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Abstract

This article proposes omnibus speci�cation tests of parametric dynamic quantile regression

models. Contrary to the existing procedures, we allow for a �exible and general speci�cation

framework where a possibly continuum of quantiles are simultaneously speci�ed. This is the

case for many econometric applications for both time series and cross section data which require

a global diagnostic tool. We study the asymptotic distribution of the test statistics under

fairly weak conditions on the serial dependence in the underlying data generating process. It

turns out that the asymptotic null distribution depends on the data generating process and the

hypothesized model. We propose a subsampling procedure for approximating the asymptotic

critical values of the tests. An appealing property of the proposed tests is that they do not

require estimation of the non-parametric (conditional) sparsity function. A Monte Carlo study

compares the proposed tests and shows that the asymptotic results provide good approximations

for small sample sizes. Finally, an application to some European stock indexes provides evidence

that our methodology is a powerful and �exible alternative to standard backtesting procedures

in evaluating market risk by using information from a range of quantiles in the lower tail of

returns.
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1. INTRODUCTION

Quantile regression is a powerful alternative to least squares regression in a wide range of econo-

metric applications that vary from labor economics or demand analysis to �nance; see the special

issue of Empirical Economics (2001, vol.26) and the references therein. The conditional quantile

has the advantage over its natural competitor, the conditional mean, of being more robust to out-

liers and imposing less restrictions on the data generating process (DGP). Rather than relying on

a single measure of conditional location, the quantile regression approach allows the researcher to

explore a continuous range of conditional quantile functions, thereby providing a more complete

and �exible analysis of the conditional dependence structure of the variables under consideration.

A researcher interested in the whole conditional distribution will consider the speci�cation of the

conditional quantile at all quantile levels, requiring some diagnostic on the global suitability of the

model. Thus, conditional Goodness-of-�t tests are of paramount importance in econometrics and

�nance, see e.g. Andrews (1997) and Corradi and Swanson (2006). On the other hand, a risk

manager will not be interested in the whole Pro�t&Loss account�s distribution but mainly in its

left tail, and hence she or he will consider a set of small values of quantile levels, usually 1% or

5% as recommended by the Basel Accord (1996a). The methods developed here have important

applications to measuring market risk; see Section 5. Obviously, one can envision many situations in

economics where the interest is in the lower and upper parts of the distribution; see e.g. studies of

unemployment duration (e.g. Koenker and Xiao (2002) and references therein), and wage inequali-

ties (e.g. Machado and Mata, 2005). It is well-known that inference procedures within parametric

quantile models depend crucially on the validity of the speci�ed parametric functional forms for the

range of quantiles under consideration. For instance, the counterfactual decomposition described

in Machado and Mata (2005), that has been recently used in many studies to analyze the gender

gap in log wages across the distribution (see e.g. Albrecht, van Vuuren and Vroman, 2007), and the

Martingale transform methods in Koenker and Xiao (2002) depend crucially on the linear quantile

speci�cation. Therefore, it is important to develop powerful tests for the correct speci�cation of

parametric conditional quantiles over a possibly continuous range of quantiles of interest and under

fairly general conditions on the underlying DGP. This is the main purpose of the present paper.

More precisely, suppose we observe a real-valued dependent variable Yt; and the explanatory

vector It�1 = (W 0
t�1; Z

0
t)
0 2 Rd; d = s + m; where Zt 2 Rm; m 2 N; is an observable random

vector (r.v) and Wt�1 = (Yt�1; :::; Yt�s)
0 2 Rs; where A0 denotes the matrix transpose of A. We

assume throughout the article that the time series process f(Yt; Z 0t)0 : t = 0;�1;�2; :::g; de�ned on

the probability space (
;A; P ); is strictly stationary and ergodic: Assuming that the conditional

distribution of Yt given It�1 is continuous, we de�ne the �-th conditional quantile of Yt given It�1
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as the measurable function q� satisfying the conditional restriction

P (Yt � q�(It�1) j It�1) = �; almost surely (a.s.). (1)

In parametric quantile regression modeling one assumes the existence of a family of functionsM =

fm(�; �(�)) : �(�) : T ! � � Rpg; where T is a compact set which comprises the range of quantiles

of interest, T � [0; 1]; and one proceeds to make inference on � or to test if q� 2 M; i.e., if there

exists some �0 : T ! � such that m(�; �0(�)) = q�(�) a.s. for all � 2 T 1 :

Leading examples of speci�cationsM are the Linear Quantile Regression (LQR) model

m(It�1; �0(�)) � m(Zt; �0(�)) = Z 0t�0(�); � 2 T ;

with the location-scale regression model as the prominent example, in which �0(�) = (�0; 
0F
�1
0 (�)) 2

� � Rp; and where F�10 (�) denotes a univariate quantile function, see, e.g., Koenker and Xiao

(2002), or the Linear Quantile Autoregression model of order s (LQAR(s)),

m(It�1; �0(�)) � m(Wt�1; �0(�)) = �01(�) +W
0
t�1�02(�); �0(�) = (�01(�); �

0
02(�))

0;

which results, for instance, from the random coe¢ cient model

Yt = �01(Ut) +W
0
t�1�02(Ut); (2)

where �01(�) and �02(�) are such that the right hand side of (2) is monotone increasing in Ut; and

fUtg are independent and identically distributed (iid) U [0; 1] random variables; see Koenker and

Xiao (2006) for inferences on the LQAR(s) model.

Much e¤ort has been devoted to inferences on �0(�) for the aforementioned models based on

the associated quantile processes Qn(�) :=
p
n (�n(�)� �0(�)), for �n(�) a

p
n-consistent estima-

tor of �0(�): It is well-known, however, that inferences based on Qn(�) will heavily depend on

the correct speci�cation of the parametric quantile regression model. Although there exist some

works on quantile regression model checks, to the best of our knowledge no consistent test for

q� 2 M has been proposed. The existing literature has been mostly limited to iid observations,

linear models, and to a �xed quantile level � � �0 2 (0; 1): Zheng (1998) has proposed a quan-

tile regression speci�cation test based on kernel smoothing estimators of the conditional moment

E[1(Yt � m(It�1; �0(�0))) � �0 j It�1]; see also Horowitz and Spokoiny (2002) for the median

function (i.e., �0 = 0:5). Recently, Whang (2005), using empirical likelihood methods, proposed a

speci�cation test for quantile regression and censored quantile regression for iid data. Tests based

1We can actually take T = [0; 1] in our theory provided the centered estimator
p
n(�n � �0) is asymptotically

tight on the whole interval [0; 1]: To the best of our knowledge, such result is, however, not available in the literature

for most popular estimators. Thus, we do not pursue such generality in this paper and we restrict our analysis to

T � [0; 1]; in accordance with the econometrics literature.
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on smoothers usually have known asymptotic null distributions after an appropriate choice of the

bandwidth sequence, but they are not consistent against Pitman�s local alternatives.

Using an integrated approach, Bierens and Ginther (2001) proposed a diagnostic test for a linear

quantile regression. These authors consider iid observations and do not take into account the

uncertainty due to parameter estimation. Their test is consistent against n�1=2 local alternatives,

with n the sample size, but it relies on an upper bound on the asymptotic critical value, which might

be too conservative. To solve this de�ciency, Whang (2004) considers a subsampling approach to

approximate the asymptotic critical values. Koul and Stute (1999) introduced asymptotic pivotal

tests for parametric conditional quantiles of �rst-order nonlinear autoregressive processes. To obtain

the pivotal property of the test they use a martingale transform (cf. Khmaladze, 1981). Alternatively,

He and Zhu (2003) develop a bootstrap-based test for linear and nonlinear quantile regressions. Our

paper also contributes to this literature of speci�cation tests for a unique quantile, since our methods

trivially apply to the unique quantile case in a more general framework than these aforementioned

works. By extending the scope of conditional quantile speci�cations to a, possibly, continuum of

quantiles we provide a very �exible speci�cation procedure.

In the present article we propose omnibus tests for q� 2 M that are valid for general linear

and nonlinear quantile models under time series. Our tests are based on the fact that q� 2 M is

characterized by the in�nite number of conditional moment restrictions

E[1(Yt � m(It�1; �0(�)))� � j It�1] = 0 a.s. for some �0(�) : T ! � � Rp;8� 2 T : (3)

The proposed tests are functionals of a quantile-marked empirical process that characterizes con-

dition (3). The asymptotic theory is largely complicated by the fact that (3) involves an in�nite

number of conditional moment restrictions, indexed by � 2 T :We solve this technical di¢ culty using

delicate weak convergence results for empirical processes under martingale conditions. It turns out

that the asymptotic null distributions of test statistics depend on the speci�cation under the null

and the DGP. Therefore, we propose to implement the test with the assistance of the subsampling.

The rest of the article is organized as follows. In Section 2 we introduce the quantile-marked

process, which is the basis upon which the new test statistics for testing (3) are developed. We

study the asymptotic distribution of the proposed tests under the null, �xed and local alternatives.

In Section 3 a subsampling procedure for approximating the asymptotic null distribution of tests is

considered. In Section 4 we present a simulation exercise assessing the �nite-sample performance of

tests. Finally, in Section 5 an application to some European stock indexes provides evidence that

our methodology can serve as powerful and �exible alternative to standard backtesting procedures

in evaluating market risk. Proofs are deferred to an appendix. Throughout the article Ac and jAj

denote the complex conjugate and Euclidean norm of A; respectively. In the sequel C is a generic

constant that may change from one expression to another. All limits are taken as n!1.
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2. TEST STATISTICS AND ASYMPTOTIC THEORY

We aim to test the null hypothesis

H0 : E[	�(Yt �m(It�1; �0)) j It�1] = 0 a.s. for some �0 2 B and for all � 2 T ;

against the nonparametric alternatives

HA : P (E[	�(Yt �m(It�1; �(�))) j It�1] 6= 0) > 0; for some � 2 T and for all �(�) 2 � � Rp;

where 	�(") = 1(" � 0)��; and B is a family of uniformly bounded functions from T to � � Rp: To

simplify notation denote 	�;t(�) � 	�(Yt �m(It�1; �)) and mt�1(�) � m(It�1; �): Note that under

H0 (and a mild continuity condition), mt�1(�0) is identi�ed as the �-th quantile of the conditional

distribution of Yt given It�1; for all � 2 T : Testing for H0 is a challenging testing problem since it

involves an in�nite number of non-smooth conditional moments parametrized by � 2 T :

Our �rst aim is to characterize H0 by the in�nite number of unconditional moment restrictions

E[	�;t(�0) exp(ix
0It�1)] = 0; 8x 2 Rd; for some �0 2 B and for all � 2 T ; (4)

where i =
p
�1 is the imaginary unit; see Bierens (1982). Instead of the exponential function we

may also use, e.g., any of the parametric families considered in Escanciano (2006).

Given a sample f(Yt; I 0t�1)0 : 1 � t � ng and a parameter value � 2 B; we consider the quantile-

marked empirical process indexed by x 2 Rd, � 2 T and � 2 B;

Sn(x; �; �) := n�1=2
nX
t=1

	�;t(�) exp(ix
0It�1):

Associated to Sn are the quantile-marked error and residual processes, respectively, de�ned by

Rn(x; �) � Sn(x; �; �0) and R1n(x; �) � Sn(x; �; �n);

for a
p
n�consistent estimator �n(�) of �0(�); say. The null hypothesis is likely to hold when the

process R1n(x; �) is close to zero for almost all (x
0; �)0 2 Rd � T :

The most popular estimator of �0 is the Quantile Regression Estimator (QRE), initially proposed

by Koenker and Basset (1978) for linear models, and subsequently generalized to other frameworks

by numerous authors, see references below. The QRE is de�ned as any solution �KB;n(�) minimizing

� 7�!
nX
t=1

��(Yt �m(It�1; �))

with respect to � 2 � � Rp; where ��(") = �	� (") ": Koenker and Park (1996) discussed the

existence of �KB;n(�) and an interior point algorithm for its computation.

Basset and Koenker (1978) proved the consistency and asymptotic normality of �KB;n(�) in the

linear regression model, including the least absolute deviation estimator, see also Pollard (1991). The
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asymptotic theory for Qn(�) =
p
n(�KB;n(�)� �0(�)) as a process indexed by the parameter � 2 T ;

has been considered, among others, in Gutenbrunner and Jureµckova (1992) and Gutenbrunner,

Jureµckova, Koenker and Portnoy (1993) for linear models, in Koul and Saleh (1994) and Jureµckova

and Hallin (1999) for linear autoregressions, and in Mukherjee (1999) for nonlinear autoregressions.

For early contributions see Portnoy (1984). In the present article we do not restrict ourselves to

�KB;n and we consider any estimator �n satisfying some mild conditions, see A4 below. For instance,

our results apply to the Quasi-Maximum Likelihood Estimator in Komunjer (2005).

The process R1n is a mapping from (
;A; P ) with values in `1(�); where `1(�) is the space of

all complex-valued functions that are uniformly bounded on �; with � := � � T ; and � a generic

compact subset of Rd containing the origin: The space `1(�) is furnished with the supremum metric,

say d1; and let Bd1 be the corresponding Borel �-algebra. Let =) denote weak convergence on

(`1(�);Bd1) in the sense of J. Ho¤mann-Jørgensen, see, e.g., Dudley (1999, p. 94), or De�nition

1.3.3 in van der Vaart and Wellner (1996). Since � is generic, =) is indeed weak convergence on

compacta.

After (4), test statistics are based on a distance from the standardized sample analogue of

E[	�;t(�0) exp(ix
0It�1)] to zero, i.e., on a norm of R1n, say �(R

1
n). A popular norm is the Cramér-von

Mises (CvM) functional

CvMn :=

Z
�

��R1n(x; �)��2 d�(x)dW (�); (5)

where � and W are some integrating measures on � and T ; respectively. Other continuous (with

respect to d1) functionals � from `1(�) to R are of course possible. For instance, we can consider

tests combining sup- and L2-norms, as in the Kolmogorov-type (K) functional

KSn := sup
�2T

Z
�

��R1n(x; �)��2 d�(x): (6)

Then, the omnibus tests we proposed in this article reject the null hypothesis H0 for �large�values

of �(R1n). Practical issues about the computation of the test statistics CvMn and KSn are discussed

in Section 4.

2.1 Asymptotic null distribution.

In this subsection we establish the limit distribution of the quantile-marked empirical process R1n

under the null hypothesis H0: The null limit distributions of the tests are the limit distributions of

some continuous functionals of R1n. To derive asymptotic results we consider the following notation

and assumptions. Throughout the paper the family B; in which the parameter �0 takes values, is

endowed with the sup norm, i.e., k�kB = sup�2T j�(�)j. Let, for each t 2 Z; Ft = �(I 0t; I
0
t�1; :::);

be the �-�eld generated by the information set obtained up to time t: De�ne for each t 2 Z; the
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quantile �innovation�"t;� := Yt � q�(It�1) and the parametric quantile �error�et(�) � et(�(�)) :=

Yt �m(It�1; �(�)): De�ne also the family of conditional distributions

Fx(y) := P (Yt � y j It�1 = x): (7)

Let fx be the density function of the cumulative distribution function (cdf) Fx. Let N[�](�;H; k�k)

be the �-bracketing number of a class of functions H with respect to a norm k�k ; i.e., the smallest

number r such that there exist f1; :::; fr and �1; :::;�r such that max1�i�r k�ik < � and for all

f 2 H; there exists an 1 � i � r such that kf � fik < �i; see De�nition 2.1.6 in van der Vaart and

Wellner (1996).

Assumption A1:

A1(a): f(Yt; Z 0t)0 : t = 0;�1;�2; :::g is a strictly stationary and erdogic process: Under H0;

f	�;t(�0);Ftg is a martingale di¤erence sequence for all � 2 T :

A1(b): The parametric family m(�; �0(�)) is nondecreasing in � a.s.

A1(c): E[jI0j2] < C:

A1(d): The family of distributions functions fFx; x 2 Rdg has Lebesgue densities ffx; x 2 Rdg

that are uniformly bounded,

sup
x2Rd;y2R

jfx(y)j � C;

and equicontinuous: for every � > 0 there exists a � > 0 such that

sup
x2Rd;jy�zj��

jfx(y)� fx(z)j � �:

Assumption A2: For each �1 2 B;

A2(a): There exists a vector of functions gt�1 : �! Rq such that gt�1 (�1(�)) is Ft�1-measurable

for each t 2 Z, and satis�es, for all k <1;

sup
1�t�n;k�1��2kB�kn�1=2

n1=2 kmt�1(�2)�mt�1(�1)� (�2 � �1)0gt�1(�1)kB = oP (1):

A2(b): For a su¢ ciently small � > 0;

E

"
sup

k�1��2kB��
j1(Yt � mt�1(�1(�)))� 1(Yt � mt�1(�2(�)))j

#
� C�; 8� 2 T and

E

"
sup

j�1��2j��
jmt�1(�1(�1))�mt�1(�1(�2))j

#
� C�:

A2(c): Uniformly in � 2 T ; E jgt�1 (�1(�))j2 <1; and uniformly in (x0; �)0 2 �;����� 1n
nX
t=1

gt�1(�0(�)) exp(ix
0It�1)fIt�1(mt�1(�0))� E

�
gt�1(�0(�)) exp(ix

0It�1)fIt�1(mt�1(�0))
������ = oP (1):
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Assumption A3: The parametric space � is compact in Rp: The true parameter �0(�) belongs to

the interior of � for each � 2 T , and �0 2 B. The class B satis�es
1Z
0

�
log(N[�](�

2;B; k�kB))
�1=2

d� <1:

Assumption A4: The estimator �n 2 B; for all n su¢ ciently large; and satis�es the following

asymptotic expansion under H0 uniformly in � 2 T ;

Qn(�) =
p
n(�n(�)� �0(�)) =

1p
n

nX
t=1

l�(Yt; It�1; �0(�)) + oP (1);

where l�(�) is such that E[l�(Y1; I0; �0(�))] = 0, L�(�0(�)) = E[l�(Y1; I0; �0(�))l
0
�(Y1; I0; �0(�))]

exists and is positive de�nite, and E[l�(Yt; It�1; �0(�))	�(Ys �m(Is�1; �0(�)))] = 0 if t 6= s: Fur-

thermore, as a process in `1(T ); Qn(�) converges weakly to a Gaussian process Q(�) with zero mean

and covariance function

KQ(�1; �2) = lim
n!1

1

n

nX
t=1

nX
s=1

E[l�1(Yt; It�1; �0(�1))l�2(Ys; Is�1; �0(�2))]:

Assumption A1(a) is standard in the model checks literature under time series, see, e.g., Bierens

and Ploberger (1997). A1(b) is natural in the present context. A1(c) is needed to prove the equicon-

tinuity of the limit process of Rn and can be avoided using exp(ix0�(It�1)); with �(�) a one-to-one

bounded mapping (see e.g. Bierens and Ginther, 2001), instead of exp(ix0It�1): A1(d) is necessary

for the asymptotic tightness of the process R1n and is required in Koul and Stute (1999). Assump-

tions A2(a)-A2(c) are classical in inference about nonlinear models, see Koul�s (2002) monograph.

A2 is satis�ed for all models considered in the literature under mild moment assumptions, e.g. LQR

and LQAR models. Conditions for the satisfaction of A3 can be found in van der Vaart and Wellner

(1996), see e.g. their Theorem 2.7.5 for monotone classes of functions which applies to LQAR mod-

els. The condition �n 2 B; for all n su¢ ciently large, can be weakened to P (�n 2 B)! 1 as n!1;

at the cost of complicating the proofs. A4 has been established in the literature under a variety

of conditions and di¤erent models and DGP�s, see, for instance, Theorem 1 in Gutenbrunner and

Jureµckova (1992) or Theorem 3.2 in Mukherjee (1999). For nonlinear models with iid innovations

("t)t2Z distributed as F"; Mukherjee (1999) proved A4 for �KB;n(�). Under some mild additional

assumptions, including that ��0(�) := E
�
g (I1; �0(�)) g (I1; �0(�))

0� exists and is positive de�nite,
Mukherjee (1999) showed that A4 holds for the QRE under H0 with

l�(Yt; It�1; �0(�)) = �
��1�0(�)g(It�1; �0(�))	�("t)

q(�)
;
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where q(�) = f"(F
�1
" (�)) is the reciprocal of the sparsity function and f" is the density of F":

The quantile limit process Q(�) in that case is ��1�0(�)W (�)=q(�); where W (�) denotes a vector of p

independent Brownian bridges on T .

We establish now the limit distribution of Rn: Under A1(a) and H0, because Rn(v) is a zero-mean

square-integrable martingale for each v = (x0; �)0 2 �; using a suitable Central Limit Theorem

(CLT) for stationary ergodic martingale di¤erence sequences, cf. Billingsley (1961), we have that

the �nite-dimensional distributions of Rn converge to those of a multivariate normal distribution

with a zero mean vector and variance-covariance matrix given by the covariance function

K1(v1; v2) = (�1 ^ �2 � �1�2)E[exp(i(x1 � x2)0I0)]; (8)

where from now on v1 = (x01; �1)
0 and v2 = (x02; �2)

0 represent generic elements of �; and ^ denotes

the minimum, i.e., a ^ b = minfa; bg: The next result is an extension of the convergence of the

�nite-dimensional distributions of Rn to weak convergence in the space `1(�): We stress that no

mixing conditions are required for the weak convergence to hold.

Theorem 1: Under the null hypothesis H0 and Assumptions A1(a-c)

Rn =) R1;

where R1 is a Gaussian process with zero mean and covariance function (8).

In practice, �0 is unknown and has to be estimated from a sample f(Yt; I 0t�1)0 : 1 � t � ng by

an estimator �n. When we replace �0 in Rn by �n; resulting in R1n; we need to investigate how the

estimation error will a¤ect the asymptotic properties of R1n: The next result shows this e¤ect on the

asymptotic null distribution of R1n. De�ne the function

G(x; �0(�)) := E[gt�1(�0(�))fIt�1(mt�1(�0)) exp(ix
0It�1)]; x 2 �; � 2 T :

Theorem 2: Under the null hypothesis H0 and Assumptions A1-A4

sup
x2�;�2T

�����R1n(x; �)�Rn(x; �) +G0(x; �0(�))n�1=2
nX
t=1

l�(Yt; It�1; �0(�))

����� = oP (1):

As a consequence, we obtain the following corollary.

Corollary 1: Under the assumptions of Theorem 2

R1n =) R11;

where R11(�) = R1(�)�G0(�; �0(�))Q(�) (in distribution).
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Now, using the last corollary and the Continuous Mapping Theorem (CMT) we obtain the asymptotic

null distribution of continuous functionals such as CvMn and KSn:

Corollary 2: Under the assumptions of Theorem 2, for any continuous functional �(�) from

`1(�) to R,

�(R1n)
d�! �(R11):

2.2 Consistency and Pitman�s local alternatives.

In this section we study the consistency properties of tests based on functionals �(R1n): First, we

show that these tests are consistent against all �xed alternatives provided a mild regularity condition

is satis�ed.

Assumption A5: Under HA; (i) there exists a �1 2 B such that k�n � �1kB = oP (1); (ii)

E[	�(et(�1(�))) exp(i � It�1)] is di¤erent from zero in a subset with positive Lebesgue measure on

�:

See Kim and White (2003) for conditions on �KB;n to satisfy Assumption A5(i), see also Section 3

in Angrist, Chernozhukov and Fernández-Val (2006). A su¢ cient condition for A5(ii) is that It�1

is bounded. Notice that this condition always holds if we replace It�1 by �(It�1); with � a one-

to-one bounded mapping, as in Bierens and Ginther (2001). Henceforth, almost sure convergence

of nonmesurable maps is understood, as usual, as outer almost sure convergence, see van der Vaart

and Wellner (1996) for de�nitions.

Theorem 3: Under the alternative hypothesis HA and Assumptions A1, A2, A3 and A5,

n�1=2R1n(�)
a:s�! E[	�(et(�1(�))) exp(i � It�1)]:

A consequence of Theorem 3 and the CMT is that (under the assumptions of Theorem 3),Z
�

���n�1=2R1n(x; �)���2 d�(x)dW (�) P�!
Z
�

jE[	�(et(�1(�))) exp(ix0It�1)]j2 d�(x)dW (�) > 0;

provided that � and W are absolute continuous with respect to the Lebesgue measure on �: In such

a situation, the test statistic CvMn will diverge to +1 under any �xed alternative, and the test

will be consistent against all directions in the alternative hypothesis.

Now we analyze the asymptotic distribution of R1n under a sequence of local alternatives converging

to null at a parametric rate n�1=2: We consider the DGP generating the local alternatives

HA;n : E[	�(Yt �mt�1(�0)) j Ft�1] =
a�(It�1)

n1=2
a.s. for some �0 2 B and for all � 2 T ; (9)
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where the function a�(�) : Rd �! R satis�es the following assumption.

Assumption A6: a�(�) is such that E sup�2T ja�(It�1)j <1: There exists a Ft�1-measurable r.v.

Ct�1 with E[C2t�1] <1; such that for all t 2 Z and for all �1; �2 2 T ,

ja�1(It�1)� a�2(It�1)j � Ct�1 j�1 � �2j ; a.s.

To derive the next result we need the following assumption on the behaviour of the estimator under

the local alternatives.

Assumption A4�: The estimator �n(�) satis�es the following asymptotic expansion under HA;n;

uniformly in �;

p
n(�n(�)� �0(�)) = �a(�) +

1p
n

nX
t=1

l�(Yt; It�1; �0(�)) + oP (1);

where the function l�(�) is as in A4 and �a(�) 2 Rp for each � 2 T :

Assumption A4�holds for most estimators considered in the literature. For instance, in the nonlinear

time series context of Mukherjee (1999), the corresponding term �a(�) to �KB;n(�) is

�a(�) = �q�1(�)��1�0(�)E[fIt�1(mt�1(�0))gt�1(�0)a�(It�1)]:

The shift in charge of local power against alternatives in HA;n is given by

Da(x; �0(�); �) := E[a�(I0) exp(ix
0I0)]� �0a(�)G(x; �0(�)):

Theorem 4: Under the local alternatives (9), Assumptions A1-A3, A6 and A4�

R1n =) R11 +Da;

where R11 is the process de�ned in Theorem 2.

It is not di¢ cult to show that

Da � 0 a.e.() a�(It�1) = �0a(�)g(It�1; �0(�)) for all � 2 T a.s.

Therefore, for directions a�(�) not collinear to the score g(It�1; �0(�)); the shift function Da is non-

trivial and test statistics based on �(R1n) for a symmetric functional � are asymptotically strictly

unbiased against the local alternatives (9); see Escanciano (2008).
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3. SUBSAMPLING APPROXIMATION

We have seen before that the asymptotic null distribution of continuous functionals of R1n depends

in a complex way of the DGP and the speci�cation under the null. Therefore, critical values for the

test statistics can not be tabulated for general cases. In this section we overcome this problem with

the assistance of the subsampling methodology. Resampling methods have been used extensively in

the literature of quantile regression models, see, e.g., Hahn (1995), Horowitz (1998), Bilias, Chen and

Ying (2000), Sakov and Bickel (2000) or He and Hu (2002). These articles consider iid sequences.

When time series are involved the bootstrap approximation becomes more challenging. Subsampling

is a powerful resampling scheme that allows an asymptotically valid inference under very general

conditions on the DGP, see the monograph by Politis, Romano and Wolf (1999). Chernozhukov

(2002) and Whang (2004) considered subsampling approximation for LQR model checks. In this

section we apply the subsampling methodology to approximate the critical values of continuous

functionals of R1n. With an abuse of notation we write the test statistic as a function of the data

fXt = (Yt; Z
0
t+1)

0 : t = 0;�1;�2; :::g; �(R1n) = �(R1n(X1; :::; Xn)): Let G�n(w) be the test statistic�s

cdf,

G�n(w) = P (�(R1n) � w):

We describe the subsampling approximation for the time series case; see the aforementioned refer-

ences for iid sequences. Let �(R1b;i) = �(R1b(Xi; :::; Xi+b�1)) be the test statistic computed with

the subsample (Xi; :::; Xi+b�1) of size b. We note that each subsample of size b (taken without

replacement from the original data) is indeed a sample of size b from the true DGP. Hence, it is clear

that one can approximate the sampling distribution G�n(w) using the distribution of the values of

�(R1b;i) computed over the n� b+ 1 di¤erent subsamples of size b (or the
�
n
b

�
di¤erent subsamples

of size b in the cross-section case). That is, we approximate G�n(w) by

G�n;b(w) =
1

n� b+ 1

n�b+1X
i=1

1(�(R1b;i) � w); w 2 [0;1): (10)

Let c�n;1��;b be the (1� �)-th sample quantile of G�n;b(w); i.e.,

c�n;1��;b = inffw : G�n;b(w) � 1� �g:

Thus, our subsampling tests reject the null hypothesis if �(R1n) > c�n;1��;b: Let c
�
1�� be the (1��)-th

quantile of G�1(w) = P (�(R11) � w): To justify theoretically this resampling approximation we need

an additional assumption on the serial dependence of the DGP. De�ne the �-mixing coe¢ cients as

�(m) = sup
n2Z

sup
B2Fn;A2Pn+m

jP (A \B)� P (A)P (B)j ; m � 1

where the �-�elds Fn and Pn are Fn := �(Xt; t � n) and Pn := �(Xt; t � n); respectively, with

Xt = (Yt; Z
0
t+1)

0:

12



Assumption A7: fXt = (Yt; Z
0
t+1)

0 : t = 0;�1;�2; :::g is a strictly stationary strong mixing process

with �-mixing coe¢ cients satisfying
nX

m=1

�(m) = o(n):

The mixing assumption in A6 is su¢ cient but not necessary for the validity of the subsampling,

see Politis, Romano and Wolf (1999). This subsampling procedure allows us to approximate the

asymptotic critical values of the tests based on �(R1n;w). The next result justi�es theoretically the

subsampling approximation. Its proof follows closely that of Theorem 2 in Whang (2004).

Theorem 5: Assume Assumptions A1-A7 and that b=n! 0 and b!1 as n!1. Then,

(i) Under the null hypothesis H0;

c�n;1��;b
P�! c�1�� :

and

P (�(R1n) > c�n;1��;b) �! � :

(ii) Under any �xed alternative hypothesis,

P (�(R1n) > c�n;1��;b) �! 1:

(iii) Under the local alternatives (9),

P (�(R1n) > c�n;1��;b) �! P (�(R11 +Da) > c�1�� ):

Theorem 5 implies that the proposed subsampling tests have a correct asymptotic level, are consis-

tent and are able to detect alternatives tending to the null at the parametric rate n�1=2: An appealing

property of our subsampling tests is that they do not need estimation of the nonparametric (condi-

tional) sparsity function fIt�1(mt�1(�0)), which results in a substantial simpli�cation of the tests.

In practice, the empirical size and power of the tests depend on the choice of the parameter b: For

this choice the reader is referred to Politis, Romano and Wolf (1999) or Sakov and Bickel (2000). In

the present article, we follow the suggestion of Sakov and Bickel (2000) and we chose b =
�
kn2=5

�
;

where b�c denotes the integer part, which yields the optimal minimax accuracy under certain condi-

tions. Section 5 below shows that this resampling procedure provides good approximations in �nite

samples for a variety of values for k.

It is sometimes argued that some kind of recentering might improve the power performance of

subsampling-based tests. We explored two possibilities in our simulations below. First, we may

consider to replace R1b;i in (10) by R
1
b;i � b1=2n�1=2R1n; see Chernozhukov (2002) for an example of

this centering. Alternatively, we may recenter the test statistic �(R1b;i)��(b1=2n�1=2R1n):We found

in our simulations below, that with the DGPs considered the power improvement is not signi�cative,

although there was a small positive improvement in all cases. This improvement is not without cost;
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the empirical size performance became more sensitive to the choice of b and computationally, the

test statistic is much more di¢ cult to compute. Of course, these results don�t need to hold for other

DGPs. Therefore, based on our experience, in applications we recommend to compute the uncentered

version for computational reasons; see next section for the computation of the test statistics.

4. FINITE SAMPLE PERFORMANCE

We investigate in this section, by means of a Monte Carlo experiment, the �nite sample perfor-

mance of the proposed tests. The aim is to provide evidence of the good �nite-sample performance

of the new test statistics.

We describe our simulation setup. The choice of �(�) in (5) is up-to the practitioner and gives

�exibility to direct the power against some preferred alternatives. Following Escanciano and Velasco

(2006) and references therein, we choose �(�) equal to the d�variate standard normal random vector2 .

We consider as W a uniform discrete distribution over a grid of T in m = 21 equidistributed points

from � = 0:1 to 1 � � = 0:9. Denote by Tm = f�jgmj=1 the points in the grid, with � = �1 < � � � <

�m = 1� �. Let Wexp be the n� n matrix with elements wexp;t;s = exp(� 1
2 jIt�1 � Is�1j

2
) and let

	 be the n�m matrix with elements  ij = 	�j (Yi �m(Ii�1; �n)): Hence, the CvM test statistic is

computed as

CvMn = m�1
mX
j=1

 0�jWexp �j ; (11)

where  �j denotes the j column of 	: Therefore, the computation of CvMn is straightforward.

Similarly, we can compute

KSn = max
1�j�m

 0�jWexp �j (12)

Our theory would allow for m ! 1 as n ! 1 and the f�jgmj=1 generated independently from

a distribution on T : For simplicity in the computations we have considered m �xed and f�jgmj=1
deterministic throughout this section.

For the simulations, we examined two data generating processes that have been previously con-

sidered in Zheng (1998) and Whang (2004):

DGP1 : Yt = X1t +X2t + c1�
3=2
t + u1t; t = 1; : : : ; n;

where �t = X2
1t + X2

2t + X1tX2t and X1t; X2t and u1t � iid N(0; 1); mutually independent. The

null hypothesis corresponds to the location model with c1 = 0, so the null quantile model is a LQR

model

m(It�1; �(�)) = Z 0t�0(�); � 2 T ;
2Strictly speaking our present theory does not allow to integrate in whole Rd in the CvM test, but our theory can

be easily adapted, see e.g. Escanciano�s (2006) Hilbert space approach, to allow for the present de�nition of the CvM

test. In any case, there is no practical di¤erence.
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with Zt = (1; X1t; X2t)
0 and �0(�) = (��1(�); 1; 1)0, with ��1(�) the quantile function of the

standard normal r.v.

The second design is a time series model:

DGP2 : Yt = 0:6Yt�1 +Xt + c2X
2
t + u2t; t = 1; : : : ; n;

where Xt = 0:5Xt�1 + "t with both u2t and "t are sampled independently from N(0; 1) and Y0 =

X0 = 0. Here, the null model corresponds to c2 = 0: Under H0, a LQR model holds with It�1 =

(1; Yt�1; Xt)
0; and �0(�) = (�

�1(�); 0:6; 1)0.

We consider two sample sizes n = 100 and n = 300 and a quantile interval [0:1; 0:9]. As the number

of subsamples, we follow the suggestion of Sakov and Bickel (2000) and we chose b =
�
kn2=5

�
; with

several choices of k: For DGP1 we consider k from 7 to 9: These values correspond to b = 42; 48 and

54 for n = 100 and b = 63; 72 and 81 for n = 300; respectively. For DGP2, k is chosen to be from

3 to 5 (b = 18; 24 and 30 for n = 100; and b = 27; 36 and 45 for n = 300). We set the number of

Monte Carlo repetitions to 1,000. The parameter �0(�) is estimated by the QRE of Koenker and

Bassett (1978). In all experiments, the nominal probability of rejecting a correct null hypothesis

is 0.05. The results with other nominal values are similar. For simplicity in the computations we

consider the same subsampling approximation in the cross-section and time series examples.

Table I and Table II provide the rejection probabilities of the tests for DGP1 and DGP2 for

both statistics, respectively. When c1 = 0, the results show that the size performance of the

subsampling-based tests is good for all the subsample sizes considered and both statistics. We

observe that to achieve appropriate empirical sizes the choice of b for the DGP1 should be larger

than for the DGP2. When c1 6= 0, the results show the power performance of the tests. The rejection

probabilities increase as n increases, as expected, showing that the tests are consistent against these

�xed alternatives. The CvM test statistic CvMn has higher power than the Kolmogorov-type test

KSn: The power does not depend substantially on the choice of b. For DGP2 we obtain similar

conclusions to those under DGP1. This limited simulation study suggests that even with relative

small sample sizes the subsampling tests exhibit fairly good size accuracy and power performance.

Please insert Table I and Table II about here.

Unreported simulations using the indicator weight function 1(It�1 � x); instead of exp(ix0It�1);

con�rm that exponential-based tests have higher power than indicator-based tests for these alterna-

tives. In fact, this was our motivation for the use of the exponential weight in the CvM test. These

unreported simulations can be obtained from the authors upon request.
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5. APPLICATION TO MARKET RISK MANAGEMENT

The quanti�cation of market risk for derivative pricing, portfolio optimization and pricing risk

purposes has generated a large amount of theoretical and practical work. One of the implications of

the creation of the Basel Committee on Banking Supervision was the implementation of Value-at-

Risk (VaR) as the standard tool for measuring market risk. In �nancial terms, VaR is the maximum

loss on a trading portfolio for a period of time given a con�dence level. In statistical terms, VaR

is the (conditional) quantile of the conditional distribution of returns on the portfolio given agent�s

information set. Nowadays, VaR has become a standard risk measure due its universality, conceptual

simplicity and easy computation and evaluation.

The evaluation of VaR measures has become of paramount importance in risk management. In

fact, for banks with su¢ ciently highly developed risk management systems the implementation of

VaR techniques was a priori the only restriction set by the Basel Accord (1996a) for computing

capital reserves. Thus, in order to monitor and assess the accuracy and quality of the di¤erent

VaR forecasts techniques the Basel Accord (1996a) and the Amendment of Basel Accord (1996b)

developed a diagnostic testing procedure that was denominated backtesting. To explain formally

what backtesting is, let us consider the following implication of (1),

E[	�;t(�0) j eIt�1;�(�0)] = 0; a.s. for some �0(�) 2 � and some � 2 (0; 1); (13)

where eIt�1;�(�0) := (	�;t�1(�0);	�;t�2(�0); :::)0: The popularity of condition (13) is mostly due to
the discrete character and ease of interpretation of the variables fHt;�(�0)g; with Ht;�(�0) = 1(Yt �

m(It�1; �0(�))); which are the so-called hits or exceedances. In particular, the discreteness of the

exceedances implies that condition (13) is equivalent to

fHt;�(�0)g are iid Ber(�) random variables (r.v.) for some �0 2 �; (14)

where Ber(�) stands for a Bernoulli r.v. with parameter �. In the VaR literature, the satisfaction

of condition (14) has been taken as the criteria for the out-of-sample evaluation of VaR forecasts,

leading to the so-called unconditional backtesting (i.e. tests for E[Ht;�(�0)] = �) and conditional

tests or tests of independence (i.e. tests for fHt;�(�0)g being iid).

The unconditional backtest is carried out with the so-called Kupiec-test statistic (cf. Kupiec,

1995), see also Christo¤ersen (1998) and Escanciano and Olmo (2008), based on the absolute value

of the standardized sample mean, i.e.

Kn;� :=

����� 1pn
nX
t=1

fHt;�(�n)� �g
����� : (15)

For the conditional hypothesis, Christo¤ersen (1998) introduces a likelihood ratio (LR) test which
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is equivalent to a test based on the autocovariance

Cn;� =

����� 1pn
nX
t=2

fHt;�(�n)� �gfHt�1;�(�n)� �g
����� :

Berkowitz, Christo¤ersen and Pelletier (2006) review some of the existing methods for testing the

conditional and unconditional hypotheses.

In this paper we propose an alternative methodology to the mentioned classical backtesting meth-

ods that overcomes some of their important de�ciencies. First, it is important to stress that tests

based on R1n are expected to be more powerful than standard backtesting techniques. This is so

because we incorporate more (possibly nonlinear) information in the test statistic. In particular, the

unconditional backtest statistic coincides with R1n(0; �); whereas we exploit a continuum number of

x0s; thereby leading to a more powerful test. This is con�rmed in the applications below. Second,

by using only one quantile level, VaR only tells us the most we can lose if a tail events does not

occur; if a tail event does occur, we can expect to lose more than the VaR, but the VaR itself gives

us no indication of how much that might be. Therefore, two positions can have the same VaR at

a given quantile level � and yet have very di¤erent risk exposures. This is the so-called tail risk

problem in VaR. Our methodology solves this de�ciency by taking a larger, possibly in�nite, number

of quantiles in the tail, thereby giving a more complete picture of the underlying risk exposure and

leading to a better understanding of the �tting properties of the associated risk model.

In this section, we compare the new methodology with the aforementioned standard backtesting

techniques. For simplicity in the arguments, we only consider in-sample comparisons. The extension

to out-of-sample exercises poses no extra di¢ culties, and hence it is omitted. The data sets we

consider are daily closed European stock indexes returns from the Frankfurt DAX Index (DAX), the

London FTSE-100 Index (FTSE) and Paris CAC-40 Index (CAC) from 1 January 2003 to 9 June

2008, with a total of n =1417 observations. We consider the returns of the indexes obtained as the

log di¤erences of the data.

We entertain a pure Gaussian GARCH(1,1) model with AR(1) conditional mean for the log-returns

Yt, leading to the quantile model

m(It�1; �0(�)) = �+ �0Yt�1 + �t�
�1
" (�);

with �2t = �00 + �10(Yt � �� �0Yt�1)2 + �20�2t�1;

where ��1" (�) is the �-quantile of the standard Gaussian error distribution and the parameters

(�; �0; �00; �10; �20)
0 are estimated by Quasi-Maximum Likelihood (QML). This speci�cation is stan-

dard in the econometrics literature. We also entertained other speci�cations, like pure Gaussian

GARCH(1,1) and Student-t GARCH(1,1) models with degrees of freedom estimated by MLE, and

we obtained similar conclusions. For the sake of exposition we omit these alternative speci�cations.
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The Basel Accord (1996a) and the Amendment of Basel Accord (1996b) recommends to carry

out backtesting procedures with quantile levels � = 0:01 or � = 0:05: Here, we take as T a grid of

m = 10 equidistributed points f�jgmj=1 from �
1
= 0:005 to �

m
= 0:05; in intervals of length 0.005,

covering the region recommended by Basel Accord (1996a). We apply our CvM test in (5) and the K

test in (6) with It�1 = (Yt�1; :::; Yt�d) for d = 1 and 2; and denote the corresponding test statistics

by CvMn;d and KSn;d: We compute these tests following (11) and (12). For a better comparison

with our tests, we also consider aggregated standard backtests given by

Kn = m�1
mX
j=1

Kn;�j ; Cn = m�1
mX
j=1

Cn;�j :

In Table III we report the subsampling p�values for several choices of k in b =
�
kn2=5

�
.

Please insert Table III about here.

We can draw several conclusions from the results of Table III. First, our results indicate that

the AR(1)-GARCH(1,1) model with Gaussian innovations is not able to adequately �t the tails of

these stock returns. Our tests strongly reject this model for the CAC and FTSE stocks, and it

is dubious for the DAX index, with rejections at 10% when d = 2 with CvMn;2 and at 5% when

d = 1 with both, CvMn;1 and KSn;1: Second, the cumulative conditional backtest has rather low

power and indeed, it is not able to detect any of these alternatives. This result is consistent with

other �nite sample studies using this test, see Escanciano and Olmo (2008). Third, it is apparent

from the results for CAC that in order to detect this alternative it is important to consider a larger

information set containing the second lag. Traditional backtests only use limited information, no

conditional information for Kn and the information provided for the previous hit for Cn; which

results in a lack of power, as can be seen from the results with the CAC index return.

We complement the previous analysis with the marginal tests for each �j ; j = 1; :::;m; in Figures 1

to 3 for the subsampling size b =
�
kn2=5

�
with k = 4; i.e., b = 73: We take d = 1 for the DAX

and FTSE indexes, whereas for CAC we consider d = 2 for a better understanding of the cause

of rejection. We observe that conditional marginal backtests are more sensitive to � than our

marginal tests and unconditional backtests. The rejection for the DAX index is mostly due to the

low quantile levels (from 0.005 to 0.025) which is the most relevant part in case of an extreme event.

For a risk manager applying classical backtesting techniques at the usual level � = 0:05; the risk

model provided by the AR(1)-GARCH(1,1) would seem appropriate. Using our more powerful test,

he or she would conclude that this is not the case. This model fails to �t quantiles in the range

� 2 [0:005; 0:025] and � = 0:05:

Please insert Figure 1 and Figure 2 about here.
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Figure 2 reveals that the rejection for the CAC index of our CvM test is due to the misspeci�cation

of the conditional quantiles at large levels [0:02; 0:05]: Again, traditional backtests are not able to

reject this alternative at � = 0:05: The reason being the ine¢ cient use (or not use at all) of conditional

information from values of the index at higher lags than one. Figure 3 shows for the FTSE index

the low power of conditional backtests for moderate values of �; even for alternatives that can be

easily detected with alternative tests.

Please insert Figure 3 about here.

For a better understanding of the cause of rejection, we report in Table IV the number of violations

V iol� =
Pn

t=1Ht;�(�n) for each �j ; j = 1; :::;m; as well as the number of expected violations

EV iol� = n � �: We observe that in all cases with the DAX and FTSE indexes the number of

violations is higher than the its expected value, indicating fatter tails than the Gaussian AR-GARCH

model, especially within the quantile region [0:005; 0:025]. For the CAC index we observe a similar

pattern but with a smaller number of violations, which is consistent with our previous results with

d = 1: Unreported simulations with a Student-t distribution showed that an AR(1)-GARCH(1,1)

model with Student-t innovations is still not able to �t the tails of these data sets, although the

number of violations reduced considerably in all cases. We omitt these additional simulations for

the sake of space.

Please insert Table IV about here.

This application to stock returns shows that our methods have important implications for evalu-

ating market risk measures such as VaR. We stress that our methodology can be seen as a general

framework to analyze market risk. For instance, there is now an important growing literature in

�nance, proposing the Conditional Expected Shortfall (CES) as an alternative to the VaR for mea-

suring market risk in �nancial data. The CES is de�ned as

�Wt�1;�(Yt) = ��1
�Z
0

q�(It�1)d�; � 2 (0; 1): (16)

Therefore, in modeling the CES the interest is only in the range of quantiles [0; �] and not on the

whole conditional distribution; see Escanciano and Mayoral (2008) for discussion of parametric CES

models. The methods proposed in this section can be also seen as model speci�cation tools of CES

models.

We �nish this section with some �nal conclusions. Econometric modeling often requires the spec-

i�cation of conditional quantile models for a range of quantiles of the conditional distribution. For

the evaluation of models for quantile regression we propose and justify a general and �exible method

which compares favorably with single quantile techniques and ad-hoc tests. We have shown in this
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paper that our tests have higher power than the standard unconditional and conditional backtesting

procedures commonly used by banks and regulators to assess dynamic parametric VaR estimates.

In particular, we �nd that the standard conditional backtesting procedure has rather low power in

detecting misspeci�cations of an AR(1)-GARCH(1,1) VaR model for three major European stock

indexes. Our methods provide �exible and powerful tools that can be used by practitioners to asses

the plausibility of standard market risk models.

APPENDIX. PROOFS

First, we shall state a weak convergence theorem which is an extension of Theorem A1 in Delgado

and Escanciano (2007) and that is of independent interest. Let for each n � 1; I 0n;0; :::; I
0
n;n�1; be

an array of random vectors in Rp, p 2 N; and Yn;1; :::; Yn;n; be an array of real random variables

(r.v.�s). Denote by (
n;An; Pn); n � 1; the probability space in which all the r.v.�s fYn;t; I 0n;t�1gnt=1
are de�ned. Let Fn;t; 0 � t � n; be a double array of sub �-�elds of An such that Fn;t�1 � Fn;t;

t = 1; :::; n and such that for each n � 1 and each 
 2 H,

E[w(Yn;t; In;t�1; 
) j Fn;t�1] = 0 a.s. 1 � t � n; 8n � 1: (17)

Moreover, we shall assume that fw(Yn;t; In;t�1; 
);Fn;t; 0 � t � ng is a square-integrable martingale

di¤erence sequence for each 
 2 H; that is, (17) holds, Ew2(Yn;t; In;t�1; 
) <1 and w(Yn;t; In;t�1; 
)

is Fn;t-measurable for each 
 2 H and 8t; 1 � t � n;8n 2 N: The following result gives su¢ cient

conditions for the weak convergence of the empirical process

�n;w(
) = n�1=2
nX
t=1

w(Yn;t; In;t�1; 
) 
 2 H:

Under mild conditions the empirical process �n;w can be viewed as a mapping from 
n to `1(H);

the space of all complex-valued functions that are uniformly bounded on H; with H a generic metric

space. The weak convergence theorem that we present here is funded on results by Levental (1989),

Bae and Levental (1995) and Nishiyama (2000). In Theorem A1 in Delgado and Escanciano (2007)

H was �nite-dimensional, but here we allow for an in�nite-dimensional H: The proof of theorem

does not change by this possibility, however.

An important role in the weak convergence theorem is played by the conditional quadratic variation

(CV) of the empirical process �n;w on a �nite partition B = fHk; 1 � k � Ng of H; which is de�ned

as

CVn;w(B) = max
1�k�N

n�1
nX
t=1

E

"
sup


1;
22Hk

jw(Yn;t; In;t�1; 
1)� w(Yn;t; In;t�1; 
2)j
2 j Fn;t�1

#
: (18)

Then, for the weak convergence theorem we need the following assumptions.
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W1: For each n � 1; f(Yn;t; In;t�1)0 : 1 � t � ng is a strictly stationary and ergodic process.

The sequence fw(Yn;t; In;t�1; 
);Fn;t; 1 � t � ng is a square-integrable martingale di¤erence

sequence for each 
 2 H: Also, there exists a function Cw(
1; 
2) on H � H to R such that

uniformly in (
1; 
2) 2 H �H

n�1
nX
t=1

w(Yn;t; In;t�1; 
1)w
c(Yn;t; In;t�1; 
2) = Cw(
1; 
2) + oPn(1):

W2: The family w(Yn;t; In;t�1; 
) is such that �n;w is a mapping from 
n to `1(H) and for every

� > 0 there exists a �nite partition B� = fHk; 1 � k � N�g of H; with N� being the number

of elements of such partition, such that
1Z
0

p
log(N�)d� <1 (19)

and

sup
�2(0;1)\Q

CVn;w(B�)
�2

= OPn(1): (20)

Let �1;w(�) be a Gaussian process with zero mean and covariance function given by Cw(
1; 
2):We

are now in position to state the following

Theorem A1: If Assumptions W1 and W2 hold, then it follows that

�n;w =) �1;w in `1(H):

Proof of Theorem A1: Theorem A1 in Delgado and Escanciano (2007).

Corollary A1: Assuming that W1 holds for w(Yn;t; In;t�1; v) = 	�(Yn;t�m(In;t�1; �0(�))) exp(ix0In;t�1),

v = (x0; �)0 2 �; A1(b) and that

n�1
nX
t=1

jIn;t�1j2 = OPn(1);

then the weak convergence of Theorem A1 holds.

Proof of Corollary A1: We shall apply Theorem A1. Let us de�ne the metric

d(v1; v2) :=

q
j�1 � �2j+ jx1 � x2j2; v1; v2 2 �:

Then, we de�ne an �-bracket as an interval [v1; v2] such that v1 � v2 and d(v1; v2) � �: The

bracketing number N(�;�; d) is the minimum number of �-brackets needed to cover �: Then, it is

easy to show that
1Z
0

p
log(N(�;�; d))d� <1
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holds. It remains to show that (20) holds. Consider a partition B� = fHk; 1 � k � N(�;�; d) � N�g

of � in �-bracketsHk = [vk; vk]; with vk = (x
0
k; �k)

0 and vk = (x0k; �k)
0; xk � xk and �k � �k: De�ne

"n;t(�) = Yn;t �m(In;t�1; �0(�)): Then, by simple algebra and the monotonicity of 1("n;t(�) � 0)

due to A1(b), CVn;w(B�) in (18) is bounded by

2 max
1�k�N�

n�1
nX
t=1

E

�
sup

v1;v22Hk

j1("n;t(�1) � 0)� �1 � 1("n;t(�2) � 0) + �2j2 j Fn;t�1
�

+2 max
1�k�N�

n�1
nX
t=1

�
sup

v1;v22Hk

jexp(ix01In;t�1)� exp(ix02In;t�1)j
2
�

� C max
1�k�N�

(
j�k � �kj+ jxk � xkj

2
n�1

nX
t=1

jIn;t�1j2
)
:

Hence, (20) holds for the partition B�. Therefore, W2 of Theorem A1 holds and the corollary is

proved. �

Proof of Theorem 1. Follows from Corollary A1. �

Theorem A2. Assume Assumptions A1(c-d), A2, A3, and that there exists a �1 2 B such that

k�n � �1kB = oP (1): Then, uniformly in (x0; �)0 2 �,

R1n(x; �) =
1p
n

nX
t=1

f	�(et(�1))� E[	�(et(�1)) j Ft�1]g exp(ix0It�1) (21)

+
1p
n

nX
t=1

fE[	�(et(�)) j Ft�1]�=�n � E[	�(et(�1)) j Ft�1]g exp(ix0It�1)

+
1p
n

nX
t=1

E[	�(et(�1)) j Ft�1] exp(ix0It�1)� E [E[	�(et(�1)) j Ft�1] exp(ix0It�1)]

+
p
nE [E[	�(et(�1)) j Ft�1] exp(ix0It�1)] + oP (1):

Proof of Theorem A2: Write wt�1(v; �) := f	�(et(�))� E[	�(et(�)) j Ft�1]g exp(ix0It�1): First

we shall show that the process

Sn(v; �) =
1p
n

nX
t=1

wt�1(v; �)

is asymptotically tight with respect to (v; �) 2 W = �� B:

Let us de�ne the class K = fw�(v; �) : (v; �) 2 Wg: Denote Xt�1;1 = (It�1; It�2; :::)
0: Let

B� = fBk; 1 � k � N� � N[](�;K; k�k2g; with Bk = [wk(Yt; Xt�1;1); wk(Yt; Xt�1;1)]; be a partition

of K in �-brackets with respect to k�k2 ; where k�k2 denotes the L2 norm of random variables, i.e.,

kXk2 =
�
E[X2]

�1=2
:
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Conditions A1(c-d) and A2 imply that for a su¢ ciently small � > 0;






 sup
(v2;�2)2W:d(v1;v2)��

k�1��2kB��

jwt�1(v1; �1)� wt�1(v2; �2)j









2

� C








 sup
(v2;�2)2W:d(v1;v2)��

k�1��2kB��

j	�1(et(�1))�	�2(et(�2))j









2

+ C�

� C






 sup
j�1��2j��

j1(Yt � mt�1(�1(�1)))� 1(Yt � mt�1(�1(�2)))j






2

+C

 
E

"
sup

k�1��2kB��
j1(Yt � mt�1(�1(�)))� 1(Yt � mt�1(�2(�)))j

#!1=2
+ C�

� C�1=2:

Theorem 3 in Chen et al. (2003) and A3 yield that (19) holds for such partition. Therefore, by

similar arguments as in Corollary A1, (20) follows, and condition W2 of Theorem A1 holds. The

asymptotically tightness of Sn(v; �) is then proved. As a result,

sup
v2�

jSn(v; �n)� Sn(v; �1)j = oP (1);

which can be rewritten as

R1n(�) =
1p
n

nX
t=1

f	�(et(�1))� E[	�(et(�1)) j Ft�1]g exp(ix0It�1)

+
1p
n

nX
t=1

E[	�(et(�)) j Ft�1]�=�n + oP (1);

from which (21) follows. �

Proof of Theorem 2: Under the null �1 = �0 and E[	�(et(�0)) j Ft�1] = 0 a.s. From the

expansion in (21), it follows that, uniformly in v 2 �,

R1n(�) =
1p
n

nX
t=1

	�(et(�0)) exp(ix
0It�1)

+
1p
n

nX
t=1

fE[	�(et(�)) j Ft�1]�=�n � E[	�(et(�0)) j Ft�1]g exp(ix0It�1) + oP (1)

= Rn(�) +
1p
n

nX
t=1

�
FIt�1(m(It�1; �n))� FIt�1(mt�1(�0))

	
exp(ix0It�1) + oP (1):

Now, from A1(d) and Koul and Stute (1999, pp. 228-229), uniformly in v 2 �,

1p
n

nX
t=1

�
FIt�1(m(It�1; �n))� FIt�1(mt�1(�0))

	
exp(ix0It�1)

=
p
n(�n � �0)

1

n

nX
t=1

g(It�1; �0)fIt�1(mt�1(�0)) exp(ix
0It�1) + oP (1):
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This together with Theorem 1, A2(c) and A4 proves the theorem. �

Proof of Theorem 3: Let W = � � B: Let w = (x0; �; �0(�))0 be a general element of W. The

space W is endowed with the metric

�(w1; w2) = jx1 � x2j+ j�1 � �2j+ sup
�2T

j�1(�)� �2(�)j ;

where w1 = (x01; �1; �
0
1(�))0 and w2 = (x02; �2; �

0
2(�))0 belong to W: Let B(w; �) be the open ball of

radius � around w; i.e., B(w; �) = fw1 2 W : �(w1; w) < �g: Note that A1-A3 yield that for each

w = (x0; �; �0(�))0 2 W it holds that

lim
�!0

E

"
sup

w12B(w;�)
j	�1(et(�1(�1))) exp(ix01It�1)�	�(et(�(�))) exp(ix0It�1)j

2

#
= 0:

Therefore, E[	�(et(�1(�))) exp(ix0It�1)] is a continuous function of v = (x0; �)0: Therefore, a uni-

form version of the Ergodic Theorem

sup
�2B

sup
v2�

����� 1n
nX
t=1

[	�(et(�(�))) exp(ix
0It�1)� E[	�(et(�(�))) exp(ix0It�1)]

����� = oP (1):

Hence, from the last display and A5

sup
v2�

����� 1n
nX
t=1

[	�(et(�n(�))) exp(ix
0It�1)� E[	�(et(�1(�))) exp(ix0It�1)]

����� = oP (1):

and the function E[	�(et(�1(�)))1(It�1 � �)] is di¤erent from zero in a subset with positive Lebesgue

measure on �: �

Proof of Theorem 4: The proof follows from Theorem A2 and Assumptions A5 and A6 jointly

with A4�in a routine fashion, and then, it is omitted: �

Proof of Theorem 5. The proof follows the same steps as Theorems 2, 3 and 4 of Whang (2004)

and then, it is omitted. �
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Table I: Empirical size and power. 5% of signi�cance level.

CvMn DGP1 DGP2

c1 n k = 7 k = 8 k = 9 k = 3 k = 4 k = 5

0.0
100

300

4.6

4.0

5.1

4.3

6.5

5.2

5.2

4.9

5.9

4.9

5.7

4.6

0.1
100

300

48.3

98.8

48.3

98.3

48.9

97.8

9.9

21.5

10.1

21.9

10.6

21.2

0.2
100

300

87.2

100.0

86.1

100.0

83.9

100.0

23.3

71.0

22.4

71.1

23.2

68.9

0.3
100

300

97.4

100.0

96.4

100.0

95.7

100.0

41.8

96.3

39.8

96.4

40.2

64.6

Table II: Empirical size and power. 5% of signi�cance level.

KSn DGP1 DGP2

c1 n k = 7 k = 8 k = 9 k = 3 k = 4 k = 5

0.0
100

300

3.7

3.6

3.9

3.9

5.7

4.4

5.9

6.3

5.9

6.7

6.4

6.9

0.1
100

300

34.0

96.2

33.9

95.2

33.8

74.1

8.1

17.1

7.9

17.3

8.5

16.2

0.2
100

300

74.1

100.0

71.3

100.0

67.5

100.0

17.2

57.0

17.2

58.6

16.7

56.8

0.3
100

300

91.2

100.0

89.4

100.0

86.2

100.0

30.1

91.8

29.0

90.5

30.9

89.4

Table III: Aggregated tests: Subsampling p�values.

n = 1471 CvMn;1 CvMn;2 KSn;1 KSn;2 Kn Cn

k = 3 0:027 0:062 0:021 0:127 0:040 0:186

DAX k = 4 0:049 0:071 0:046 0:145 0:064 0:261

k = 5 0:048 0:079 0:058 0:195 0:064 0:284

k = 3 0:241 0:000 0:194 0:000 0:148 0:326

CAC k = 4 0:298 0:000 0:233 0:000 0:250 0:407

k = 5 0:370 0:000 0:283 0:000 0:278 0:476

k = 3 0:000 0:000 0:000 0:001 0:000 0:292

FTSE k = 4 0:000 0:000 0:000 0:002 0:000 0:417

k = 5 0:000 0:000 0:000 0:000 0:000 0:535

30



0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

alpha

P
­v

alu
e

DAX Index

CvMn
Kn
Cn

Figure 1. Subsampling p-values for CvMn;1;� test (solid line), unconditional backtest Kn;� (dashed

line), and the conditional backtest Cn;� (dotted line) as a function of alfa. Subsample size b = 73:
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Figure 2. Subsampling p-values for CvMn;2;� test (solid line), unconditional backtest Kn;� (dashed

line), and the conditional backtest Cn;� (dotted line) as a function of alfa. Subsample size b = 73:
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Figure 3. Subsampling p-values for CvMn;1;� test (solid line), unconditional backtest Kn;� (dashed

line), and the conditional backtest Cn;� (dotted line) as a function of alfa. Subsample size b = 73:

Table IV: Number of violations (V iol�) and expected violations (EV iol�)

DAX CAC FTSE

�j EV iol� V iol� V iol� V iol�

0.005 7.0 20 12 20

0.010 14.1 25 21 29

0.015 21.2 35 29 37

0.020 28.3 43 32 48

0.025 35.4 48 33 55

0.030 42.4 52 38 62

0.035 49.5 54 41 65

0.040 56.6 59 48 69

0.045 63.7 72 57 75

0.050 70.8 84 58 82
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