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JOINT AND MARGINAL DIAGNOSTIC TESTS

FOR CONDITIONAL MEAN AND VARIANCE

SPECIFICATIONS�

J. Carlos Escancianoy

Indiana University

Abstract

This article proposes a general class of joint and marginal diagnostic tests for parametric con-

ditional mean and variance models of possibly nonlinear non-Markovian time series sequences.

The use of joint and marginal tests is motivated from the fact that marginal tests for the condi-

tional variance may lead misleading conclusions when the conditional mean is misspeci�ed. The

new tests are based on a generalized spectral approach and, contrary to existing procedures,

they do not need to choose a lag order depending on the sample size or to smooth the data.

Moreover, the proposed tests are robust to higher order dependence of unknown form, in partic-

ular to conditional skewness and kurtosis. It turns out that the asymptotic null distributions of

the new tests depend on the data generating process, so a new bootstrap procedure is proposed

and theoretically justi�ed. A simulation study compares the �nite sample performance of the

proposed and competing tests and shows that our tests can play a valuable role in time series

modeling. Finally, an application to the S&P 500 highlights the merits of our approach.
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1. INTRODUCTION

Speci�cation analysis of volatility models is of major interest in empirical �nance and economics.

Volatility modeling is an essential factor in asset pricing and market risk managment, see e.g. the

Value at Risk methodology in Jorion (1997). It also plays an important role in asset allocation under

the mean-variance framework and in studies of the intertemporal relation between risk and return

(see e.g. Glosten, Jagannathan and Runkle, 1993.) In econometrics, many inference procedures

proposed in the literature depend crucially on the correct joint speci�cation of the conditional mean

and variance1 . Despite the signi�cant empirical and theoretical importance of this testing problem,

very few conditional variance speci�cation tests have been proposed. Furthermore, the proposed

tests may not be adequate for the kind of time series data arising in �nancial applications, which

may posses time-varying higher order conditional moments of unknown form and highly persistent

nonlinear dependence. The aim of this paper is to construct new joint and marginal speci�cation

tests especially convenient for �nancial and economic applications. The use of joint and marginal

tests pursued in this article is motivated from the fact that the conditional variance speci�cation

may be missleading when the conditional mean is misspeci�ed.

More precisely, let f(Yt; Z 0t�1)0gt2Z be a strictly stationary and ergodic time series process de�ned

on the probability space (
;F ; P ): Henceforth A0 denotes the matrix transpose of A: Here Yt is the

dependent random variable (r.v.) and let Zt�1 = (Yt�1; X
0
t)
0 2 R1+m; m 2 N, be the explanatory

random vector containing the lagged value of the dependent variable and other explanatory variables

Xt; say. In this paper we are mainly concerned with the case in which the conditioning set at time

t � 1 is given by It�1 = (Z 0t�1; Z
0
t�2; :::)

0: It is known that under square-integrability of Yt we can

write the tautological expression

Yt = f(It�1) + h(It�1)ut;

where f(It�1) = E[Yt j It�1] is almost surely (a.s.) the conditional mean, h2(It�1) = V ar[Yt j It�1]

is a.s. the conditional variance, and ut = (Yt� f(It�1))=h(It�1); t 2 Z; are standardized errors. Let

M = ff(�; �); h2(�; �) : � 2 � � Rpg be a given parametric family of functions and consider the

model

Yt = f(It�1; �) + h(It�1; �)ut(�); (1)

where f(It�1; �) and h(It�1; �) are speci�cations for f(It�1) and h(It�1); respectively, and fut(�)g
1 In estimation theory, consistency of classical estimators such as the Quasi-Maximum Likelihood Estimator

(QMLE), or e¢ ciency improvements in Wefelmeyer (1996), depend crucially on the correct joint speci�cation. In

testing theory, tests for conditional symmetry in Bai and Ng (2001), goodness-of-�t tests for conditional distributions

in Bai (2003) and Koul and Ling (2006) or goodness-of-�t test for copulas in Chen, Fan and Patton (2003), among

many others, also rely on the correct speci�cation of a mean-variance model.
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is a sequence of disturbances of the model, de�ned implicitly from (1). Following the �nancial

literature parlance we also refer to h(It�1; �) as a volatility model for h(It�1):

Since the seminal work on the ARCH model by Engle (1982) there has been a vast quantity

of research uncovering the properties of competing volatility models. As pointed out by Engle

(2002), the number of new models proposed, estimated and analyzed has been dramatic. The most

in�uential models were the �rst: the GARCH model of Bollerslev (1986) and the EGARCH model

of Nelson (1991). There is already a well-developed theory for many aspects of the aforementioned

models, including theorems for stationarity and ergodicity, moments, and estimation. See Li, Ling

and McAleer (2002) and Straumann (2005) for recent surveys. Surprisingly enough, speci�cation

analysis for these models is less elaborated, with very few proposals available in the literature. This

paper contributes to this literature by proposing a general methodology for testing the adequacy of

a possibly nonlinear mean-variance model under fairly general regularity conditions. Given the large

supply of existing competing models an speci�cation test for evaluation of a mean-variance model

is very welcome.

The speci�cation in (1) covers the well-known classes of linear ARMA-ARCH, ARMA-(E)GARCH

models, as well as many other nonlinear conditional mean and variance models, see, e.g., Fan and

Yao (2003) for some review. In empirical �nance an important class is the ARCH in mean (ARCH-

M) models of Engle, Lilien and Robins (1987) and its generalizations, where the conditional variance

enters in the speci�cation of the conditional mean in order to assess return-risk relationships. Our

parametrization in (1) is general enough to allow for (G)ARCH-M models.

Our tests are constructed from the fact that under the correct speci�cation of f(It�1; �0) and

h(It�1; �0), fut(�0)g becomes a martingale di¤erence sequence with respect to Ft, the �-�eld gener-

ated by It; with zero mean and unit conditional variance: That is, the correct joint speci�cation is

tantamount to

H0 : E[e1t(�0) j It�1] = 0 a.s. and E[e2t(�0) j It�1] = 0 a.s. for some �0 2 � � Rp; (2)

where e1t(�) =Yt�f(It�1; �) and e2t(�) =e21t(�)�h2(It�1; �): The �rst conditional moment restriction

in H0 is responsible for the correct speci�cation of the conditional mean, whereas both conditional

moment restrictions are necessary for the adequacy of the conditional variance. Notice that the null

hypothesis H0 is less stringent than the classical independent and identically distributed (i.i.d.) as-

sumption on standardized errors fut(�0)g; which is systematically assumed in the literature. There is

now, however, a growing econometrics and �nancial literature documenting time-varying conditional

skewness and kurtosis in economic and �nancial time series, see e.g. Gallant, Hsieh and Tauchen

(1991), Hansen (1994), Harvey and Siddique (1999, 2000) and Jondeau and Rockinger (2003). In

this paper we are consistent with this existing literature and propose tests for H0 allowing for un-

known serial dependence and time-varying higher order conditional moments in ut(�0) given It�1.
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Neglected higher order dependence can cause misleading conclusions in existing diagnostic tests for

volatility models, see our application to the S&P 500.

There is already an extensive literature on testing the correct speci�cation of a parametric dy-

namic conditional mean model, see Escanciano (2006a) for a recent review. On the contrary, the

literature on joint speci�cation tests of conditional mean and variance functions is very scarce2 . The

existing proposals are extensions of mean�s speci�cation tests to joint speci�cation tests for mean and

variance. Ngatchou-Wandji (2005) proposed �2-discrepancy measures that, although being simple,

fail to be consistent against a large class of alternatives of the correct speci�cation. Recently, Gao

and King (2004) have extended the initial smooth-based approach of Härdle and Mammen (1993)

to tests for joint speci�cations of conditional mean and variance functions.

The most used diagnostic tools in empirical research are the classical Portmanteau tests initially

proposed by Box and Pierce (1970) and Ljung and Box (1978), and subsequently extended to some

conditional variance models by Li and Mak (1994), see also Lundbergh and Teräsvirta (2002) and

Hidalgo and Za¤aroni (2006). The theoretical foundation of this approach is based on the fact

that under our assumptions, �(Iut�1) � �(It�1); where Iut�1 = (ut�1(�0); ut�2(�0); :::)
0; and thus,

condition (2) yields

E[ut(�0) j Iut�1] = 0 a.s. and E[u2t (�0) j Iut�1] = 1 a.s. for some �0 2 � � Rp: (3)

The latter point motivates some authors to consider speci�cation tests based on checking for serial

dependence (or lack thereof) of the unobserved errors fut(�0)g and/or their centered squares. How-

ever, it is important to remark that the serial uncorrelatedness of standardized errors (or centered

square errors) imply neither condition (3) nor (2). As a result, tests based on correlation or autocor-

relation measures are not consistent for any misspeci�ed model with uncorrelated errors (centered

square errors). These tests may incur in an increase of the Type II error probability.

There are at least two limitations of the aforementioned works that one may consider important.

First, the proposed tests only allow for a �nite-dimensional conditioning set It�1. Notice that

common models for the conditional variance are non-Markovian, e.g. the popular GARCH models

or the ARCH(1) model of Robinson (1991). See also Linton and Mammen (2005). Markovian

models, such as the ARCH(d) model, are known not to capture the dynamics well3 . In particular, a

well-known �stylized fact�in �nancial data is a highly persistent volatility, which is consistent with

signi�cative conditioning variables in the variance speci�cation at long lags4 .

2The problem of testing simultaneously many conditional moment restrictions has already been considered in,

e.g. Chen and Fan (1999), under mixing data, or in Delgado, Dominguez and Lavergne (2006) for independent data.

However, none of these tests have considered the problem we deal with here.
3See e.g., Ding et al. (1993), Baillie et al. (1996), Ding and Granger (1996), Breidt et al. (1998), Andersen et al.

(2001) and Mikosch and Starica (2003) for evidence of high persistence in �nancial data.
4Nelson (1991) argues that as the frequency at which the data are sampled becomes very high, persistence should
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Second, a distinguished feature of the simultaneous testing problem in (2) is that the correct spec-

i�cation of the conditional variance generally depends on the correct speci�cation of the conditional

mean. A possible solution to this problem requires nonparametric estimation of the conditional

mean, which involves the choice of bandwidth parameters, see e.g. Blake and Kapetanios (2006).

This problem becomes relevant if the focus is in the conditional variance and neglected nonlinearity

in the conditional mean is a likely event. This is the case in most �nancial applications. In this

paper we recommend the use of marginal and joint tests to identify the cause of the rejection of the

joint test. Our application to the S&P 500 stock index nicely illustrates this point.

In this paper we extend the generalized spectral distribution approach in Escanciano (2006a)

from mean diagnostics to simultaneous and marginal mean-variance speci�cations. The general-

ized spectrum is especially convenient when dealing with in�nite-dimensional information sets and

non-Markovian processes. A novel contribution of the paper is the development and theoretical

justi�cation of a bootstrap procedure to approximate the critical values of tests and the use of joint

and marginal tests. We summarize the main characteristics of our tests as follows: (i) they are suit-

able for cases in which the information set is in�nite-dimensional, allowing for Markovian as well as

non-Markovian processes; (ii) they do not depend on any smoothing parameter or kernel; (iii) they

are consistent against a broad class of linear and nonlinear alternatives to H0, while being robust

to higher order (unknown) conditional dependence; (iv) they incorporate information on the serial

dependence from all lags and, at the same time, avoid the problem of the curse of dimensionality

or high-dimensional integration; (v) they are consistent against pairwise Pitman�s local alternatives

converging at the parametric rate n�1=2; with n the sample size; and (vi) the tests are simple to

compute and are valid under fairly general regularity conditions on the underlying data generating

process (DGP).

The remainder of this paper is organized as follows. In Section 2 we present the generalized

spectral distribution tests for testing H0. In Section 3 we study the asymptotic distribution of our

tests under the null. We propose and justify theoretically a bootstrap method to implement the

tests in Section 4. Finally, we make an extensive simulation exercise and an empirical application to

the S&P 500 stock index in Section 5. All proofs are gathered in an appendix. Throughout, Ac and

jAj denote the complex conjugate and the Euclidean norm of A, respectively. Also jAjM denotes the

weighted norm A0MAc for a positive de�nite matrix M and a complex vector A: Unless indicated,

all limits are taken as the sample size n!1: In the sequel C is a generic constant that may change

from one expression to another.

become larger.
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2. THE INTEGRATED GENERALIZED SPECTRAL TESTS

Our methodology for testing H0 relies on a pairwise generalized spectrum approach that has been

shown to be very useful in a variety of testing problems, see, e.g., Hong (1999), Escanciano and

Velasco (2006) and Escanciano (2006a), among others. The rationale for our test is as follows.

Under H0;

j(�0) = E[et(�0) j Zt�j ] = 0 a.s. 8j; j � 1; for some �0 2 � � Rp; (4)

where et(�0) = (e1t(�0); e2t(�0))0: Then, by appropriately choosing a parametric family of functions

W = fw(Zt�j ; x) : x 2 � � [�1;1]sg; (4) can be equivalently expressed as

j;w(x; �0) = E[et(�0)w(Zt�j ; x)] = 0 almost everywhere (a.e.) in � � [�1;1]s; j � 1: (5)

See Stinchcombe and White (1998) and Escanciano (2006a) for primitive conditions on the familyW

to satisfy the equivalence between (4) and (5). The nuisance parameter space � and its dimension s

depend on the particular familyW used. Common examples of weight functions w are w(Zt�j ; x) =

1(Zt�j � x); with x 2 �ind � [�1;1]m+1; so s = m+1 here, and where 1(A) denotes the indicator

of the event A; or w(Zt�j ; x) = exp(ix0Zt�j); with i =
p
�1 and x 2 �exp � Rm+1. The weight

w(Zt�j ; x) = 1(�0Zt�j � u); where x = (�0; u)0 2 �pro � Sm+1 � [�1;1] � [�1;1]s; with

s = m + 2 and Sm+1 = f� 2 Rm+1 : j�j = 1g; was proposed in Escanciano (2006b) and leads to

powerful tests. The present tests are based on a generalized spectral distribution function approach

using the measures fj;w(�; �0)g1j=1 for a generic w.

We consider simultaneously all the dependence measures fj;w(�; �0)g1j=1 in (5) as follows. De�ne

�j;w(�; �0) := j;w(�; �0) for j � 1 and 0;w(�; �0) := E[et(�0)w(Zt; x)]; and denote the Fourier

transform of the functions fj;w(�; �0)g1j=�1 by

fw(u; x; �0) =
1

2�

1P
j=�1

j;w(x; �0)e
�iju 8u 2 [��; �]; x 2 �; (6)

which contains the same information about H0 as the whole sequence fj;w(x; �0)g1j=0:

Note that under H0; fw(u; x; �0) � f0;w(x; �0) = (2�)�10;w(x; �0); which can serve as the basis

upon which a test for (2) is constructed. Nonparametric smoothed estimation is necessary for

estimating fw(u; x; �0). This can be avoided by means of a generalized spectral distribution function

approach based on the dependence measures fj;w(�; �0)g1j=�1: Our tests are then based on the

integral of fw(u; x; �0); i.e.,

Hw(�; x; �0) = 2

��Z
0

fw(u; x; �0)du 8� 2 [0; 1]; x 2 �;

which after some manipulation can be written as

Hw(�; x; �0) = 0;w(x; �0)�+ 2
1X
j=1

j;w(x; �0)
sin j��

j�
: (7)
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Now, suppose we have a sample fYt; bIt�1gnt=1 of size n that is used to estimate the model (1). HerebIt�1 is the information set observed at time t � 1 that contains (Z 0t�1; Z 0t�2; :::; Z 00)0 and that may
contain some initial values. We obtain residuals

be1t � be1t(�n) = Yt � f(bIt�1; �n) be2t � be2t(�n) = �Yt � f(bIt�1; �n)�2 � h2(bIt�1; �n); (8)

where �n is a
p
n-consistent estimator for �0, e.g., the Quasi-Maximum Likelihood Estimator

(QMLE). The sample version of j;w(x; �0) for j � 0 is then given by

bj;w(x; �n) = 1

nj

nX
t=j

betw(Zt�j ; x); nj = n� j + 1; bet = (be1t; be2t)0: (9)

Hence, the sample analogue of (7) is

bHw(�; x; �n) = b0;w(x; �n)�+ 2 nX
j=1

bj;w(x; �n)(nj=n)1=2 sin j��j�
;

with (nj=n)1=2 a �nite sample correction factor that does not a¤ect the asymptotic theory and leads

to a better �nite sample performance of the test procedure. The e¤ect of this correction factor

is to put less weight on very large lags, for which we have less sample information. Under the

null hypothesis, Hw(�; x; �0) = 0;w(x; �0)�; and therefore, tests can be based on the discrepancy

between bHw(�; x; �n) and bH0;w(�; x; �n) = b0;w(x; �n)�, i.e.,
Sn;w(�; x; �n) =

�n
2

�1=2
f bHw(�; x; �n)� bH0;w(�; x; �n)g = nX

j=1

n
1=2
j bj;w(x; �n)p2 sin j��j�

:

In order to evaluate the distance from Sn;w(�; x; �n) to zero, a norm has to be chosen. We consider

a Cramér-von Mises (CvM) norm,

J2n;w(�n) =

Z
�

jSn;w(�; x; �n)j2M W (dx)d� =
nX
j=1

nj
(j�)2

Z
�

��bj;w(x; �n)��2M W (dx); (10)

where W (�) is an integrating function depending on the weight family W and satisfying some mild

conditions (see Assumption A5 below) andM is a 2�2 positive semide�nite matrix. Our tests reject

H0 for �large�values of J2n;w(�n). Note that J
2
n;w(�n) uses all lags contained in the sample, it does

not depend on any lag order and is very simple to compute (see Section 5). On the other hand, the

range of possibilities in the choice of w; M and W creates �exibility for J2n;w(�n) in directing the

power against some desired directions (see Escanciano (2007b) for discussion regarding w and W:)

In the simulations we chooseM with rows (m1; 0) and (0;m2). The nonnegative weights m1 and m2

represent the contribution of the marginal components (i.e. mean and variance) to the joint test.

For instance, the choice m1 = 1 and m2 = 0 leads to the marginal mean test which is �tilted�against

mean misspeci�cations. In this paper we advocate for the use of joint tests based on J2n;w(�n) and

marginal tests derived from the choices m1 = 1 and m2 = 0 (mean component) and m1 = 0 and

m2 = 1 (variance component.) This constitutes an interesting situation that marks departure from

other approaches that exist in the literature. See Section 5 for the use of joint and marginal tests.
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3. ASYMPTOTIC NULL DISTRIBUTION

To elaborate the asymptotic theory we consider the following assumptions. Recall that e1t(�) =Yt�

f(It�1; �) and e2t(�) =e21t(�) � h2(It�1; �); with � 2 � � Rp: We de�ne the score g(It�1; �) with

rows g01t(�) and g
0
2t(�); given by

g01t(�) = (@=@�
0)f(It�1; �); g02t(�) = 2e1t(�)g

0
1t(�) + 2h(It�1; �)

@h(It�1; �)

@�0
:

To simplify notation write w(Zt�j ; x) � wt�j(x):

Assumption A1:

A1(a): fYt; Xtgt2Z is a strictly stationary and ergodic process.

A1(b): E[e21t(�0)] < C and E[e
2
2t(�0)] < C:

Assumption A2: Let �0 be a small convex neighborhood of �0: The functions f(It�1; �) and h(It�1; �)

are twice continuously di¤erentiable with respect to � 2 �0 a.s., with score gt(�0) � g(It�1; �)

stationary, ergodic and Ft�1-measurable. There exist functions Gj(It�1) with sup�2�0
jgjt(�)j �

Gj(It�1); with E[Gj(It�1)] < C; for j = 1; 2:

Assumption A3:

A3(a): The parametric space � is compact in Rp: The parameter �0 belongs to the interior of �:

A3(b): The estimator �n satis�es the asymptotic Bahadur expansion under H0

p
n(�n � �0) =

1p
n

nX
t=1

m(It�1; �0)et(�0) + oP (1);

where m(�) is such that L(�0) = E[m(It�1; �0)et(�0)e0t(�0)m0(It�1; �0)] exists and is positive de�nite:

Assumption A4: The integrating function W (�) is a probability distribution function absolutely

continuous with respect to Lebesgue measure. M is a 2�2 positive semide�nite matrix. The weight

function w(�) is such that the equivalence between (4) and (5) holds, and is uniformly bounded on

compacta. Also, w(�) satis�es the uniform law of large numbers

sup
x2�c

�����n�1
nX
t=1

�tw(�t; x)� E[�tw(�t; x)]
����� �! 0 a.s.

whenever f(�t; �t); t = 0;�1; :::g is a strictly stationary and ergodic process with �t 2 R; �t 2 R1+m;

E j�1j <1; and �c is any compact subset of � � [�1;1]s:

Assumption A5: Let �0 be a small neighborhood around �0: The observed information set available

at period t; bIt; may contain some assumed initial values and satis�es 
nX
t=1

�
E sup
�2�0

����f(bIt�1; �)� f(It�1; �)����2�1=2!2 = o(n);
8



0@ nX
t=1

"
E sup
�2�0

�����Yt � f(bIt�1; �)�2 � (Yt � f(It�1; �))2����2
#1=21A2

= o(n)

and  
nX
t=1

�
E sup
�2�0

����h2(bIt�1; �)� h2(It�1; �)����2�1=2!2 = o(n):

Assumption A1 is a condition on the DGP. Note that we do not need any mixing or asymptotic

independence assumption to derive the asymptotic theory, see, e.g., the mixing assumption A.1 in

Hong and Lee (2003). These asymptotic independence concepts are di¢ cult to check in practice,

whereas the martingale di¤erence errors assumption used in our asymptotic theory is implied from

H0. A1 can be extended to non-stationary sequences using the results of Jakubowski (1980) at the

cost of complicating further the notation. Note that our conditions permit long memory processes.

Assumption A2 is on the model and is standard in the literature, see, e.g., Escanciano (2006a).

Assumption A3 is satis�ed under mild conditions for most estimators. Conditions for A3 for the

local QMLE under martingale conditions have been established in Lee and Hansen (1994). See also,

among others, Hall and Heyde (1980, Chapter 6), Horváth et al. (2001), Francq and Zakoïan (2004)

and Straumann (2005). As shown in e.g. Francq and Zakoïan (2004) the QMLE of pure GARCH

models, �n say, satis�es A3 undel mild conditions and H0; with

p
n(�n � �0) =

1p
n

nX
t=1

J�1
1

h4(It�1; �0)
g2t(�0)e2t(�0) + oP (1);

where J � J(�0) = E[h�4(It�1; �0)g2t(�0)g
0
2t(�0)]: Extensions to ARMA-GARCH models can be

also found in Francq and Zakoïan (2004).

Examples of W (�) include the cumulative distributions functions (cdf) of a N(0,1), Double Expo-

nential or the Student�s t� distribution: The reader is referred to Escanciano and Velasco (2006) for

discussions on the choice of W . All previous examples of functions w satisfy A4, see the discussion

in the previous section. A5 is a condition on the truncation of the information set bIt�1 and is similar
in spirit to Assumption A4 in Hong and Lee (2003). It is straightforward to show that A5 is satis�ed

for most standard examples, e.g., MA(1) and GARCH(1,1) models, under mild conditions on the

conditional mean and variance parameters and some mild moment conditions.

To elaborate the asymptotic theory we need further notation. Let us de�ne � = [0; 1] � � and

� = (�; x0)0 2 �. We consider Sn(�; x; �n) � Sn(�; �n) as a random element on the Hilbert space

L2(�; �;M) of all bivariate complex-valued and square �-integrable functions on �; where � is the

product measure of the W -measure and the Lebesgue measure on [0; 1], that is, f 2 L2(�; �;M) if

kfk2 =
Z
�

f 0(�)Mfc(�)d�(�) =

Z
�

f 0(�)Mf c(�)W (dx)d� <1:

9



In L2(�; �;M) we de�ne the inner product

hf; gi =
Z
�

f 0(�)Mgc(�)W (dx)d�:

If Z is an L2(�; �;M)-valued random variable; we say that Z has mean m if E[hZ; hi] = hm;hi

8h 2 L2(�; �;M): If E kZk2 <1 and Z has zero mean, then the covariance operator of Z; say CZ ,

is de�ned by CZ(h) = E[hZ; hiZ]: Denote by =) weak convergence in the Hilbert space L2(�; �;M)

endowed with the norm metric. Also, denote by
L2�! convergence in probability in L2(�; �;M); i.e.,

Zn
L2�! Z () kZn � Zk

P�! 0: Let us de�ne 	j(�) =
p
2(sin j��)=j�; bj(x;�0) = E[wt�j(x)gt(�0)];

Gw(�) =
P1

j=1 bj(x;�0)	j(�); Q1;w(�) =
1P
j=1

wt�j(x)	j(�); and

�2h = E
�
het(�0)Q1;w; hi2

�
; h 2 L2(�; �;M): (11)

Let V be a normal random vector with zero mean and variance-covariance matrix given by L(�0)

(cf. A3(b)), and let S0w(�) be a Gaussian process in L2(�; �;M) with zero mean and covariance

operator CS0w satisfying �
2
h = hCS0w(h); hi; 8h 2 L2(�; �;M); where �

2
h is de�ned in (11). Then,

under Assumptions A1-A5 we establish the asymptotic null distribution of Sn;w in the following

theorem:

Theorem 1 Under Assumptions A1-A5 and H0, the process Sn;w converges weakly to Sw on L2(�; �;M),

where Sw(�) has the same distribution as S0w(�)�Gw(�)V , with

Cov(S0w(�)
0; V ) = E[m(It�1; �0)et(�0)e

0
t(�0)Q1;w(�)]:

The next corollary follows from the Continuous Mapping Theorem (Billingsley 1999, Theorem 2.7)

and Theorem 1.

Corollary 1 Under the assumptions of Theorem 1,

J2n;w(�n)
d�! J21;w(�0) =

Z
jSw(�; x; �0)j2M W (dx)d�:

The asymptotic (local) power properties of J2n;w(�n) can be studied along the arguments in Es-

canciano (2006a). We do not discuss these issues here for the sake of space. To end this section,

it is important to remark that the asymptotic null distribution of J2n;w(�n) depends in a complex

way on the DGP as well as the hypothesized model under the null, so critical values have to be

tabulated for each model and each DGP, making the application of these asymptotic results di¢ cult

in practice. To overcome this problem, we shall propose to implement the tests with the assistance

of a bootstrap procedure in Section 4. Alternative solutions proposed in the literature, such as the

martingale transformation used in Koul and Stute (1999) (cf. Khmaladze, 1981), are di¢ cult in our

context. The main reason is that, unlike in Koul and Stute (1999), the serial dependence structure

of the regressors plays a crucial role in the covariance operator of our null limit process.

10



4. BOOTSTRAP APPROXIMATION

Resampling methods have been extensively used in the model checks literature of regression time

series models; see, e.g., Stute, Gonzalez-Manteiga and Presedo-Quindimil (1998) in an i.i.d context,

and Escanciano (2007a) for time series sequences. It is shown in these papers that the most relevant

bootstrap method for regression problems is the wild bootstrap introduced in Wu (1986) and Liu

(1988). Here we extend the wild bootstrap to our present context. We approximate the asymptotic

null distribution of Sn;w by that of

S�n;w(�; x;�
�
n) � (S�n;w;m(�; x;��n); S�n;w;v(�; x;��n))0 =

nX
j=1

n
1=2
j b�j (x)	j(�);

with b�j (x) = (b�j;m(x); b�j;v(x))0 given by
b�j;m(x) = 1

nj

nX
t=j

be�1twt�j(x);
and b�j;v(x) = 1

n� j

nX
t=1+j

be�2twt�j(x);
and where be�t = (be�1t; be�2t)0 are obtained from the following algorithm:

Step 1: Estimate the original model and obtain the residuals bet(�n):
Step 2: Generate wild bootstrap residuals according to b"�1t = be1t(�n)Vt and b"�2t = be2t(�n)Vt for

1 � t � n; with fVtg a sequence of i.i.d random variables with zero mean, unit variance,

bounded support and independent of the sequence f(Yt; bIt�1)0gnt=1.
Step 3: Given �n and b"�1t and b"�2t; generate bootstrap data according to

Y �1t = f(
bIt�1; �n) + b"�1t for 1 � t � n; (12)

and

Y �2t = h
2(bIt�1; �n) + b"�2t for 1 � t � n: (13)

Step 4: Compute ��n from the bootstrap data fY �1t; Y �2t; bIt�1gnt=1 to construct be�1t = Y �1t�f(bIt�1; ��n)
and be�2t = Y �2t � h2(bIt�1; ��n); for t = 1; :::; n:

Examples of fVtg sequences are i.i.d Bernoulli variates with

P (Vt = 0:5(1�
p
5)) = b and P (Vt = 0:5(1 +

p
5)) = 1� b; (14)

with b = (1 +
p
5)=2

p
5; used in, e.g., Stute, Gonzalez-Manteiga and Presedo-Quindimil (1998), or

P (Vt = 1) = 0:5 and P (Vt = �1) = 0:5; as in Liu (1988). Other sequences can be found in Mammen
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(1993). The next theorem justi�es theoretically the bootstrap approximation. The unknown limiting

null distribution of J2n;w(�n); i.e., the distribution of J
2
1;w(�0); is approximated by the bootstrap

distribution of

J2�n;w =

Z ��S�n;w(�; x;��n)��2M W (dx)d�:
That is, the bootstrap distribution

F �J (x) = P
�
J2�n;w � x

�� fYt; bIt�1gnt=1�
estimates the asymptotic null distribution function

FJ (x) = P
�
J21;w(�0) � x

�
:

Thus, H0 will be rejected at the 100�% of signi�cance when J2n;w(�n) � c�n;�; where F
�
J

�
c�n;�

�
=

1 � � (a.s.) Also, we can use the bootstrap p-values; p�n say, rejecting H0 when p
�
n < �; where

p�n = P
�
J2�n;w � J2n;w(�n)

�� fYt; bIt�1gnt=1� : The bootstrap assisted test is valid if F �J is a consistent
estimator of FJ at each continuity point of FJ . When consistency is a.s.; it is expressed as J2�n;w !d

J21;w(�0) a.s. See Ginè and Zinn (1990) for discussion. Remark that we say that the bootstrap

statistic ��n converges in probability a.s. to �n if for all � > 0; P
�
j��n � �nj � �j fYt; bIt�1gnt=1�! 0

a.s., which is expressed as ��n = �n + oP (1) a.s. De�ne weak convergence almost surely under the

bootstrap law, denoted by =)
�
a.s., as

R�n =)� R a.s.() E
�
f(R�n)j fYt; bIt�1gnt=1�! E

�
f(R)j fYt; bIt�1gnt=1� a.s.

for any continuous and bounded real valued function f on L2(�; �;M):

In order to show that the bootstrap assisted tests are valid, we need to assume that the bootstrap

analog of �n; �
�
n in step 4 above, satis�es an asymptotic expansion like A3(b) in the bootstrap

world. Conditions for the satisfaction of A6 below have to be studied on a case-by-case basics. See

Dominguez (2004) for an example of analysis with the nonlinear least squares estimator in conditional

mean models.

Assumption A6 :

A6(a): The estimator ��n satis�es the asymptotic expansions

p
n(��n � �n) =

1p
n

nX
t=1

Vtm(It�1; �n)bet(�n) + oP (1) a.s.,
where the function m(�) is as in A3.

A6(b): There exists a unique �1 2 � such that j�n � �1j = oP (1): Moreover, A5 is satis�ed

replacing �0 by �1; a small neighborhood around �1:

A6(c): E
�
sup�2�1

jm(It�1; �)j
�
� C; E

h
sup�2�1

jm(It�1; �)et(�)j2
i
� C; E[sup�2�1

jeht(�)j2] �

C and E
�
sup�2�1

jm(It�1; �)et(�)eht(�)j
�
� C for h = 1; 2:

12



Theorem 2 Assume A1-A6. Then

S�n;w =)�
eSw; a.s.,

where eSw is the same Gaussian process of Theorem 1 but with �1 replacing �0.

There is a particular case of Theorem 2 that is worth to be mentioned. Consider the situation

where the conditional mean is misspeci�ed, so P (E[e1t(�) j It�1] = 0) < 1 for all � 2 �; but

the second conditional moment restriction in (2) holds, i.e., E[e2t(�0) j It�1] = 0: From the latter

restriction, one can usually obtain an estimator �n such that j�n � �0j = oP (1): One can prove that

under such circumstances, the bootstrap marginal test for testing E[e2t(�0) j It�1] = 0 still yields

valid inferences. Of course, in such a situation we are not modeling the conditional variance but

the dispersion from other location parameter f(It�1; �0): For instance, econometricians in �nancial

applications often speci�ed f(It�1; �0) � 0: Our previous discussion guarantee that as long as E[Y 2t j

It�1] = h
2(It�1; �) and j�n � �0j = oP (1) hold, our bootstrap conditional variance test yields valid

inference, so it is not a¤ected by the conditional mean misspeci�cation. This is a robust property

of our bootstrap tests not shared by other existing testing methods.

Theorem 2 shows that the bootstrap assisted tests lead to correct critical values under the null hy-

pothesis. Following Escanciano (2006a), it can be shown that the bootstrap tests are consistent and

preserve the asymptotic local power properties of the tests based on Sn;w: Next section investigates

the �nite sample performance of the proposed bootstrap procedures.

5. FINITE SAMPLE PERFORMANCE AND EMPIRICAL APPLICATION

In order to examine the �nite sample performance of the proposed tests we carry out a simulation

experiment with some DGP under the null and under the alternative. In the simulations we set

Zt = Yt: We compare our tests with the generalized spectral test of Hong and Lee (2003) (Mn;p);

the Portmanteau tests of Li and Mak�s (1994) (LMm) and the joint mean-variance extensions of the

some tests considered in Escanciano (2007a), see also Koul and Stute (1997). We brie�y describe

our simulation setup. We denote by J2n;I our new Cramér-von Mises test based on w(Yt�j ; x) =

1(Yt�j � x) and the empirical distribution function of fYt�1gnt=1 as the integrating measure, i.e.,

J2n;I =

nX
j=1

nj
n(j�)2

nX
t=1

�
m1b��21e b2I;j;m(Yt�1; �n) +m2b��22e b2I;j;v(Yt�1; �n)� ;

where the subindex I in bI;j = (bI;j;m; bI;j;v)0 corresponds to the use of w(Yt�j ; x) = 1(Yt�j � x)
in (9) and

b�2je = 1

n

nX
t=1

be2jt; j = 1; 2:
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Note that the use of the empirical cdf does not a¤ect the asymptotic theory, see Escanciano (2006a).

For the joint test we consider (m1;m2) = (1; 1): The marginal tests D2
n;I;m and D2

n;I;v correspond

to the choices (m1;m2) = (1; 0) and (m1;m2) = (0; 1); respectively.

Analogously, we de�ne J2n;C ; D
2
n;C;m and D2

n;C;v based on w(Yt�j ; x) = exp(ixYt�j) and the

integrating function �; the density function of the standard normal random variable, which yields

the test statistic

J2n;C =
nX
j=1

1

nj(j�)2

nX
t=j

nX
s=j

�
m1b��21e be1tbe1s +m2b��22e be2tbe2s� exp(�0:5 � (Yt�j � Ys�j)2):

Our joint test statistics J2n;I and J
2
n;C are representatives of the CvM tests based on the most used

weighting functions. These CvM tests are based on the choice M with rows (m1; 0) and (0;m2).

For a null ARMA-ARCH(r) model, the simpler version of Li and Mak�s test statistic can be written

as

LMm = n(n+ 2)
mX

j=r+1

(n� j)�1b�22(j)!d �
2
m�r; m > r;

where b�22(j) is the sample autocorrelation function of fu2t (�0)g. The null limit distribution depends
on r, the order of the ARCH model. When other conditional variance models are estimated, the

test statistic itself has to be modi�ed as suggested by Li and Mak (1994) or by Lundbergh and

Teräsvirta (2002). Li and Mak�s test LMm is checking for uncorrelation in fu2t (�0)g up to order m;

see the discussion around (3).

Hong and Lee (2003) have proposed a diagnostic test for conditional mean and variance speci�ca-

tions based on checking the serial independence between ut(�0) and ut�j(�0) at all lags. It is worth

to stress that the independence assumption on standardized errors is in general more restrictive than

the null hypothesis (2) and, in particular, it is possible that their test rejects a correct null model

because of higher order dependence, incurring in an increase of the Type I error probability. Hong

and Lee�s (2003) test is given by

Mn;p =
h
HLn;p � bC0K2

i
=
h
2 bD0K4

i
; (15)

with HLn;p de�ned by

HLn;p =

Z n�1X
j=1

k2(j=p)(n� j) jb�j(y; x; �n)j2W (dy)W (dx); (16)

where b�j(y; x; �n) is the sample covariance between exp(iyut(�n)) and exp(ixut�j(�n)); k(�) is a
kernel function, p is a bandwidth and W is a weighting function.

Moreover, K2 =
n�1P
j=1

k2(j=p); K4 =
n�1P
j=1

k4(j=p) and the centering and scaling factors are, respec-

tively bC0 = �Z b�0(y;�y; �n)W (dy)�2
14



and bD0 = �Z jb�0(y; x; �n)j2W (dy)W (dx)�2 :
Under the null hypothesis of i.i.d standardized errors and some assumptions, Hong and Lee (2003)

showed that Mn;p converges to a standard normal random variable. As in Hong and Lee (2003), we

use the density function W (�) � �(�) and the Daniell kernel k(z) = sin(�z)=�z.

Escanciano (2007a) proposed bootstrap speci�cation tests based on a �nite dimensional condi-

tioning set, in the spirit of Koul and Stute (1999). Here we consider extensions to joint tests for

mean and variance speci�cations. Though such extensions have not been justi�ed yet, the present

paper provides evidence of their theoretical validity. We denote by CvMP the Cramér-von Mises

statistic, with P as the number of lags used. These statistics are based on the multivariate integrated

regression functions, i.e.

CvMP =
m1b�21en2

nX
j=1

"
nX
t=1

be1t(�n)1(It�1;P � Ij�1;P )#2 + m2b�22en2
nX
j=1

"
nX
t=1

be2t(�n)1(It�1;P � Ij�1;P )#2 ;
where It�1;P = (Yt�1; :::; Yt�P ) is the P -lagged values of the series. Again, CvMP;m and CvMP;v

correspond to the respective choices of (m1;m2) = (1; 0) and (m1;m2) = (0; 1) in CvMP .

Throughout "t and vt are independent sequences of i.i.d. N(0; 1): We consider the nominal level

5% in all tests and simulations. The results with other signi�cance levels are similar. The number

of Monte Carlo experiments is 1000 and the number of bootstrap replications is B = 500. In all the

replications 200 pre-sample data values of the processes were generated and discarded to eliminate

the e¤ect on initial values in the generation of the data. For the bootstrap approximation we employ

a sequence fVtg of i.i.d Bernoulli variates given in (14). The power in the non-bootstrap cases is size-

adjusted by using the empirical values obtained under the corresponding null hypothesis, although

the di¤erence is not substantial. To examine the impact of the bandwidth on Mn;p we consider p

from p = 2 to 11. For Li and Mak�s (1994) (LMm) test we use m from m = 2 to 11; and for CvMP

we use P = 1; 3; 5; 7 and 9. For simplicity, we only present in tables the values m; p = 2; 6 and 10

and P = 1; 3 and 5.

5.1 Conditional Variance Models

Now, we examine the adequacy of an ARCH(1) model against misspeci�cations in conditional

mean, conditional variance and both conditional mean and variance. We compare our marginal

tests D2
n;I;v and D

2
n;C;v with Mn;p; CvMP;v and LMm for linear and nonlinear conditional variance

speci�cations. With the null ARCH(1) model, we examine the level and power against misspeci�ca-

tions in the conditional variance, their power against apparent ARCH structures and against chaotic

processes with similar autocorrelations in squares to an ARCH(1). Our null model is an ARCH(1)
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model:

Yt = ht"t; h2t = a+ bY
2
t�1:

We examine the adequacy of this model under the following DGP:

1. ARCH(1) model: Yt = ht"t; h2t = 0:9 + 0:1Y
2
t�1:

2. ARCH(2) model: Yt = ht"t; h2t = 0:1 + 0:1Y
2
t�1 + 0:8Y

2
t�2:

3. GARCH(1,1) model: Yt = ht"t; h2t = 0:01 + 0:29Y
2
t�1 + 0:7h

2
t�1:

4. EGARCH(1,1) model: Yt = ht"t; lnh2t = 0:01 + 0:9 lnh
2
t�1 + 0:3(j"t�1j � (2=�)1=2)� 0:8"t�1:

5. Stochastic Volatility (SV) model: Yt = ht"t; h2t = 0:1Y
2
t�1 + exp(0:98 lnh

2
t�1 + vt):

6. Bilinear model (BIL): Yt = 0:8"t�1Yt�1 + "t:

7. Logistic Map (LM): Yt = 4Yt�1(1�Yt�1); where Y0 is generated from the uniform distribution

on [0,1].

8. Non-Linear Moving Average model (NLMA): Yt = 0:8"2t�1 + "t:

These models have been considered in Hong and Lee (2003), except for the parameter values of model

2 (we have changed the parameter values for a better discrimination among the tests). To compute

the statistics D2
n;I;v; D

2
n;C;v and CvMP;v we use the residuals be2t(�n) := Y 2t � h2(Yt�1; �n) where

h2(Yt�1; �n) = ba+bbY 2t�1; and �n = (ba;bb) is the least squares estimators in the regression of Y 2t against
a constant and Y 2t�1: In Mn;p, and LMm we use standardized residuals but(�n) = Yt=h(Yt�1; �n):
In Table 1 we report the empirical rejections probabilities (RP) associated with the models 1

to 8 to examine the empirical level and power of tests. The sample size is n = 100: The tests

D2
n;I;v; D

2
n;C;v; CvMP;v; LMm and Mn;p show an excellent empirical level. Table 1 also examines

the empirical power of the tests against the conditional variance models 2 to 8. Our tests D2
n;I;v and

D2
n;C;v have excellent empirical power against the EGARCH, SV, BILINEAR, LOGISTIC MAP and

NLMA models, and moderate empirical power against ARCH(2) and GARCH(1,1). It is observed

that D2
n;C;v outperforms D

2
n;I;v for conditional variance models. This �nding is similar to the

well documented fact in the goodness-of-�t literature of distribution functions, see e.g. Feigin and

Heathcote (1976), that indicator based tests have low power against changes in scale, whereas

exponential functions have good power properties for changes in scale and mean. The generalized

Koul and Stute (1999) test CvMP;v is very sensitive to the lag order P; see the results for ARCH(2),

EGARCH, LM and NLMA. The best choice for P in CvMP;v depends on the alternative at hand

and leads to a test comparable to D2
n;I;v; but worse than D

2
n;C;v: Hong and Lee�s (2003) test Mn;p
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has good empirical power against ARCH(2), EGARCH, BIL and LOGISTIC MAP and moderate

power against the rest of models. Notice that Mn;p is very sensitive on p for ARCH(2) and SV

models. Li and Mak�s (1994) test LMm has excellent empirical power against the models ARCH(2),

GARCH(1,1) and SV, and has low power against BIL, LOGISTIC MAP and NLMA alternatives.

� � � � � � � � � � �

TABLE 1 ABOUT HERE

� � � � � � � � � � �

It is shown in these simulations that D2
n;I;v and D

2
n;C;v have omnibus power against all linear

and nonlinear alternatives considered. Notably, the exponential based test D2
n;C;v has excellent

empirical power properties against all considered alternatives, being the best test in many cases.

These simulations con�rm that in practice it could be better to consider a pairwise spectral approach

than a joint approach as in CvMP;v. Even for the optimal choice of P , CvMP;v leads to a test which

is less powerful than D2
n;C;v: Also our tests are in many cases more powerful than Hong and Lee�s

(2003) test Mn;p; even when the latter take into account additional information from the serial

dependence of the standardized innovations in higher moments than those considered in (2). Now,

we consider joint conditional mean and conditional variance models.

5.2 Joint Speci�cations of Conditional Mean and Variance

In this subsection we �rst examine the adequacy of an autoregressive conditional heteroskedastic

model (AR(1)-CH(1)) against misspeci�cations in conditional mean, conditional variance and both

conditional mean and variance. We compare our joint tests J2n;I and J
2
n;C ; with the marginal tests

D2
n;I;m; D

2
n;C;m; D

2
n;I;v; D

2
n;C;v, the tests based on a �nite-dimensional information set CvMP ;

CvMP;m and CvMP;v; and with Mn;p. The user-chosen parameters are p = 2; 6 and 10 and P = 3.

To save space we have not reported results for the Portmanteau test LMm: The simulation design

is the same as before.

Our second null model is:

Yt = aYt�1 + ht"t; a 6= 0; h2t = b+ cY
2
t�1:

In the second block of simulations we examine the adequacy of this model under the following DGP:

1. AR(1)-CH(1) model: Yt = 0:6Yt�1 + ht"t; h2t = 0:9 + 0:1Y
2
t�1:

2. AR(1)-BIL model: Yt = 0:6Yt�1 + 0:4Yt�1"t + "t:

3. GARCH-M model: Yt = 2:5h2t + ut; ut = ht"t, h
2
t = 0:001 + 0:29u

2
t�1 + 0:7h

2
t�1:
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4. AR(2)-CH(1) model: Yt = 0:6Yt�1 � 0:5Yt�2 + ht"t; h2t = 0:9 + 0:1Y 2t�1:

5. TAR model: Yt = 0:9Yt�1 + "t if jYt�1j � 1 and Yt = �0:3Yt�1 + "t if jYt�1j > 1:

These are well known linear and nonlinear models. We report the RP for J2n;I , J
2
n;C ; D

2
n;I;m; D

2
n;C;m;

D2
n;I;v; D

2
n;C;v, CvMP ; CvMP;m, CvMP;v andMn;p in Tables 2 and 3. They correspond respectively

to samples sizes n = 50 and 200: The empirical size is satisfactory for all tests against the AR(1)-

CH(1) model: For the AR(1)-BIL the conditional mean is well speci�ed and the conditional variance

is misspeci�ed, this is re�ected in the empirical powers of the marginal and joint tests: Hong and Lee�s

test has reasonable empirical power. Tests based on a �nite-dimensional conditioning set have less

power than our spectral-based tests and they are comparable toMn;p. Among all statistics, our tests

J2n;I and J
2
n;C have the highest empirical powers against the AR(1)-BIL alternative. The GARCH-M

is very popular in �nancial applications. The coe¢ cient of h2t is called the risk premium parameter

is taken to be 2:5; which is reasonable value for this parameter, see e.g. Glosten, Jagannathan and

Runkle (1993). The GARCH-M model has a misspeci�ed conditional mean and conditional variance.

Hong and Lee�s test is the most powerful for this alternative. Our tests and CvMP ; CvMP;m, and

CvMP;v are comparable, and rather surprisingly, marginal tests for the conditional variance have no

power against this alternative.

For the AR(2)-CH(1) model both joint tests, those based on the spectral approach and those

based on a �nite-dimensional conditioning set, have a good empirical power. Again marginal tests

for the conditional variance have no power against this alternative. The empirical power of Mn;p is

more or less satisfactory but very sensitive to p. It is important to remark that for this alternative

the use of P = 1 in CvMP and CvMP;m leads to tests with no power, with RP of 0.01 and 0.08,

respectively. This shows again the importance of the choice of the lag order P in tests based on

�nite-dimensional conditioning sets. A practitioner using CvMP P = 1 may conclude that both the

conditional mean and variance are correctly speci�ed. For the TAR model our test statistics J2n;I ,

J2n;C ; D
2
n;I;m and D2

n;C;m outperform Mn;p: The test statistics CvM3; CvM3;m and CvM3;v have

very low power against the TAR alternative. Marginal tests for the conditional variance have low

power. As in the previous two models, this may be a consequence of the e¤ect of the misspeci�ed

conditional mean on the marginal variance test and shows the importance of considering joint and

marginal tests. The power increases as the sample size increases for all tests, as expected.

� � � � � � � � � � � � � �

TABLES 2 AND 3 ABOUT HERE

� � � � � � � � � � � � � �

Finally, we consider the Exponential Autoregressive ARCH(1) model (EXPAR-ARCH(1)):
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Yt = 0:9Yt�1 + �01Yt�1 exp(�0:05Y 2t�1) + ht"t; h2t = 0:1 + �02Y 2t�1:

This model was considered in Ngatchou-Wandji (2005). The condition for stationarity and ergodicity

of this model is j�01j + j�02j + 1:8�01 < 0:1: The null AR(1) model corresponds to �01 = �02 = 0:

We consider in this simulations all combinations among the values �01 = 0 and �2:0 and �02 = 0;

0:4 and 0:8. The Monte Carlo set-up is as in previous simulations. Table 4 reports the RP for this

DGP for sample sizes n = 50 and n = 100:

� � � � � � � � � � � � � �

TABLES 4 ABOUT HERE

� � � � � � � � � � � � � �

From the results reported inTable 4 we conclude that the empirical size performance of tests is

satisfactory for as small sample size as n = 50; although some underrejection is observed for mean

marginal tests. The size already improves for n = 100: As for the power, we see again that D2
n;C;v

and its components have excellent empirical power properties against these alternatives, being the

best tests in all cases. In particular, D2
n;C;v and its marginals have better empirical power properties

than Mn;p; even uniformly in p; see for instance the case �01 = �2:0 and �02 = 0. The tests based

on a �nite dimensional conditioning set have low power against these alternatives.

These simulations have con�rmed the ability of our joint test to detect misspeci�cations in both

the conditional mean and variance functions. Furthermore, we have shown that the use of the

marginal and joint tests is a useful inference procedure for detecting whether the misspeci�cation

is in the conditional mean, in the conditional variance or in both. Some examples have shown that

some caution is necessary when interpreting the marginal conditional variance tests in the case of a

misspeci�ed conditional mean. This motivates our use of marginal and joint tests. The new proposed

tests, specially those based on exponential functions, compare very well to the competing tests even

in situations favoring the latter ones (e.g. optimal choice of P in CvMP and p in Mn;p):

5.3 Empirical Application: S&P500 Dynamics

We now apply our testing methodology to the well-known and extensively studied S&P500 daily

stock index. The debate on whether the dynamics of economic and �nancial time series are de-

termined by the conditional mean or the conditional variance has important implications on many

other applications including portfolio selection and asset pricing. The S&P500 daily stock index is

a representative of the data for which the GARCH model has been extensively used, see e.g. Boller-

slev, et al. (1992) and references therein. We consider a sample period from January 1, 1988 to May

28, 1993. The data are taken from Bera and Higgins (1997) and like they, we delete the last 10%
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observations, remaining 1138 observations. Bera and Higgins (1997) try to discriminate between an

AR(1)-GARCH(1,1) model and a bilinear speci�cation. Their results are inconclusive.

On the other hand, Lumsdaine and Ng (1999) conducted a standard ARCH(1) test to this data set,

after �tting an AR(1) model to the conditional mean. The resulting ARCH e¤ects test rejects the null

hypothesis of conditional homoskedasticity. These authors proved that if recursive residuals and its

squares are included in the mean equation, the ARCH(1) test then fails to reject the null hypothesis

of constant conditional variance, in favor of nonlinearity in the conditional mean. These authors

conclude: �perhaps some other nonlinear model would be preferred to the GARCH(1,1) speci�cation;

accounting for this nonlinearity weakens the evidence in favor of conditional heteroskedasticity�.

We have applied our marginal and joint tests to this data set. Our �ndings are summarized as

follows. A linear AR(1) model for the conditional mean �ts the data well, in contrast to the possible

nonlinearity (in the mean function) supported in Lumsdaine and Ng (1999). Our marginal tests

for the conditional variance favor a conditional homoskedastic model, even in cases with misspeci-

�ed conditional mean. The AR(1)-GARCH(1,1) model �tted in Bera and Higgins (1997) is highly

rejected for this data set.

More concretely, we have �tted a linear AR(1) model with conditional homoskedastic errors to

the log di¤erences of the S&P500 (Yt), such as

Yt = �0 + �1Yt�1 + �0ut: (17)

The bootstrap p-values for J2n;I , J
2
n;C ; D

2
n;I;m; D

2
n;C;m; D

2
n;I;v and D

2
n;C;v are, respectively, 0.70,

0.41, 0.33, 0.14, 0.30 and 0.30. Results with CvMP ; CvMP;m and CvMP;v with several values of P

support the correct speci�cation of (17). If the AR(1) component of the mean is neglected, the p-

values for J2n;I , J
2
n;C ; D

2
n;I;m; D

2
n;C;m; D

2
n;I;v and D

2
n;C;v become, respectively, 0.01, 0.02, 0.01, 0.01,

0.38 and 0.33. From the marginal mean tests D2
n;I;m and D2

n;C;m we conclude that the constant

conditional mean is rejected at 5%. If the AR(1)-GARCH(1,1) model is �tted, we obtain that the

conditional mean is well speci�ed with a p-value of 0.416 for D2
n;I;m and 0.233 for D2

n;C;m; whereas,

the conditional variance is misspeci�ed, as can be deduced from the zero p-value of J2n;I , J
2
n;C ; D

2
n;I;v

and D2
n;C;v. These results are con�rmed with Hong and Lee�s (2003) test.

Therefore, we �nd that a linear AR(1) model with conditional homoskedastic martingale di¤er-

ence errors �ts the S&P500 in this period well, thereby rejecting the AR(1)-GARCH(1,1) model

advocated in Bera and Higgins (1997). Our results support that the �ndings in Lumsdaine and Ng

(1999) are perhaps a consequence of the lack of robustness of standard ARCH(1) e¤ects tests to

higher order conditional dependence such as conditional kurtosis rather than a consequence of ne-

glected nonlinearity in the conditional mean. Further investigation on this issue is referred for future

research. This application hihglights the merits of the use of marginal tests and the robustness of

our procedures to higher order conditional dependence of unknown form.
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APPENDIX: PROOFS

First, consider three useful lemmas. Lemma 1 is a trivial multivariate extension of Lemma 1 in

Escanciano and Velasco (2006). Throughout the proofs

Qt;w(�) =
tX

j=1

n1=2n
�1=2
j wt�j(x)

p
2 sin j��

j�
; (18)

and

Q1;w(�) =
1X
j=1

wt�j(x)

p
2 sin j��

j�
:

De�ne L2(�; �) as the Hilbert space of all univariate complex-valued and square �-integrable func-

tions on �: In L2(�; �) we de�ne the inner product

hf; gi =
Z
�

f(�)gc(�)W (dx)d�:

Lemma 1: Suppose we have a random element in L2(�; �;M) of the form hn(�) =
nP
j=1

hj;n(x)
p
2 sin j��
j� :

Assume that W is of bounded total variation and that

(i)
R
Rs
E jhj;n(x)j2M W (dx) < C uniformly in j � 1.

(ii) supx2�c
jhj;n(x)j = op(1) 8j; 1 � j � n; for all compact subsets �c � �:

Then, hn(�) converges in probability to zero in L2(�; �;M); i.e. khnk2 = op(1):

Proof of Lemma 1: Escanciano and Velasco (2006).

Lemma 2: Under A3-A5 the e¤ect of estimating the information set It�1 by bIt�1 in f(It�1; �n)
and h(It�1; �n) has no e¤ect on the asymptotic theory. That is,Sn;w(�; �n)� eSn;w(�; �n)2 P�! 0:

where eSn;w(�; �n) is the same process as Sn;w(�; �n) but with It�1 replacing bIt�1:
Proof of Lemma 2: Note that for any vector A there exists a constant C such that jAjM � C jAj :

Write,

E
Sn;w(�; �n)� eSn;w(�; �n)2

� C
nX
j=1

1

(j�)2
n�1j E

0@ nX
t=j

(be1t � ee1t)
1A2

+ C
nX
j=1

1

(j�)2
n�1j E

0@ nX
t=j

(be2t � ee2t)
1A2

= o(1);
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where the last equality is due to Minkowski�s inequality and A5. Apply Chebyshev�s inequality to

conclude.

For simplicity, we rename eSn;w(�; �n) again as Sn;w(�; �n). The next Lemma establishes the asymp-
totic linearization of the process Sn;w(�; �n) under the null.

Lemma A2: Under (2) and the assumptions A1-A5,

kSn;w(�; �n)� Sn;w(�; �0) +Gw(�; �0)V k2
P�! 0:

Proof of Lemma A2: By the Mean Value Theorem and A1-A5,

Sn;w(�; �n) = Sn;w(�; �0) +
@Sn;w(�;e�n)

@�0
(�n � �0); (19)

where e�n is a mean value satisfying ���e�n � �0��� � j�n � �0j a.s. Note that the process Sn;w(�; �n) can
be written as

Sn;w(�; �n) =
1p
n

nX
t=1

et(�n)Qt;w(�);

where Qt;w(�) is de�ned in (18). Hence,

1p
n

@Sn;w(�;e�n)
@�

=
1

n

nX
t=1

@et(e�n)
@�

Qt;w(�)

= �
nX
j=1

1

n

nX
t=j

n1=2n
�1=2
j gt(e�n)wt�j(x)	j(�)

= �
nX
j=1

bj;n(x;e�n)	j(�);
where bj;n(x;e�n) = n�1

Pn
t=j n

1=2n
�1=2
j gt(e�n)wt�j(x): Assumptions A1-A5, the uniform conver-

gence argument of Jennrich (1969, Theorem 2) and Lemma 1 yield 1p
n

@Sn;w(�;e�n)
@�

+
nX
j=1

bj(x; �0)	j(�)

 P�! 0:

The last display, Assumption A3 and (19) imply the result.

Proof of Theorem 1: We apply Lemma A2 here and Theorem 1 in Escanciano and Velasco

(2006), but with wt�j(x) replacing exp(ixYt�j) there, to show that the marginal components of

Sn;w � (Sn;w;m; Sn;w;v)0 converge weakly in L2(�; �): Now, marginal tightness implies joint tightness.

Notice that the convergence of the �nite dimensional distributions is characterized by the convergence

of hSn;w;m; hi; hSn;w;v; hi and hSn;w;m; Sn;w;vi; for all h 2 L2(�; �): It is an easy matter to verify

that these correspond, respectively, to the distributions of hSw;m; hi; hSw;v; hi and hSw;m; Sw;vi; for

all h 2 L2(�; �); where Sw = (Sw;m; Sw;v)0:
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Proof of Corollary 1: By A5, Theorem 1 and the Continuous Mapping Theorem (see e.g. Billings-

ley 1999) the result holds.

Proof of Theorem 2:We need to show that the process S�n;w(�; x;�
�
n) (conditionally on the sample)

has the same asymptotic �nite projections as the process Sn;w(�); and that S�n;w(�; x;�
�
n) is tight.

Write b"�t = (b"�1t;b"�2t)0, and denote
S�n;w;m(�; x;�

�
n) =

nX
j=1

n
1=2
j b�j;m(x)	j(�);

and

S�n;w;v(�; x;�
�
n) =

nX
j=1

n
1=2
j b�j;v(x)	j(�):

The tightness of S�n;w(�; x;�
�
n) follows from the marginal tightness of S

�
n;w;m(�; x;�

�
n) and S

�
n;w;v(�; x;�

�
n):

We shall prove the marginal tightness. We write

S�n;w;m(�;�
�
n) = n

�1=2
nX
t=1

b"�1tQt;w(�)� n�1=2 nX
t=1

ff(bIt�1; ��n)� f(bIt�1; �n)gQt;w(�):
By Lemma 1 and A5,n�1=2

nX
t=1

ff(bIt�1; ��n)� f(bIt�1; �n)gQt;w(�)� I� � II� � III�
 = oP (1);

where

I� = n1=2(��n � �n)0n�1
nX
t=1

fg1(It�1;e��n)� g1(It�1; �n)gQt;w(�);
II� = n1=2(��n � �n)0n�1

nX
t=1

[g1(It�1; �n)Qt;w(�)�G1w(�; ��)];

III� = n1=2(��n � �n)0G1w(�; �1);

G1w(�; �1) is the �rst component of Gw(�); and e��n satis�es ���e��n � �n��� � j��n � �nj a.s. (conditionally
on the sample). Under our assumptions it is easy to show that, conditionally on the sample, kI�k =

oP (1) and kII�k = oP (1) with probability one. Therefore, in L2(�; �)

S�n;w;m(�;�
�
n) = n�1=2

nX
t=1

b"�1tQt;w(�)� n1=2(��n � �n)0G1w(�; �1) + oP (1) a.s. (20)

� eS�n;w;m(�;��n) + oP (1) a.s.
Similarly, one can prove that

S�n;w;v(�;�
�
n) = n�1=2

nX
t=1

b"�2tQt;w(�)� n1=2(��n � �n)0G3w(�; �1) + oP (1) a.s. (21)

� eS�n;w;v(�;��n) + oP (1) a.s.
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where

g03t(�) = 2h(It�1; �)
@h(It�1; �)

@�0
;

b3j(x;�) = E[wt�j(x)g3t(�)] and G3w(�; �) =
P1

j=1 b3j(x;�)	j(�): It is worth to remark that under

the null hypothesis G3w(�; �0) = G2w(�; �0):

De�ne

S�n;w;m(�;�n) = n
�1=2

nX
t=1

be1t(�n)VtQt;w(�) S�n;w;v(�;�n) = n
�1=2

nX
t=1

be2t(�n)VtQt;w(�):
Now, using standard bootstrap notation, we denote by E� and V ar� the expectation and the vari-

ance, respectively, given the sample. De�ne s�n;t;m(�) = n�1=2be1t(�n)VtQt;w(�); and note that
s�n;t;m(�) and s

�
n;s;m(�) are independent given the sample for s 6= t: Thus, it is su¢ cient for the

tightness of the �rst summand in (20) that E�
s�n;t;m2 <1 a.s. for all samples, which is trivially

satis�ed, see example 1.8.5 in van der Vaart and Wellner (1996). This jointly with A6 imply the

asymptotic tightness of S�n;w;m(�;�
�
n): The tightness of S

�
n;w;v(�;�

�
n) follows from the same arguments.

We now show that the process S�n;w(�; x;�
�
n) (conditionally on the sample) has the same asymptotic

�nite projections as the process Sn;w(�): More concretely, we need to prove that (conditional on

the sample) hS�n;w;m(�;��n); hi; hS�n;w;v(�;��n); hi and hS�n;w;m(�;��n); S�n;w;v(�;��n)i converge to the same

distribution as hSn;w;m; hi; hSn;w;v; hi and hSn;w;m; Sn;w;vi; respectively:

We shall prove �rst that (conditional on the sample) hS�n;w;m(�;��n); hi converges to the same

distribution as hSn;w;m; hi: The proof with hS�n;w;v(�;��n); hi and hSn;w;v; hi is similar and hence,

omitted. To that end, we write

hS�n;w;m(�;�n); hi =
nX
t=2

��nt;

where ��nt = n
�1=2be1t(�n)VthQt;w(�); hi: Then

E�(
nX
t=1

��nt) =
nX
t=1

n�1=2be1t(�n)hQt;w(�); hiE[Vt] = 0;
while

V ar�(
nX
t=1

��nt) =
nX
t=1

n�1be21t(�n)hQt;w(�); hi2V ar[Vt] := �2n;h;m:
Note that conditional on the original data, ��nt is an independent (not identically distributed) array

of random variables. By a strong law of large numbers for stationary and ergodic sequences and A2,

it is easy to show that �2n;h;m �! �2h;m = E[e
2
1t(�0)hQ1;w(�); hi2] a.s.

Then, we will verify a Lindeberg-Feller�s condition. Note that kQt;wk and Vt are bounded, hence

nX
t=2

E�[j��ntj
2
1(j��ntj > �)] �

C

n

nX
t=2

be21t(�n)1(jbe1t(�n)j > �0pn)] a.s.
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for some positive constants � and �0: By our assumptions the last expression converges almost surely

to zero, see Stute, Gonzalez-Manteiga and Presedo-Quindimil (1998, p. 149) for a similar situation.

Then the triangular array f��ntg satis�es the conditions of the Lindeberg-Feller�s CLT, conditionally

on almost all samples, so that
Pn

t=1 �
�
nt =)� N(0; �

2
h;m) a.s. The latter convergence, (20), A6(a),

and A3(b) imply that hS�n;w;m(�;��n); hi converges to the same distribution as hSn;w;m; hi:

Now, write heS�n;w;m(�;��n); eS�n;w;v(�;��n)i as
n�1

nX
t=1

nX
s=1

be1tbe2sVtVshQt;w(�); Qs;w(�)i � n1=2(��n � �n)0n�1=2 nX
t=1

be1tVthQt;w(�); G3w(�)i
�n1=2(��n � �n)0n�1=2

nX
t=1

be2tVthQt;w(�); G1w(�)i+ hG1w(�); G3w(�)in1=2(��n � �n)0n1=2(��n � �n)
: = A1n �A2n �A3n +A4n:

Following previous arguments it can be shown

A1n =)� E[e1t(�1)e2t(�1)hQ1;w(�); Q1;w(�)i] a.s.,

A2n =)� E[m(It�1; �1)et(�1)e1t(�1)hQ1;w(�); G3w(�)i] a.s.,

A3n =)� E[m(It�1; �1)et(�1)e2t(�1)hQ1;w(�); G1w(�)i] a.s.

and

A4n =)� E[e
0
t(�1)m(It�1; �1)m(It�1; �1)et(�1)hG1w(�); G3w(�)i] a.s.

Hence, heS�n;w;m(�;��n); eS�n;w;v(�;��n)i converges to the same limit as hSn;w;m(�;�n); Sn;w;v(�;�n)i. The
rest of the proof follows similar arguments and hence, it is omitted:
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Table 1. Empirical Size and Power of Tests at 5%. Conditional Variance Models.

n = 100 ARCH(1) ARCH(2) GARCH(1,1) EGARCH SV BIL LM NLMA

D2
n;I 4.5 18.0 19.8 82.8 54.2 88.0 99.7 21.6

D2
n;C 4.6 52.5 31.2 90.8 67.0 96.7 99.3 77.5

CvM1;v 4.8 7.5 13.2 54.6 39.9 87.1 99.7 20.8

CvM3;v 5.0 21.6 20.8 36.8 48.7 70.0 18.6 16.2

CvM5;v 3.6 18.8 20.8 14.2 53.0 53.9 11.0 8.0

Mn;2 5.3 11.2 14.4 89.0 30.4 93.6 100 65.2

Mn;6 4.9 63.0 28.4 95.0 49.4 90.0 100 51.0

Mn;10 6.3 60.2 31.0 94.0 52.6 82.0 100 33.2

LM2 4.4 88.3 39.9 49.2 42.8 23.1 19.0 22.6

LM6 3.8 77.7 60.6 53.4 59.8 16.5 14.8 11.9

LM10 3.7 72.8 61.4 48.0 58.1 15.3 14.7 10.4

Table 2. Empirical Size and Power of Tests at 5%. Conditional Mean and Variance Models.

n = 50 AR(1)-CH(1) AR(1)-BIL GARCH-M AR(2)-CH(1) TAR

D2
n;I;m 3.8 4.0 13.3 76.1 27.5

D2
n;I;v 6.8 77.7 3.3 4.2 9.6

J2n;I 5.2 68.7 7.0 36.1 18.1

D2
n;C;m 3.3 5.9 11.0 34.9 40.2

D2
n;C;v 4.8 65.5 3.3 4.9 8.5

J2n;C 4.4 51.7 2.0 20.7 31.0

CvM3;m 3.8 3.4 15.3 62.6 6.6

CvM3;v 4.6 42.5 3.3 2.8 3.4

CvM3 4.6 26.6 7.0 50.5 4.6

Mn;2 3.3 42.4 13.3 16.0 21.6

Mn;6 3.9 35.7 22.3 62.0 17.1

Mn;10 5.7 27.9 23.0 62.7 14.9
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Table 3. Empirical Size and Power of Tests at 5%. Conditional Mean and Variance Models.

n = 200 AR(1)-CH(1) AR(1)-BIL GARCH-M AR(2)-CH(1) TAR

D2
n;I;m 5.3 7.5 66.6 100.0 91.5

D2
n;I;v 6.3 97.5 2.7 3.5 39.0

J2n;I 5.9 94.0 41.6 100.0 75.0

D2
n;C;m 6.9 7.9 51.6 99.5 97.0

D2
n;C;v 6.3 92.0 4.0 1.0 37.0

J2n;C 6.6 85.0 30.3 74.0 92.5

CvM3;m 5.2 4.2 52.6 99.7 22.6

CvM3;v 7.5 98.0 12.3 3.4 5.4

CvM3 6.7 95.2 37.6 99.1 12.8

Mn;2 4.0 99.0 65.6 87.0 80.0

Mn;6 3.3 99.5 80.6 100.0 69.0

Mn;10 4.6 95.5 84.6 100.0 57.5

Table 4. Empirical Size and Power of Tests at 5% for EXPAR-ARCH(1).

n 50 100

�01 0.0 -2.0 0.0 -2.0

�02 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

D2
n;I;m 2.0 3.0 5.9 32.6 47.2 53.2 4.0 4.0 7.0 67.2 86.0 79.8

D2
n;I;v 5.2 36.0 42.8 2.6 13.0 23.0 5.9 48.6 55.8 5.0 23.8 50.4

J2n;I 4.0 27.8 36.6 13.2 34.8 52.4 5.7 37.6 48.8 41.4 81.0 84.6

D2
n;C;m 1.4 3.0 6.8 56.2 47.2 53.6 3.8 4.2 7.6 82.4 79.8 77.6

D2
n;C;v 4.8 55.0 76.0 2.4 70.0 85.2 5.0 83.2 97.2 4.8 98.2 100

J2n;C 2.6 47.2 72.8 36.6 75.8 89.8 4.0 78.8 93.4 68.2 99.0 100

CvM3;m 2.8 3.0 6.4 9.6 10.6 12.6 4.2 3.2 7.8 24.6 32.2 27.2

CvM3;v 5.2 31.8 33.0 3.0 10.4 20.4 5.6 39.8 40.0 1.8 40.4 51.8

CvM3 5.0 24.8 26.8 6.2 10.4 19.2 5.4 29.4 33.2 16.2 30.8 42.8

Mn;2 2.6 34.8 71.2 8.2 58.2 82.0 4.2 60.2 91.4 14.8 84.8 99.0

Mn;6 3.2 36.4 70.2 8.6 55.6 80.2 3.4 60.6 92.6 14.0 87.4 98.8

Mn;10 4.6 35.0 65.4 8.4 50.4 74.0 3.6 59.6 90.4 12.6 86.2 98.0
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