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Abstract

One of the implications of the creation of Basel Committee on Banking Supervision was
the implementation of Value-at-Risk (VaR) as the standard tool for measuring market risk.
Since then, the capital requirements of commercial banks with trading activities are based
on VaR estimates. Therefore, appropriately constructed tests for assessing the out-of-sample
forecast accuracy of the VaR model (backtesting procedures) have become of crucial practical
importance. In this paper we show that the use of the standard unconditional and indepen-
dence backtesting procedures to assess VaR models in out-of-sample composite environments
can be misleading. These tests do not consider the impact of estimation risk and therefore
may use wrong critical values to assess market risk. The purpose of this paper is to quan-
tify such estimation risk in a very general class of dynamic parametric VaR models and to
correct standard backtesting procedures to provide valid inference in out-of-sample analyses.
A Monte Carlo study illustrates our theoretical findings in finite-samples and shows that our
corrected unconditional test can provide more accurately sized and more powerful tests than
the uncorrected one. Finally, an application to S&P500 Index shows the importance of this
correction and its impact on capital requirements as imposed by Basel Accord.

Keywords and Phrases: Backtesting; Basel Accord; Conditional Quantile; Estimation
Risk; Forecast evaluation; Fixed, rolling and recursive forecasting scheme; Risk management;
Value at Risk.
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1 Introduction

In the aftermath of a series of bank failures during the seventies a group of ten countries (G-10)

decided to create a committee to set up a regulatory framework to be observed by internationally

active banks operating in these member countries. This committee coined as Basel Committee on

Banking Supervision (BCBS) was intended to prevent financial institutions, in particular banks,

from operating without effective supervision.

The subsequent documents derived from this commitment focused on the imposition of capital

requirements for internationally active banks intending to act as provisions for losses from adverse

market fluctuations, concentration of risks or simply bad management of institutions. The risk

measure agreed to determine the amount of capital on hold was the Value-at-Risk (VaR). In

financial terms, this is the maximum loss on a trading portfolio for a period of time given a

confidence level. In statistical terms, VaR is a quantile of the conditional distribution of returns

on the portfolio given agent’s information set. More formally, denote the real-valued time series

of portfolio returns or Profit and Losses (P&L) account by Yt, and assume that at time t− 1 the

agent’s information set is given by Wt−1, which may contain past values of Yt and other relevant

economic and financial variables, i.e., Wt−1 = (Yt−1, Z
′
t−1, Yt−2, Z

′
t−2...)

′. Henceforth, A′ denotes

the transpose matrix of A. Let Ft−1 be the σ-algebra generated by Wt−1. Assuming that the

conditional distribution of Yt given Wt−1 is continuous, we define the α-th conditional VaR of Yt

given Wt−1 as the Ft−1-measurable function qα(Wt−1) satisfying the equation

P (Yt ≤ qα(Wt−1) | Wt−1) = α, almost surely (a.s.), α ∈ (0, 1), ∀t ∈ Z. (1)

In parametric VaR inference one assumes the existence of a parametric family of functions

M = {mα(·, θ) : θ ∈ Θ ⊂ R
p} and proceeds to make VaR forecasts using the model M. Inference

within the model, including forecast analysis, depends crucially on the hypothesis that qα ∈
M, i.e., if there exists some θ0 ∈ Θ such that mα(Wt−1, θ0) = qα(Wt−1) a.s. In parametric

models the nuisance parameter θ0 belongs to Θ, with Θ a compact set in an Euclidean space

R
p. Semiparametric and nonparametric specifications for qα(·) have also been considered, see

e.g. Fan and Gu (2003), Martins-Filho and Yao (2006) and references therein, where θ0 belongs

to an infinite-dimensional space. This paper will focus on parametric VaR models where θ0
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is finite-dimensional and can be estimated by a
√
R-consistent estimator, with R denoting the

(in-)sample size (cf. A4 below.) Parametric VaR models are popular since the functional form

mα(Wt−1, θ0), jointly with the parameter θ0, describes in a very precise way the impact of the

agent’s information set on the VaR. The most popular parametric VaR models are those derived

from traditional location-scale models such as ARMA-GARCH models. Our empirical analysis

will be focused on these models, although our theoretical results go beyond location-scale models.

Alternative parametric VaR models can be found in e.g. Engle and Manganelli (2004), Koenker

and Xiao (2006) and Gourieroux and Jasiak (2006), among many others.

The computation of VaR measures has become of paramount importance in risk management.

In fact, for banks with sufficiently highly developed risk management systems the implementation

of VaR techniques was a priori the only restriction set by the Basel Accord (1996a) for computing

capital reserves. Thus, in order to monitor and assess the accuracy and quality of the different

VaR forecasts techniques the Basel Accord (1996a) and the Amendment of Basel Accord (1996b)

developed a statistical testing device that was denominated backtesting. The essence of backtest-

ing is the out-of-sample comparison of actual trading results with model-generated risk measures.

If the comparison uncovers sufficient differences between both figures the risk model should be

subject to revision by the corresponding regulatory body. From Basel Committee’s perspective

(unconditional) backtesting consists on statistically testing whether the observed percentage of

out-of-sample returns or P&L that are less than or equal to the forecasted VaR is consistent with

the VaR level 100α%, usually 99%.

An important limitation of the standard backtesting techniques is the assumption of the pa-

rameter θ0 being known. In practice, however, the parameter θ0 is unknown and must be estimated

from the sample at time t by an estimator, say θ̂t. The standard approach in the literature con-

sists on performing relevant inferences replacing θ0 by the estimator θ̂t in the standard backtesting

procedures. We stress in this article that this method of forecast evaluation can lead to invalid

inferences in backtesting procedures, which in turn may imply suboptimal levels of idle capital on

the bank, that is, higher or lower levels than those actually required by the Basel Accord. We do

so by showing that the introduction of θ̂t, i.e. uncertainty about θ0 coming from the data, adds

an additional term in the unconditional and independence backtesting procedures that must be

taken into account to construct valid inferences in out-of-sample VaR forecasts evaluations.
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Some of the earliest work on estimation risk in VaR measures is due to Jorion (2000). Our

methodology, however, for the out-of-sample analysis builds on West (1996), and also McCracken

(2000), adapted to our case of estimation of a quantile. These authors also acknowledge the

presence of uncertainty due to parameter estimation in out-of-sample forecast inference, but they

do not consider the problem we deal with here. In addition, we consider an asymptotic theory

based on martingale methods, different from the asymptotic theory advocated by these authors

based on mixing conditions. The purpose of the present paper is then, first to quantify the

estimation risk in the most popular backtesting procedures in out-of-sample environments, and

second, to propose a correction of these methods to make them free of estimation risk.

The rest of the paper is structured as follows. Section 2 introduces the forecast environments

and studies the effects of estimation risk in unconditional and independence backtesting. Section

3 studies both backtesting methods for the popular family of GARCH models, and illustrates

via Monte Carlo experiments with different data generating processes our theoretical findings in

finite samples. Section 4 contains an application of our procedures to quantify the implications

on capital requirements of correcting the critical values of the standard backtesting tests for the

S&P500 Index tracking the US equity market. Finally, Section 5 concludes. Mathematical proofs

are gathered into Appendix A and some figures into Appendix B. Finally, we should mention that

equivalent results to those of this paper but for in-sample inferences can be found in Escanciano

and Olmo (2007).

2 Backtesting Techniques Robust to Estimation Risk

2.1 Forecast Evaluation Problem

From (1), a parametric VaR model mα(Wt−1, θ0) is correctly specified if and only if

E[It,α(θ0) | Wt−1] = α a.s. for some θ0 ∈ Θ, (2)

where It,α(θ) := 1(Yt ≤ mα(Wt−1, θ)), θ ∈ Θ, and 1(A) is the indicator function, i.e. 1(A) = 1 if

the event A occurs and 0 otherwise. Most of the existing inference procedures are, however, based

on testing some of the implications of condition (2) rather than the condition itself. For instance,

Engle and Manganelli (2004) used the classical augmented regression argument for testing a
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version of (2). This consists on regressing It,α(θ0)−α against its lagged values and other variables

included in Wt−1, and testing whether these variables are significant in the regression. But the

most popular implication explored is given in Christoffersen (1998),

E[It,α(θ0) | Ĩt−1,α(θ0)] = α, a.s. for some θ0 ∈ Θ, (3)

where Ĩt−1,α(θ0) := (It−1,α(θ0), It−2,α(θ0)...)′. It is important to stress that (3) is a necessary but

not sufficient condition of (2). This has important consequences in terms of the power performance

of backtesting procedures. The popularity of condition (3) is mostly due to the discrete character

and ease of interpretation of the variables {It,α(θ0)}, which are the so-called hits or exceedances.

In particular, the discreteness of the exceedances implies that condition (3) is equivalent to

{It,α(θ0)} are iid Ber(α) random variables (r.v.) for some θ0 ∈ Θ, (4)

where Ber(α) stands for a Bernoulli r.v. with parameter α. In the VaR literature, the satisfaction

of condition (4) has been taken as the criteria for the out-of-sample evaluation of VaR forecasts,

leading to the so-called unconditional backtesting (i.e. tests for E[It,α(θ0)] = α) and tests of

independence (i.e. tests for {It,α(θ0)} being iid).

Backtesting techniques check for (4) in a forecast environment that we describe as follows. We

assume a given sample {Yt, Z
′
t}n

t=1 of size n ≥ 1 that is used to evaluate the VaR forecasts. For

simplicity we only consider one-step-ahead predictions, generalizations to other forecast horizons

are straightforward (as long as we use non-overlapping intervals). As is standard in the forecast-

ing literature we assume that the first R observations in the sample are used to estimate the

parameters in the first forecast and that there are P = n − R predictions to be evaluated. That

is, the first VaR forecast V aRR+1,1(θ̂R) = mα(WR, θ̂R), is based upon an estimator using the first

R observations. Further forecasts, V aRt+1,1(θ̂t) = mα(Wt, θ̂t) are constructed with parameter

estimators using observations s = 1, ..., t, with R ≤ t ≤ n− 1.

We separately discuss the two backtesting problems, the unconditional and the independence

hypotheses, under the aforementioned forecast environments.
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2.2 Unconditional Backtesting

The most popular unconditional backtesting technique was proposed by Kupiec (1995), see also

Christoffersen (1998), based on the absolute value of the standardized sample mean

KP ≡ K(P,R) :=
1√
P

n∑
t=R+1

(It,α(θ0)− α). (5)

Under appropriate regularity conditions, including (4), (α(1 − α))−1/2 KP converges to a standard

normal r.v. The unconditional hypothesis E[It,α(θ0)] = α is then tested using the critical values

from the standard normal distribution. In fact, this test is optimal if θ0 is known. In practice,

however, the parameter θ0 is not known and the relevant test statistic becomes

SP ≡ S(P,R) :=
1√
P

n∑
t=R+1

(It,α(θ̂t−1)− α),

with θ̂t satisfying certain regularity conditions (cf. A4 below).

A common approach in the empirical and theoretical literature on risk management is to

carry out inferences for SP as if it were KP , taking the same normal critical values to evaluate

the forecast performance. The main message of our paper is that such inference procedures may

be misleading under very general circumstances. We show that the estimation of parameters θ̂t−1

introduces asymptotically an extra term in the, still normal, limiting distribution, changing the

resulting asymptotic variance of SP .

As expected, one of the main determinants of the new asymptotic variance is the forecasting

scheme used to create the forecasts. For the sake of completeness, and following e.g. West (1996)

and McCraken (2000), we discuss three different forecasting schemes, namely, the recursive, rolling

and fixed forecasting schemes. They differ in how the parameter θ0 is estimated. In the recursive

scheme, the estimator θ̂t is computed with all the sample available up to time t. In the rolling

scheme only the last R values of the series are used to estimate θ̂t, that is, θ̂t is constructed from

the sample s = t − R + 1, ..., t. Finally, in the fixed scheme the parameter is not updated when

new observations become available, i.e., θ̂t = θ̂R, for all t, R ≤ t ≤ n.

The next theorem quantifies the effect of the estimation risk in SP in the three forecasting

schemes considered. In order to see this, we need some notation and assumptions. Define the
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family of conditional distributions Fx(y) := P (Yt ≤ y | Wt−1 = x), and let fx(y) be the associated

conditional densities.

Assumption A1: {Yt, Z
′
t}t∈Z is strictly stationary and ergodic.

Assumption A2: The family of distributions functions {Fx, x ∈ R
∞} has Lebesgue densities

{fx, x ∈ R
∞} that are uniformly bounded sup

x∈R∞,y∈R

|fx(y)| ≤ C, and equicontinuous: for every

ε > 0 there exists a δ > 0 such that

sup
x∈R∞,|y−z|≤δ

|fx(y)− fx(z)| ≤ ε.

Assumption A3: The modelmα(Wt−1, θ) is continuously differentiable in θ (a.s.) with derivative

gα (Wt−1, θ) such that E
[
supθ∈Θ0

|gα(Wt−1, θ)|2
]
< C, for a neighborhood Θ0 of θ0.

Assumption A4: The parameter space Θ is compact in R
p. The true parameter θ0 belongs to the

interior of Θ. The estimator θ̂t satisfies the asymptotic expansion θ̂t − θ0 = H(t) + oP (1), where

H(t) is a p×1 vector such thatH(t) = t−1
∑t

s=1 l(Ys,Ws−1, θ0), R−1
∑t

s=t−R+1 l(Ys,Ws−1, θ0) and

R−1
∑R

s=1 l(Ys,Ws−1, θ0) for the recursive, rolling and fixed schemes, respectively. We assume that

E[l(Yt,Wt−1, θ0) | Wt−1] = 0 a.s. and V := E[l(Yt,Wt−1, θ0)l′(Yt,Wt−1, θ0)] exists and is positive

definite.Moreover, l(Yt,Wt−1, θ) is continuous (a.s.) in θ in Θ0 and E
[
supθ∈Θ0

|l(Yt,Wt−1, θ)|2
]
≤

C, where Θ0 is a small neighborhood around θ0.

Assumption A5: R,P → ∞ as n → ∞, and limn→∞ P/R = π, 0 ≤ π < ∞.

Assumption A1 is made here for simplicity in the exposition. Our results are also valid for

some non-stationary and non-ergodic sequences, see Escanciano (2007a) for details. Assumption

A2 is required as in Koul and Stute (1999). Assumption A3 is classical in inference on nonlinear

models. Assumption A4 is satisfied for most estimators considered in the literature, including

maximum likelihood and generalized method of moments estimators. Assumption A5 is assumed

in West (1996) and McCraken (2000), see e.g. the discussion in McCraken (2000, p. 200). With

these assumptions in place we are in position to establish the first important result of the paper.
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Theorem 1: Under Assumptions A1-A5,

SP =
1√
P

n∑
t=R+1

[
It,α(θ0)− FWt−1(mα(Wt−1, θ0))

]
+E

[
g′α(Wt−1, θ0)fWt−1(mα(Wt−1, θ0))

] 1√
P

n∑
t=R+1

H(t− 1)︸ ︷︷ ︸
Estimation Risk

+
1√
P

n∑
t=R+1

[
FWt−1(mα(Wt−1, θ0))− α

]
︸ ︷︷ ︸

Model Risk

+ oP (1).

Theorem 1 quantifies both estimation risk and model risk in the unconditional coverage backtest

introduced before. It also has several important implications for our testing problems. Note that

Theorem 1 does not assume either the correct specification of the parametric VaR model nor

iid exceedances. Also, Theorem 1 does not require any mixing condition in contrast to related

papers dealing with estimation risk in evaluation of forecasts, e.g. West (1996) and McCraken

(2000). These mixing assumptions are difficult to verify in practice and are not satisfied for some

simple models. The proof of Theorem 1 is based on applications of the modern theory of empirical

processes under martingale conditions, see Delgado and Escanciano (2006) and references therein.

Under correct specification of the parametric VaR model, i.e. FWt−1(mα(Wt−1, θ0)) = α

a.s., model risk vanishes. In contrast, under misspecification, even if E
[
FWt−1(mα(Wt−1, θ0))

]
=

E[It,α(θ0)] = α holds, model risk does not vanish and has a non-negligible effect on the un-

conditional test. In this case, unconditional backtesting tests based on SP are inconsistent for

testing (2). On the other hand if E
[
FWt−1(mα(Wt−1, θ0))

] �= α, under some regularity conditions,

Theorem 1 yields that

1
P

n∑
t=R+1

[It,α(θ̂t−1)− α] P−→ E[FWt−1(mα(Wt−1, θ0))− α] �= 0,

and the unconditional test based on SP is consistent as a specification test of the parametric

VaR model. In this paper, however, we do not make a thorough study of model risk as our main

focus is on the estimation risk, thus we shall assume hereafter that FWt−1(mα(Wt−1, θ0)) = α a.s.

whenever is necessary.

The first term in the expansion of Theorem 1 has martingale difference sequence (mds) sum-
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mands, so applying a Martingale Central Limit Theorem, see e.g. Hall and Heyde (1980), this

term converges to a Gaussian distribution. The second term is the estimation risk. The analysis

of this part has to be made on a case-by-case basis, i.e., for a particular estimator θ̂t, model,

true data generating process (DGP) and forecast scheme. To illustrate our theoretical findings

we shall study in Section 4 the widely used GARCH(1,1) models with a fixed forecasting scheme.

To simplify notation we write A := E
[
g′α(Wt−1, θ0)fWt−1(mα(Wt−1, θ0))

]
in the expression for

the estimation risk. Next corollary provides the necessary corrections to carry out valid asymptotic

inference for unconditional backtests free of estimation risk.

Corollary 1: Under Assumptions A1-A5 and (2), SP
d−→ N(0, σ2

u), where σ2
u = α(1 − α) +

2λhlAρ+ λllAV A′, with ρ = E[(It,α(θ0)− α) l(Yt,Wt−1, θ0)] and where

Scheme λhl λll

Recursive 1− π−1 ln(1 + π) 2
[
1− π−1 ln(1 + π)

]
Rolling, π ≤ 1 π/2 π − π2/3

Rolling, 1 < π < ∞ 1− (2π)−1 1− (3π)−1

Fixed 0 π

(6)

From our Corollary 1 we obtain that the (asymptotic) size-distortion at υ% of the two-sided

(uncorrected) unconditional backtesting test is, as n → ∞,

P

(
1

α1/2(1− α)1/2
|SP | > zυ/2

)
− υ = P

(
1
σu

|SP | > α1/2(1− α)1/2

σu
zυ/2

)
− υ

→ 2

(
1− Φ

(
α1/2(1− α)1/2

σu
zυ/2

))
− υ, (7)

where Φ is the cdf of the standard normal r.v. and zυ/2 is such that Φ
(
zυ/2

)
= 1− υ/2.

In general, σ2
u may be greater, equal or smaller than α(1 − α). For instance, the presence of

estimation risk is asymptotically irrelevant if 2λhlAρ+λllAV A′ = 0, that is, the variance induced

by error in estimation of θ0 is offset by the covariance between such terms and terms that would

be present even if the parameter were known. Note that if R is arbitrarily large relative to P , i.e.

π = 0, there is “infinite” information contained in θ̂t−1 about θ0 relative to SP , and as a result

the estimation risk asymptotically vanishes. In practice, however, the backtesting experiments

usually consider P of similar size of R. For specific cases we can be more precise, for instance, for
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the fixed scheme, σ2
u > α(1−α), provided A �= 0 and π > 0. In this case, traditional unconditional

backtesting techniques will be oversized since

2

(
1− Φ

(
α1/2(1− α)1/2

σu
zυ/2

))
− υ > 0. (8)

We now turn into the problem of estimating the asymptotic variance of SP . The vector A can

be consistently estimated by

Âτ = − 1
P

n∑
t=R+1

1
τ
exp

[(
Yt −mα(Wt−1, θ̂t−1)

)
/τ

]
It,α(θ̂t−1)g′α(Wt−1, θ̂t−1), (9)

with τ → 0 as n → ∞. This estimator is introduced in Giacomini and Komunjer (2005) for

encompassing tests of different conditional quantile forecasts. Alternative nonparametric methods

for estimating A can be found in e.g. Engle and Manganelli (2004), or in Li and Racine (2006)

using kernel smoothers or local polynomials. For certain models, e.g. GARCH models, simpler

estimators for A are available, see Section 3 and Appendix A in the working paper version of this

article. Methods for estimating the variance-covariance matrix V are abundant in the literature,

including bootstrap techniques. The parameters λhl = λhl(π) and λll = λll(π) in (6) depend on

the forecasting scheme and are functions of π. Therefore, their natural estimators are λ̂hl = λhl(π̂)

and λ̂ll = λll(π̂), where the parameter π is approximated by π̂ = P/R. Hence, the asymptotic

variance σ2
u can be consistently estimated by

σ̂2
u := α(1− α) + 2λ̂hlÂτ ρ̂+ λ̂llÂτ V̂ Â′

τ ,

where

ρ̂ =
1
P

n∑
t=R+1

(
It,α(θ̂t−1)− α

)
l(Yt,Wt−1, θ̂t−1),

and

V̂ =
1
P

n∑
t=R+1

l(Yt,Wt−1, θ̂t−1)l′(Yt,Wt−1, θ̂t−1),

are consistent estimators for ρ and V, respectively. Then, valid inference can be accomplished by

the corrected unconditional backtesting test statistic

S̃P ≡ S̃(P,R, θ̂t−1) =
1

σ̂u

√
P

n∑
t=R+1

(It,α(θ̂t−1)− α),
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which converges to a standard normal r.v as shown in the next corollary.

Corollary 2: Under Assumptions A1-A5, (2) and that τ → 0 as n → ∞, S̃P
d−→ N(0, 1).

2.3 Independence and Joint Tests

This section is devoted to the hypothesis of independence, i.e.

{It,α(θ0)}n
t=R+1 are iid. (10)

Christoffersen (1998) introduces in his seminal paper a likelihood ratio (LR) test for testing (10).

This author embedded the sequence of hits {It,α(θ0)}n
t=R+1 in a first-order Markov model and

construct a LR test within this family. Recently, more general tests for (10) have been based on

the autocovariances

ξj = Cov(It,α(θ0), It−j,α(θ0)) j ≥ 1, (11)

at different lags j, which can be consistently estimated (under E[It,α(θ0)] = α) by

ξP,j =
1

P − j

n∑
t=R+j+1

(It,α(θ0)It−j,α(θ0)− α2) for j ≥ 1.

Other estimators for the autocovariance in (11) are also possible. Indeed, Berkowitz, Christoffersen

and Pelletier (2006) discuss Portmanteau tests in the spirit of those proposed by Box and Pierce

(1970) and Ljung and Box (1978) that make use of the sequence of sample autocovariances {γP,j},
where

γP,j =
1

P − j

n∑
t=R+j+1

(It,α(θ0)− α)(It−j,α(θ0)− α) j ≥ 1.

Berkowitz et al. (2006) propose the test statistic

LB(m) = P (P + 2)
m∑

j=1

(P − j)−1

(
γP,j

α(1 − α)

)2

. (12)

These authors also explore spectral-based tests along the lines suggested in Durlauf (1991), taking

into account all possible lags j ≥ 1.

Notice that tests based on either {ξP,j} or {γP,j} are actually joint tests of the iid and the

unconditional hypothesis, since they explicitly used the fact that E[It,α(θ0)] = α. A proper test
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of independence should be based instead on

ζP,j =
1

P − j

n∑
t=R+j+1

It,α(θ0)It−j,α(θ0)− 1
(P − j)2


n∑

t=R+j+1

It,α(θ0)




n∑
t=R+j+1

It−j,α(θ0)

 .

In practice, however, tests for (10) need to be based on estimates of the relevant parameters, such

as

ξ̂P,j =
1

P − j

n∑
t=R+j+1

(It,α(θ̂t−1)It−j,α(θ̂t−j−1)− α2),

γ̂P,j =
1

P − j

n∑
t=R+j+1

(It,α(θ̂t−1)− α)(It−j,α(θ̂t−j−1)− α)

or

ζ̂P,j =
1

P − j

n∑
t=R+j+1

It,α(θ̂t−1)It−j,α(θ̂t−j−1)− 1
(P − j)2


n∑

t=R+j+1

It,α(θ̂t−1)




n∑
t=R+j+1

It−j,α(θ̂t−j−1)

 .

Next theorem is the equivalent to Theorem 1 for the joint and independence backtesting tests. De-

fineB ≡ Bj := E[g′α(Wt−1, θ0)fWt−1(mα(Wt−1, θ0)){It−j,α(θ0)+α}] and η ≡ ηj =: E[(It,α(θ0)It−j,α(θ0)−
α2)l(Yt,Wt−1, θ0)].

Theorem 2: Under Assumptions A1-A5 and (2), for any j ≥ 1,

(i)
√
P − j(ξ̂P,j − ξP,j) = B 1√

P−j

∑n
t=R+j+1 H(t− j − 1) + oP (1).

(ii)
√
P − j(γ̂P,j − γP,j) = {B − 2αA} 1√

P−j

∑n
t=R+j+1 H(t− j − 1) + oP (1).

(iii)
√
P − j(ζ̂P,j − ζP,j) = {B − 2αA} 1√

P−j

∑n
t=R+j+1 H(t− j − 1) + 2αKP + oP (1).

A direct consequence of Theorem 2 is that tests based on LB(m) with estimated parameters

will be invalid. The necessary corrections can be straightforwardly obtained from a multivariate

extension of our Theorem 2. Details are omitted to save space. In what follows we provide a

correction for the joint test based on ξ̂P,j similar to that carried out for SP in the unconditional

case. Corrections for γ̂P,j and ζ̂P,j are analogous and hence omitted. Note that if we want to

construct an independence test robust to the unconditional assumption, α should be replaced by

E[It,α(θ0)] in the limit distribution of ζ̂P,j.We remark that our Theorem 2 generalizes some results

in Linton and Whang (2004). These authors established the in-sample asymptotic expansion of
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γ̂P,j when no covariates are present in the VaR model, that is, when mα(Wt−1, θ) ≡ θα. Also,

we note that Engle and Manganelli (2004) also studied a dynamic out-of-sample test that can be

considered a joint test for (2). They only analyzed, however, the fixed forecasting scheme with

π = 0, and found that there is not estimation risk. Their result is consistent with our findings in

Theorem 2.

As with A, the vector B can be consistently estimated by B̂τ , where

B̂τ = − 1
P − j

n∑
t=R+j+1

1
τ
exp

[(
Yt −mα(Wt−1, θ̂t−1)

)
/τ

]
It,α(θ̂t−1){It−j,α(θ̂t−j−1)+α}g′α(Wt−1, θ̂t−1),

with τ → 0 as n → ∞. Again, simpler estimators for B are available in some popular models, e.g.

ARMA-GARCH models. Using the sample estimators as in Section 2 for λhl = λhl(π), λll = λll(π)

and V , we propose the estimator

σ̂2
c := α2(1− α)2 + 2λ̂hlB̂τ η̂ + λ̂llB̂τ V̂ B̂′

τ ,

where

η̂ =
1

P − j

n∑
t=R+j+1

(It,α(θ̂t−1)It−j,α(θ̂t−j−1)− α2)l(Yt,Wt−1, θ̂t−1).

Then, valid inference can be accomplished by the corrected joint backtesting test statistic

ξ̃P,j ≡ ξ̃(P,R, θ̂t−1) =
1

σ̂c
√
P − j

n∑
t=R+j+1

(It,α(θ̂t−1)It−j,α(θ̂t−j−1)− α2),

which converges to a standard normal r.v as shown in the next corollary.

Corollary 3: Under Assumptions A1-A5, (2) and that τ → 0 as n → ∞, for each j ≥ 1

√
P − jξ̂P,j

d−→ N(0, σ2
c ),

where σ2
c = α2(1− α)2 + 2λhlBη + λllBV B′, with λhl and λll as in (6). Therefore,

ξ̃P,j
d−→ N(0, 1).
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3 Simulation exercise on location-scale models

In this section we confine ourselves to consider the parametric VaR model derived from a location-

scale model. This parametric approach has been the most popular in attempting to describe the

dynamics of the VaR measure (cf. Berkowitz and O’Brien, 2002). These models are defined as

Yt = µ(Wt−1, β0) + σ(Wt−1, β0)εt, (13)

where µ(·) and σ(·) are specifications for the conditional mean and standard deviation of Yt given

Wt−1, respectively, and εt are the standardized innovations which are usually assumed to be iid,

and independent of Wt−1. Under such assumptions the α-th conditional VaR is given by

mα(Wt−1, θ0) = µ(Wt−1, β0) + σ(Wt−1, β0)F−1
ε (α), (14)

where F−1
ε (α) denotes the univariate quantile function of εt and the nuisance parameter is θ0 =

(β0, F
−1
ε (α)). Amongst the most common models for µ(·) and σ(·) are the ARMA and GARCH

models, respectively, under different distributional assumptions on the error term. The vector

of parameters β0 is usually estimated by the Quasi-Maximum Likelihood Estimator (QMLE ).

See Li, Ling and McAleer (2002) for a review of estimators for β0. The second component of

θ0, F
−1
ε (α), is assumed to be either known (e.g. Gaussian), unknown up to a finite-dimensional

unknown parameter (e.g. Student-t distributed with unknown degrees of freedom), or unknown

up to an infinite-dimensional unknown parameter (for instance, semiparametric estimators based

on extreme value theory. These have been extensively used, see e.g. Chan, Deng, Peng and Xia

(2006) for a recent reference.) See Koenker and Zhao (1996) for alternative quantile estimators

in ARCH models. Some of these methods are reviewed in Kuester et al. (2006).

For these models our Theorem 1 allows us to quantify estimation risk for the unconditional

test. For simplicity in the exposition and to save space we only consider throughout this section the

fixed forecasting scheme. The aim of this section is not to make a thorough finite-sample study

of the estimation risk in location-scale models but just to illustrate our findings in a realistic

situation. Thus, for model (14) with a fixed forecasting scheme the estimation risk term for the
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unconditional test takes the form

√
π
√
R(F−1

ε,R(α)− F−1
ε (α))fε(F−1

ε (α)) +
√
π
√
R(β̂R − β0)′A, (15)

where F−1
ε,R(α) is an α-quantile estimator of the innovation distribution, and

A = A(α, β0) := fε(F−1
ε (α))E [a1,t(β0)] + fε(F−1

ε (α))F−1
ε (α)E [a2,t(β0)] , (16)

with

a1,t(β) = µ̇t(β)/σ(Wt−1, β), a2,t(β) = σ̇t(β)/σ(Wt−1, β),

and where µ̇t(β) = ∂µ(Wt−1, β)/∂β and σ̇t(β) = ∂σ(Wt−1, β)/∂β. There are two sources of

estimation risk in this model, one from estimating F−1
ε (α) and other from estimating β0.

To illustrate the effect of estimation risk in backtesting procedures we proceed to analyze

one of the most common processes for modelling financial returns: the GARCH(1,1) model with

Student-t innovations. This model is defined as

Yt = σ(Wt−1, β0)εt, σ2(Wt−1, β0) = η00 + η10Y
2
t−1 + η20σ

2(Wt−2, β0),

where {εt} are iid tν standardized disturbances (i.e. εt = (
√
(ν − 2)/ν)vt, with vt distributed as

a Student-t with ν degrees of freedom), the true parameters are β0 = (η00, η10, η20) ∈ Θ, with

Θ ⊂ {(η0, η1, η2) ∈ R
3 : η0 > 0, η1 ≥ 0, η2 ≥ 0, η1 + η2 < 1}.

The estimation risk in this example in which the error distribution is Student-t with a discrete

number of degrees of freedom only depends on the estimation error stemming from the uncertainty

of estimating the scale model (see Hannan and Quinn, 1979, p. 191, for general results on

estimation of discrete-valued parameters). Thus, given that there is no estimation risk coming

from the error the first term in (15) disappears and the estimation risk for the unconditional test

boils down to
√
π
√
R(β̂R − β0)′A, where A = fε(F−1

ε (α))F−1
ε (α)E [a2,t(β0)] .

In order to shed some light on the relation between α and the magnitude of the estimation

risk we plot in figure 6.1 an average of the 5% size-distortion effect (cf. 7)

d (α) = 2

(
1− Φ

(
α1/2(1− α)1/2

σ̂u(α)
z0.025

))
− 0.05
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for 500 Monte-Carlo simulations and the corresponding confidence interval at 5% as a function of

α, and where σ̂2
u(α) = α(1 − α) + Â′V̂ Â, Â = fε(F−1

ε (α))F−1
ε (α)

∑n
t=R+1 a2,t(β̂R), V̂ given by

V̂ = 2 (κν̂ − 1)

[
P−1

n∑
t=R+1

1

σ4
t (β̂R)

∂σ2
t (β̂R)
∂β

∂σ2
t (β̂R)
∂β′

]−1

, (17)

with κν̂ the kurtosis of the standardized Student-tν̂ error, and β̂R the QMLE of β0 using the first

R observations. The true DGP uses parameter values β′
0 = (η00, η10, η20) = (0.05, 0.1, 0.85) and

innovations distributed as Student-t with ν = 30 degrees of freedom.

We observe from these plots that the size distortion calculated in (8) for the GARCH(1,1)

process increases with α up to a 0.05 coverage probability, attaining the maximum distortion of

9% for R = 250 and P = 500, and then slightly decreases again. This size distortion is more

pronounced for values of the in-sample size R small compared to the out-of-sample size P . This

is confirmed in the Monte Carlo simulation experiment.

Similarly, the estimation risk for the joint test for the GARCH(1,1) model is
√
π
√
R(β̂R−β0)′B,

where B = fε(F−1
ε (α))F−1

ε (α)E [a2,t(β0){It−j,α(θ0) + α}] . Further details for these expressions

are found in the working paper version of this article. Figure 6.2 illustrates the estimation risk

effect for the independence test by plotting the size distortion in (8) where ξ̂P,1 replaces SP in (7),

and with σ̂2
c = (α(1−α))2+B̂′V̂ B̂ and B̂ = fε(F−1

ε (α))F−1
ε (α)

{
P−1

∑n
t=R+1(a2,t(β̂R){It−j,α(β̂R) + α}

}
.

The plot also reports the corresponding confidence intervals at 5% for 500 Monte-Carlo simula-

tions.

In contrast to the unconditional test the distortion in size between the uncorrected and cor-

rected method strictly increases with α, being this effect more important for values of R small

compared to P . Overall, we observe a larger size distortions for the unconditional test than for

the joint. This is further discussed in the following section.

3.1 Monte Carlo Simulation Experiment

The asymptotic results of preceding sections need only be appropriate for large in-sample and

out-of-sample sizes. It is not clear how well the asymptotic approximation will perform in small

and moderate sample sizes. To examine this problem we carry out some Monte Carlo experiments.

For the sake of space and simplicity of computation we just report results for the fixed forecasting
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scheme.

The aim of the first study is to compare the size performance of S̃P and α−1/2(1− α)−1/2SP ,

i.e., analyze the impact of estimation risk in unconditional tests for GARCH(1,1) models. In

order to do this we shall use for both test statistics the critical values of a standard Gaussian

distribution. The innovation process εt, is assumed to be distributed as a Student-t distribution

with ν = 30 degrees of freedom (for ν = 5 refer to the working paper version.) The parameters of

the GARCH(1,1) process are chosen to reflect standard values found in real time series of financial

returns. We consider β′
0 = (η00, η10, η20) = (0.05, 0.1, 0.85). The Value at Risk of these models is

calculated at VaR levels 1%, 5% and 10%.

Figure 6.3 in Appendix B describes the surfaces corresponding to the empirical 5% size for

different in-sample and out-of-sample lengths (R,P ) when ν is known. The simulation exercise

consists on generating data from the GARCH process described above; in a second stage the

parameters of the model are estimated by QMLE using the first R observations and the corre-

sponding V aRα model is computed for the remaining P out-of-sample observations. Finally we

compute SP and S̃P for each Monte Carlo iteration.

We draw four main conclusions from this battery of plots and other unreported simulations.

First, the corrected estimator S̃P clearly outperforms the uncorrected method based on SP since

the simulated sizes are much closer to the nominal value 5% across all experiments, specially

for large values of the parameter π̂ = P/R. Second, as expected, the sizes of the tests are very

sensitive to the choice of in-sample and out-of-sample window lengths. Thus, as π̂ decreases the

sizes of the uncorrected test are closer to the nominal size, as predicted by the theory. On the other

hand, as π̂ increases these estimates worsen off. Third, unreported simulations for the Student-t

with 5 degrees of freedom reveal the importance of the thickness of the tails in this framework

since the size of both methods is distorted for VaR levels at α = 0.05 and α = 0.1. Again, for

the uncorrected test statistic SP the distortions are much more significant. Finally, we should

also mention that the approximation by the asymptotic theory of the finite sample distributions

of both test statistics, SP and S̃P , for low α levels is not accurate, especially in the tails of the

distribution which is the important part for testing. This problem is intrinsic to VaR inferences

at low quantile levels and not to the existence of estimation risk, and raises an important issue

for backtesting at small VaR levels such as α = 0.01. Arguably, a different asymptotic theory
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based on α → 0 as n → ∞ may help to this end, see Leadbetter, Lindgren and Rootzen (1983),

chapter 2, for a study of the asymptotic distribution of the kth largest maximum of a random

sample when k is fixed. This important problem is beyond the scope of this paper and deserves

further research.

Figure 6.4 illustrates the estimation risk effects on the joint test statistic defined by C̃P,j = ξ̃2
P,j,

which by Corollary 3 is distributed as a χ2
1 distribution, and on the uncorrected version of the

test CP,j = (P − j)
(

ξ̂2
P,j

α2(1−α)2

)
. In the simulations we consider the case j = 1, which is the most

used in empirical work (cf. Christoffersen (1998)). For α = 0.01, the estimated sizes are not very

close to the nominal values for both methods and large values of π̂. Further, it seems that there

are no significant differences between uncorrected and corrected tests for small values of α. The

sizes of both tests improve for α = 0.05, more importantly, the correction given by C̃P,1 yields

size values closer to the nominal level. These results are made clear for α = 0.1; in this case

the effect of estimating the parameters produces distortions in the uncorrected joint test. These

effects are largely corrected by using C̃P,1. These effects are similar for the Student-t distribution

error with ν = 5. Note however that the plots corresponding to this scenario are not reported to

save space. Finally, other unreported simulations for LB(m) in (12) and Durlauf-type tests for

testing serial dependence at 5 lags show a substantial impact of the estimation risk in the size of

the uncorrected test.

Although the main aim of this paper is to show that the current backtesting techniques applied

to composite hypotheses may be over- or undersized in general cases, we also present a simple

Monte Carlo experiment to compare the empirical powers of S̃P and SP for the unconditional

backtesting, and CP,1 and C̃P,1 for the joint test, in rejecting the alternatives (to the null of

GARCH(1,1) model) given by the following DGPs:

1. GARCH-M model: Yt = 2.5σ2
t + ut, ut = σ2

t εt, σ
2
t = 0.001 + 0.29u2

t−1 + 0.70σ2
t−1.

2. TAR model: Yt = atYt−1 + εt, at = 0.7 · 1(εt−1 < −0.5)− 0.7 · 1(εt−1 > 0.5).

3. EGARCH(1,1) model: Yt = htεt, lnh2
t = 0.01+0.9 ln h2

t−1+0.3(|εt−1|− (2/π)1/2)−0.8εt−1 .

4. Stochastic Volatility (SV) model: Yt = htεt, lnh2
t = 0.1+0.78 ln h2

t−1+vt, with vt ∼ N(0, 1).

5. Bilinear model (BIL): Yt = 0.5εt−1Yt−1 + εt.

6. Non-Linear Moving Average model (NLMA): Yt = 0.5ε2
t−1 + εt.
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For some discussion on these models and their parameter values see Martinez and Olmo (2007)

and Escanciano (2008). The error εt in these models is assumed to follow a Student-t distribution

with ν = 30. In Tables 3.1 and 3.2 we report the rejection probabilities at 10%, 5% and 1%

significance level for the different tests. The empirical power of these tests is size-corrected,

using empirical critical values computed under the GARCH(1,1) model with parameter values

(η00, η10, η20) = (0.05, 0.1, 0.85). The in-sample and out-of-sample sizes considered are R = 500

and P = 250 and 500.

α = 0.01 GARCH-M TAR EGARCH

10% 5% 1% 10% 5% 1% 10% 5% 1%

P = 250 SP 0.000 0.000 0.000 0.176 0.176 0.026 0.622 0.622 0.280

S̃P 0.208 0.000 0.000 0.342 0.176 0.056 0.700 0.620 0.396

CP,1 1.000 1.000 0.000 1.000 1.000 0.001 1.000 1.000 0.100

C̃P,1 0.539 0.519 0.001 0.881 0.854 0.056 0.582 0.525 0.261

P = 500 SP 0.193 0.193 0.000 0.234 0.234 0.050 0.806 0.806 0.462

S̃P 0.384 0.131 0.000 0.324 0.230 0.080 0.842 0.772 0.558

CP,1 1.000 0.006 0.006 1.000 0.148 0.148 1.000 0.587 0.587

C̃P,1 0.548 0.006 0.003 0.924 0.147 0.117 0.729 0.586 0.411

α = 0.05 GARCH-M TAR EGARCH

10% 5% 1% 10% 5% 1% 10% 5% 1%

P = 250 SP 0.805 0.501 0.071 0.748 0.578 0.320 0.348 0.220 0.094

S̃P 0.778 0.487 0.064 0.748 0.578 0.320 0.344 0.220 0.094

CP,1 0.007 0.007 0.000 0.831 0.831 0.499 0.660 0.660 0.234

C̃P,1 0.004 0.003 0.000 0.831 0.822 0.498 0.612 0.497 0.214

P = 500 SP 0.954 0.823 0.304 0.842 0.750 0.484 0.422 0.262 0.102

S̃P 0.938 0.869 0.508 0.842 0.770 0.606 0.406 0.300 0.154

CP,1 0.006 0.002 0.000 0.926 0.837 0.619 0.786 0.658 0.365

C̃P,1 0.005 0.001 0.000 0.926 0.837 0.730 0.756 0.658 0.490

Table 3.1. Empirical power of unconditional SP and S̃P backtesting tests, and ĈP,1 and C̃P,1

independence tests for the fixed forecasting scheme. The V aR is computed at α = 0.01 and
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α = 0.05. The error term εt is assumed to follow a Student-t with ν = 30. 1000 Monte Carlo

simulations. R = 500, P = 250, 500. Models GARCH-M, TAR and EGARCH.

α = 0.01 SV BIL NLMA

10% 5% 1% 10% 5% 1% 10% 5% 1%

P = 250 SP 0.320 0.320 0.066 0.004 0.004 0.000 0.002 0.002 0.000

S̃P 0.420 0.320 0.116 0.290 0.004 0.002 0.392 0.002 0.000

CP,1 1.000 1.000 0.002 1.000 1.000 0.000 1.000 1.000 0.000

C̃P,1 0.272 0.105 0.026 0.957 0.947 0.000 0.960 0.939 0.000

P = 500 SP 0.510 0.510 0.144 0.084 0.084 0.000 0.164 0.164 0.000

S̃P 0.594 0.508 0.220 0.296 0.084 0.000 0.432 0.164 0.000

CP,1 1.000 0.125 0.125 1.000 0.000 0.000 1.000 0.000 0.000

C̃P,1 0.268 0.124 0.065 0.978 0.000 0.000 0.980 0.000 0.000

α = 0.05 SV BIL NLMA

10% 5% 1% 10% 5% 1% 10% 5% 1%

P = 250 SP 0.134 0.040 0.002 0.526 0.226 0.016 0.694 0.364 0.034

S̃P 0.122 0.040 0.002 0.526 0.226 0.016 0.694 0.364 0.034

CP,1 0.067 0.067 0.002 0.000 0.000 0.000 0.000 0.000 0.000

C̃P,1 0.046 0.010 0.002 0.000 0.000 0.000 0.000 0.000 0.000

P = 500 SP 0.164 0.050 0.002 0.764 0.490 0.056 0.926 0.730 0.176

S̃P 0.144 0.074 0.014 0.764 0.610 0.206 0.926 0.812 0.392

CP,1 0.061 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000

C̃P,1 0.049 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3.2. Empirical power of unconditional SP and S̃P backtesting tests, and ĈP,1 and C̃P,1

independence tests for the fixed forecasting scheme. The V aR is computed at α = 0.01 and

α = 0.05. The error term εt is assumed to follow a Student-t with ν = 30. 1000 Monte Carlo

simulations. R = 500, P = 250, 500. Models SV, BIL and NLM.

The power of both test statistics SP and S̃P is generally increasing in the out-of-sample size

P when α = 0.05, but that is not generally the case for α = 0.01 at significance levels 5% and

1%. Overall, the unconditional tests possess good finite-sample power properties, pointing out
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the consistency of the tests against these alternatives. No test uniformly dominates the other

for all models, although in general, the power of S̃P is either comparable or higher than that of

SP . The power function of both tests is very sensitive to the choice of the significance level of

the test. There is also variability of the results in α. Thus, the power against the GARCH-M is

moderate for α = 0.01 and high for α = 0.05. The power increases from α = 0.01 to α = 0.05 for

the GARCH-M, TAR, BIL and NLMA models, yielding the opposite results for the EGARCH

and SV models. Summarizing, the corrected test statistic S̃P presents excellent power properties,

being either comparable or much better than the uncorrected test SP for all the alternatives

considered, see for instance the cases with α = 0.01 and 0.1 significance levels.

The joint tests possess a satisfactory power against the TAR and EGARCH models but low

power against the GARCH-M, BIL and NLMA models. The uncorrected test has in general more

power than the corrected one, although the difference is not substantial for α = 0.05. Like for the

unconditional case, the empirical power is quite sensitive to α and to the choice of significance

level, showing one more time the inaccurate approximation by the asymptotic theory, especially

when α = 0.01. This can be observed, for example, for some estimates of the power that go from

zero to one when the level of the test goes from 1% to 5%.

To illustrate this we report in figure 6.5 the (kernel) smoothed finite-sample density of the test

statistic ξP,1

α(1−α) for α = 0.01 and α = 0.05, as well as the standard normal density. We abstract

from any estimation effect and use the uncorrected version with known parameters. Notice that

we are not interested here in the estimation effects in the asymptotic distribution but in the

approximation of the finite-sample distributions by the asymptotic ones. We are particularly

interested in the case α = 0.01. Thus, we assume the parameters of the GARCH(1,1) model to be

known and estimate the corresponding finite-sample density functions nonparametrically using a

standard normal kernel function with bandwith parameter h = 0.50. The experiment is carried

out for R = 500 and P = 250, 500, 750, 1000. The results of the different panels in figure 6.5 are

illuminating in showing the non-negligible probability mass in the far right tail of the finite-sample

density for α = 0.01 and therefore the stark differences between the finite-sample behaviour of

the test statistic in this case and for α = 0.05. The approximation is clearly better for α = 0.05

than for α = 0.01, and the addtional mass at large values in the distribution when α = 0.01 may

explain the decreasing power when one test at 5% or 1%, see Tables 3.1 and 3.2.
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We summarize the findings of our Monte Carlo simulations as follows. The corrected uncon-

ditional and joint tests have, for the models considered and uniformly in all VaR levels, better

size performance than the respective uncorrected tests. The larger the parameter π̂ = P/R the

higher the distortions. These distortions are of positive sign, i.e. overrejection, which is con-

sistent with our asymptotic theory. For the joint case, the greater the α the more important

is the correction. For instance, for α = 0.1 there is a clear improvement of the corrected test

over the uncorrected one. The thickness of the tails does not play a significant role in distorting

the size values for these joint tests. Thus, our paper contributes to the existent literature, e.g.

West (1996) and McCracken (2000), documenting that in many circumstances it is inappropriate

to ignore parameter uncertainty in forecast predictive ability tests. In addition, we have shown

that the size improvement is without sacrificing power for the unconditional hypothesis. In fact,

the unconditional corrected test is either comparable or better than the uncorrected test for the

alternatives considered. For the joint test, the uncorrected version turns out to exhibit higher

power than the corrected one, although the difference is not significant for α = 0.05. Finally, in

all our experiments, the larger the VaR level α the better is the approximation by the asymptotic

theory of the finite sample distributions. The approximation for α = 0.01 is poor and may lead

to misleading conclusions for common in-sample and out-of-sample sizes.

4 Application to financial data

We have uncovered in this paper that the standard backtesting (unconditional and independence)

techniques can produce wrong type-I error probabilities for assessing VaR estimates from para-

metric models with unknown parameters. This fact can have a significant impact on market risk

management depending on the backtesting technique employed, the in-sample period used to es-

timate the parameters, the corresponding out-of-sample period, and/or the choice of parametric

model. This effect is gauged in this application for daily log-returns on the S&P500 market-

valued equity Index obtained from Freelunch.com over the period 02/2000 - 02/2006 (n = 1500

observations).

We entertain a pure Gaussian GARCH(1,1) model for the log-returns Yt, that yields the
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following VaR risk model,

mα(Wt−1, θ0) = σtΦ−1
ε (α), σ2

t = η00 + η10Y
2
t−1 + η20σ

2
t−1,

where Φ−1
ε (α) is the α-quantile of the Gaussian error distribution. This specification is motivated

from the application of some goodness-of-fit tests developed in Escanciano (2007b) for testing the

correct specification of the variance model and the error distribution in location-scale models.

These specifications are not rejected for the sample periods considered. Under the assumption

that the true data generating processes belong to the location-scale family, the fact that the

GARCH(1,1) model seems to be a good fit for these data helps to identify the differences between

the corrected and uncorrected tests as being solely caused by the estimation risk effects. We

have also entertained a GARCH(1,1) and an ARMA(1,1)-GARCH(1,1) models with Student-

t distributions, with and without constants terms, leading to similar conclusions. Details are

omitted to save space.

The parameters are estimated by QMLE using R = 250 observations and their values, jointly

with their standard errors, can be obtained from the authors upon request. The out-of-sample

period is also P = 250 observations, thus, with the data set available we have repeated the

backtesting experiment for five different periods starting in February 2000. That is, for the

second period, observations from t = 251 to 500 form the in-sample period and from t = 501 to

750 the out-of-sample period, and so forth.

The aim of this application is to illustrate how the estimation risk may lead to different

decisions in inferences with the corrected and uncorrected tests. We consider the fixed forecasting

scheme studied in the simulations. Table 4.1 reports the different statistics of the unconditional

backtesting and joint tests for V aR0.01 and V aR0.05 for the five periods under study. In this table

we also report the number of exceedances (vio) for each period.
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GARCH(1,1) vio SP S̃P CP,1 C̃P,1

α = 0.01

P1 4 0.953 0.869 39.11∗∗ 37.39∗∗

P2 3 0.317 0.278 0.025 0.025

P3 0 -1.589 -1.228 0.025 0.025

P4 2 -0.317 -0.261 0.025 0.025

P5 1 -0.953 -0.870 0.025 0.025

α = 0.05

P1 14 0.435 0.380 0.254 0.223

P2 16 1.015 0.838 3.391 2.923

P3 4 −2.466∗∗ -1.733 0.692 0.643

P4 14 0.435 0.331 3.391 2.857

P5 8 -1.305 -1.143 0.692 0.652

Table 4.1. Statistics corresponding to the unconditional backtesting and independence tests for

V aRα, with α = 0.01 and 0.05 for five samples of 500 observations starting on February 2000.

R = 250 and P = 250. Data are fitted to a GARCH(1,1) process with Gaussian innovations. (∗)

denotes statistical significance at 5% level and (∗∗) at 1% level.

We observe that the values of both uncorrected backtesting tests are larger (in absolute value)

than those of the corrected tests S̃P and C̃P,1. This can lead, and in fact does for the unconditional

test in the third period, to an overrejection of the risk model. Likewise, given that χ2
1,0.07 = 3.283,

the uncorrected joint test CP,1 would lead to spurious rejections at a 7% significance level in

the second and fourth periods that C̃P,1 would not. In terms of capital requirements, these

uncorrected tests would indicate that the GARCH(1,1) model is a conservative risk model that

would be implying an extra allocation of idle capital. However, by correcting by estimation risk

effects we observe that this is not the case and that the VaR obtained from the GARCH(1,1)

family of models seems to be an appropriate risk model for these data sets. It is also worth

observing the overwhelming rejection of CP,1 and C̃P,1 for V aR0.01 in the first period, these values

are probably due to absence of data for the analysis for very low quantile levels, rather than to a

truly rejection of the GARCH model.
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5 Conclusion

Basel and Basel II Accords propose the use of backtesting techniques to assess the accuracy

and reliability of these internal risk management models, usually encapsulated in Value at Risk

measures, and set different failure areas for institutions failing to report valid risk models. Thereby

the validity of these backtesting procedures is of paramount importance for the reliability of the

whole internal and external monitoring process.

We have shown in this paper that the standard unconditional and independence backtesting

used by banks and regulators to assess dynamic parametric VaR estimates may be very misleading

in composite environments. This implies that any conclusion regarding the validity of these risk

models based on standard backtesting procedures may be spurious. This is because the cut-off

point determining the validity of the risk management model is wrong. We find the appropriate

cut-off point by correcting the variance in the relevant test statistics corresponding to the recursive,

rolling and fixed out-of-sample forecasting schemes. In fact, in the simulation exercises performed

for the fixed forecasting scheme we find evidence of significant size distortions for the Kupiec

uncorrected test. For joint tests, as predicted by our theory, the distortions are only significant

for moderate and large values of α such as α = 0.1. These distortions are remarkably important

for backtesting exercises using large out-of-sample sizes and small in-sample sizes for estimating

the parameters. The opposite case, on the other hand, yields negligible estimation risk effects.

Finally, our simulations indicate that the approximation by the asymptotic theory is not accurate

for small values of α such as α = 0.01.

The importance of our corrections has been also studied in an empirical application with finan-

cial returns on S&P500 Index. We find that the standard unconditional backtesting procedure

with VaR calculated with the fixed forecasting scheme overstates risk exposure yielding in the

third period under study to a spurious rejection of V aR at 5% for the GARCH(1,1) model.

These findings somehow support the scepticism of American regulators about the implemen-

tation of Basel II risk measurement and risk monitoring techniques, and should help to restore

their confidence on internal risk management systems validated by this new corrected backtesting

procedure.

Extensions of this study to analyze estimation risk effects on historical simulation and hybrid

25



methods are ongoing research. Also, since our focus in this paper was on estimation risk, we have

assumed herein a correctly specified underlying VaR model (with the exception of our Theorem

1). More general backtesting tests robust to both, estimation and model risks, are of paramount

practical importance. For developing such robust backtests different alternatives are available.

The extension of our martingale methods to such a general framework is difficult, but different

theories based on HAC estimations using mixing conditions (see McCracken (2000)) or bootstrap

methods for correct inference (see e.g. Corradi and Swanson (2007)) are attractive alternatives

that deserve further research.
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6 Appendices

6.1 Appendix A: Mathematical Proofs

We prove Theorem 1 using empirical processes theory and a small variation of a weak convergence

theorem in Delgado and Escanciano (2006). The complete version of this proof is found in the

working paper version of this article and available from the web pages of the authors.

Define the process

Kn(c) :=
1√
P

n∑
t=R+1

[
It,α(θ0 + c(t− 1)−1/2)− Ft−1(θ0 + c(t− 1)−1/2)

]

indexed by c ∈ CK , where CK = {c ∈ R
p : |c| ≤ K}, and K > 0 is an arbitrary but fixed constant.

Lemma A1: Under Assumption A1-A5, the process Kn(c) is asymptotically tight with respect to

c ∈ CK .

The proof of Lemma A1 can be found in the working paper version.

Proof of Theorem 1: Simple but tedious algebra shows that for each c ∈ CK ,

E
[
|Kn(c)−Kn(0)|2

]
= o(1).

The last display and the asymptotically tightness ofKn(c) imply that if ĉ is bounded in probability,

ĉ = OP (1), then

|Kn(ĉ)−Kn(0)| = oP (1). (18)

Now, we will apply this argument with ĉ := max
R≤t≤n

√
t(θ̂t − θ0), with R denoting the in-sample

sample size. Thus, we should prove that under our three forecasting schemes

max
R≤t≤n

√
t(θ̂t − θ0) = OP (1) (19)

holds.

(i) Recursive: Our assumptions imply that
√
tSt =

∑t
s=1 l(Yt,Wt−1, θ0) is a martingale with

respect to Ft−1, where St is implicitly defined. Hence, by Corollary 2.1 in Hall and Heyde
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(1980) and A5

P

(∣∣∣∣ max
R≤t≤n

St

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣ max
R≤t≤n

√
tSt

∣∣∣∣ > √
Rε

)
≤ 1

Rε2
E

[∣∣√nSn

∣∣2]
≤ C

n

Rε2
,

which can be made arbitrarily small by choosing ε sufficiently large, since n/R → (1 + π)

as n → ∞.

(ii) Rolling: same proof as for the recursive. Details are omitted.

(iii) Fixed:
∣∣∣∣ max
R≤t≤n

(
√
t/R)

∑R
s=1 l(Yt,Wt−1, θ0)

∣∣∣∣ ≤ ∣∣∣(1/√R)
∑R

s=1 l(Yt,Wt−1, θ0)
∣∣∣ = OP (1).

Then, (18) holds for ĉ = max
R≤t≤n

√
t(θ̂t − θ0), and hence

∣∣∣∣∣ 1√
P

n∑
t=R+1

[
It,α(θ̂t−1)− Ft−1(θ̂t−1)

]
− 1√

P

n∑
t=R+1

[It,α(θ0)− Ft−1(θ0)]

∣∣∣∣∣ = oP (1),

which implies the decomposition

1√
P

n∑
t=R+1

(It,α(θ̂t−1)− α) =
1√
P

n∑
t=R+1

[It,α(θ0)− Ft−1(θ0)] (20)

+
1√
P

n∑
t=R+1

[
Ft−1(θ̂t−1)− Ft−1(θ0)

]
+

1√
P

n∑
t=R+1

[Ft−1(θ0)− α] + oP (1).

Now, by the Mean Value Theorem and since we can interchange expectation and differentiation,

A1n :=
1√
P

n∑
t=R+1

[
Ft−1(θ̂t−1)− E[Ft−1(θ̂t−1)]− Ft−1(θ0) + E[Ft−1(θ0)]

]
=

1√
P

n∑
t=R+1

(
g′α(Wt−1, θ̃t−1)ft−1(θ̃t−1)− E

[
g′α(Wt−1, θ̃t−1)ft−1(θ̃t−1)

])
(θ̂t−1 − θ0),

where θ̃t−1 is between θ̂t−1 and θ0. Note that A2 and A3 imply that

E
[
supθ∈Θ0

∣∣gα(Wt−1, θ)fWt−1(mα(Wt−1, θ))
∣∣] < C. Hence, by the uniform law of large numbers
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(ULLN) of Jennrich (1969, Theorem 2) and (19), then A1n = oP (1) holds. Similarly,

1√
P

n∑
t=R+1

[
E[Ft−1(θ̂t−1)]− E[Ft−1(θ0)]

]
=

1√
P

n∑
t=R+1

E[g′α(Wt−1, θ0)ft−1(θ0)](θ̂t−1 − θ0) +

+
1√
P

n∑
t=R+1

[
E[g′α(Wt−1, θ̃t−1)ft−1(θ̃t−1)]−E[g′α(Wt−1, θ0)ft−1(θ0)]

]
(θ̂t−1 − θ0)

: = B1n +B2n.

Now, by the ULLN and (19), then B2n = oP (1) holds. Hence,∣∣∣∣∣ 1√
P

n∑
t=R+1

[
Ft−1(θ̂t−1)− Ft−1(θ0)

]
− E[g′α(Wt−1, θ0)ft−1(θ0)]

1√
P

n∑
t=R+1

H(t− 1)

∣∣∣∣∣ = oP (1).

The theorem follows from (20) and the last display. �

Proof of Corollary 1: Once Theorem 1 has been established, the proof follows the same

arguments as in McCracken (2000, Theorem 2.3.1). Details are omitted to save space. �

Proof of Corollary 2: The consistency of ρ̂ and V̂ follows from the ULLN of Jennrich (1969,

Theorem 2) and (19). Giacomini and Komunjer (2005), on the other hand, proved the consistency

of the out-of-sample version of Aτ . It also follows in this context that Âτ = A+ oP (1). Now, by

Slutsky’s Lemma the corollary is proved. �

Proof of Theorem 2: The proof is similar to that of Theorem 1. Define the process

Kn,j(c) :=
1√
P

n∑
t=R+j+1

[
It,α(θ0 + c(t− 1)−1/2)− Ft−1(θ0 + c(t− 1)−1/2)

]
It−j,α(θ0+c(t−j−1)−1/2),

indexed by c ∈ CK , where CK = {c ∈ R
p : |c| ≤ K}, j ≥ 1, and K > 0 is an arbitrary but fixed

constant. Applying Theorem A1 to Kn,j(c), as in Lemma A1, and following the arguments in
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Theorem 1, we obtain the decomposition

√
P − j

(
ξ̂P,j − ξP,j

)
=

1√
P − j

n∑
t=R+1+j

[
Ft−1(θ̂t−1)It−j,α(θ̂t−j−1)− Ft−1(θ0)It−j,α(θ0)

]
+ oP (1)

=
1√

P − j

n∑
t=R+1+j

[
Ft−1(θ0)It−j,α(θ̂t−j−1)− Ft−1(θ0)It−j,α(θ0)

]
+

1√
P − j

n∑
t=R+1+j

[
g′α(Wt−1, θ̃t−1)ft−1(θ̃t−1)It−j,α(θ̂t−j−1)

]
(θ̂t−1 − θ0) + oP (1)

: = C1n + C2n + oP (1),

where θ̃t−1 is between θ̂t−1 and θ0. Since, Ft−1(θ0) = α a.s., Theorem 1 implies

C1n = αE
[
g′α(Wt−j−1, θ0)ft−j−1(θ0)

] 1√
P − j

n∑
t=R+1+j

H(t− j − 1) + oP (1).

Whereas the arguments after (20) imply that

∣∣∣∣∣∣C2n − E[g′α(Wt−1, θ0)ft−1(θ0)It−j,α(θ0)]
1√

P − j

n∑
t=R+1+j

H(t− j − 1)

∣∣∣∣∣∣ = oP (1).

This proves condition i). As for condition ii), define the following quantities

ξ̂1n,j =
1√

P − j

n∑
t=R+1+j

[
It,α(θ̂t−1)− α

]
ξ̂2n,j =

1√
P − j

n∑
t=R+1+j

[
It−j,α(θ̂t−j−1)− α

]
,

and similarly, define ξ1n,j and ξ2n,j with θ0 replacing θ̂t−1. Now, simple algebra shows that

√
P − jγ̂P,j = ξ̂P,j − αξ̂1n,j − αξ̂2n,j .

The same equality holds for γP,j, ξP,j, ξ1n,j and ξ2n,j. Hence

√
P − j (γ̂P,j − γP,j) =

(
ξ̂P,j − ξP,j

)
− α

(
ξ̂1n,j − ξ1n,j

)
− α

(
ξ̂2n,j − ξ2n,j

)
. (21)
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Theorem 1 implies that, for h = 1 and 2,

ξ̂hn,j − ξhn,j = E
[
g′α(Wt−1, θ0)ft−1(θ0)

] 1√
P − j

n∑
t=R+1+j

H(t− j − 1) + oP (1).

The latter display, part i) and (21) prove condition ii).

As for condition iii), it can be similarly shown that

√
P − j(ζ̂P,j − ζP,j) =

√
P − j(ξ̂P,j − ζP,j)− 2αA

1√
P − j

n∑
t=R+1+j

H(t− j − 1) + oP (1)

=
√

P − j
(
ξ̂P,j − ξP,j

)
− 2αA

 1√
P − j

n∑
t=R+1+j

H(t− j − 1)

 + 2αξ1n,j + oP (1)

= {B − 2αA}
 1√

P − j

n∑
t=R+1+j

H(t− j − 1)

 + 2αξ1n,j + oP (1).

Details are omitted to save space. �

Proof of Corollary 3: The consistency of η̂ and V̂ follows from the ULLN of Jennrich (1969,

Theorem 2) and (19). The consistency of B̂τ follows from Giacomini and Komunjer (2005). Now,

by Slutsky’s Lemma the corollary follows. �
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6.2 Appendix B: Figures
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Unconditional test: GARCH(1,1) model

Figure 6.1. Sample average and 95% empirical confidence intervals for d(α), with υ = 0.05,

in expression (8). The relevant process is a GARCH(1,1) with parameters (η00, η10, η20) =

(0.05, 0.1, 0.85) and error distributed as a Student-t with ν = 30. (R = 250, P = 500) is plotted

with (.−), (R = 500, P = 500) is plotted with (∗−) and (R = 750, P = 500) with (o−). M = 500

Monte Carlo replications.
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Figure 6.2. Sample average and 95% empirical confidence intervals for the independence test

version of d(α), with υ = 0.05, in expression (8). σ̂u(α) is replaced by σ̂c(α). The relevant

process is a GARCH(1,1) with parameters (η00, η10, η20) = (0.05, 0.1, 0.85) and error distributed

as a Student-t with ν = 30. (R = 250, P = 500) is plotted with (.−), (R = 500, P = 500) is plotted

with (∗−) and (R = 750, P = 500) with (o−). M = 500 Monte Carlo replications.
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Figure 6.3. Simulated 0.05 size for SP and S̃P tests for V aRα of a GARCH(1,1) with (η00, η10, η20) =

(0.05, 0.1, 0.85), for α = 0.01 in the upper panels, α = 0.05 in the middle and α = 0.1 in the lower

panels. ν = 30 df for a Student-t. SP is on the left and S̃P on the right. R and P take the values

[250, 500, 750, 1000]. 500 Monte Carlo simulations are carried out.

33



200

400

600

800

1000

200

400

600

800

1000

0.05

0.1

0.15

0.2

0.25

0.3

 R P 

200

400

600

800

1000

200

400

600

800

1000

0.05

0.1

0.15

0.2

0.25

0.3

R

200

400

600

800

1000

200

400

600

800

1000

0.05

0.1

0.15

0.2

0.25

0.3

P 

R 

200

400

600

800

1000

200

400

600

800

1000

0.05

0.1

0.15

0.2

0.25

0.3

P 

R 

200

400

600

800

1000

200

400

600

800

1000

0.05

0.1

0.15

0.2

0.25

0.3

PR 200

400

600

800

1000

200

400

600

800

1000

0.05

0.1

0.15

0.2

0.25

0.3

PR

Figure 6.4. Simulated 0.05 size for CP,1 and C̃P,1 tests for V aRα of a GARCH(1,1) with

(η00, η10, η20) = (0.05, 0.1, 0.85), for α = 0.01 in the upper panels, α = 0.05 in the middle and

α = 0.1 in the lower panels. ν = 30 df for a Student-t. CP,1 is on the left and C̃P,1 on the right.

R and P take the values [250, 500, 750, 1000]. 500 Monte Carlo simulations are carried out.
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Figure 6.5. Finite-sample density function of ξP,1

α(1−α) plotted with a circle line for α = 0.01, and

with a dashed line for α = 0.05. The asymptotic Gaussian density function is represented with a

dotted line. The relevant process is a V aRα of a GARCH(1,1) with (η00, η10, η20) = (0.05, 0.1, 0.85)

and error term given by a Student-t distribution with ν = 30 degrees of freedom. 5000 Monte Carlo

simulations are carried out.
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