminars. All errors are my own.

†Mailing address: 100 S Woodlawn, Bloomington, IN 47405. E-mail address: jmmurray@indiana.edu.
Phone number : (574)315-0459.



Regime Switching, Learning, and the Great Moderation 1

1 Introduction

Figure 1 shows plots of the U.S. output gap, the percentage di�erence between the actual

level of real GDP and potential GDP, and the in�ation rate, as measured by the annualized

quarterly growth rate of the GDP de�ator. Aside from standard business cycle �uctuations,

the data exhibits prolonged periods of di�ering degrees of volatility. Output and in�ation

are especially volatile during the 1970s and early 1980s, and there has been a subsequent

decline in volatility since that period. Kim and Nelson (1999a) estimate that since the �rst

quarter of 1984, there has been a permanently smaller di�erence between the growth rate of

output during expansions and during recessions.

Macroeconomics has had di�culty explaining this �Great Moderation�, as it has come to

be called. The leading explanations for the change in volatility fall into two groups: good vs.

bad monetary policy, and good vs. bad luck. Using a standard New Keynesian model, Lubik

and Schorfheide (2004) �nd empirical evidence of a change in monetary policy from bad to

good, occurring sometime between 1979 and 1982. They �nd that prior to 1979, the Federal

Reserve did not adjust the federal funds rate by more than one-to-one with in�ation, and

therefore under rational expectations, the equilibrium was indeterminate and the economy

was subject to sunspot shocks which led to greater volatility.

Many studies �nd that a change in monetary policy is not enough to explain the change

in volatility. Sims and Zha (2006) �nd that evidence that changes in U.S. volatility is

better explained by changes in luck than changes in monetary policy. Using a structural

vector autoregression model with minimal identi�cation restrictions so that it can possibly

encompass many sorts of linear dynamic macroeconomic models with a monetary policy rule,

they �nd the best �tting model is one in which there are no regime changes in the coe�cients

describing monetary policy or economic behavior, and there are only regime changes in the

variance of the exogenous shocks. Stock and Watson (2003) similarly �nd that improved

monetary policy accounts for only a small part of the slowdown in macroeconomic volatility

since 1984.

A third explanation that is just recently receiving some attention in the literature is that

expectations that evolve according to least squares learning can lead to changing periods of

volatility. Under least squares learning, agents do not know the structural form or parameters

that govern the economy. Not being able to form rational expectations, they estimate least
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squares autoregressions using past data, and use this econometric model to forecast future

variables.

Milani (2007a) estimates a New Keynesian model with least squares learning and when

splitting the sample at the same dates as Lubik and Schorfheide (2004), �nds there is little

evidence of a change in monetary policy and estimates the federal funds rate did adjust by

more than one-to-one with in�ation throughout the sample.

Primiceri (2005) demonstrates how learning on the part of the central bank can be per-

ceived as bad monetary policy. In an empirically founded model of unemployment rate and

in�ation determination he shows how mis-perceptions by the central bank about the natural

rate of unemployment and the degree of persistence of in�ation led to a bad policy prescrip-

tion during the 1970s, and therefore excessively volatile unemployment and in�ation. As

time progressed and more data became available, the Federal Reserve learned its mistakes

and eventually provided better policy, leading to a slowdown in macroeconomic volatility

after the mid-1980s. Stock and Watson (2003) provide some evidence for such an explana-

tion when they demonstrate that univariate least squares forecasts have been more precise

during less volatile periods.

Unlike previous papers in the learning literature, this paper estimates a model that

combines the bad luck explanation along with learning to determine whether learning leads

to a di�erent prediction on the amount of bad luck needed to generate the changes in volatility

seen in U.S. data. Previous papers in the learning literature have allowed volatility to be

a�ected only by learning dynamics, so it is not clear whether these explanations trump the

bad luck explanation. Changes in luck is modeled by assuming the variances of exogenous

structural shocks are determined by a regime switching process with two states. One state is

characterized by large variances of the shocks and the other has relatively smaller variances.

Being in the volatile state is considered �bad luck� as the states evolve exogenously according

to a Markov chain were the current state is only dependent on the previous state, and the

probabilities of switching between states is exogenous.

Agents do not have rational expectations, and are therefore completely unaware of any

regime switching processes. Agents do remain suspect that structural changes may occur,

but they do not have any knowledge about what types of structural changes are possible,

or any idea with what probabilities structural changes can occur. Expectations therefore

evolve according to a process similar to the Marcet and Nicolini (2003) framework where
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the weight agents give to older observations is endogenous. Speci�cally, agents begin using a

decreasing learning gain which consistent with forming ordinary least squares forecasts and

having no suspicion of structural change. If recent forecast errors become larger than the

historical average, agents then suspect a structural change may have occurred and therefore

increase their learning gain, giving larger weight to current observations which are believed

to have more likely occurred after a structural break.

While a constant learning gain is theoretically capable of producing time varying volatil-

ity, in Murray (2007) I show in a New Keynesian model with no regime changes that constant

gain learning is not able to deliver dynamics of U.S. in�ation and output much better than

rational expectations, and both frameworks especially fail to explain the excess volatility of

the 1970s. Milani (2007b) simulates a model using parameters estimated with U.S. data that

includes the endogenously changing learning gain similar to that suggested by Marcet and

Nicolini (2003) and �nds that this type of learning can produce heteroskedasticity in output

and in�ation that rational expectations simulations cannot. Moreover, his estimates imply

that during most of the 1970s decade, agents suspected structural change and therefore used

a high learning gain.

This paper builds on Milani's analysis by also allowing for recurrent regime changes in

the volatility of the structural shocks. Estimation of this model decomposes the changes in

volatility into changes in the volatility of structural shocks and endogenous changes in the

learning gain. The main �nding is that learning indeed leads to much smaller variances of

structural shocks in the volatile regime. However, changes in regime are still signi�cant and

the learning frameworks and rational expectation framework make similar predictions to the

periods in U.S. history when the economy was in the volatile regime. Despite the ability for

learning to explain much of the volatility, the change in the dynamic gain appears to play

an insigni�cant role, and the rational expectations model dominates the learning models in

terms of its �t to the data.

The paper proceeds as follows. Section 2 presents the New Keynesian framework and

regime switching process. Section 3 describes the learning process and how constant gain

learning and dynamic gain learning can generate time varying volatility. Section 4 describes

the data and estimation procedure. Section 5 presents the estimation results and interprets

the �ndings, and section 6 concludes.
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2 Model

The crucial extensions of learning with an endogenously changing gain and a Markov chain

process for changes in structural volatility are incorporated into a standard New Keynesian

model of output and in�ation determination and monetary policy. This section describes the

rational expectations version New Keynesian model and the next section introduces learning

in the linearized version of the model.1

There are a continuum of consumers types on the unit interval, and a continuum of

intermediate goods producers on the same unit interval. Each consumer type has a speci�c

labor skill that is only hired by the corresponding intermediate goods producer. It is assumed

there are a number of consumers of each type, so that no consumer has market power over

the wage, and that there are an equal number of consumers in each type, so that relative

output levels of intermediate goods do not depend on the distribution of consumer types.

There is one �nal good that is used for consumption, and produced using all the interme-

diate goods. The intermediate goods are imperfect substitutes for each other in production,

therefore intermediate goods �rms are monopolistically competitive. Prices for intermediate

goods are subject to a Calvo (1983) pricing friction where only a fraction of �rms are able to

re-optimize their price every period, and the �rms fortunate to do so is randomly determined,

independently of �rms' histories.

2.1 Consumers

Each consumer type has a speci�c labor skill that can only be hired by a speci�c intermediate

goods producing �rm. Since each intermediate goods �rm has a di�erent labor demand, wage

income will be di�erent for each consumer type. However, given a perfect asset market,

consumption will be equal across all consumers. Each consumer type i ∈ (0, 1) maximizes

utility,

E0

∞∑
t=0

βt

 1

1− 1
σ

ξt (ct − ηct−1)
1− 1

σ − 1

1 + 1
µ

nt(i)
1+ 1

µ

 ,
1This methodology is perhaps the most common means for putting learning into macroeconomic models,

but Preston (2005) demonstrates that since the least squares expectations operator does not follow the law
of iterated expectations, this method is not consistent with learning inherent in the microfoundations of the
model.
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subject to the budget constraint,

ct + bt(i) =
1 + rt−1

1 + πt

bt−1(i) +
wt(i)

pt

nt(i) + Πt − τt.

Consumption at time t, given by ct, is not indexed by individual type i since it is equal across

all agents. The remaining variables include ξt, which is an aggregate preference shock, nt(i)

and wt(i)/pt are the labor supply and real wage of individual i at time t, respectively, bt(i) is

individual i's purchase of real government bonds at time t, rt is the nominal interest rate paid

on government bonds, πt is the in�ation rate of the price of the �nal good, Πt is the value

of pro�ts earned by owning stock in �rms, and τt is the value of real lump sum taxes. The

preference parameters are σ ∈ (0,∞), which is the intertemporal elasticity of substitution,

µ ∈ (0,∞), which is the elasticity of labor supply, and η ∈ [0, 1), which is the degree of habit

formation.

Habit formation is added to the model because it introduces a source of consumption (and

therefore output) persistence that has been found to be signi�cant in rational expectations

models. For example, Smets and Wouters (2005) estimate a rational expectations New

Keynesian model with numerous extensions for both the United States and Euro area and

�nd point estimates for the degree of habit formation very close to unity. Furthermore,

Fuhrer (2000) �nds that habit formation leads to �hump shaped� impulse response functions

that can be supported by the data. The importance of habit formation may not be so

important when dropping the assumption of rational expectations. Milani (2007a) shows

that under learning the estimate for the degree of habit formation falls close to zero.

Log-linearizing the consumers' �rst order conditions leads to the following Euler equation,

λ̂t = Etλ̂t+1 + r̂t − Etπt+1, (1)

where a hat indicates the percentage deviation of the variable from its steady state.2 Here,

λ̂t is the marginal utility of real income, given by,

λ̂t =
1

(1− βη)(1− η)

[
βησEtĉt+1 − σ(1 + βη2)ĉt + σηĉt−1

]
+
(
ξ̂t − βηEtξ̂t+1

)
. (2)

2A hat is omitted from in�ation because it will be necessary to assume the steady state in�ation rate is
equal to zero when log-linearizing the �rms' pro�t maximizing conditions.
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2.2 Production

There is one �nal good used for consumption and investment which is sold in a perfectly

competitive market and produced with a continuum of intermediate goods. The production

function is given by,

yt =
[∫ 1

0
yt(i)

θ−1
θ di

] θ
θ−1

, (3)

where yt is the output of the �nal good, yt(i) is intermediate good i, and θ ∈ (1,∞) is the

elasticity of substitution in production. Pro�t maximization leads to the demand for each

intermediate good,

yt(i) =

[
pt(i)

pt

]−θ

yt, (4)

where pt(i) is the price of intermediate good i and pt is the price of the �nal good. Substi-

tuting equation (4) into (3) leads to a consumption price index that holds in equilibrium,

pt =
[∫ 1

0
pt(i)

1−θdi
] 1

1−θ

. (5)

Each intermediate good is produced according the constant returns to scale production

function yt(i) = ζtnt(i), where ζt is an exogenous technology shock common to all �rms.

Given a level of production yt(i), �rms choose labor demand to minimize total cost wt(i)
pt
nt(i).

When labor markets clear, it can be shown that �rm i's optimal choice for labor leads to the

log-linearized marginal cost of �rm i equal to,

ψ̂t(i) =
1

µ
ŷt(i)− λ̂t −

(
1

µ
+ 1

)
ζ̂t. (6)

Summing equation (6) across all �rms leads to the average marginal cost in the economy,

ψ̂t =
1

µ
ŷt − λ̂t −

(
1

µ
+ 1

)
ζ̂t. (7)

Firms' pricing decisions are subject to the Calvo (1983) pricing friction, where only a

constant fraction of �rms are able to re-optimize their in a given period. I suppose that �rms

who are not able to re-optimize their price may adjust their price by a fraction, γ, of the

previous period's in�ation rate. Let ω ∈ (0, 1) denote the fraction of �rms who are not able

to re-optimize their prices each period. Since these speci�c �rms are randomly determined,
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ωT is the probability a �rm will not be able to re-optimize its price for T consecutive periods.

A �rm who is able to re-optimize its price maximizes the following present discounted utility

value of pro�ts earned while the �rm is unable to re-optimize its price again:

E∗
t

∞∑
T=0

(ωβ)T λt+T

λt

{(
pt(i)π

∗
t+T

pt+T

)
yt+T (i)−Ψ [yt+T (i)]

}
, (8)

where Ψ [yt+T (i)] is the real total cost function of producing yt+T (i) units, given the optimal

decision for labor, and π∗t+T =
∏T

j=1(1+γπt+j−1) is degree to which the �rm's price is able to

adjust according to in�ation indexation. It can be shown that the �rst order condition for

pt(i) combined with the �nal good price index, equation (5), leads to the log-linear Phillips

equation,

πt =
1

1 + βγ

[
γπt−1 + βEtπt+1 +

µ(1− ω)(1− ωβ)

ω(µ+ θ)
ψ̂t

]
(9)

2.3 Fully Flexible Prices

To take this model to data on the output gap it is convenient to rewrite the model in terms

of the di�erence from the outcome in which there are no nominal rigidities. Let ỹt = ŷt − ŷf
t

and λ̃t = λ̂t − λ̂f
t denote the percentage deviation of output and marginal utility from their

fully �exible price outcome. Under fully �exible prices the linearized Euler equation, (1),

and marginal utility of income, (2), still hold. Using these conditions and imposing goods

market equilibrium condition implies,

λ̃t = Etλ̃t+1 + r̂t − Etπt+1 − rn
t , (10)

λ̃t =
1

(1− βη)(1− η)

[
βησEtỹt+1 − σ(1 + βη2)ỹt + σηỹt−1

]
, (11)

where rn
t is the percentage deviation of natural interest rate from its steady state. The

�natural interest rate� is the interest rate that would occur under fully �exible prices. I

suppose that rn
t follows the stochastic exogenous process,

rn
t = ρnr

n
t−1 + εn,t, (12)

where εn,t is an independently and identically distributed shock.

When prices are fully �exible, ω = 0 in the maximization problem given in equation
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(8). It can be shown in this case that the �rst order condition implies the marginal cost is

identical for every �rm and always constant. Under fully �exible prices equation (7) implies,

ψ̂f
t = 0 =

1

µ
ŷf

t − λ̂f
t −

(
1

µ
+ 1

)
ζ̂t.

One can solve this equation for ζ̂t and substitute that back into the equation for marginal

cost (7). Plugging this expression for marginal cost into equation (9) yields the following

Phillips curve in terms of the output gap,

πt =
1

1 + βγ

[
γπt−1 + βEtπt+1 +

(1− ω)(1− ωβ)

ω(µ+ θ)
(ỹt − µλ̃t)

]
. (13)

While this expression for the Phillips curve is not subject to a structural shock, when esti-

mating the model by maximum likelihood it is convenient to have a shock here to avoid the

problem of stochastic singularity. The Phillips curve is amended with a �cost-push� shock

so the form that is estimated is given by,

πt =
1

1 + βγ

[
γπt−1 + βEtπt+1 + κ(ỹt − µλ̃t) + ut

]
, (14)

where κ is the reduced form coe�cient on the marginal cost and ut is an exogenous cost-push

shock that evolves according to,

ut = ρuut−1 + εu,t, (15)

where εu,t is an independently and identically distributed shock.

2.4 Monetary Policy

The nominal interest rate is determined jointly with output and in�ation by monetary policy.

In this paper I assume the monetary authority follows a Taylor (1993) type rule of the form,

r̂t = ρrr̂t−1 + (1− ρr) (ψπEtπt+1 + ψyEtỹt+1) + εr,t (16)

where ρr ∈ [0, 1) is a degree of interest rate smoothing desired by the monetary authority,

ψπ ∈ (0,∞) is the feedback on the interest rate to expected in�ation, ψy ∈ (0,∞) is the

feedback on the interest rate to the expected output gap, and εr,t is an independently and
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identically distributed exogenous monetary policy shock.

2.5 Regime Switching

The bad luck explanation for why the United States experienced periods of excessive volatility

is that the variances of the structural shocks were larger during these periods. To model

this explanation in the framework of the New Keynesian model I suppose the variance of

the natural interest rate shock εn,t, the cost push shock, εu,t, and the monetary policy shock

εr,t are determined by two states. Let state L, denoted by sL, be the state where the shocks

have low volatility, and state H, denoted by sH , be the state where the shocks have high

volatility.

The variances of the structural innovations in a given state are independently normally

distributed with mean zero and variances given by,

V ar [εt(st)] =




σ2

n,L 0 0

0 σ2
u,L 0

0 0 σ2
r,L

 , if st = L


σ2

n,H 0 0

0 σ2
u,H 0

0 0 σ2
r,H

 , if st = H



, (17)

where εt(st)
′ = [εn,t(st) εu,t(st) εr,t(st)], and the variances in the high volatility state are

greater than or equal to the variances in the low volatility state.

The state st evolves according to a two state Markov chain. Let pj ∈ (0, 1) denote the

probability of staying in state j at time t, given the economy is at state j at time t− 1, for

j ∈ {L,H}. This implies that the probability of moving from state i in t − 1 to state j in

time t, where i 6= j is given by 1 − pj . The state then evolves according to the transition

matrix,

P =

 pL 1− pL

1− pH pH

 . (18)

Let S ′t = [P (st = L) P (st = H)] denote the probability of being in each state at any given
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time t. The transition matrix assumes the state evolves according to,

EtSt+1 = PSt (19)

Notice this regime switching framework makes the somewhat restrictive assumption that

all structural shocks are always in the same regime. A less restrictive assumption would

be that one or more shocks could be in one regime while one or more others could be in

another regime. Such a setup would require specifying a transition matrix for each structural

shock. If one assumed that the di�erent shocks transitioned between regimes independently

of one another, this would introduce four more parameters to be estimated. If one wanted

to generalize the process so that there is some dependence, this would involve even more

parameters. To keep the number of parameters to estimate tractable, and to avoid over-

�tting the data, I assume that all shocks are in the same regime in a given time period.

3 Learning

Instead of having rational expectations, agents form expectations by estimating least squares

regression models, where expectations of future output and in�ation are given by the forecasts

from these models. Agents are assumed to have no knowledge of the structural form of the

economy, the parameters that govern the economy, or the regime switching process. They do

know the reduced form of the economy follows a VAR(1) process, and they use this model

and past data to form their forecasts.

The model in the previous section only allows for structural changes in the volatility

in the shocks, and since the model is linearized, agents are indi�erent to the additional

risk. Even so, I suppose that agents suspect that structural changes of unknown types are

possible so they may decide to give more weight to recent observations in their estimation

procedure. One way to model this is to use constant gain learning, which is consistent with

agents using forecasts based on weighted least squares estimates, where the weights decline

geometrically with the age of the observations. With a constant gain, the weight put on the

latest observation is always the same, regardless of how much data the agents already have

for their forecasts. One bene�t of this type of learning is that learning dynamics persist in

the long run.
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Authors such as Sargent (1999) and Evans and Honkapohja (2001) has suggested that

constant gain learning is a natural way to model expectations in a real world where structural

changes, perhaps large or small, are always possible. The drawback of constant gain learn-

ing is that it implies agents always have the same level of suspicion for structural changes,

regardless of recent macroeconomic activity or the size of recent forecast errors. If agents

instead use ordinary least squares (OLS), then the weight agents give to additional obser-

vations diminishes as their sample size approaches in�nity. Said another way, the learning

gain decreases and approaches zero as time approaches in�nity, causing learning dynamics

to disappear completely in the long run. Learning with OLS also implies that agents believe

structural changes that should impact their decisions are impossible.

Constant gain learning can in theory lead to time varying volatility of expectations, and

therefore time varying volatility for output and in�ation. This a�ect depends on the size of

the constant learning gain, but for empirically plausible values, this type of learning fails to

deliver very big e�ects. Williams (2003) �nds this to be the case in a simple model with

simulated data and Murray (2007) estimates that constant gain learning provides dynamics

very similar to rational expectations.

Marcet and Nicolini (2003) suggest an alternative way to model dynamic expectations.

Instead of assuming that agents never suspect a structural change, as is consistent with

OLS, or assuming that agents always suspect a structural change with equal likelihood, as

is consistent with a constant gain, they take a mixture of these methods where the learning

gain changes endogenously. Suppose agents begin with no suspicion of recent structural

changes. As time progresses they form their expectations using a decreasing learning gain

consistent with OLS. Agents will suspect a structural change may have occurred if recent

forecast errors are larger than historical averages. When this happens, agents switch to a

larger learning gain, which puts more weight on the most recent observations, ones that are

believed to have more likely occurred after a structural change. As long as forecast errors

are large, the learning gain remains at this high point. When forecast errors start becoming

small, the learning gain decreases at a rate consistent with OLS. I explain in more detail

the endogenous learning gain process below, but �rst it is �rst necessary to explain speci�c

details of least squares learning in the framework of a dynamic stochastic general equilibrium

model like the New Keynesian model in Section 2.
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3.1 Least Squares Learning

The log-linearized model in Section 2 can be expressed in the general form:

Ω0xt = Ω1xt−1 + Ω2E
∗
t xt+1 + Ψzt, (20)

zt = Azt−1 + εt(st) (21)

where E∗
t denotes possibly non-rational expectations, xt is a vector of minimum state vari-

ables, and zt is a vector of structural shocks. For the New Keynesian model, xt = [ỹt πt r̂t λ̃t]
′

and zt = [rn
t ut εr,t]

′. The minimum state variable solution of the model implies the rational

expectation for xt+1 is given by,

Etxt+1 = Gxt +HEtzt+1, (22)

where the elements of the matrices G and H are a function of the parameters of the model

and may be determined by the method of undetermined coe�cients. Agents that learn do not

know the structural form or the parameters that govern the economy, but do use the reduced

form of the economy for their forecasting model. Agents' information sets are restricted only

to past data on xt, so they are unable to collect data on past structural shocks to estimate

matrix H. Therefore, agents collect past data on xt to form least squares estimates for the

non-zero columns of G.

Agents do know what columns of G are equal to zero, and therefore do not use the

associated variables as explanatory variables in their regression. In terms of the New Key-

nesian model in the previous section, the only non-zero column of G is that which multiplies

past marginal utility of income, λ̃t. When there is a positive degree of habit formation, not

only are expectations of next period's output important for consumers' decisions, so is next

period's future marginal utility of income which involves a two period ahead forecast for

output. Since the only sources of persistence in the model are on output (habit formation),

in�ation (price indexation), and the interest rate (monetary policy smoothing), these are the

only variables whose lags agents use as explanatory variables.

The timing in which agents make expectations and decisions in a given period is as

follows. At the beginning of period t agents wake up with data realized through period

t − 1. They collect this data and use the least squares estimate for G to make forecasts
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for future realizations of variables such as output and in�ation. Given these expectations,

agents consumption and pricing decisions are implemented and only then do time t outcomes

become realized. In the next period, these outcomes become available as data to the agents,

and the process begins again.

There is no constant term in the general form of the model, equation (20), or in the

rational expectation, given in equation (22), since all variables are expressed in terms of

percentage deviations from the steady state or �exible price outcome. Since agents are

not endowed with information about the parameters of the model, it is realistic to suppose

that agents also estimate a constant term in equation (22). Let Ĝ∗
t denote agents' time t

estimate for the non-zero columns of matrix G and a column for a constant term so that

Ĝ∗
t = [ĝt Ĝ

NZ
t ], where ĝt is the time t estimate of the constant term and ĜNZ

t is the time t

estimate for the non-zero columns of G.

If agents use OLS, then,

(
Ĝ∗

t

)′
=

(
1

t− 1

t−1∑
τ=1

x∗τ−1x
∗
τ−1

′
)−1 (

1

t− 1

t−1∑
τ=1

x∗τ−1x
′
τ

)
, (23)

where x∗
′

t = [1 xNZ′
t ] is the vector of explanatory variables agents use. Agents form the

expectation,

E∗
t xt+1 = ĝt + ĜtE

∗
t xt = (I + Ĝt)ĝ0,t + Ĝ2

txt−1, (24)

where Ĝt denotes the time t estimate for G obtained from Ĝ∗
t with the zero columns �lled

back in. The least squares estimate for Ĝ∗
t can be rewritten in the following recursive form:

Ĝ∗
t = Ĝ∗

t−1 + gt(xt−1 − Ĝ∗
t−1x

∗
t−2)x

∗
t−2

′R−1
t , (25)

Rt = Rt−1 + gt(x
∗
t−2x

∗
t−2

′ −Rt−1), (26)

where gt = 1/(t− 1) is the learning gain.3 The recursive form shows precisely how expecta-

tions are adaptive. The term enclosed in parentheses in equation (25) is the realized forecast

error for the previous estimate Ĝ∗
t−1. The degree to which agents adjust their expectations

depends on the size of this forecast error, the variance of the estimated coe�cients, captured

by the inverse of matrix Rt, and the size of the learning gain, gt. The larger is the learning

3To show this, let Rt = 1
t−1

∑t−1
τ=1 x∗τ−1x

∗′

τ−1 and
(
Ĝ∗

t

)′
= R−1

t

(
1

t−1

∑t−1
τ=1 x∗τ−2x

′
τ−1

)
.
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gain, the more expectations respond to the latest forecast error. When agents use OLS, gt

approaches zero as time approaches in�nity. Under constant gain learning, gt remains at

some constant level, g, so the degree to which new observations can a�ect expectations is

always the same.

Substituting the expectation in equation (24) into the structural form, (20), leads to the

following evolution for xt,

xt = Ω−1
0 Ω2(I + Ĝt)ĝ0,t + Ω−1

0

(
Ω1 + Ω2Ĝ

2
t

)
xt−1 + Ω−1

0 Ψzt, (27)

where ĝ0,t and Ĝt are determined by the learning process in equations (25) and (26).

This form illustrates how learning with a positive learning gain can lead to time-varying

volatility for xt even if with a constant variance for zt. Unlike standard rational expectations

models, the constant term and matrix multiplying xt−1 are time-varying. The magnitude

of these matrices depends on the size of the learning gain and the size of agents' forecast

errors. Time variation in these matrices causes time variation in the volatility of xt. Note

this is true for any non-zero value for the learning gain gt. Even a constant learning gain

can technically generate time-varying volatility, but time variation in the learning gain has

been suggested by Marcet and Nicolini (2003) and Milani (2007b) to better explain such

phenomenon.

3.2 Dynamic Gain Learning

Under a mixed learning framework, the learning gain gt decreases over time, but may en-

dogenously jump to a higher level when forecast errors are especially large. Let αt ≡ 1/gt

be the inverse of the learning gain, which under ordinary least squares is interpreted as the

sample size. The learning gain is assumed to evolve according to,

αt =


αt−1 + 1 if

1

J

J∑
j=1

1

n

n∑
v=1

∣∣∣xt−j(v)− Ĝ∗
t−j(v)x

∗
t−j−1

∣∣∣ < νt

α otherwise

 (28)

where n denotes the number of variables in the model, xt−j(v) denotes the vth element of

xt−j and Ĝ∗
t−j(v) denotes the vth row of Ĝ∗

t−j, which is used to forecast variable v. The

parameter J is the number of recent periods agents look at when deciding to change their
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learning gain. Marcet and Nicolini (2003) assume J = 1, so that agents may change their

learning gain looking at only the most recent forecast error. I �x J = 8, so for quarterly data

agents examine the forecast errors from the most recent two years and adjust the learning

gain if the average forecast error during this time is too large. The variable ν ∈ (0,∞) is

the threshold for how large the forecast errors must be to induce agents to increase their

learning gain. Similar to Milani (2007b) this threshold is set equal to the average size of

forecast errors up through date t− 1, which is given by,

νt =
1

t− 1

t−1∑
j=1

1

n

n∑
v=1

∣∣∣xt−j(v)− Ĝ∗
t−j(v)x

∗
t−j−1

∣∣∣ .
Since forecast errors for each variable v is given as a percentage deviation from the steady

state or potential, they are added up over all the variables that agents forecast. This learning

mechanism can nest the special cases when agents always use OLS or always use a constant

gain. To restrict agents to always use OLS, νt can be set to zero for all t. To restrict agents

to always use a constant gain, νt can be set to in�nity for all t.

This learning mechanism introduces one additional parameter to estimate jointly with

the parameters of the New Keynesian model and regime switching process, the threshold

learning gain, g ≡ 1/α.

4 Estimation

The model is estimated with quarterly U.S. from 1960:Q1 through 2007:Q1 on the output gap,

as measured by the congressional budget o�ce, the in�ation rate of the GDP de�ator, and

the Federal Funds rate. The model conforms to a state-space representation with Markov-

switching in the variance of the error term and is estimated using the Kim and Nelson

(1999b) technique for combining the Kalman �lter that evaluates a state-space model with

the Hamilton (1989) �lter for evaluating Markov-switching processes.

4.1 Maximum Likelihood Procedure

The state side of the model is given by equations (27) and (21). Let GAPt denote data on

the output gap, INFt denote data on in�ation, and FFt denote data on the Federal Funds
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rate. The observation equations are given by,

GAPt = 100ỹt,

INFt = π∗ + 400πt,

FFt = r∗ + π∗ + 400r̂t.

The state variables are multiplied by 100 to convert the decimals into percentages, and the

in�ation rate and federal funds rate are multiplied by 4 to convert the quarterly rates to

annualized rates. The New Keynesian model assumes that the steady state in�ation rate is

equal to zero, but since this is not likely the case in the data, the annualized steady state

in�ation rate, given by π∗, is estimated along with the other parameters of the model. The

steady state gross real interest rate is set equal to the inverse of the discount factor; therefore

r∗ = 400(1− 1/β).

The log-likelihood is maximized with respect to the threshold learning gain, g, the

Markov-switching probabilities, ph and pL, the parameters of the New Keynesian model,

and the variances of the structural shocks for each regime. The discount factor is not esti-

mated but instead �xed to β = 0.99 which implies a steady state real interest rate of about

4%. The elasticity of substitution between intermediate goods, θ, and the degree of price

�exibility, ω, appear multiplicatively in the Phillips curve (13) and so only the reduced form

coe�cient, κ, is estimated. Before revealing the estimation results, it is �rst necessary to

specify how initial conditions for the learning process are set.

4.2 Initial Conditions

Aside from standard initial conditions for the Kalman �lter and Hamilton �lter, it is necessary

to specify initial conditions for the learning process given in equations (25) and (26). How

values are set for initial expectation matrices, ĝ0, Ĝ
∗
0, and R0, can have a dramatic e�ects

on the estimation results. Despite this dependence, there is little general consensus for how

initial expectations should be speci�ed.

Williams (2003) and Murray (2007) show that using the rational expectations solution for

initial expectations produces nearly identical dynamics as assuming expectations are rational

throughout the sample. Given the model is E-stable, this result is not too surprising. If the

conditions for E-stability are met, under a decreasing learning gain consistent with OLS, the
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model will converge to the rational expectations solution when in the neighborhood of this

solution.

Most initialization methods are therefore based on pre-sample evidence. Slobodyan and

Wouters (2007) estimate the rational expectations version of the model on pre-sample data,

and use the implied expectations as the initial condition for the sample. Milani (2007a,

2007b) sets the initial conditions for the learning matrices equal to VAR(1) estimates from

de-meaned pre-sample data. Similarly, I estimate the appropriate regressions with pre-

sample data from 1954:Q2 through 1959:Q4. In the New Keynesian framework, agents

estimate four regression models for the following dependent variables: output gap, in�ation

rate, interest rate, and marginal utility of income gap. Each of these variables depends on

lagged output gap, in�ation rate, and interest rate. The data must �rst be transformed into

the same terms as the state vector, xt. For the output gap, in�ation rate, and interest rate

this is done according to:

ỹt =
1

100
GAPt

πt =
1

400
(INFt − π∗),

r̂t =
1

400
(FFt − r∗ − π∗).

(29)

Expectations for these �rst three variables in the state vector is found by estimating a

VAR(1) on [ỹt πt r̂t]
′. Data for the marginal utility of income gap is found by plugging into

equation (11) data for the output gap, lagged output gap, and expected future output gap

predicted by the VAR(1). Expectations for λ̃t are then found by regressing this simulated

data on lagged [ỹt πt r̂t]
′.

5 Results

To analyze how learning and regime switching in volatility are related, the New Keynesian

model is estimated under rational expectations, constant gain learning, and dynamic gain

learning gain. Table 6 presents the parameter estimates for each case. Under constant

gain learning, the estimate for learning gain is essentially equal to zero. This implies that

expectations do not evolve through the sample. Even so, the predictions under constant

gain learning are not the same rational expectations, since the coe�cient matrices agents

use to form expectations are di�erent. The expectation matrices for the learning case are
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initialized to pre-sample VAR(1) results, which do not coincide with rational expectations.

The estimated threshold gain under dynamic gain learning has a very small point estimate,

g = 0.0045, but it is statistically signi�cantly di�erent from zero. This implies that expec-

tations do evolve over time, but the rate at which agents learn is very small.

Comparing the standard deviation of the shock processes illustrates how expectations

explain macroeconomic volatility. There is little di�erence in the predictions for the volatility

of the cost push and monetary policy shocks, but there is a substantial di�erence in the

volatility for the natural rate shock. For both the low and high volatility regime, the estimate

for the variance of the natural rate shock under rational expectations is almost twice as high

as under constant gain learning, and almost four times higher than under dynamic gain

learning. This implies that using the VAR(1) on pre-sample data to specify expectations

explains much of the volatility in output, but evolving expectations with dynamic learning

gain explains even more. The persistence of the natural rate shock is also somewhat larger

under rational expectations (ρn = 0.8705), than under dynamic gain learning (ρn = 0.7484)

or constant gain learning (ρn = 0.6936).

Other parameter estimates that di�er across models include the intertemporal elasticity

of substitution and the Phillips curve slope. The elasticity of substitution is approximately

σ = 0.0073 under rational expectations, σ = 0.2560 under dynamic gain learning, and

σ = 0.1824 under constant gain learning. This implies the intertemporal consumption trade-

o� is much more sensitive to the expected real interest rate with the initial expectations for

the learning processes than under rational expectations. Moreover, dynamic gain learning

leads to an even higher estimate than the zero constant gain, although the di�erence is not

statistically signi�cant.

The estimates for the Phillips curve coe�cient reveals how learning dynamics can alter

the prediction for the degree of price �exibility. The coe�cients under rational expectations

and constant gain learning are both very close to zero, which implies a very small degree

of price �exibility. However, under the dynamic gain learning, the only framework in which

expectations are evolving, the Phillips curve coe�cient is much larger, implying a greater

degree of price �exibility.

The Markov probabilities are very similar across the models. Both the low and high

volatility regimes are very persistent which implies changes in luck is still very important

in explaining changes in volatility in the sample, regardless of how expectations are formed.
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Figure 2 shows plots the smoothed estimate for the probability of being in the high volatility

regime throughout the sample for each of the three models. The middle panel also shows

the evolution of the dynamic learning gain during the same time. All three models predict

deliver strong probabilities for being in each regime for most of the sample. During the

early 1970s, middle 1970s and late 1970s and early 1980s, all models predict the economy

was in the volatile regime, with brief returns to the low volatility regime between these

times. Since 1985, all models predict the economy has remained in the low volatility regime.

These results are consistent with previous studies such as Kim and Nelson (1999a) and

Justiniano and Pimiceri (2006) which conclude changes in the volatility of exogenous shocks

are signi�cant in explaining time-varying macroeconomic volatility.

The expected number of quarters the U.S. economy has spent in the volatile regime can

be found by summing the probabilities for each period over the entire sample period. Doing

so reveals the economy is in the volatile regime for an expected 7.77 years under rational

expectations, 9.17 years under dynamic gain learning, and 12.26 years under constant gain

learning. The greater number of volatile periods predicted under the zero constant gain

implies the initial conditions for expectations leads to more volatile periods, and the smaller

estimate predicted under dynamic learning implies that evolving expectations may reduce

the need for the number of volatile periods. Since the dynamic learning gain is so small,

expectations are very slow to evolve, so this e�ect still does not outweigh the e�ect of the

initial expectations.

The plot of the dynamic learning gain in the middle panel of �gure 2 demonstrates that

while the learning gain was always, there was actually little movement in the gain throughout

the sample. Since the estimate for threshold learning gain is so small, there is little it can

move as time progresses. The plot indicates that throughout the 1970s agents forecast errors

were larger than the historical average and began to decline since 1984. The learning gain

again jumped at the end of the 2001 recession and remained at the threshold level until 2003.

Figures 3, 4, and 5 show the smoothed estimated paths of the natural rate, cost push, and

monetary policy shocks, with the probability of being in the volatile regime superimposed.

The volatility of all three shocks are signi�cantly greater in the volatile regime under each

speci�cation of the model. Comparing the natural rate shock paths shows again that rational

expectations predicts much larger shocks and greater persistence than the learning models.

All models indicate recessions are characterized by negative natural interest rate shocks,
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especially the recessions in 1974 and 1981.

The cost push shocks are very similar across models, with the largest shocks occurring

during the 1970s and early 1980s. The learning models predict somewhat larger negative

cost push shocks during the 1974 and 1981 recessions. The monetary policy shocks are very

small throughout most of the sample with the exception of very volatile shocks during the

recessions of 1974, 1979, and 1981.

Figure 6 shows the evolution of agents expectations for in�ation and output under learn-

ing and rational expectations. In each plot, the solid line represents the smoothed estimate

for the output gap and in�ation, the dashed line represents expectations under learning,

and the dotted line represents what the rational expectation would be with the New Key-

nesian parameters estimated for each learning speci�cation. The results show that under

both learning models, the expectation for next period's in�ation lags slightly behind the

rational expectation. This is to be expected, since learning expectations do not have access

to information about the shock process zt, but rational expectations does. The expectations

for in�ation under dynamic gain learning are especially close to rational expectations, while

there is somewhat less volatility for in�ation under the zero constant gain.

The paths of expected output under learning and rational expectations are very di�erent.

Under both learning frameworks the implied rational expectations are much more volatile.

Moreover, rational expectations over-estimate the output gap throughout most of the sample,

while the learning models lead to under-estimates of the output gap for much of the 1970s

and 1980s and small over-estimates during the expansionary periods of the 1960s and 1990s.

Table 6 presents a number of criteria for comparing the relative �t of the three models.

The root mean squared error (RMSE) for the output gap, in�ation, and Federal Funds rate

are all smallest under rational expectations, but only by a very small amount. To determine

if the three models adequately explain time-varying volatility, a �rst order autoregression

is estimated on the squared residuals for each model. Despite the regime switching process

for stochastic volatility, the results indicate the variance of the residuals is still signi�cantly

positively autocorrelated for most of the cases, with the exception of the output gap under

rational expectations, and the output gap and in�ation under constant gain learning.

Plots of the residuals in �gures 7, 8, and 9 show that the largest errors for the output gap

and in�ation are made during the 1970s and early 1980s, and very large errors are made for

the Federal Funds rate as Paul Volcker begins his tenure as chairman of the Federal Reserve.
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These failures of the model are typical for standard New Keynesian models with rational

expectations and no regime changes, indicating these extensions still do not fully explain

time-varying macroeconomic volatility.

6 Conclusion

Estimates of the New Keynesian model with dynamic gain learning and Markov-switching

volatility indicate that dynamic gain learning and expectations speci�ed by VAR(1) estimates

on pre-sample data lead to much lower predictions for the variance of the natural rate shock

in the low and high volatility regimes, however changes in volatility in U.S. history still

depends on exogenous changes in the volatility of structural shocks. Said another way,

changes in luck is still an important empirically important explanation for time-varying

volatility, but the degree of bad luck needed is smaller under learning. Most of this decrease

in bad luck, that is the decrease in the variance of the structural shocks, is found to come

from the speci�cation of initial expectations, but some is explained by the time-variation

in expectations predicted by the dynamic learning gain process. Analysis of the smoothed

estimate for the evolution of the probability of being in the high volatility regime indicate

the United States was in the volatile regime during much 1970s and early 1980s, a �nding

which is robust for rational expectations, constant gain learning, and dynamic gain learning.

Nonetheless, under dynamic gain learning, expectations do evolve slowly over the sample

and agents have the largest learning gain during these same periods of U.S. history.
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Figure 1: Output Gap and In�ation

Output Gap In�ation
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Table 2: Model Comparisons

Rational Expectations Dynamic Gain Constant Gain
RMSE Output Gap 3.12 3.13 3.18
RMSE In�ation 4.41 4.69 4.69
RMSE Federal Funds Rate 5.01 5.05 5.09
AR(1) Output Variance 0.0904 (0.0730) 0.1715 (0.0722) 0.1240 (0.0728)
AR(1) In�ation Variance 0.1760 (0.0716) 0.1364 (0.0699) 0.1073 (0.0653)
AR(1) Fed Funds Variance 0.3851 (0.0670) 0.3798 (0.0659) 0.3798 (0.0636)
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Figure 2: Smoothed Probability in Volatile State
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Figure 3: Smoothed Estimate of Natural Rate Shock
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Figure 4: Smoothed Estimate of Cost Push Shock
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Figure 5: Smoothed Estimate of Monetary Policy Shock
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Figure 6: Agents' Expectations
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Figure 7: One Period Ahead Output Forecast Error
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Figure 8: One Period Ahead In�ation Forecast Error
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Figure 9: One Period Ahead Federal Funds Rate Forecast Error
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