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Abstract

The main aim of this investigation is to propose the notion of uniform and strong prime-

ness in fuzzy environment. First, it is proposed and investigated the concept of fuzzy

strongly prime and fuzzy uniformly strongly prime ideal. As an additional tool, the

concept of t/m systems for fuzzy environment gives an alternative way to deal with

primeness in fuzzy. Second, a fuzzy version of correspondence theorem and the radical

of a fuzzy ideal are proposed. Finally, it is proposed a new concept of prime ideal for

Quantales which enable us to deal with primeness in a noncommutative setting.
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Dedication

This investigation is dedicated to you, the reader, in hopes that you will find what you

are looking for.
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Chapter 1

Introduction

1.1 Historical Facts

In 1871, Dedekind generalized the concept of prime numbers to prime ideals, which were

defined in a similar way, namely, as a proper subset of integers that contains a product

of two elements if and only if it contains one of them. For example, the set of integers

divisible by a fixed prime p form a prime ideal in the ring of integers. Also, the integer

decomposition into the product of powers of primes has an analogue in rings. We can

replace prime numbers with prime ideals, as long as powers of prime integers are not

replaced by powers of prime ideals but by primary ideals. The uniqueness of the latter

decomposition was proved in 1915 by Macaulay. Thus, we can think about of prime

ideals as atoms, like prime numbers are atoms in the ring of integers.

From the properties of the integers we can develop a general structure called ring. Then,

the concept of primeness may be extended to a commutative ring in a certain way, for

example: a prime ring R is a ring where the (0) zero ideal is prime that is, given a and b

nonzero elements in R, there exists r ∈ R, such that arb is nonzero in R. In commutative

ring theory prime rings are integral domains, i.e. rings where ab = 0 implies a = 0 or

b = 0. Suppose that, given a 6= 0 in R there exists a finite nonempty subset Fa ⊆ R,

such that afr = 0 implies r = 0, for all f ∈ Fa. In that case we have a strong primeness

condition on a ring. If the ring satisfies this last condition it is called strongly prime ring

(shortened sp ring). If the same F can be chosen for any nonzero element in R, then the

ring R is called uniformly strongly prime (usp) ring.

Strongly prime rings were introduced in 1974, as a prime ring with finite condition in

the generalization of results on group rings proved by Lawrence in his PhD.’s thesis [1].

In 1975, Lawrence and Handelman [2] came up with properties of these rings and proved

1
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important results, showing that all prime rings can be embedded in an sp ring; and that

all sp rings are nonsingular.

After that, in 1987, Olson [3] published a relevant paper about usp rings and usp radical.

He proved that the usp rings generate a radical class which properly contains both the

right and left sp radicals and which is not contained in Jacobson and Brown-McCoy

radicals.

In 1965, Zadeh [4] introduced fuzzy sets and in 1971, Rosenfeld [5] introduced fuzzy sets

in the realm of group theory and formulated the concept of fuzzy subgroups of a group.

Since then, many researchers have been engaged in extending the concepts/results of

abstract algebra to the broader framework of the fuzzy setting. Thus, in 1982, Liu [6]

defined and studied fuzzy subrings as well as fuzzy ideals. Subsequently, Liu himself

(see [7]), Mukherjee and Sen [8], Swamy and Swamy [9], and Zhang Yue [10], among

others, fuzzified certain standard concepts/results on rings and ideals. For example:

Mukherjee was the first to study the notion of prime ideal in a fuzzy setting. Those

studies were further carried out by Kumar in [11] and [12], where the notion of nil

radical and semiprimeness were introduced.

After Mukherjee’s definition of prime ideals in the fuzzy setting, many investigations

extended crisp (classic) results to fuzzy setting. But Mukherjee’s definition was not

appropriate to deal with noncommutative rings. In 2012, Navarro, Cortadellas and

Lobillo [13] drew attention to this specific problem. They proposed a new definition of

primeness for fuzzy ideals for noncommutative rings holding the idea of “fuzzification” of

primeness introduced by Kumbhojkar and Bapat [14, 15] to commutative rings, which is

coherence with α- cuts. Thus, Navarro et. al. [13] reopened the possibility of developing

fuzzy results for general rings of prime ideals.

1.2 The Main Problem

As it is known, after the Lawrence and Handelman’s paper many researchers developed

results about strong/uniform primeness (see [16–19]), but nothing was made in fuzzy and

quantale setting. Hence, this is the question: Could we have the strong/uniform prime-

ness in fuzzy and quantale setting? This thesis attempts to fill this gap by proposing/in-

vestigating this concept in both environments. Therefore, motivated by translating the

concept of strong primeness for fuzzy setting, I decided to build a definition of strongly

prime fuzzy ideal in which the first attempt was based on α-cuts (chapter 2 and pub-

lished in [20]). In this approach every result for fuzzy environment has its counterpart

in a classical crisp setting. Afterwards, I realized that all proofs were based on α-cuts
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and the results were only translated to fuzzy setting. Then, a new definition of strongly

prime fuzzy ideal was required, and should not be based on α-cuts, yet compatible in a

certain way. Thus, the second attempt was to propose such definition introduced in [21]

which can be found in the section 3.5. In this approach, we have the coherency with

α-cuts in “only one side”; namely: if a fuzzy ideal is strongly prime, then all α-cuts are

crisp strongly prime ideals. But the converse of this statement is still open up to now.

Instead of the concept of strongly prime ideal, the concept of uniformly strongly prime

ideal is more suitable to translate to fuzzy setting. Thus, in [22] (chapter 3) I introduce

the uniform fuzzy concept, compatible with α-cuts. In this approach I rediscovered

some crisp results on uniformly strongly prime (usp) ideals for fuzzy setting and the

compatibility with Navarro’s definition of fuzzy prime ideals. For example it is shown

that a fuzzy usp ideal is a fuzzy prime ideal without using α-cuts to prove this statement.

Also, some crisp results are no longer valid in fuzzy setting. For example, in crisp setting,

an ideal I is usp iff the quotient ring R/I is a usp ring, but as you shall soon see (example

7) this is not true in fuzzy setting.

When I began to study primeness in quantales setting I realized that some authors (see

Chapter 7) were working on noncommutative quantale with an elementwise definition

for prime ideals. As it is known, in noncommutative ring theory, prime ideals are defined

based on ideals instead of on elements. Thus, I firstly decided to provide a concept

of prime ideal for a general (commutative and noncommutative) quantale in which the

elementwise prime ideal definition was replaced by another based on ideals over the

quantale. Hence, it was required to develop a crisp study for prime ideals before starting

the investigation of sp/usp ideals for quantales.

This thesis is organized as follows: Chapter 2 provides an overview about the ring and

fuzzy ring theory. It also contains the definition and results of sp/usp rings and ideals

in a crisp setting; Chapter 3 contains the results discovered by the authors in [20] about

fuzzy sp ideals; Chapter 4 introduces the usp fuzzy ideal and its radical, all results in this

chapter are based on [22, 23], except the unpublished section 4.4 introduces a new tool

for dealing with prime fuzzy ideals and usp fuzzy ideals called systems, where may extend

the Navarro’s paper, since the complement of fuzzy prime ideal is a fuzzy system (see

corollary 23); Chapter 5 shows some extra results on fuzzy ideals; Chapter 6 introduces

a new concept of prime ideal in quantales; Chapter 7 contains some thoughts about the

next studies; Finally, Appendix A contains published and unpublished studies.



Chapter 2

Rings and Ideals

This chapter introduces some definitions and results that will be required in this inves-

tigation. Here, we start by defining prime rings/ideals and uniformly strongly prime

rings/ideals.

Definition 1. A ring is a nonempty set R of elements closed under two binary operations

+ and · with the following properties:

(i) (R, +) (that is, the set R considered with the single operation of addition) is an

abelian group (whose identity element is denoted 0R, or just 0);

(ii) The operation · is associative: (a · b) · c = a · (b · c) for every a, b, c ∈ R. Thus, (R, ·)
is a semigroup;

(iii). The operations + and · satisfy the two distributive laws: (a + b) · c = a · c + b · c
and a · (b+ c) = a · b+ a · c, for every a, b, c ∈ R.

If R is a ring and there exists an element 1 such that a · 1 = a for every a ∈ R we say

that the ring has multiplicative identity. Also, if a · b = b · a for a, b ∈ R we call R a

commutative ring.

Very often we omit writing the · for multiplication, that is, we write ab to mean a · b.
Note that there can only be one additive identity in R (because (R, +) is a group, and

a group can only have one additive identity). Also, there can be only one multiplicative

identity in R. If R is commutative and for any a, b ∈ R, ab = 0 implies a = 0 or b = 0

we call R an integral domain. Note that the ring of n× n matrices with integers entries

is a noncommutative ring and nor an integral domain.

Definition 2. Let R be a ring. A nonempty subset I of R is called a right ideal of R if:

4
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(a) a, b ∈ I implies a+ b ∈ I;

(b) given r ∈ R, a ∈ I, then ar ∈ I (that is, a right ideal absorbs right multiplication by

the elements of the ring).

Similarly we can define left ideal replacing (b) by: (b’) given r ∈ R, a ∈ I, then ra ∈ I.
If I is both right and left ideal of R, we call I a two-sided ideal or simply an ideal.

For the next definition consider the following notation I · J and xRy in which:

I · J = IJ = {i1j1 + · · ·+ injn : ik ∈ I and jk ∈ J, k = 1, . . . , n; where n ∈ Z+}

xRy = {xry : r ∈ R}.

Definition 3. A prime ideal in an arbitrary ring R is any proper (P ⊆ R and P 6= R)

ideal P such that, whenever I, J are ideals of R with IJ ⊆ P , either I ⊆ P or J ⊆ P .

Theorem 1. [[24], Proposition 10.2] An ideal P of a ring R is prime iff for x, y ∈ R,

xRy ⊆ P implies x ∈ P or y ∈ P .

Definition 4. An ideal P of a ring R is called completely prime if given a and b two

elements of R such that their product ab ∈ P , then a ∈ P or b ∈ P .

Given a ring R and a ∈ R, the set (a) = RaR = {x1ay1+· · ·+xnayn : n ∈ N, xi, yi ∈ R}
is an ideal and is called the ideal generated by a.

For arbitrary rings, completely prime implies prime, but the converse is not true as we

can see in the following example:

Example 1. [13] Let (0) as an ideal generated by 0, and let R be the ring of 2 × 2 ma-

trices over the real numbers. Let us show that the (0) (zero ideal) is prime, but (0) is

not completely prime by using the theorem 1. Thus, suppose that X =

(
a b

c d

)
and

Y =

(
e f

g h

)
are two matrices such that XRY ⊆ (0). Hence XTY =

(
0 0

0 0

)
for

any other matrix T ∈ R. Let T =

(
1 0

0 0

)
. Then

X

(
1 0

0 0

)
Y =

(
a b

c d

)(
1 0

0 0

)(
e f

g h

)
=

(
ae af

ce cf

)
= 0 ⇔ a = c =

0 or e = f = 0,
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X

(
0 1

0 0

)
Y =

(
a b

c d

)(
0 1

0 0

)(
e f

g h

)
=

(
ag ah

cg ch

)
= 0 ⇔ a = c =

0 or g = h = 0,

X

(
0 0

1 0

)
Y =

(
a b

c d

)(
0 0

1 0

)(
e f

g h

)
=

(
be bf

de df

)
= 0 ⇔ b = d =

0 or e = f = 0,

X

(
0 0

0 1

)
Y =

(
a b

c d

)(
0 0

0 1

)(
e f

g h

)
=

(
bg bh

dg dh

)
= 0 ⇔ b = d =

0 or g = h = 0,

Hence, it should be the case that X =

(
0 0

0 0

)
or Y =

(
0 0

0 0

)
. Therefore X ∈ (0)

or Y ∈ (0) and then (0) is prime. Nevertheless, (0) is not completely prime, since(
0 1

0 0

)(
0 1

0 0

)
=

(
0 0

0 0

)
although

(
0 1

0 0

)
/∈ (0).

2.1 Prime, Strongly Prime and Uniformly Strongly Prime

Rings

A ring is called a simple ring if is a nonzero ring that has no two-sided ideals besides the

zero ideal and itself. In 1973, Formanek [25] proved that if D is a integral domain and

G can be factored into a free product of a groups, then the group ring DG is a simple

ring. In the same year, Lawrence in his Master’s thesis showed that a generalization of

Formanek’s result was possible, in which the integral domain is replaced by a prime ring

with a finiteness condition called strong primeness. Although the condition of strong

primeness was already used in a specific problem for group rings, the theory of strong

primeness became more itself interesting. As a consequence, in 1975, Lawrence and

Handelman [2] began to study the strongly prime rings for which some results were

discovered, for example that every prime ring may be embedded in a strongly prime ring

and that the Artinian strongly prime rings have a minimal right ideal.

Definition 5. A ring R is prime if for any two elements a and b of R, arb = 0 for all r in

R implies that either a = 0 or b = 0.
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We can think of prime rings as a simultaneous generalization of both integral domains

and simple rings. In the commutative case R is prime iff R is an integral domain.

Definition 6. Let A be a subset of a ring R. The right annihilator of A is defined as

Anr(A) = {x ∈ R : Ax = (0)}. Similarly, we can define the left annihilator Anl

Definition 7. [2] A ring R is called right strongly prime if for each nonzero x ∈ R there

exists a finite nonempty subset Fx of R such that the Anr(xFx) = (0).

When R is right strongly prime we can prove that Fx is unique and called a right insulator

for x.

Parmenter, Stewart and Wiegandt [26] have shown that the definition of right strongly

prime is equivalent to:

Proposition 1. A ring R is right strongly prime if each nonzero ideal I of R contains a

finite subset F which has right annihilator zero.

It is clear that every right strongly prime ring is a prime ring. It is also possible to define

left strongly prime in a manner analogous to that for right strong primeness. Handelman

and Lawrence showed that these two concepts are distinct, by building a ring that is right

strongly prime but not left strongly prime (see [2], Example 1).

Example 2. If I is an ideal in a simple ring R, then I = (0) or I = R. Thus, if I 6= (0),

then I = R. Let F = {1} then Anr(F ) = {0}. Hence, according to definition 1 R is a

right strongly prime ring.

Example 3. A division ring is a nonzero ring such that multiplicative identity in which

every nonzero element a has a multiplicative inverse, i.e., an element x with ax = xa = 1.

It is easy to see that a division ring is a simple ring. Therefore, it is a right strongly

prime ring.

A field is a commutative division ring with multiplicative identity. Therefore strongly

prime ring.

Example 4. Consider Zn the commutative ring of integers mod n, for n > 1. If a ∈ Z,
the class of a is [a] = {x ∈ Z : (x mod n) = a}. Note that if n is not a prime number,

then there exists p, q ∈ Z such that n = pq, where 0 < p < n and 0 < q < n. Hence,

[pq] = 0 in Zn, but [p] 6= 0 and [q] 6= 0. We conclude that Zn is not a integral domain

and as a consequence Zn is not a prime ring. Thus, Zn is not right strongly prime ring.

On the other hand, if n is prime, Zn is a field, hence right strongly prime ring.

Definition 8. A ring is a bounded right strongly prime ring of bound n, if each nonzero

element has an insulator containing no more than n elements and at least one element

has no insulator with fewer than n elements.
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Definition 9. A ring is called uniformly right strongly prime if the same right insulator

may be chosen for each nonzero element.

Since an insulator must be finite, it is clear that every uniformly strongly prime ring is a

bounded right strongly prime ring of bound n. Again, analogous definitions of bounded

left strongly prime and uniformly left strongly prime can be formulated. As in the case

with the notation of strong primeness it is possible to find rings which are bounded left

strongly prime but not bouded right strongly prime, and vice-versa (see [2], Example 1).

However, Olson [3] showed that the concept of uniformly strongly prime ring is two-sided

due to the following result:

Lemma 2. [3] A ring R is right/left uniformly strongly prime iff there exists a finite

subset F ⊆ R such that for any two nonzero elements x and y of R, there exists f ∈ F
such that xfy 6= 0.

Corollary 3. [3] R is uniformly right strongly prime ring if and only if R is uniformly left

strongly prime ring.

Lemma 4. [3] The following are equivalent:

i) R is a uniformly strongly prime ring;

ii) There exists a finite subset F ⊆ R such that xFy = 0 implies x = 0 or y = 0, where

x, y ∈ R;

iii) For every a 6= 0, a ∈ R, there exists a finite set F ⊂ (a) such that xFy = 0 implies

x = 0 or y = 0, where x, y ∈ R;

iv) For every a 6= 0, a ∈ R, there exists a finite set F ⊂ (a) such that xFx = 0 implies

x = 0, where x ∈ R;

v) For every ideal I 6= 0, there exists a finite set F ⊂ I such that xFy = 0 implies x = 0

or y = 0, where x, y ∈ R;

vi) For every ideal I 6= 0, there exists a finite set F ⊂ I such that xFx = 0 implies x = 0,

where x ∈ R;

vii) For every a 6= 0, a ∈ R, there exists a finite set F ⊂ R such that xFaFx = 0 implies

x = 0, where x ∈ R;

viii) For every a 6= 0, a ∈ R, there exists a finite set F ⊂ R such that xFaFy = 0 implies

x = 0 or y = 0, where x, y ∈ R.
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2.2 Strongly Prime and Uniformly Strongly Prime Ideals

Let I be a two-sided ideal in R. We may define an equivalence relation ∼I on R as

follows: a ∼ b iff b− a ∈ I. In case a ∼ b, we say that a and b are congruent modulo I.

The equivalence class of the element a in R is given by:

[a] = a+ I = {a+ r : r ∈ I}.

The set of all such equivalence classes is denoted by R/I and it is a ring called the

quotient ring, where the operations are:

[a] + [b] = (a+ I) + (b+ I) = (a+ b) + I = [a+ b];

[a] · [b] = (a+ I)(b+ I) = (ab) + I = [ab].

The zero-element of R/I is [0] = 0 + I = I.

From this point forward, strongly prime means right strongly prime.

Definition 10. [2] An ideal I in a ring R is strongly prime if R/I is a strongly prime ring.

Proposition 2 ([27], Proposition 4.3, Chapter IX). An ideal I of a ring is prime iff R/I

is a prime ring.

We reproved the following result.

Proposition 3. The ideal I is a strongly prime ideal in R iff for every x ∈ R \ I there

exists a finite subset Fx of R such that if xFxr ⊆ I implies r ∈ I.

Proof. Let I strongly prime ideal and R/I strongly prime ring. If x ∈ R \ I, then

(x+ I) 6= I in R/I. The insulator of x+ I in R/I is a finite set F ∗x = {f1 + I, . . . , fk + I}
for some particular choice of the fi. Let Fx = {f1, . . . , fn} ⊆ R be such that xFxr ⊆ I.

Hence, (xF ∗x r+I) = I in R/I. Thus, (r+I) = I and r ∈ I. Conversely, given (x+I) 6= I

in R/I there exists a finite set Fx ⊂ R such that (x+I)(Fx+I)(y+I) = (xFxy+I) = I.

This implies xFxy ∈ I and y ∈ I. Thus, (y+I) = I and R/I is a strongly prime ring.

Corollary 5. P is strongly prime ideal in R iff for every x, y ∈ R, if xPy ⊆ P and xy ∈ P ,
then either x ∈ P or y ∈ P .
Proposition 4. [2] Let P be a proper ideal of a ring R. The following conditions are

equivalent:

(i) P is strongly prime.

(ii) For every ideal I ⊃ P there exists a finite set F ⊆ I such that if Fa ⊆ P , then a ∈ P .
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Proposition 5. [2] If R is a finite ring, then every prime ideal is a strongly prime ideal.

A ring homomorphism is a function between two rings which respects the structure. More

explicitly, if R and S are rings, then a ring homomorphism is a function f : R −→ S

such that: f(a+ b) = f(a) + f(b), f(ab) = f(a)f(b) for all a and b in R and f(1R) = 1S .

Let f : R −→ S be a homomorphism of rings. Let sp(S) be the set of all strongly prime

ideals of S and spf (R) = {I ∈ sp(R) : I ⊇ Ker(f)} where Ker(f) = {r ∈ R : f(r) =

0}. According to the isomorphism theorem for rings, if f is a epimorphism, there is a

bijection between spf (R) and sp(S). In the next chapter we will show its counterpart in

a fuzzy setting (see proposition 12).

Theorem 6. [28] Let f : R −→ S be an epimorphism of rings. Then

(i) f(I) ∈ sp(S) for any I ∈ spf (R);

(ii) f−1(I) ∈ spf (R) for any I ∈ sp(S);

(iii) Define the mapping Ψ : spf (R) −→ sp(S), Ψ(I) = f(I). Then Ψ is a bijection.

Proposition 6. Let f : R −→ S be an isomorphism of rings.

a) P ⊆ R is a prime ideal iff f(P ) is a prime ideal of S.

b) P ⊆ R is a strongly prime ideal iff f(P ) is a strongly prime ideal of S.

Proposition 7 ([29]). Let R be a ring and A,B be ideals of R with A ⊆ B: If B is strongly

prime, then there exists a minimal element in S = {P ⊆ R : P is strongly prime ideal and A ⊆
P ⊆ B}.

Definition 11. A proper ideal I of a ring R is a uniformly strongly prime ideal if R/I is

a uniformly strongly prime ring.

We reproved the following two results, because they provide another characterization of

uniformly strongly prime ideals.

Proposition 8. An ideal I of a ring R is uniformly strongly prime iff there exists a finite

set F ⊆ R such that xFy ⊆ I implies x ∈ I or y ∈ I, where x, y ∈ R.

Proof. Let I be a uniformly strongly prime ideal of the ring R. Then R/I is uniformly

strongly prime ring. Let F ∗ = {f1 + I, . . . , fk + I} be a insulator for R/I for some

particular choice of the fi and F = {f1, . . . , fk}. Choose x, y ∈ R such that xFy ⊆ I.

Hence (x+I)F ∗(y+I) = I. By hypothesis (x+I) = I or (y+I) = I. Thus, x ∈ I or y ∈ I.
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Conversely, let (x + I), (y + I) ∈ R/I. Suppose (x + I)(F + I)(y + I) = xFy + I = I.

Hence, xFy ⊆ I, by hypothesis x ∈ I or y ∈ I. Thus, (x + I) = I or (y + I) = I.

Therefore, R/I is a uniformly strongly prime ring.

Proposition 9. An ideal I of a ring R is uniformly strongly prime iff there exists a finite

set F ⊆ R such that for any two nonzero elements x and y of R \ I (the complement of

I in R), there exists f ∈ F such that xfy /∈ I.

Proof. Let I be a uniformly strongly prime ideal. Then, R/I is uniformly strongly

prime. Let {f1 + I, . . . , fk + I} be a insulator for R/I for some particular choice of

the fi. Choose x, y ∈ R \ I. Then (x + I) and (y + I) are nonzero elements in R/I

and according to lemma 2 there exists fi + I ∈ F ∗ for some i = 1, . . . , k such that

(x + I)(fi + I)(y + I) = xfiy + I 6= I. Then xfiy ∈ R \ I. Conversely, if (x + I) and

(y+I) are nonzero elements of R/I then x and y are in R\I. By hypothesis there exists

f ∈ F such that xfy ∈ R \ I. That is (x+ I)(f + I)(y+ I) = xfy+ I 6= I. According to

lemma 2 R/I is a uniformly strongly prime ring and {f + I : f ∈ F} is a insulator for

R/I.



Chapter 3

Strongly Prime Fuzzy Ideals

In this chapter the concept of strongly prime fuzzy ideal for rings is defined. Also,

it is shown that the Zadeh’s extension of homomorphism somewhat preserves strong

primeness and that every strongly prime fuzzy ideal is a prime fuzzy ideal as well as

every fuzzy maximal is a strongly prime fuzzy ideal. The concept of strongly prime

radical of a fuzzy ideal and its properties are investigated. It is proved that Zadeh’s

extension preserves strongly prime radicals. A version of theorem of correspondence for

strongly prime fuzzy ideals is also showed. Besides, we propose new algebraic fuzzy

structures, namely: strongly primary, strong radical, Special Strongly Prime (SSP) and

Almost Special Strongly Prime (ASSP). At the end of this chapter it is shown the relation

between strong primary and strong radicals as well as the connection between the classes

SP, SSP and ASSP. All results in this chapter can be found in [20, 21, 30].

For fuzzy ideals and Prime fuzzy ideals we recommend first of all [13] and then [6–10].

3.1 Theory of fuzzy ideals

3.1.1 Fuzzy Subrings and Fuzzy Ideals

By a fuzzy set we mean the classical concept defined in [4], that is, a fuzzy set over a

base set X is a set map µ : X −→ [0, 1]. The intersection and union of fuzzy sets is

given by the point-by-point infimum and supremum. We shall use the symbols ∧ and ∨
for denoting the infimum and supremum of a collection of real numbers.

Definition 12. A fuzzy subset I : R −→ [0, 1] of a ring R is called a fuzzy subring of R

if, for all x, y ∈ R: the following requirements are met:

1) I(x− y) ≥ I(x) ∧ I(y);

12
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2) I(xy) ≥ I(x) ∧ I(y);

If condition 2) is replaced by I(xy) ≥ I(x) ∨ I(y), then I is called a fuzzy ideal of R.

Note that if I is a fuzzy ideal of a ring R, then I(1) ≤ I(x) ≤ I(0) for all x ∈ R.

Definition 13. Let µ be any fuzzy subset of a set S and let α ∈ [0, 1]. The set {x ∈
S : µ(x) ≥ α} is called a α-cut of µ which is symbolized by µα.

Clearly, if t > s, then µt ⊆ µs.

Proposition 10. [31] A fuzzy subset I of a ring R is a fuzzy subring/fuzzy ideal of R iff

all α-cuts Iα are subrings/ideals of R.

Here is an example of a fuzzy subring of a ring R which is not a fuzzy ideal of R.

Example 5. Let R denote the ring of real numbers under the usual operations of addition

and multiplication. Define a fuzzy subset µ of R by

µ(x) =

{
t, if x is rational,

t′, if x is irrational,

where t, t′ ∈ [0, 1] and t > t′. Note that µt = Q and µt′ = R. Thus µt is a subring

according to the Proposition 10, but not a fuzzy ideal.

Definition 14 (Zadeh’s Extension). [4] Let f be a function from set X into Y , and let µ

be a fuzzy subset of X. The Zadeh extension of f is the fuzzy subset f(µ) of Y , where

the membership function is: For all y ∈ Y ,

f(µ)(y) =


∨{µ(x) : x ∈ X, f(x) = y}, if f−1(y) 6= ∅

0, otherwise.

If λ is a fuzzy subset of Y , we define the fuzzy subset of X, denoted as f−1(λ), where

f−1(λ)(x) = (λ ◦ f)(x).

Proposition 11. [32] If f : R −→ S is a ring homomorphism and I : R −→ [0, 1] and

J : S −→ [0, 1] are fuzzy ideals, then

i) f−1(J) (according to the last definition) is a fuzzy ideal which is constant on Ker(f)

(Kernel of f);

ii) f−1(Jα) = f−1(J)α, where α = J(0);

iii) If f is an epimorphism, then f(I) is a fuzzy ideal and ff−1(J) = J and f(Iα) = f(I)α,

where α = I(0);

iv) If I is constant on Ker(f), then f−1f(I) = I.
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3.1.2 Fuzzy Prime Ideals

Definition 15. [13] Let R be a ring with unity. A non-constant fuzzy ideal P : R −→ [0, 1]

is said to be prime or fuzzy prime ideal if for any x, y ∈ R,
∧
P (xRy) = P (x) ∨ P (y).

Proposition 12. [13] Let R be an arbitrary ring with unity and P : R −→ [0, 1] be a

non-constant fuzzy ideal of R. The following conditions are equivalent:

(i) P is prime;

(ii) Pα is prime for all P (1) < α ≤ P (0);

(iii) R/Pα is a prime ring for all P (1) < α ≤ P (0);

(iv) For any fuzzy ideal J , if J(xry) ≤ P (xry) for all r ∈ R, then J(x) ≤ P (x) or

J(y) ≤ P (y).

Note that if P is a fuzzy ideal, then P (xry) ≥ P (x)∨ P (r)∨ P (y) ≥ P (x)∨ P (y) for all

r ∈ R. Thus,
∧
P (xRy) ≥ P (x) ∨ P (y).

Definition 16. Let I be a fuzzy ideal of a ring R. For all r ∈ R define fuzzy left coset

r + I, where (r + I)(x) = I(x− r).

The definition above allow us to built the quotient ring R/I in the same way as we did

in crisp setting.

3.1.3 Fuzzy Maximal Ideals

Definition 17. [33] Let M be a fuzzy ideal of a ring R. Then M is called fuzzy maximal

of R if the following conditions are met:

(i) M is non-constant;

(ii) for any fuzzy ideal ν of R, if M ⊆ ν then either M∗ = ν∗ or ν = µR, where

M∗ = {x ∈ R : M(x) = M(0)}, ν∗ = {x ∈ R : ν(x) = ν(0)} and µR(x) = 1 if x ∈ R
and µR(x) = 0 otherwise.

Proposition 13. [33] Let M be a fuzzy maximal ideal of a ring R. Then M(0) = 1.

Proposition 14. [33] Let M be a fuzzy maximal ideal of a ring R. Then |Im(M)| = 2.

3.2 Strongly Prime Fuzzy Ideals

In this section, the notion of strongly prime fuzzy ideal is introduced and the well-known

crisp results in the fuzzy setting are proved.



Chapter 3. Strongly Fuzzy Primeness 15

Definition 18. (Strongly prime fuzzy ideal) Let R be an arbitrary ring with unity. A

non-constant fuzzy ideal P : R −→ [0, 1] is said to be strongly prime if Pα is strongly

prime for any P (1) < α ≤ P (0).

Theorem 7. Every strongly prime fuzzy is prime fuzzy.

Proof. Let P be strongly prime fuzzy, then Pα is strongly prime for all P (1) < α ≤ P (0).

Hence Pα is prime. Based on Proposition 12 P is prime fuzzy.

Theorem 8. Let R be a finite ring with unity. P is a strongly prime fuzzy iff P is prime

fuzzy.

Proof. Immediately from Proposition 5, definition 18 and Proposition 12.

The next two results show that Zadeh’s extension preserves prime fuzzy and strongly

prime fuzzy when f is an isomorphism.

Proposition 15. Let f : R −→ S be an isomorphism of rings. If P is a prime fuzzy ideal

of R, then f(P ) is a prime fuzzy ideal of S.

Proof. Since f is bijective, given y ∈ S, there is a unique x ∈ R such that f(x) = y.

Hence, f(P )(y) = P (x) and f(x) = y for all y ∈ S. Then:

f(P )α = {y ∈ S : f(P )(y) ≥ α}
= {f(x) ∈ S : P (x) ≥ α}
= f(Pα).

As P is prime fuzzy, by Proposition 12, Pα is prime P (1) < α ≤ P (0) and by Proposition

6 f(Pα) is prime and then f(P )α is prime for all P (1) < α ≤ P (0). By Proposition 12

once more f(P ) is prime fuzzy.

Theorem 9. Let f : R −→ S be an isomorphism of rings. If P is a strongly prime fuzzy

ideal of R, then f(P ) is a strongly prime fuzzy ideal of S.

Proof. Similar to demonstration of Proposition 15

Proposition 16. Any strongly prime fuzzy ideal contains a minimal strongly prime fuzzy

ideal.

Proof. Let P be a strongly prime fuzzy ideal over a ring R. Then, P∗ is strongly prime

and by Proposition 7 it has a minimal strongly prime M ⊆ P∗. Define

ν(x) =

{
P (0) if x ∈M
P (1) otherwise.
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As P (0) 6= P (1), να is strongly prime for all α ∈ [0, 1]. Thus, ν is equivalent to the

characteristic map of M and ν ⊆ P .

Proposition 17. Any strongly prime fuzzy ideal contains properly another strongly prime

fuzzy ideal.

Proof. Let P be a strongly prime fuzzy. Consider the fuzzy set ν =
1

2
· P ⊂ P defined

by ν(x) =
1

2
P (x). Both fuzzy sets share the same level subsets. So ν is a strongly prime

fuzzy ideal.

Theorem 10. Let R be a ring with unity. Any maximal fuzzy ideal is a fuzzy strongly

prime ideal.

Proof. Let M be a maximal fuzzy ideal. By Proposition 13 and 14 Im(M) = {M(1), 1},
M(0) = 1 and M∗ is a crisp maximal. Let M(1) < α ≤ M(0) then α = M(0). Thus,

Mα = M∗ is a crisp maximal ideal. By crisp theory, every maximal ideal is strongly

prime, and then Mα is strongly prime. Therefore, M is strongly prime fuzzy.

The converse of theorem 10 is not true as is shown by the following example.

Example 6. Let R = Z be the ring of integers and I(x) =

{
1 if x = 0

0 otherwise
. Note

that Iα = (0) for all I(1) < α ≤ I(0). Thus, I is a strongly prime fuzzy ideal. Now let

ν(x) =

{
1 if x ∈ 2Z

0 otherwise
.

Where 2Z = {n ∈ Z : n = 2q, q ∈ Z}.

Clearly I ⊆ ν, but ν 6= Z and ν∗ = 2Z 6= (0) = I∗. Therefore, I is not maximal.

3.3 Strongly Prime Radical of a Fuzzy Ideal

The right strongly prime radical of a ring R is defined to be the intersection of all

right strongly prime ideals of R and the left strongly primeness determines the left

strongly prime radical. An example given by Parmenter, Passman and Stewart [34]

showed that these two radicals are distinct. In this section we define the concept of right

strongly radical (shortly strongly radical) of a fuzzy ideal. Also, it is shown a version

of Correspondence Theorem and a right strongly prime radical (shortly sp radical) of a

fuzzy ideal is defined and investigated. Throughout this section, unless stated otherwise,

R has identity.
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Proposition 18. Let f : R −→ S be a epimorphism of rings such that f−1(Y ) is a finite

set for all Y ⊆ S. If I is a fuzzy set of R and J a fuzzy set of S, then f(Iα) = f(I)α and

f−1(Jα) = f−1(J)α.

Proof. Consider f(Iα) = {y ∈ S : y = f(x), x ∈ Iα} and f(I)α = {y ∈ S : f(I)(y) ≥
α}. Let y ∈ f(Iα), y = f(x0) where I(x0) ≥ α. Thus, f(I)(y) = sup{I(x) : f(x) =

y} ≥ I(x0) ≥ α and then y ∈ f(I)α. On the other side, let y ∈ f(I)α, i.e. f(I)(y) =

sup{I(x) : f(x) = y} ≥ α. As f is surjective, there exists x0 ∈ R, where α ≤ I(x0) ≤
sup{I(x) : f(x) = y} = f(I)(y). Thus, x0 ∈ Iα and then f(x0) = y ∈ f(Iα).

To prove f−1(Jα) = f−1(J)α, let x ∈ f−1(Jα), then f(x) ∈ Jα. Thus, f−1(J)(x) =

J(f(x)) ≥ α and, therefore, x ∈ f−1(J)α. Now let x ∈ f−1(J)α then J(f(x)) =

f−1(J)(x) ≥ α and therefore f(x) ∈ Jα. In this case, it is not necessarily used f−1(Y )

as a finite set.

Theorem 11. Let f : R −→ S be a epimorphism of rings such that f−1(Y ) is a finite set

for all Y ⊆ S. If I is a sp fuzzy ideal of R such that Ker(f) ⊆ Iα for I(1) < α ≤ I(0),

then f(I) is sp fuzzy ideal of R.

Proof. Let I be a sp fuzzy ideal of R, where Iα ∈ spf (R) for I(1) < α ≤ I(0). Applying

Theorem 6, (i) f(Iα) ∈ sp(S). By the Proposition 18 f(I)α is sp fuzzy ideal of S. Thus,

f(I) ∈ sp(S).

Proposition 19. Let f : R −→ S be an epimorphism of rings. If J is a sp fuzzy ideal of

S, then f−1(J) is a sp fuzzy ideal of R, where f−1(J)α ⊇ Ker(f) for J(1) < α ≤ J(0).

Proof. It is a consequence from proposition 18 and theorem 6 (ii).

For the next result, consider SPf (R) = {I is sp fuzzy ideal of R : Iα ∈ spf , I(1) < α ≤
I(0)} and SP (S) is the set of all sp fuzzy ideals of S.

Theorem 12. (Correspondence Theorem) Let f : R −→ S be an epimorphism of rings

such that f−1(Y ) is a finite set for all Y ⊆ S . Then, there exists a bijection between

SPf (R) and SP (S).

Proof. Define Ψ : SPf (R) −→ SP (S), Ψ(I) = f(I). Let I,M ∈ SPf (R), where I 6= M .

Thus, there exists x ∈ R, where I(x) 6= M(x), if α = I(x), then Iα 6= Mα. According

to proposition 18 and Theorem 6, f(I)α = f(Iα) 6= f(Mα) = f(M)α. Therefore, Ψ

is injective. On the other hand, let J ∈ SP (S). As Jα is SP by Theorem 6, we have
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f−1(Jα) ∈ spf (R), by Proposition 18, f−1(Jα) = f−1(J)α. Thus, f−1(J)α is SP and

f−1(J) ∈ SPf (R). Moreover, Ψ(f−1(J)) = f(f−1(J)) = J . Therefore, Ψ is surjective.

Definition 19. Given a crisp ideal I of a ring R, the strongly radical(or Levitzki radical)

of I is s
√
I =

⋂{P : P ⊇ I, P is strongly prime}.

Definition 20. Let I be a fuzzy ideal of R, the strongly radical of I is s
√
I =

⋂
P∈SI

P ,

where SI is the family of all sp fuzzy ideals P of R such that I ⊆ P .

Clearly s
√
I is an ideal, and if I is a sp fuzzy ideal, then s

√
I = I

Proposition 20. Let I be a nonconstant fuzzy ideal of ring R. Then:

i) s
√
I∗ ⊆ ( s

√
I)∗, where I∗ = {x ∈ R ; I(x) = I(0)};

ii) s
√
I(x) = 1 for all x ∈ ( s

√
I)∗;

iii) s
√
I(0) = I(0), s

√
I(1) = I(1);

iv) I∗ ⊆ ( s
√
I)∗;

v) I ⊆ s
√
I.

Proof. Straightforward.

Proposition 21. If I, J are a fuzzy ideal of a ring R, then:

(i) if I ⊆ J , then s
√
I ⊆ s
√
J ;

(ii) s
√

s
√
I = s
√
I;

(iii) Iα ⊆ ( s
√
I)α;

(iv) If I is SP fuzzy, then s
√
Iα = ( s

√
I)α;

(v) s
√
I ∩ J ⊆ s

√
I ∩ s
√
J .

Proof. (i) s
√
J =

⋂
P∈SJ

P ⊇
⋂
P∈SI

P =
s
√
I. (ii) It is easy to see that s

√
I ⊆ s

√
s
√
I. On the

other side, let’s show SI ⊆ S s√I . In fact, let P ∈ SI , then P ⊇ I using (i) P = s
√
P ⊇ s

√
I.

(iii),(iv) and (v) is straightforward.
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Proposition 22. Let f : R −→ S be a homomorphism of rings and I a fuzzy ideal of R.

Then:

1)f(I) ⊆ f( s
√
I) ⊆ s

√
f( s
√
I);

2) I ⊆ f−1( s
√
f(I)).

Proof. 1) Straightforward.

2) As f(I) ⊆ s
√
f(I), then f−1(f(I)) ⊆ f−1( s

√
f(I)). Thus, I ⊆ f−1(f(I)) ⊆ f−1( s

√
f(I)).

Proposition 23. Let f : R −→ S be a homomorphism of rings and I a SP fuzzy ideal of

R. Then, f( s
√
I) ⊆ s

√
f(I).

Proof. As I is SP fuzzy s
√
I = I, then s

√
f(I) = s

√
f( s
√
I). Thus, f( s

√
I) ⊆ s

√
f( s
√
I) =

s
√
f(I).

Proposition 24. Let f : R −→ S be an epimorphism of rings and I a sp fuzzy ideal of R,

such that Ker(f) ⊆ Iα for I(1) < α ≤ I(0). Then, f( s
√
I) = s

√
f(I).

Proof. As I is SP fuzzy ideal, I = s
√
I, f(I) = f( s

√
I). Using the theorem 11 f(I) is SP

fuzzy ideal and then f(I) = s
√
f(I). Thus, f( s

√
I) = s

√
f(I) = s

√
s
√
f(I).

Proposition 25. Let f : R −→ S be an epimorphism of rings and I a fuzzy ideal of R

such that Ker(f) ⊆ Iα for I(1) < α ≤ I(0) and s
√
I is SP fuzzy ideal. Then, f( s

√
I) is

SP fuzzy ideal of S.

Proof. Straightforward.

3.4 Semi-Strongly Prime and Strongly Primary Ideals

The aim of this section is to prove a strong prime fuzzy version (proposition 27) of the

following theorem:

“In a commutative ring, I is a prime ideal iff I is semi-prime and primary ideal.”

Definition 21. A crisp or fuzzy ideal I of ring R is semi-strongly prime (or semi-sp), iff
s
√
I = I.
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Proposition 26. Let f : R −→ S be a homomorphism of rings and I semi-sp fuzzy ideal

of R, then f(I) is semi-sp fuzzy ideal of S.

Proof. f(I) = f( s
√
I) = f

 ⋂
J∈PI

J

 =
⋂
J∈PI

f(J) ⊇
⋂

P∈Pf(I)

P = s
√
f(I).

Thus, f(I) = s
√
f(I).

Corollary 13. Let f : R −→ S be a homomorphism of rings.

1) If I is semi-sp fuzzy ideal of R, then f( s
√
I) = s

√
f(I).

2) If I is sp fuzzy ideal of R, then f(I) is sp fuzzy ideal of S.

Proof. Straightforward.

According to the classical definition, a proper ideal I in a ring R is said to be primary

whenever xy is an element of I we have x ∈ I or yn ∈ I, for some n > 0. Moreover, the

last condition can be replaced by x ∈ I or y ∈
√
I, where

√
I is the radical of I defined

by
√
I = {r ∈ R : rn ∈ I for some positive integer n}.

Definition 22. (Crisp) A proper ideal I of a ring R is said to be strongly primary,

whenever xy ∈ I, we have x ∈ I or y ∈ s
√
I.

According [35], Malik and Moderson, if a fuzzy ideal is primary, its α-cuts may not be

necessarily primary. Thus, we decided to define primary fuzzy from α-cuts as follows:

Definition 23. A non-constant fuzzy ideal I of a ring R is said to be primary fuzzy iff its

α-cuts are primary ideals of R.

Definition 24. A non-constant fuzzy ideal I of a ring R is said to be strongly primary

fuzzy iff its α-cuts are strongly primary ideals of R.

We observe that whenever I is a primary ideal, then I is strongly primary.

Proposition 27. (Crisp) I is SP iff I is semi-strongly prime and primary ideal of R.

Proof. (⇒) Straightforward. (⇐) Suppose I is not strongly prime. Then, there exists

an element x ∈ R − I, such that for every finite subset F ⊆ R, there exists r ∈ R, such
that xFr ⊆ I and r /∈ I. Let F = {1}, then there exists r ∈ R, such that xr ∈ I and

r /∈ I. That contradicts the fact of I = s
√
I and strongly primary.
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Corollary 14. If I is SP fuzzy ideal, then I is semi-strongly prime and primary fuzzy

ideal of R.

Proof. Straightforward.

Sometimes we define a fuzzy structure appealing to α-cuts. However, may all results will

be depending of them. Note that for the converse of Corollary 14 it is necessary to have
s
√
Iα = ( s

√
I)α. This fact occurs because our definition on primary was based on α-cuts.

Corollary 15. If I is semi-strongly prime and primary fuzzy ideal of R and s
√
Iα = ( s

√
I)α

for all I(1) < αI(0), then I is SP fuzzy.

Proof. Straightforward.

Theorem 16. I is SP fuzzy ideal iff I is semi-strongly prime and primary fuzzy ideal and
s
√
Iα = ( s

√
I)α for all I(1) < α ≤ I(0).

Proof. Straightforward.

3.5 Special Strongly Prime Fuzzy Ideals

In this section we provide two fuzzy structures which do not have correspondence in crisp

Algebra and are not buit from α-cuts.

Definition 25. (ASSP) Let R be an arbitrary ring with unity. A non-constant fuzzy ideal

I : R −→ [0, 1] is said to be almost special strongly prime, if for every x ∈ R there exists

a subset Fx of R, such that I(r) ≥ ∧ I(xFxr) for all r ∈ R.

Definition 26. (SSP) Let R be an arbitrary ring with unity. A non-constant fuzzy ideal

I : R −→ [0, 1] is said to be special strongly prime, if for every x ∈ R there exists a finite

subset Fx of R, such that I(r) ≥ ∧ I(xFxr) for all r ∈ R.

Proposition 28. If I is SSP, then I is SP fuzzy ideal.

Proof. Let’s show that Iα is SP for I(1) < α ≤ I(0). Let x ∈ Iα \R. As I is SSP, there

exists a finite set Fx. Suppose xFxr ⊆ Iα, hence I(r) ≥ ∧ I(xFxr) ≥ α and then r ∈ Iα.

Proposition 29. If I is SSP, then I is ASSP.

Proof. Straightforward.
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Proposition 30. If I is SP fuzzy ideal, then I is ASSP.

Proof. Let x ∈ R, then x /∈ Iβ for all I(x) < β ≤ I(0). As Iβ is strongly prime,

there exists a finite set F βx ⊆ R, such that xF βx r ⊆ Iβ implies r ∈ Iβ for all r ∈ R,

i.e.
∧
I(xF βx r) ≥ β implies I(r) ≥ β. Let J = {β ∈ [0, 1] : I(x) < β ≤ I(0)} and

Fx = (
⋃
β∈J

F βx ) ∪ {y}, where I(y) > I(x). Consider r ∈ R and t =
∧
I(xFxr) > I(x).

Observe that x /∈ It and It are SP, i.e.
∧
I(xF txr) ≥ t implies I(r) ≥ t.

As F tx ⊆ Fx, then
∧
I(xF txr) ≥

∧
I(xFxr) = t and I(r) ≥ t. Therefore, I is ASSP.

Corollary 17. Let I be a fuzzy ideal and Im(I) is a finite set. I is SSP iff I is SP.

Proof. Straightforward.

Question 1. In which conditions do the classes of ASSP and SSP coincide? Furthermore,

does Zadeh’s extension preserve ASSP and SSP?



Chapter 4

Uniformly Strongly Prime Fuzzy

Ideals

We proposed in section 3.2 a notion of sp ideals for the fuzzy environment. This definition

of sp fuzzy ideal, or shortened spf ideal, was based on α-cuts. In this approach we can

realize that all results for fuzzy environment have similar counterpart in classical algebra.

Although we could not find (like Navarro in Definition 15 ) a pure fuzzy definition of

spf ideals, these ideas led them to propose the concept of uspf (uniformly strongly prime

fuzzy) ideal. Thus, as we shall see, it is possible to propose a notion of uspf ideals which is

not based on α-cuts. This approach is proposed in order to investigate a fuzzy algebraic

structure which is somehow independent of the crisp setting. For example, in classical

ring theory an ideal is a usp ideal if and only if its quotient is a usp ring. However, as

we shall prove in the example 7, this statement is not true for uspf ideals.

Section 4.1 provides the definition of uspf ideals and results about them. We prove that

the inverse image of Zadeh’s extension of uspf ideal is an uspf ideal which are constant

on Ker(f) (Proposition 32). On the other hand, the direct image of a uspf ideal of

Zadeh’s extension is not a uspf ideal (Example 8). Also, it is shown that all uspf ideals

are prime fuzzy ideals in accordance with the new definition of prime fuzzy ideal given

in Definition 15. It is shown how we can build a uspf ideal based on usp crisp ideal and

section 4.2 has new results on uspf ideals and contains questions and conjectures about

it. Finally, section 4.3 introduces the uniform strong radical in fuzzy settiong.

4.1 Introduction

Definition 27. [23] Let R be an associative ring with unity. A non-constant fuzzy ideal

23
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I : R −→ [0, 1] is said to be uspf ideal if there exists a finite subset F such that∧
I(xFy) = I(x) ∨ I(y), for any x, y ∈ R. The set F is called insulator of I.

Proposition 31. I is uspf ideal of R iff Iα is usp ideal of R for all I(1) < α ≤ I(0).

Proof. Suppose I a USPf ideal and let F ⊆ R be a finite set given by definition 27. Let

x, y ∈ R and I(1) < α ≤ I(0) such that xFy ⊆ Iα. Hence, I(x) ∨ I(y) =
∧
I(xFy) ≥ α,

and thus I(x) ≥ α or I(y) ≥ α. Therefore, x ∈ Iα or y ∈ Iα. On the other hand,

suppose Iα is a usp ideal of R for all I(1) < α ≤ I(0). According to Proposition 8 each

Iα has a finite set Fα such that if xFαy ⊆ Iα implies x ∈ Iα or y ∈ Iα. Let a finite set

F =
⋂

I(1)<α≤I(0)

Fα. Suppose
∧
I(xFy) > I(x)∨ I(y) and t =

∧
I(xFy) for any x, y ∈ R.

Note that t > I(x) ∨ I(y) and t ≤ I(xfy) for all f ∈ F . Hence, x, y 6∈ It, but xFy ⊆ It

and thus (by hypothesis) x ∈ It or y ∈ It, where we have a contradiction. Therefore,∧
I(xFy) = I(x) ∨ I(y).

Corollary 18. If I is a uspf ideal of a ring R, then R/Iα is a usp ring for all I(1) < α ≤
I(0).

Proof. It stems from the definition of usp ideal and the last proposition.

Corollary 19. If I is uspf ideal, then I is prime fuzzy ideal.

Proof. Since I is uspf ideal, there exists a finite set F , where
∧
I(xFy) = I(x) ∨ I(y),

for any x, y ∈ R. Note that xFy ⊆ xRy. Hence,
∧
I(xFy) ≥ ∧ I(xRy). Therefore,∧

I(xFy) = I(x) ∨ I(y) ≥ ∧ I(xRy).

Proposition 32. If f : R −→ S is a epimorphism of rings and J is a uspf ideal of S, then

f−1(J) is a uspf ideal of R which is constant on Ker(f).

Proof. As J is uspf ideal, then there exists a finite set FJ (according to definition of uspf

ideal) and f−1(J) is a fuzzy ideal which is constant on Ker(f) by Proposition 11. Let

F = f−1(FJ), hence
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∧
f−1(J)(xFy) =

∧
J(f(xFy))

=
∧
J(f(x)f(F )f(y))

=
∧
J(f(x)f(f−1(FJ))f(y))

=
∧
J(f(x)FJf(y))

= J(f(x)) ∨ J(f(y))

= f−1(J)(x) ∨ f−1(J)(y).

Thus, f−1(FJ) is the insulator of a fuzzy ideal f−1(J).

Proposition 33. If I is a uspf ideal of a ring R, then R/I is a usp ring.

Proof. As I is uspf, there exists a finite set F such that
∧
I(xFy) = I(x) ∨ I(y), for

any x, y ∈ R. Let F ′ = Ψ(F ), where Ψ is the natural homomorphism from R to

R/I. Given x + I, y + I 6= 0̄ (i.e I(x), I(y) 6= I(0)) in R/I. As I is uspf, then we have∧
I(xFy) = I(x)∨I(y). Hence, there exists f ∈ F such that I(xfy) = I(x)∨I(y) 6= I(0).

Therefore, xfy+I 6= 0̄, where f+I ∈ F ′ and according to Lemma 2 R/I is usp ring.

For the next result, consider I∗ = II(0) = {x ∈ R : I(x) = I(0)}.

Proposition 34. If I is a uspf ideal of a ring R, then R/I∗ ∼= R/I.

Proof. Consider f : R −→ R/I, where f(x) = x+ I. Note that r+ I = 0 iff I(r) = I(0).

Thus, Ker(f) = I∗ and by the isomorphism theorem [36] we have R/I∗ ∼= R/I.

Corollary 20. If f : R −→ S is an epimorphism and I uspf ideal of R which is constant

on Ker(f), then R/I ∼= S/f(I).

Proof. Define h : R −→ S/f(I)∗ and h(x) = f(x) + f(I)∗. Thus, h is onto and

Ker(h) = I∗. Applying the isomorphism theorem, R/I∗ ∼= S/f(I)∗. Thus, R/I ∼=
R/I∗ ∼= S/f(I)∗ ∼= S/f(I);
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The next proposition shows us how it is possible to build a uspf ideal based on usp crisp

ideal.

Proposition 35. Let J be an ideal (crisp) of R. Define I : R −→ [0, 1] as

I(x) =


1, if x = 0;

α, if x ∈ J \ {0};
0, if x /∈ J,

where 0 < α < 1. Then:

i) I is a fuzzy ideal ;

ii) I is uspf ideal iff J is usp ideal.

Proof. i) Note that all α-cuts of I are I∗ = (0), Iα = J and I0 = R, according to

Proposition 10 I is a fuzzy ideal of R. ii) Suppose I is uspf ideal. We will prove that

J is an usp ideal according to Proposition 9. Thus, let x, y /∈ J , as I is uspf, there

is a finite set F , where
∧
I(xFy) = I(x) ∨ I(y) = 0. Since F is finite, there exits

f ∈ F where I(xfy) = 0, then xfy /∈ J . On the other hand, suppose J is usp ideal

of R, hence there exists a finite set F for J according to definition of usp crisp ideal.

Thus, given x, y ∈ R we have the following cases: 1) If x, y = 0, then we have triviality∧
I(xFy) = I(0) = I(x) ∨ I(y) = I(0); 2) If x ∈ J or y ∈ J , then xFy ⊆ J . Thus,∧
I(xFy) = α = I(x) ∨ I(y); 3) If x /∈ J and y /∈ J , then there exists f ∈ J such that

xfy /∈ J . Thus, ∧ I(xFy) = 0 = I(x) ∨ I(y).

Corollary 21. Let I be a non-constant fuzzy ideal of R and define:

M(x) =


I(0), if x = 0;

α, if x ∈ I∗ \ {0};
I(1), if x /∈ I∗.

Then, M is uspf ideal of R iff I∗ is usp ideal of R.

Proof. Straighforward

Corollary 22. Let I1 ⊂ I2 ⊂ · · · ⊂ In = R be any chain of usp ideals of a ring R. Let

t1, t2, . . . , tn be some numbers in [0, 1] such that t1 > t2 > . . . > tn. Then the fuzzy

subset I defined by

I(x) =

{
t1, if x ∈ I1
ti, if x ∈ Ii \ Ii−1, i = 2, . . . , n,

is a uspf ideal of R.
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Example 7. Consider Z the ring of integers and 4Z = {x ∈ Z : x = 4q, q ∈ Z}. Define

a fuzzy set as: I(x) =


1, if x = 0;

1/2, if x ∈ 4Z \ {0};
0, if x /∈ 4Z.

I is a fuzzy ideal, since its all α-cuts (I1 = (0), I1/2 = 4Z, I0 = Z) are ideals. Moreover,

I is not uspf ideal, since 4Z is not prime ideal, acccording to Proposition 35. Note

that I∗ = (0) is usp ideal. Hence, R/I∗ is a usp ring. Applying the Proposition 34

R/I ∼= R/I∗. Therefore, R/I is a usp ring, but I is not uspf ideal.

Example 8. Let f : Z −→ Z4 be defined by f(x) = [x]4 = x mod 4. The function f is

an epimorphism with kernel 4Z. Consider

I(x) =


1, if x = 0;

1/2, if x ∈ 3Z \ {0};
0, if x /∈ 3Z.

,

and then

f(I)(y) =

{
1, if x = 0;

1/2, if x 6= 0.

Clearly I is uspf ideal of Z, but f(I) is not uspf ideal of Z4, since I1/2 = Z4 is not usp

ideal.

4.2 Extra Results on Uspf Ideals

This section amplifies results about uspf ideals. The first one (Proposition 36) is geared

to commutative rings. However, it may be valid for noncommutatives (Conjecture 2).

The Proposition 8 brings the difference between crisp and fuzzy setting by showing the

behavior of Zadeh’s extension on uspf ideals. The results in this section was published

in [37].

Proposition 36. If I is a non-constant fuzzy ideal of a commutative ring R, then there

exists a uspf ideal K such that I ⊆ K.

Proof. Consider the crisp ideal I∗ = {x ∈ R : I(x) > I(1)}. By Zorn’s Lemma, there

exists a maximal ideal M of R containing I∗. Now we can define the following fuzzy set:
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K(x) =

{
I(0) if x ∈M,

I(1) otherwise.

Clearly, K is a fuzzy ideal and I ⊆ K. Now, consider the finite set F = {1}. Thus,∧
K(xFy) = K(xy) for any x, y ∈ R.

If x ∈M or y ∈M , then xy ∈M and then K(xy) = I(0) = K(x) ∨K(y). On the other

hand, as R is commutative, M is completely prime, hence if x /∈ M and y /∈ M , then

xy /∈M . Therefore, K(xy) = I(1) = I(1) ∨ I(1) = K(x) ∨K(y).

Conjecture 1. According to the definition of fuzzy maximal ideal given in Definition 17,

the set K in the demonstration of Proposition 36 is a fuzzy maximal ideal.

Conjecture 2. The Propostion 36 can be extended to noncommutative rings.

Proposition 37. Let f : R −→ S is a epimorphism of commutative and non usp rings. If

I is a uspf ideal of R which is constant on Ker(f), then f(I) is not a uspf ideal of S.

Proof. As I is constant on Ker(f), then by Proposition 34 and Corollary 20 we have:

R/I∗ ∼= R/I ∼= R/f(I) ∼= R/f(I)∗. As I∗ is usp ideal, then R/I∗ is usp ring. Hence,

R/f(I)∗ is usp ring. Thus, f(I)∗ is usp ideal. As we know f(I)∗ ⊆ f(I)α for all α ∈ [0, 1].

But S is commutative and f(I)∗ is Prime, hence f(I)∗ is maximal, this last stantement

implies f(I)α = S for all α 6= I(0) and by hypoteses S is not usp ring. Therefore, f(I)

is not uspf.

Question 2. The Proposition 37 shows us that uspf ideals cannot be preserved by Zadeh’s

extension. Thus, we ask: Under which conditions can Zadeh’s extension preserve the uspf

ideals? This question still open.

Proposition 38. If I and P are fuzzy ideals of a ring R with P uspf ideal, then I ∩ P is

uspf ideal of R.

Proof. Note that:
∧

(I ∩P )(xFy) = (
∧
I(xFy))∧ (

∧
P (xFy)) = (

∧
I(xFy))∧ (P (x))∨

P (y) ≤ P (x) ∨ P (y).

Proposition 39. Any uspf ideal contains properly another uspf ideal

Proof. Suppose I uspf ideal of a ring R. Let P =
1

2
I ⊂ I defined by P (x) =

1

2
I(x) for

all x ∈ R. Hence, ∧P (xFy) =
∧ I(xFy)

2
=
I(x)

2
∨ I(y)

2
= P (x) ∨ P (y).
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The next proposition tell us about the following question: If a fuzzy ideal has at least

one usp α-cut, what can we say about this ideal. Is it a uspf ideal?

Proposition 40. Let I a nonconstant fuzzy Ideal of a Integral Domain R and R is not a

usp ring and It is usp ideal for some I(1) < t ≤ I(0). If k 6= t and Ik 6= It, then Ik is not

usp ideal. Hence, I is not a uspf ideal.

Proof. When Ik = R is trivial. Now suppose Ik 6= R and note that in a Integral Domain

if I is usp ideal, then I is a Maximal ideal. Thus, It ⊂ Ik is impossible, since It is

Maximal. If Ik ⊂ It implies Ik not maximal, then Ik not a usp ideal.

4.3 US Fuzzy Radical

Since its inception, general theory of radicals has proved to be fundamental for the

structure of ring theory. A better understanding of radical of a fuzzy ideal can give to

us some information about its nature. The crisp Uniformly Strongly Prime radical (US

radical) of a ring R was defined to be the intersection of all usp ideals of R. Olson

[3] located this radical in the lattice of radical classes and proved that US radical is

independent of Jacobson and Brown-Mccoy radical. In this section we defined the US

radical of a fuzzy ideal in the standard way by comparing with two new notions.

Definition 28. [3] The US radical of a crisp ideal I is US(I) = ∩{P ⊆ R : P ⊇
I and P is usp ideal of R}.

Definition 29. [23] Let I be a fuzzy ideal of R. The uniformly strongly fuzzy radical of I

is u
√
I = ∩{P ⊆ R : P ⊇ I and P is uspf}.

The radical uspfR of a ring R is defined as u
√

0. Clearly
u
√
R = ∩{P ⊆ R : P is uspf ideal of R}.

Remark 1. According to [23] the quotient R/ u
√
R is usp ring and R/( u

√
R)∗ ∼= R/ u

√
R.

Clearly, u
√
I is an ideal, and if I is a unif. strongly prime fuzzy ideal, then u

√
I = I.

Proposition 41. If I is a fuzzy ideal of a ring R, then u
√
I is a uspf ideal of R.

Proof. Consider SI = {P ⊆ R : P ⊇ I and P is uspf} and F =
⋂
P∈SI

FP , where

FP is a finite set (insulator) of P . Clearly F is a finite set. Given x, y ∈ R, hence,
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∧
u
√
I(xFy) =

∧ ⋂
P∈SI

P (xFy)

 =
∧ ∧

P∈SI

P (xFy)

 =
∧
P∈SI

(∧
P (xFy)

)
=∧

P∈SI

(P (x) ∨ P (y)) =
∧
P∈SI

P (x) ∨
∧
P∈SI

P (y) =
u
√
I(x) ∨ u

√
I(y).

Proposition 42. If I, J are a fuzzy ideals of a ring R, then:

(i) if I ⊆ J , then u
√
I ⊆ u
√
J ;

(ii) u
√

u
√
I = u
√
I;

(iii) Iα ⊆ ( u
√
I)α;

(iv) If I is unif. strongly prime fuzzy ideal, then u
√
Iα = ( u

√
I)α;

(v) u
√
I ∩ J ⊆ u

√
I ∩ u
√
J .

Proof. (i) u
√
J =

⋂
P∈SJ

P ⊇
⋂
P∈SI

P =
u
√
I. (ii) It is easy to see that u

√
I ⊆ u

√
u
√
I. On the

other side, let’s show SI ⊆ S u√I . In fact, let P ∈ SI , then P ⊇ I using (i) P = u
√
P ⊇ u

√
I.

(iii),(iv) and (v) are straightforward.

Proposition 43. Let f : R −→ S be a homomorphism of rings and I a fuzzy ideal of R.

Then:

1)f(I) ⊆ f( u
√
I) ⊆ u

√
f( u
√
I);

2) I ⊆ f−1( u
√
f(I)).

Proof. 1) Straightforward.

2) As f(I) ⊆ u
√
f(I), then f−1(f(I)) ⊆ f−1( u

√
f(I)). Thus, I ⊆ f−1(f(I)) ⊆ f−1( u

√
f(I)).

Proposition 44. Let f : R −→ S be a homomorphism of rings and I a SP fuzzy ideal of

R. Then, f( u
√
I) ⊆ u

√
f(I).

Proof. As I is SP fuzzy u
√
I = I, then u

√
f(I) = u

√
f( u
√
I). Thus, f( u

√
I) ⊆ u

√
f( u
√
I) =

u
√
f(I).
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4.3.1 Extra Results on US Radical

Proposition 45. If I is a fuzzy ideal of R and P ⊇ I a uspf ideal, then ∩Pt = US(It) for

any t ∈ (I(1), I(0)], where Pt, It are t-cuts of P and I respectively.

Proof. Straightforward.

Definition 30. The radical uspfR-inf of a fuzzy ideal I is αI : R −→ [0, 1], where

αI(x) = ∧{t : x ∈ US(It)}. The radical uspfR-sup is βI : R −→ [0, 1], where βI(x) =

∨{t : x ∈ US(It)}.

Proposition 46. If I is a fuzzy ideal of R, then u
√
I ≥ βI ≥ αI .

Proof. Clearly, βI ≥ αI . For u
√
I ≥ βI consider x ∈ US(It). According to Proposition 45,

x ∈ ∩Pt. Thus, ∩P (x) ≥ t, where I ⊆ P and P is uspf ideal. Therefore, u
√
I ≥ βI .

Question 3. Under which conditions u
√
I = βI?

Proposition 47. If I is a non-constant fuzzy Ideal of a commutative ring R, then u
√
I(0) =

I(0) and u
√
I(1) = I(1).

Proof. According to Proposition 36 there exists a uspf ideal K ⊇ I. Thus, u
√
I(0) ≤

K(0) = I(0) and u
√
I(1) ≤ K(1) = I(1). By the definition of uspfR radical u

√
I ⊇ I, then

u
√
I(0) ≥ I(0) and u

√
I(1) ≥ I(1).

Conjecture 3. The Proposition 47 is valid in associative rings with unit.

4.4 The Fuzzy m- and t-systems

An m-system is a generalization of multiplicative systems. In the ring theory a set M is

a m-system if for any two elements x, y in M there exists r in R such that the product

xry belongs M . It is not hard to see that an ideal is prime iff its complement is a m-

system (see Mccoy [38]). On the other hand we have the t-systems which are sets where

if any two elements x, y in M there exists a finite set F such that xfy belongs M for

some f in F . Clearly a t-system is a m-system. Olson [3] proved that I is a uniformly

strongly prime ideal iff its complement is a t-system. Therefore, we have a tool to deal

with primeness and uniform strong primeness.

In this chapter we will introduce the m-system in a fuzzy setting based on the definition

of prime fuzzy ideals without α-cut dependence, given by Navarro [13] in 2012. The
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t-system is also introduced, and we have another characterization of uspf ideal. At the

end of the chapter a method to count the number of the uspf ideals in a finite ring is

introduced.

Definition 31. [38] A subset K of a ring R is called a m-system if for any two elements

x, y ∈ K there exists r ∈ R such that xry ∈ K.

Definition 32. [3] A subset M of a ring R is called a t-system if there exists a finite set

F ⊆ R such that for any two elements x, y ∈M there exists f ∈ F such that xfy ∈M .

In the last Definition F will be called the insulator of M . The empty set will be a

t-system by definition.

Proposition 48. [38] If M is a t-system, then M is a m-system.

Proposition 49. [38] I is a prime ideal of a ring R iff R \ I (the complement of I in R)

is a m-system.

Proposition 50. [3] An ideal I is usp of a ring R iff R \ I (the complement of I in R) is

a t-system.

Proposition 51. [3] If I and P are ideals of a ring R with P usp ideal, then I ∩ P is usp

ideal.

4.4.1 The Fuzzy m- and t-Systems

For the next definition consider xRy = {xry : r ∈ R}.

Definition 33. Let R be an associative ring with unity. A non-constant fuzzy set K :

R −→ [0, 1] is said to be fuzzy m-system if
∨
K(xRy) = K(x) ∧K(y), for any x, y ∈ R.

Proposition 52. If K is fuzzy subset of a ring R such that Kα is am-system for all α-cuts,

then
∨
K(xRy) ≥ K(x) ∧K(y),

Proof. Let x, y ∈ R and t = K(x) ∧K(y). As Kt is m-system and x, y ∈ Kt then there

exists r ∈ R such that xry ∈ Kt i.e K(xry) ≥ t. Hence, ∨K(xRy) ≥ t.

Question 4. Under which conditions can we have the following result: is K a fuzzy

m-system of R iff Kα is an m-system for all α-cuts?

For the next results consider P the fuzzy ideal and Pc = 1− P the complement of P in

R.

Corollary 23. P is a prime fuzzy ideal of R iff Pc (the complement of P in R) is a fuzzy

m-system.
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Proof. Suppose P prime fuzzy, then
∧
P (xRy) = P (x) ∨ P (y) for any x, y ∈ R. Hence,∨

Pc(xRy) =
∨

(1 − P (xRy)) = 1 − ∧P (xRy) = 1 − (P (x) ∨ P (y)) = (1 − P (x)) ∧
(1 − P (y)) = Ic(x) ∧ Ic(y). On the other side, suppose Pc a fuzzy m-system, then∨
Pc(xRy) = Pc(x) ∧ Pc(y) for any x, y ∈ R. Thus, 1−∧P (xRy) = 1− (P (x) ∨ P (y)).

Therefore
∧
P (xRy) = P (x) ∨ P (y).

For the next definition consider the subset xFy = {xfy : f ∈ F} of ring R.

Definition 34. Let R be an associative ring with unity. A non-constant fuzzy set M :

R −→ [0, 1] is said to be fuzzy t-system if there exists a finite subset F such that∨
M(xFy) = M(x) ∧M(y), for any x, y ∈ R.

Proposition 53. I is a uspf ideal of R iff Ic (the complement of I in R) is a fuzzy t-system.

Proof. Suppose I uspf, then there exists a finite set F where
∧
I(xFy) = I(x)∨ I(y) for

any x, y ∈ R. Hence, ∨ Ic(xFy) =
∨

(1− I(xFy)) = 1−∧ I(xFy) = 1− (I(x)∨ I(y)) =

(1 − I(x)) ∧ (1 − I(y)) = Ic(x) ∧ Ic(y). On the other side, suppose Ic a fuzzy t-system,

then there exists a finite set F where
∨
Ic(xFy) = Ic(x) ∧ Ic(y) for any x, y ∈ R. Thus,

1−∧ I(xFy) = 1− (I(x) ∨ I(y)). Therefore
∧
I(xFy) = I(x) ∨ I(y).

Proposition 54. If M is a fuzzy t-system of R, then Mα is a t-system for all α-cuts.

Proof. AsM is a fuzzy t-system there exists a finite set F , where
∧
I(xFy) = I(x)∨I(y)

for any x, y ∈ R. Let x, y ∈ Mα, then
∨
M(xFy) = M(x) ∧M(y) ≥ α. Since F is a

finite set, there exists f ∈ F such that M(xfy) ≥ α. Thus, xfy ∈ Mα. Therefore, Mα

is a t-system.

Question 5. Under which conditions can we have the following result: if K is a fuzzy

t-system of R, then is K an m-system?

The next example help us to count (in certain way) the number of uspf ideals of a finite

ring R. We recommend the reading of Chapter 5 before.

Example 9. Let I, J fuzzy subsets of a ring R. Define the following relation: I ∼ J iff

I, J induce the same α-cuts. Clearly, ∼ is an equivalence relation.

Consider R = Z12 the integers mod 12. According to the diagram below we can count

the possible chains of crisp ideals ending with Z12. Hence, we have 15 following chains:
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{0}

4Z

2Z

Z12

6Z

3Z

Figure 4.1: Ideals of Z12

1. {0} ⊂ Z12

2. {0} ⊂ 6Z ⊂ Z12

3. {0} ⊂ 6Z ⊂ 3Z ⊂ Z12

4. {0} ⊂ 3Z ⊂ Z12

5. {0} ⊂ 6Z ⊂ 2Z ⊂ Z12

6. {0} ⊂ 2Z ⊂ Z12

7. {0} ⊂ 4Z ⊂ Z12

8. {0} ⊂ 4Z ⊂ 2Z ⊂ Z12

9. 2Z ⊂ Z12

10. 3Z ⊂ Z12

11. 3Z ⊂ 6Z ⊂ Z12

12. 4Z ⊂ 2Z ⊂ Z12

13. 4Z ⊂ Z12

14. 6Z ⊂ Z12

15. 6Z ⊂ 2Z ⊂ Z12

According to Propositon 75 if I is a uspf ideal of Z12, then the α-cuts are usp ideals

for all I(1) < α ≤ I(0). Hence, we can count the numbers of uspf ideals of Z12. Since

Z12 has only two usp ideals (2Z, 3Z), then it has only 5 uspf ideals in Z12 under the

equivalence relation ∼.



Chapter 5

Some Properties of Fuzzy Ideals

In this chapter it is investigated the homomorphic image of fuzzy subring, fuzzy ideal,

fuzzy prime, and fuzzy irreducible ideals of a ring by Zadeh’s extension and how it may

influence in the homomorphism of the fuzzy ideal lattices. Finite-valued fuzzy ideals and

their relations with Artinian (Noetherian) rings are also described.

Section 5.1 provides an overview on the theory of fuzzy rings. Section 5.2 contains

the demonstration of the following result: if G and H are isomorphic rings, then the

respective family of ideals are isomorphic lattices. Section 5.3 contains the investigation

of some results about fuzzy ring theory similarly to [39]. It is proved that FIFV (R),

which is the set of finite-valued fuzzy ideals of R, is a sublattice of LFI(R) (the lattice of

all fuzzy ideals of R). Moreover, a condition is shown in order to a fuzzy set to belong to

FIFV (R) (based in a chain of ideals of R) i.e. the fuzzy set is a finite-valued fuzzy ideal

iff there exists a certain kind of chain of ideals. This result entails that, if R is Artinian

ring with unity, then a fuzzy ideal can be written in terms of the chain of ideals. At the

end of the section, it is proved that LI(R), i.e. the lattice of ideals of R, is isomorphic

to a sublattice of FIFV (R).

5.1 Preliminaries

This section explains some definitions and results that will be required in the next sec-

tions.

A fuzzy set µ is finite-valued, whenever Im(µ) is a finite set.

The set of all fuzzy subrings and ideals of the ring R are denoted by LF (R) and LFI(R),

respectively.

35
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Definition 35. Let µ, ν be any two fuzzy subsets of ring R the product µν is defined as

follows:

(µν)(x) =



∨
x=y·z

(µ(y) ∧ ν(z)), where y, z ∈ R

0, if x is not expressible as x = y · z
for all y, z ∈ R.

Definition 36. A non-constant fuzzy ideal µ of a ring R is called fuzzy prime if for any

fuzzy ideals µ1 and µ2 of R the condition µ1µ2 ⊆ µ implies that either µ1 ⊆ µ or µ2 ⊆ µ.

According to Navarro [13] if I is a fuzzy prime ideal, then I is a fuzzy prime. Then, all

results proved for fuzzy prime can be used for fuzzy prime ideal.

Definition 37. A fuzzy ideal µ of a ring R is called fuzzy irreducible if it is not a finite

intersection of two fuzzy ideals of R properly containing µ: otherwise µ is termed fuzzy

reducible.

Some properties of fuzzy rings/ideals can be verified in the works [31, 40–42]. Note that

for any fuzzy subring/fuzzy ideal µ of a ring R, if for some x, y ∈ R, µ(x) < µ(y), then

µ(x− y) = µ(x) = µ(y − x).

Theorem 24. [31] If µ is any fuzzy subring/fuzzy ideal of a ring R, then each level subset

µt = {x ∈ R : µ(x) ≥ t} where 0 ≤ t ≤ µ(0) is a subring/an ideal crisp of R. In

particular, if R has unity, Im(µ) ⊆ [µ(1), µ(0)].

Theorem 25. [31] A fuzzy subset µ of a ring R is a fuzzy subring/fuzzy ideal of R iff the

level subsets µt, (t ∈ Im µ) are subrings/ideals of R.

In general, the product of two fuzzy ideals may not be a fuzzy ideal.

Proposition 55. The family of fuzzy subrings/fuzzy ideals of a ring R is closed under

intersection.

Proposition 56. Let µ be any fuzzy subring and ν any fuzzy ideal of a ring R. Then µ∩ν
is a fuzzy ideal of the crisp subring {x ∈ R : µ(x) = µ(0)}.

Proposition 57. Let I1 ⊂ I2 ⊂ · · · ⊂ In = R be any chain of ideals of a ring R. Let

t1, t2, . . . , tn be some numbers in the interval [0, 1] such that t1 > t2 > · · · > tn. Then

the fuzzy subset µ of R defined by
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µ(x) =

{
t1, if x ∈ I1
ti, if x ∈ Ii\Ii−1, i = 2, . . . , n,

is a fuzzy ideal of R.

Theorem 26 ([40]). Let R be a ring with unity. R is Artinian iff every fuzzy ideal of R

is finite-valued.

Theorem 27 ([41]). If a Γ-ringM is Artinian, then every fuzzy ideal ofM is finite-valued.

5.2 The Isomorphism

In this section it is proved that for a given pair of rings R,S the lattices of fuzzy ideals

of R and S are isomorphic whenever R and S are isomorphic rings.

Proposition 58. Zadeh’s extension preserves fuzzy subrings. Let f : R −→ S be a

homomorphism of rings and µ a fuzzy subring of the ring R. Then f(µ) is a fuzzy

subring of the ring S.

Proof. Let x, y ∈ S. Suppose either x /∈ f(R) or y /∈ f(R). Then according definition

14 f(µ)(x) = 0 or f(µ)(y) = 0. Thus f(µ)(x) ∧ f(µ)(y) = 0 ≤ f(µ)(x − y) and

f(µ)(x) ∧ f(µ)(y) = 0 ≤ f(µ)(xy).

Now suppose x, y ∈ f(R). Observe that f is a homomorphism, f(R) is a subring and

x− y, xy ∈ f(R). Moreover, for demonstration below we will use the following equality

∨{A ∪B} = (∨{A}) ∨ (∨{B}).

f(µ)(x − y) = ∨{µ(z) : f(z) = x − y} ≥ ∨{µ(m − n) : f(m) = x and f(n) = y} ≥
∨{µ(m) ∧ µ(n) : f(m) = x and f(n) = y} = ∨{∪{µ(m) ∧ µ(n) : f(m) = x} : f(n) =

y} = ∨{∨{µ(m) ∧ µ(n) : f(m) = x} : f(n) = y} = ∨{∨{µ(m) : f(m) = x} ∧
µ(n) : f(n) = y} = (∨{µ(m) : f(m) = x})∧(∨{µ(n) : f(n) = y}) = f(µ)(x)∧f(µ)(y).

f(µ)(xy) = ∨{µ(z) : f(z) = xy} ≥ ∨{µ(mn) : f(m) = x and f(n) = y} ≥ ∨{µ(m) ∧
µ(n) : f(m) = x and f(n) = y} = ∨{∪{µ(m) ∧ µ(n) : f(m) = x} : f(n) = y} =

∨{∨{µ(m) ∧ µ(n) : f(m) = x} : f(n) = y} = ∨{∨{µ(m) : f(m) = x} ∧ µ(n) : f(n) =

y} = (∨{µ(m) : f(m) = x}) ∧ (∨{µ(n) : f(n) = y}) = f(µ)(x) ∧ f(µ)(y).

Proposition 59 ([43]). Epimorphism preserves fuzzy ideals. Let f : R −→ S be an

epimorphism of rings and µ a fuzzy ideal of the ring R. Then f(µ) is a fuzzy ideal of the

ring S.
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Proof. Let x, y ∈ S = f(R), then x− y, xy ∈ f(R).

f(µ)(x− y) ≥ f(µ)(x) ∧ f(µ)(y) is similar to Proposition 58.

f(µ)(xy) = ∨{µ(z) : f(z) = xy} ≥ ∨{µ(mn) : f(m) = x and f(n) = y} ≥ ∨{µ(m) ∨
µ(n) : f(m) = x and f(n) = y} = (∨{µ(m) : f(m) = x}) ∨ (∨{µ(n) : f(m) = y}) =

f(µ)(x) ∨ f(µ)(y).

Since for any homomorphism of rings f : A −→ B, f(A) is also a ring, and f : A −→
f(A) is an epimorphism, then it is reasonable to say that homomorphism induces the

preservation of fuzzy ideals.

Definition 38. For any two fuzzy ideals µ and ν of R, define µ ∧ ν = µ ∩ ν and µ ∨ ν =

∩{η : η is a fuzzy ideal of R such that η ≥ µ, ν}.

Proposition 60. Let R be a ring. Then LFI(R) is a complete lattice under ∧ and ∨.

Proof. See [44].

As it is known, homomorphism preserves algebraic structures. As we will prove, the

theorem below shows that Zadeh’s extension preserves certain algebraic properties.

Theorem 28. Let R,S be rings. If R ∼= S, then the lattices LFI(R) and LFI(S) are

isomorphic.

Proof. As f is an isomorphism, then f(µ)(y) = µ(x) for y = f(x) (1). Let µ, ν ∈ LFI(R)

and y ∈ R. Then:

f(µ ∧ ν)(y) = µ ∧ ν(x) (1) = µ(x) ∧ ν(x) = f(µ)(y) ∧ f(ν)(y)

f(µ) ∨ f(ν)(y) = ∧{η : η ≥ f(µ), f(ν)}(y) = ∩{η(y) : η(y) ≥ f(µ)(y), f(ν)(y)} =

∩{η(f(x)) : η(f(x)) ≥ µ(x), ν(x))} = ∩{η ◦ f(x) : η ◦ f(x) ≥ µ(x), ν(x))} =

∩{η′(x) : η′(x) ≥ µ(x), ν(x))} η′ = η ◦ f} = µ ∨ ν(x) = f(µ ∨ ν)(y) (1)

To prove that Zadeh’s extension is bijective, let f(µ) = f(ν) then f(µ)(y) = f(ν)(y)

for all y ∈ S. By definition ∨{µ(x) : f(x) = y} = ∨{ν(x) : f(x) = y}. By (1)

µ(x) = ν(x). Therefore, µ(x) = ν(x) for all x ∈ R and then µ = ν. On the other

hand, let µ ∈ LFI(S) and define ν such that ν(x) = µ(y) where y = f(x). Thus

f(ν)(y) = ∨{ν(x) : f(x) = y} = ν(x) = µ(y) for all y ∈ S. Therefore f(ν) = µ.

The converse of this theorem is not true as shown by the following example:
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Example 10. Consider the rings Q and R of rational and real numbers, respectively. Both

contain only two ideals: (0) and their own ring. Then |LFI(Q)| = |LFI(R)| and in this

case it is not difficult to show that the lattices LFI(Q),LFI(R) are isomorphic.

The next propositions are corollaries of the Theorem 28.

Proposition 61. Let f : R −→ S be an isomorphism of rings. If µ is a prime fuzzy of R,

then f(µ) is a fuzzy prime of S.

Proof. Let ν1, ν2 be fuzzy ideals of S such that ν1ν2 ⊆ f(µ), then by using the Theorem 28

there exist µ1, µ2 fuzzy ideals such that ν1 = f(µ1) and ν2 = f(µ2). Since ν1ν2 ⊆ f(µ),

then µ1µ2 ⊆ µ. In accordance with the hypothesis, µ1 ⊆ µ or µ2 ⊆ µ. Therefore

ν1 ⊆ f(µ) or ν2 ⊆ f(µ).

Proposition 62. Let f : R −→ S be an isomorphism of rings. If µ is a fuzzy irreducible

of R, then f(µ) is a fuzzy irreducible of S.

Proof. We will show the contrapositive. Suppose f(µ) is a fuzzy reducible of S, then

there exist ν1, ν2 such that f(µ) = ν1∩ν2. By the Theorem 28, ν1∩ν2 = f(µ1)∩f(µ2) =

f(µ1 ∩ µ2). Thus µ = µ1 ∩ µ2. Therefore µ is reducible.

5.3 An Equivalence of Fuzzy Ideals

In this section we look at finite-valued fuzzy subsets. We prove that FIFV (R) is a

sublattice of LFI(R), and we give a condition for the ideal to belong to FIFV (R) based

on chain of ideals of R. A consequence of this fact is that if R is an Artinian ring with

unity, then a fuzzy ideal can be written in terms of the chain of ideals of R. At the end

of the section, we prove that LI(R), i.e. the lattice of ideals of R, is isomorphic to a

sublattice of FIFV (R).

Theorem 29. FIFV (R) is a sublattice of LFI(R).

Proof. If µ, ν is a finite-valued fuzzy ideal, clearly µ∧ ν and µ∨ ν are finite-valued fuzzy

ideal.

Theorem 30. Let µ be a fuzzy subset of R such that Im(µ) = {t1, t2, . . . , tn} where

t1 > t2 > · · · > tn. Hence µ can be written as



Chapter 5. Some Properties of Fuzzy Ideals 40

µ(x) =


t1, if x ∈ B1

t2, if x ∈ B2

...

tn, if x ∈ Bn,

with Bi ∩Bj = ∅ for i 6= j and
n⋃
i=1

Bi = R.

Proof. Let B1 = {x ∈ R : µ(x) = t1}, Bk = {x ∈ R\⋃k−1
j=1 Bj : µ(x) = tk}, k ∈

{2, · · · , n}.

Observation 1. Given the sets Bi introduced in the proof of theorem 30, let Im =
m⋃
i=1

Bi,

then Im = {x ∈ R : µ(x) ≥ tm}, Bi+1 = Ii+1\Ii and In =
n⋃
i=1

Bi = R. Thus it can be

written

µ(x) =


t1, if x ∈ I1
t2, if x ∈ I2\I1
...

tn, if x ∈ In\In−1.

Where Ii, i ∈ {1, . . . , n} are ideals of ring R by Theorem 24.

The next Corollary 31 gives a condition to µ be a finite-valued fuzzy ideal.

Corollary 31. µ is a finite-valued fuzzy ideal, if and only if, there exists a chain of ideals

I1 ⊂ I2 ⊂ · · · ⊂ In = R such that Ii = {x ∈ R : µ(x) ≥ ti}, i ∈ {1, . . . , n} and

µ(x) =


t1, if x ∈ I1
t2, if x ∈ I2\I1
...

tn, if x ∈ In\In−1.

Proof. (⇒) If µ is a finite-valued fuzzy ideal, then it is possible to build the sequence

like observation 1.

(⇐) Theorem 57.
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In particular, if R is a finite ring, then all fuzzy ideals are completely determined by the

chains of ideals in R.

Corollary 32. Let R be an Artinian ring with unity. µ is a fuzzy ideal of R, if and only if,

there exists a finite chain I1 ⊂ I2 · · · ⊂ In such that µ such that Ii = {x ∈ R : µ(x) ≥ ti},
i ∈ {1, . . . , n} and

µ(x) =


t1, if x ∈ I1,
t2, if x ∈ I2\I1
...

tn, if x ∈ In\In−1.

Proof. Immediately from Theorem 26 and Corollary 31.

Corollary 33. Let M be an Artinian Γ-ring M . µ is a fuzzy ideal of R, if and only

if, there exists a finite chain I1 ⊂ I2 · · · ⊂ In such that Ii = {x ∈ R : µ(x) ≥ ti},
i ∈ {1, . . . , n} and

µ(x) =


t1, if x ∈ I1,
t2, if x ∈ I2\I1
...

tn, if x ∈ In\In−1.

Proof. Immediately from Theorem 27 and Corollary 31.

In FIFV (R) it is defined the following relation: let µ, ν ∈ FIFV (R) then:

1) µ ∼ ν iff µ, ν induce the same ideal chains.

2) µ ≡ ν iff Iµ1 = Iν1 .

Clearly ∼ and ≡ are equivalence relations. Moreover if µ ∼ ν then µ ≡ ν.

Example 11. Consider the ring of integers Z and define:

µ(x) =

{
1, if x ∈ 2Z

1/2, if x ∈ Z\2Z

η(x) =

{
1/3, if x ∈ 2Z

1/4, if x ∈ Z\2Z
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ν(x) =

{
1/3, if x ∈ 4Z

1/4, if x ∈ Z\4Z

β(x) =


1, if x ∈ 4Z

1/2, if x ∈ 2Z\4Z
1/4, if x ∈ Z\2Z

µ ∼ η, µ � ν, µ ≡ η, ν ≡ β.

As it has been shown before, any finite-valued fuzzy ideal of R determines a chain of

ideals in R of type I1 ⊂ I2 ⊂ · · · ⊂ In = R such that Ii = {x ∈ R : µ(x) ≥ ti},
i ∈ {1, . . . , n}. Now it is possible to count the number of fuzzy ideals of a finite ring

based on ∼ or ≡ since in a finite ring it is possible to count the number of ideal chains.

Example 12. Consider Z5 the integers mod 5. Herein there are only 2 chains, i.e. {0} ⊂
Z5 and Z5. Hence under ∼ there are only 2 fuzzy ideals.

Although this work provides two equivalence relations in FIFV (R) namely ∼ and ≡,
in what follows, only ≡ is investigated. Consider LI(R) which is the lattice of all crisp

ideals of R. The equivalence classes modulo ≡ are:

L = {µI : I ∈ LI(R)}, where

µI : R −→ [0, 1], µI(x) =

{
1 if x ∈ I,
0 if x ∈ R\I

, for all I ∈ LI(R).

Proposition 63. The set L = {µI : I ∈ LI(R)} is a sublattice of FIFV (R).

Proof. It is easy to see that for any two ideals I and J of R, µI ∧ µJ = µI∩J and

µI ∨ µJ = µI∪J .

Proposition 64. The map f : LI(R) −→ LFI(R) defined by f(I) = µI , for all I ∈ LI(R),

is a lattice embedding and LI(R), L are isomorphic lattices.

Proof. It is enough to see that: if I, J ∈ LI(R), then

f(I ∩ J) = µI∩J = µI ∧ µJ = f(I) ∧ f(J).

f(I ∪ J) = µI∪J = µI ∨ µJ = f(I) ∨ f(J)
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5.4 Final Remarks

The theorem 28 seems very simple, but it brings relevant information to the study of

fuzzy algebra, because it tells us that we can look at the lattice of fuzzy ideals in the

same manner that we look at the lattice of crisp ideals. Finally, it worth to think the

theorem 28 for semisimple rings based on pure definition of prime fuzzy ideal.



Chapter 6

Prime Ideals and Fuzzy Prime Ideals

Over Noncommutative Quantales

In this chapter we propose a new concept of prime ideals in noncommutative quantales.

The usual definition of prime ideal is preserved as a completely prime ideal. In this

investigation it is proved that these two concepts coincide in commutative quantales,

but are no longer valid in the noncommutative setting. Also, the notions of strong

and uniform strong primeness as well as the fuzzy version of prime ideal and uniformly

strongly prime ideal are introduced in quantales. All these studies in this chapter were

submited to the fuzzy sets and systems journal.

6.1 Introduction

In 2013, Lingyun Yang and Luoshan Xu [45] defined a prime ideal in quantales based on

elements of quantale. After that they built the rough prime ideal in quantales over this

concept. In 2014, Qingjun Luo and Guojun Wang [46] used the same definition of prime

ideals of quantales to write an investigation called roughness and fuzziness where the first

ideas on semi-prime, primary and strong primeness are presented. As it is known, ideals

are the main object in the investigation of ring theory and provide important information

about the rings because they are structural pieces. The same may occur in quantales.

The definition of prime ideals proposed in [45, 46] is based on elements of a quantale and

we ponder it is geared to commutative environment. When we move from commutative

to the noncommutative setting, elementwise should be replaced by an approach based

on ideals. Nevertheless, some authors defined the concept of primeness for commutative

and noncommutative cases without realizing that this concept may not be suitable for

noncommutative setting as it was well shown by Navarro et. al. in [13]. We state that the

44
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concept of prime ideal of general quantales could be defined as it is done in ring theory,

i.e. based on ideals. The concept of prime ideal provided for quantales by Lingyun Yang

and Luoshan Xu is more suitable for commutative quantales. Therefore, this chapter

provides a new concept of prime ideal for a general (commutative and noncommutative)

quantale which the elementwise prime ideal definition proposed by Lingyun Yang and

Luoshan Xu is called completely prime ideal.

The first aim is to study the notion of primeness in the following perspective: I renamed

prime ideal defined in [45] to completely prime ideal and define a new concept of prime

ideal for quantales. Then It is translated an important result in ring theory for quantales

environment (theorem 35) to prove that these two concepts coincide in the commutative

setting, but are no longer valid in the noncommutative setting (see Proposition 67).

Besides, based on the studies of Lawrence and Handelman [2], started in 1975 I developed

the notion of strong primeness for general quantales. The second aim is to propose the

concept of fuzzy primeness and fuzzy strong primeness as well as fuzzy uniform strong

primeness for quantales following the ideas developed in previous chapters.

At the end of this chapter, I introduce the initial ideas of t-systems and m-systems for

quantales. As a consequence an ideal is prime iff its complement is an m-system.

6.2 Primeness in Quantales

This section proposes a new concept of prime ideals suitable for commutative and non-

commutative quantales. The definition of prime ideal used in [45, 46] will be called herein

completely prime ideals. We drew attention to the theorem 35 where prime ideals can

be characterized in a certain way via elements. The Proposition 68 shows that in the

commutative case, prime and completely prime concepts coincide, which are no longer

valid in the noncommutative setting according to Proposition 67. Finally, the concept

of quantale prime is proposed.

Definition 39. [47] A quantale is a complete latticeQ with an associative binary operation

◦ satisfying:

a ◦
(∨
k∈K

bk

)
=
∨
k∈K

(a ◦ bk),
(∨
k∈K

ak

)
◦ b =

∨
k∈K

(ak ◦ b)

for all a, b, ak, bk ∈ Q and k ∈ K.

A quantale Q is called commutative whenever a ◦ b = b ◦ a for a, b ∈ Q. In this work we

denote the least and greatest elements of a quantale by ⊥ and > respectively. If there
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exists an element e in Q such that x ◦ e = e ◦ x = x for all x in Q the quantale is called

a quantale with identity. In this work we consider quantales with identity.

Definition 40. [46] Let Q be a quantale. A non-empty subset I ⊆ Q is called a right

ideal of Q if it satisfies the following conditions:

i) a, b ∈ I implies a ∨ b ∈ I;

ii) for all a, b ∈ Q, a ∈ I and b ≤ a imply b ∈ I,

iii) for all x ∈ Q and a ∈ I, we have a ◦ x ∈ I.

Similarly we may define left ideal replacing (iii) by: (iii’) for all x ∈ Q and a ∈ I, we
have x ◦ a ∈ I. If I is both right and left ideal of Q, we call I a two-sided ideal or simply

an ideal of Q.

Clearly by (ii)⊥ ∈ I. Also, the set of all ideals ofQ is closed under arbitrary intersections.

In Q we denote the subset I ◦J = {i◦ j ∈ Q : i ∈ I and j ∈ J} and A∨B = {a∨ b : a ∈
A and b ∈ B}. Since the operation ◦ is associative, we have (A ◦B) ◦ C = A ◦ (B ◦ C).

Also, if A is an two-sided ideal, then A ◦Q, Q ◦A, Q ◦A ◦Q ⊆ A.

As usual, ∨ induces an order relation ≤ on Q by putting x ≤ y ⇔ x ∨ y = y. Moreover,

≤ is a congruence i.e. for every x, y, u, v ∈ Q if x ≤ y and u ≤ v, then x ◦ u ≤ y ◦ v.
To prove this, we first observe that if w ≤ z then, for any s ∈ Q, s ◦ w ≤ s ◦ z and

w ◦ s ≤ z ◦ s because z = w ∨ z implies s ◦ z = s ◦ (w ∨ z) = (s ◦ w) ∨ (s ◦ z) and

z ◦ s = (w ∨ z) ◦ s = (w ◦ s) ∨ (z ◦ s); now suppose x ≤ y and u ≤ v, then x ◦ u ≤ y ◦ u
and y ◦ u ≤ y ◦ v. Hence, x ◦ u ≤ y ◦ v by transitivity.

In what follows we propose a more general definition of prime ideals which encompasses

commutative and non-commutative quantales.

Definition 41. A prime ideal in a quantale Q is any proper ideal P such that, whenever

I, J are ideals of Q with I ◦ J ⊆ P , either I ⊆ P or J ⊆ P .
Definition 42. A subset P of a quantale Q is called completely prime ideal if x and y are

two elements of Q such that their product x ◦ y ∈ I, then x ∈ I or y ∈ I.

As we will see the concept of prime and completely prime ideals are different and coincide

whenever Q is commutative.

Proposition 65. If P is completely prime, then P is prime.

Proof. Suppose that P is completely prime and I ◦ J ⊆ P , but J 6⊆ P , where I, J

are ideals of Q. Thus, there exists j ∈ J such that j /∈ P . For all i ∈ I we have

i ◦ j ∈ I ◦ J ⊆ P , as P is completely prime and j /∈ P , then i ∈ P . Therefore I ⊆ P .
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The Proposition 67 will show that the converse of this Proposition is not true.

Definition 43. [46] Let Q be a quantale and A ⊆ Q. The least ideal containing A is

called the ideal generated by A, and denoted as 〈A〉.

Clearly, 〈∅〉 = {⊥}. If ∅ 6= A ⊆ Q, then we have the following result.

Proposition 66. [46] Let A be a non-empty subset of a quantale Q. Then 〈A〉 = {x ∈
Q : x ≤ ∨n

i=1 ai, for some positive integer n and a1, . . . , an ∈ A ∪ (A ◦Q) ∪ (Q ◦A) ∪
(Q ◦A ◦Q)}.

We may denote 〈a〉 = 〈{a}〉 and a ◦Q = {a} ◦Q.

Lemma 34. 〈a〉 ◦Q ⊆ 〈a〉 for all a ∈ Q. If there exists an unit 1 in Q, then 〈a〉 ◦Q = 〈a〉.

Proof. Let x ◦ q ∈ 〈a〉 ◦Q, where x ∈ 〈a〉 and q ∈ Q. Hence, x ◦ q ≤ ∨n
i=1(ai ◦ q), where

ai ◦ q ∈ a ◦ Q ∪ Q ◦ a ∪ Q ◦ a ◦ Q. Thus, x ◦ q ∈ 〈a〉. On the other hand if there exists

unit 1 in Q, we write z ∈ 〈a〉 as z = z ◦ 1. Thus, z ∈ 〈a〉 ◦Q and we have 〈a〉 ◦Q = 〈a〉.

Theorem 35. For an ideal P in Q the following statements are equivalent:

(1) P is prime ideal;

(2) 〈a〉 ◦ 〈b〉 ⊆ P implies a ∈ P or b ∈ P ;

(3) a ◦Q ◦ b ⊆ P implies a ∈ P or b ∈ P .

Proof. For (1)⇒ (2) note that 〈a〉 and 〈b〉 are ideals ofQ. As P is prime and 〈a〉◦〈b〉 ⊆ P ,
then 〈a〉 ⊆ P or 〈b〉 ⊆ P . Hence, a ∈ P or b ∈ P . For (2) ⇒ (1), assume that I ◦ J ⊆ P ,
but J 6⊆ P , where I, J are ideals of Q. Thus, there exists j ∈ J such that j /∈ P . Given

i ∈ I we have 〈i〉 ⊆ I. Hence, 〈i〉 ◦ 〈j〉 ⊆ I ◦ J ⊆ P . By hypothesis i ∈ P or j ∈ P . As

j /∈ P then we have i ∈ P . Therefore, I ⊆ P .

For (3) ⇒ (1), assume that I ◦ J ⊆ P , but J 6⊆ P , where I, J are ideals of Q. Thus,

there exists j ∈ J such that j /∈ P . Given i ∈ I we have i ◦ Q ◦ j ⊆ I ◦ J ⊆ P . Hence,

i ∈ P or j ∈ P , as j /∈ P then we have i ∈ P . Thus, I ⊆ P .

For (1) ⇒ (3), suppose a ◦ Q ◦ b ⊆ P , we first shall show that 〈a〉 ◦ Q ◦ 〈b〉 ⊆ P .

For this, let x ◦ q ◦ y ∈ 〈a〉 ◦ Q ◦ 〈b〉, where x ∈ 〈a〉, y ∈ 〈b〉 and q ∈ Q. Hence, by

Proposition 66, x ≤ ∨ni=1ai and y ≤ ∨mj=1bj , where ai ∈ (a ◦ Q) ∪ (Q ◦ a) ∪ (Q ◦ a ◦ Q)
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and bi ∈ (b ◦ Q) ∪ (Q ◦ b) ∪ (Q ◦ b ◦ Q). Hence x ◦ q ◦ y ≤ (∨ni=1ai) ◦ q ◦
(
∨mj=1bj

)
=

(∨ni=1(ai ◦ q)) ◦
(
∨mj=1bj

)
= ∨ni=1(ai ◦ q ◦ ∨mj=1bj) = ∨ni=1

(
∨mj=1(ai ◦ q ◦ bj)

)
.

Observe that ai ∈ a◦Q∪Q◦a∪Q◦a◦Q and bj ∈ b◦Q∪Q◦ b∪Q◦ b◦Q it is no hard to

see that ai ◦ q ◦ bj ∈ a◦Q◦ b ⊆ P for all i, j. As P is an ideal we have x◦ q ◦y ∈ P . Thus,
〈a〉 ◦Q ◦ 〈b〉 ⊆ P . By the Lemma 34 〈a〉 ◦Q = 〈a〉. Then, 〈a〉 ◦Q ◦ 〈b〉 = 〈a〉 ◦ 〈b〉 ⊆ P .

By the first proof ((1)⇔ (2)) we have a ∈ P or b ∈ P .

Proposition 67. There exists a noncommutative quantale where a prime ideal is not a

completely prime ideal.

Proof. Consider G the invertible 2×2 matrices under multiplication over the real interval

[0, 1] and the partial order A ≤ B ⇔ aij ≤ bij . According to Rosenthal ([47], page 19,

example 16) any complete partially ordered group (written multiplicatively) is a quantale

with a ◦ b = a · b. Thus, G is a noncommutative quantale.

Let 〈0〉 as an ideal generated by 0, clearly 〈0〉 = {0}. We will show that the 〈0〉 (zero
ideal) is prime, but not completely prime by using the Theorem 35 (3). Thus, suppose

that X =

(
a b

c d

)
and Y =

(
e f

g h

)
are two matrices such that X ◦ G ◦ Y ⊆ 〈0〉.

Hence X ◦ T ◦ Y =

(
0 0

0 0

)
for all matrix T ∈ G. Then, in particular,

X ◦
(

1 0

0 0

)
◦ Y =

(
a b

c d

)(
1 0

0 0

)(
e f

g h

)
=

(
ae af

ce cf

)
= 0 ⇔ a = c =

0 or e = f = 0,

X

(
0 1

0 0

)
Y =

(
a b

c d

)(
0 1

0 0

)(
e f

g h

)
=

(
ag ah

cg ch

)
= 0 ⇔ a = c =

0 or g = h = 0,

X ◦
(

0 0

1 0

)
◦ Y =

(
a b

c d

)(
0 0

1 0

)(
e f

g h

)
=

(
be bf

de df

)
= 0 ⇔ b = d =

0 or e = f = 0,

X ◦
(

0 0

0 1

)
◦ Y =

(
a b

c d

)(
0 0

0 1

)(
e f

g h

)
=

(
bg bh

dg dh

)
= 0 ⇔ b = d =

0 or g = h = 0,
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Hence, a solution must verify that X =

(
0 0

0 0

)
or Y =

(
0 0

0 0

)
. Therefore X ∈ 〈0〉

or Y ∈ 〈0〉 and then 〈0〉 is prime. Nevertheless, 〈0〉 is not completely prime, since(
0 1

0 0

)
◦
(

0 1

0 0

)
=

(
0 0

0 0

)
although

(
0 1

0 0

)
/∈ 〈0〉.

Proposition 68. In a commutative quantale an ideal is completely prime iff it is prime.

Proof. If P is a completely prime ideal of a quantale Q, then by the Proposition 65 P

is prime. On the other hand, suppose P is a prime ideal and a ◦ b ∈ P for any a, b ∈ Q.

Let x ◦ y ∈ 〈a〉 ◦ 〈b〉, where x ∈ 〈a〉 and y ∈ 〈b〉. Thus, x ◦ y ≤ ∨n
i=1 ai ◦

∨m
j=1 bj =∨n

i=1

(∨m
j=1(ai ◦ bj)

)
, where ai ∈ a◦Q∪Q◦a∪Q◦a◦Q and bj ∈ b◦Q∪Q◦ b∪Q◦ b◦Q.

As Q is commutative a ◦ Q = Q ◦ a = Q ◦ a ◦ Q and b ◦ Q = Q ◦ b = Q ◦ b ◦ Q.

Thus, ai ◦ bj ∈ a ◦ Q ◦ b ◦ Q = a ◦ b ◦ Q for all i = 1, . . . , n and j = 1, . . . ,m. Hence,

ai ◦bj = a◦b◦q ∈ P and then x◦y ≤ ∨n
i=1

(∨m
j=1(ai ◦ bj)

)
∈ P . Therefore, 〈a〉◦〈b〉 ⊆ P

and by the Theorem 35 we have a ∈ P or b ∈ P .

In what follows, we will introduce the notion of quantale prime. As we know, in ring

theory, a quantale is prime iff the ideal generated by 0 is a prime ideal. Then, the next

Proposition translates this result into quantale environment and opens the investigation

on quantales prime.

Definition 44. A quantale Q is called prime if given a, b ∈ Q with a 6= ⊥ and b 6= ⊥,
there exists f ∈ Q such that a ◦ f ◦ b 6= ⊥.

Proposition 69. A quantale Q is prime iff 〈⊥〉 is a prime ideal.

Proof. Suppose Q prime and assume that I ◦ J ⊆ 〈⊥〉, but I, J 6⊆ 〈⊥〉, where I, J are

ideals of Q. Thus, there exists i ∈ I,j ∈ J such that i, j 6= ⊥. As Q is prime, there exists

q ∈ Q such that i◦ q ◦ j 6= ⊥, then we have a contradiction because i◦ q ◦ j ∈ I ◦J ⊆ 〈⊥〉.
Hence, I ⊆ 〈⊥〉 or J ⊆ 〈⊥〉. On the other hand, suppose 〈⊥〉 is a prime ideal of Q.

Given a, b 6= ⊥ in Q, suppose a ◦ q ◦ b = ⊥ for all q ∈ Q. Hence, a ◦Q ◦ b ⊆ 〈⊥〉. As 〈⊥〉
is a prime ideal, then a ∈ 〈⊥〉 or b ∈ 〈⊥〉, but a, b 6= ⊥.
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6.3 Strong Primeness in Quantales

Strongly prime rings were introduced in 1973, as a prime ring with finite condition in

the generalization of results on group rings proved by Lawrence in his master’s thesis. In

1975, Lawrence and Handelman [2] came up with properties of those rings and proved

important results, for instance all prime rings may be embedded in a strongly prime

ring; and all strongly prime rings are nonsingular. After such relevant paper, Olson [3]

published a paper about uniform strong primeness and its radical. On the contrary of the

concept of strong primeness, Olson proved that the concept of uniform strong primeness is

two-sided. In this section we bring this concept to quantales making specific adaptations

for this environment. Finally, it is proposed t- and m-systems for quantales, since it gives

another characterization of prime and uniformly strongly prime ideal.

Definition 45. Let A be a subset of a quantale Q. The right annihilator of A is defined

as Anr(A) = {x ∈ Q : Ax = 〈⊥〉}. Similarly, we can define the left annihilator Anl.

Definition 46. [2] A quantale Q is called right strongly prime if for each x ∈ Q − {⊥}
there exists a finite nonempty subset Fx of Q such that Anr(x ◦ Fx) = 〈⊥〉.

Clearly if Q is right strongly prime, then Q is prime. The set Fx is called an insulator

of x in Q.

Proposition 70. If Q is right strongly prime, then every nonzero ideal I of Q contains a

finite subset F which has right annihilator zero.

Proof. Suppose Q right strongly prime. Let x ∈ I and x 6= ⊥ and F = x◦Fx ⊆ I. Thus,
Anr(F ) = 〈⊥〉.

It is clear that every right strongly prime quantale is a prime quantale. It is also possible

to define left strongly prime in a similar manner for right strong primeness.

Definition 47. A quantale Q is called uniformly strongly prime (usp) if the same right

insulator may be chosen for each nonbottom element.

Proposition 71. A quantale Q is a right uniformly strongly prime iff there exists a finite

subset F ⊆ Q such that for any two nonbottom elements x and y of Q, there exists

f ∈ F such that x ◦ f ◦ y 6= ⊥.

Proof. Let Q be uniformly right strongly prime quantale. Hence Q has a uniform right

insulator F which is a finite set such that for any element x ∈ Q, x◦F has no nonbottom

right annihilators. Thus, if x and y are any two nonbottom elements in Q, y cannot be
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in the annihilator of x ◦ F . Hence there is an f ∈ F such that x ◦ f ◦ y 6= ⊥. For the

reverse implication it is easy to see that if the condition is satisfied then for any x 6= ⊥
in Q, no nonbottom element annihilates x ◦ F on the right. Hence Q is uniformly right

strongly prime

It is clear that the condition in Proposition 71 is not one-sided; consequently, this con-

dition is also equivalent to uniformly left strongly prime, and we have:

Corollary 36. Q is uniformly right strongly prime iff Q is uniformly left strongly prime.

Corollary 37. A quantale Q is uniformly strongly prime iff there exists a finite subset

F ⊆ Q such that a ◦ F ◦ b = ⊥ implies a = ⊥ or b = ⊥ for all a, b ∈ Q.

Proof. Straightforward.

Definition 48. An ideal P 6= 〈⊥〉 of a quantale Q is called uniformly strongly prime (usp)

ideal if there exists a finite subset F ⊆ Q such that a ◦F ◦ b ⊆ P implies a ∈ P or b ∈ P .
Proposition 72. An ideal I of a quantale Q is a usp ideal iff there exists a finite subset

F ⊆ Q such that for any two elements a, b ∈ Q \ I(complement of I in Q), there exists

f ∈ F such that x ◦ f ◦ y /∈ I.

Proof. Suppose I a usp ideal of Q. If a /∈ I and b /∈ I by Definition 48 a ◦ F ◦ b is not

a subset of I. Hence, there exists f ∈ F such that a ◦ f ◦ b /∈ I. For the converse, note

that by hypothesis it is impossible to have a ◦ F ◦ b ⊆ I and a /∈ I and b /∈ I.

Subsequently we introduce the t-/m-systems. They will give us another characterization

of prime and usp ideals.

Definition 49. A subset M of a quantale Q is called an m-system if for any two elements

x, y ∈M there exists q ∈ Q such that x ◦ q ◦ y ∈M .

Definition 50. A subset T of a quantale Q is called a t-system if there exists a finite

subset F ⊆ Q such that for any two elements x, y ∈ T there exists f ∈ F such that

x ◦ f ◦ y ∈ T .
Proposition 73. I is a prime ideal of a quantale Q iff Q \ I (the complement of I in Q)

is an m-system.

Proof. Suppose I a prime ideal. If a, b ∈ R \ I, then a, b /∈ I. By Proposition 35 the

subset a ◦Q ◦ b is not a subset of I. Thus, there exists q ∈ Q such that a ◦ q ◦ b /∈ I. For
the converse, let a, b ∈ Q such that a ◦Q ◦ b ⊆ I, if a and b not in I, then a, b ∈ Q \ I.
By hypothesis there exists q ∈ Q such that a ◦ q ◦ b ∈ Q \ I, but a ◦Q ◦ b ⊆ I.
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Proposition 74. An ideal I is a usp ideal of a quantale Q iff Q \ I (the complement of I

in R) is a t-system.

Proof. This Proposition is similar to Proposition 72.

At the end of section 6.2 we introduced a quantale prime where it was proposed a

right/left strongly quantale prime. Lawrence and Handelman proved that all prime rings

may be embedded in a strongly prime ring. Then, a question arises: based on their

studies,may we have the similar result in quantales?

6.4 Fuzzy Prime and Fuzzy usp Ideals in Quantales

This section introduces the first version of fuzzy prime ideals and fuzzy uniformly strongly

prime ideals in quantales compatible with the ideas developed in [13] i.e. a fuzzy concept

on membership function is defined and after that it is proved a coherency with α-cuts.

It is also proved that every fuzzy completely prime ideal is a fuzzy prime ideal but the

converse is not true in noncommutative quantale according to Proposition 67.

The intersection and union of fuzzy sets are given by the point-by-point infimum and

supremum. I will use the symbols ∧ and ∨ for denoting the infimum and supremum of

a collection of real numbers. Hence,
∨
A is the supremum of a set A and

∧
A is the

infimum of a set A. Again, x ◦ A denotes the set {x ◦ a : a ∈ A} and x ◦ A ◦ y =

{x ◦ a ◦ y : a ∈ A}.

Definition 51. [46] Let Q be a quantale. A fuzzy subset I of Q is called a fuzzy ideal of

Q if it satisfies the following conditions for x, y ∈ Q:

(1) if x ≤ y, then I(x) ≤ I(y);

(2) I(x ∨ y) ≥ I(x) ∧ I(y);

(3) I(x ◦ y) ≥ I(x) ∨ I(y).

From (1) and (2) it follows that I(x∨ y) = I(x)∧ I(y). Thus, a fuzzy subset I is a fuzzy

ideal of Q iff I(x ∨ y) = I(x) ∧ I(y) and I(x ◦ y) ≥ I(x) ∨ I(y).

Let µ be a fuzzy subset of X and let α ∈ [0, 1]. Then the set {x ∈ X : µ(x) ≥ α} is

called the α-cut. Clearly, if t > s, then µt ⊆ µs. Again, it is proved in [46] that I is a

fuzzy ideal of Q iff Iα is an ideal of Q for all α ∈ (I(>), 1].
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Definition 52. A non-constant fuzzy ideal P : Q −→ [0, 1] is a fuzzy prime ideal of Q if

for any x, y ∈ Q,
∧
P (x ◦Q ◦ y) = P (x) ∨ P (y).

Definition 53. A non-constant fuzzy ideal P : Q −→ [0, 1] is said to be fuzzy completely

prime (fcp) ideal of Q if for any x, y ∈ Q, P (x ◦ y) = P (x) or P (x ◦ y) = P (y).

Definition 54. A non-constant fuzzy ideal I : Q −→ [0, 1] is said to be fuzzy uniformly

strongly prime (fusp) ideal if there exists a finite subset F ⊆ Q such that
∧
I(x◦F ◦

y) = I(x) ∨ I(y), for any x, y ∈ Q. The subset F is called insulator of I in Q.

The following Proposition says that the definition of fuzzy uniformly strongly prime is

coherent with the α-cuts.

Proposition 75. I is a fuzzy prime ideal of Q iff Iα is a prime ideal of Q for all α ∈
(I(>), 1].

Proof. Suppose I a fuzzy ideal of Q. Let x, y ∈ Q such that x◦Q◦y ⊆ Iα. Thus, x◦q◦y ∈
Iα for all q ∈ Q. As I is a fuzzy prime, then we have I(x) ∨ I(y) =

∧
I(x ◦Q ◦ y) ≥ α

hence I(x) ≥ α or I(y) ≥ α i.e. x ∈ Iα or y ∈ Iα. Thus, by Theorem 35 Iα is a

prime ideal. On the other hand, suppose Iα prime ideal of Q for all α ∈ (I(>), 1] and∧
I(x ◦ Q ◦ y) > I(x) ∨ I(y). Let t =

∧
I(x ◦ Q ◦ y), and thus t > I(x) ∨ I(y) and

x, y /∈ It, but this is a contradiction because I(x◦q◦y) ≥ t for all q ∈ Q i.e. x◦Q◦y ⊆ It,
as It is a prime ideal then x ∈ It or y ∈ It. Therefore, I is a fuzzy prime ideal.

Proposition 76. [46] For a fuzzy ideal P in Q the following statements are equivalent:

(1) P is fuzzy completely prime ideal;

(2) I(x ◦ y) = I(x) ∨ I(y) for all x, y ∈ Q;

(3) Iα is completely prime ideal of Q for all α ∈ (I(>), 1].

Proposition 77. If P is a completely fuzzy prime ideal of Q, then P is a fuzzy prime ideal

of Q.

Proof. Use Proposition 75 and Proposition 76.

Proposition 78. In a commutative quantale an ideal is completely fuzzy prime iff is fuzzy

prime.

Proof. Use Propositions 68,75 and 76.
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Theorem 38. For a fuzzy ideal P in Q the following statements are equivalent:

(1) P is a fuzzy prime ideal;

(2) Given x, y ∈ Q and J a fuzzy ideal of Q we have: J(x ◦ r ◦ y) ≤ P (x ◦ r ◦ y) for all

r ∈ Q implies J(x) ≤ P (x) or J(y) ≤ P (y).

Proof. (1)⇒(2), suppose P fuzzy prime ideal, if J(x ◦ q ◦ y) ≤ P (x ◦ q ◦ y) for all q ∈ Q,

then
∧
J(x◦Q◦y) ≤

∧
P (x◦Q◦y). As J is a fuzzy ideal, by Definition 51 (3) we have

J(x◦r◦y) ≥ J(x)∨J(r)∨J(y) ≥ J(x)∨J(y), hence
∧
J(x◦Q◦y) ≥ J(x)∨J(y). Thus,

J(x) ∨ J(y) ≤
∧
J(x ◦ Q ◦ y) ≤

∧
P (x ◦Q ◦ y) = P (x) ∨ P (y). Hence, J(x) ∨ J(y) ≤

P (x) ∨ P (y). Therefore, J(x) ≤ P (x) or J(y) ≤ P (y). For (2)⇒(1), suppose that∧
P (x ◦Q ◦ y) > P (x) ∨ P (y) for some x, y ∈ Q. Then there exists t ∈ (0, 1) such that∧
P (x ◦Q ◦ y) > t > P (x) ∨ P (y). Now, define the ideal I : Q −→ [0, 1] given by:

I(z) =

{
P (z), if P (z) ≥ t
t, otherwise

This is a fuzzy ideal with t < I(x ◦ q ◦ y) = P (x ◦ q ◦ y) for all q ∈ Q, but t = I(x) =

I(y) > P (x) ∨ P (y).

Proposition 79. I is a fusp ideal of Q iff Iα is a usp ideal of Q for all α ∈ (I(>), 1].

Proof. Suppose I a fusp ideal and F ⊆ Q a finite subset given by Definition 54. Let

x, y ∈ Q and α ∈ (I(>), 1] such that x◦F ◦y ⊆ Iα. Hence, I(x)∨I(y) =
∧
I(x◦F ◦y) ≥ α,

and thus I(x) ≥ α or I(y) ≥ α. Therefore, x ∈ Iα or y ∈ Iα. On the other hand, suppose

Iα a usp ideal of Q for all α ∈ (I(>), 1]. According to Definition 48 each Iα has a finite

set Fα such that if x ◦ Fα ◦ y ⊆ Iα implies x ∈ Iα or y ∈ Iα. Consider the finite set

F =
⋂
α∈(I(>),1] Fα. Suppose

∧
I(x ◦ F ◦ y) > I(x) ∨ I(y) and t =

∧
I(x ◦ F ◦ y) for

some x, y ∈ Q. Note that t > I(x) ∨ I(y) and t ≤ I(x ◦ f ◦ y) for all f ∈ F . Hence,

x, y 6∈ It, but x ◦ F ◦ y ⊆ It and thus (by hypothesis) x ∈ It or y ∈ It, where we have a

contradiction. Therefore,
∧
I(x ◦ F ◦ y) = I(x) ∨ I(y).

Corollary 39. If P is a fusp ideal of Q, then P is a fuzzy prime ideal of Q.

Proof. Use Proposition 75 and 79
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The next proposition enables us to build a fuzzy ideal from a crisp ideal. Also, it is

another way to verify if a subset S is an ideal of Q or not.

Proposition 80. Let J be an ideal of Q and α ∈ (I(>), 1). Define I : Q −→ [0, 1] as

I(x) =


1, if x = ⊥;

α, if x ∈ J \ {⊥};
0, if x /∈ J.

Then:

i) I is a fuzzy ideal of Q;

ii) I is a fusp ideal iff J is a usp ideal .

Proof. i) Note that for all α-cut (α ∈ (I(>), 1)) we have Iα = J and I1 = {⊥}. Hence,

I is a fuzzy ideal since Iα and I1 are ideals. ii) Suppose I a usfp ideal and let x, y /∈ J .
As I is usfp, there exists a finite set F , where

∧
I(x ◦ F ◦ y) = I(x) ∨ I(y) = 0. Since

F is finite, there exits f ∈ F where I(x ◦ f ◦ y) = 0, then x ◦ f ◦ y /∈ J . On the

other hand, suppose J is usp ideal of Q. According to Proposition 37 there exists a

finite subset F ⊆ Q such that a ◦ F ◦ b = ⊥ implies a = ⊥ or b = ⊥ for all a, b ∈ Q.

Thus, given x, y ∈ Q we have the following cases: 1) If x, y = ⊥, then we have triviality∧
I(x ◦ F ◦ y) = I(⊥) = I(x) ∨ I(y); 2) If x ∈ J or y ∈ J , then x ◦ F ◦ y ⊆ J . Thus,∧
I(x ◦ F ◦ y) = α = I(x) ∨ I(y); 3) If x /∈ J and y /∈ J , then by Proposition 72 there

exists f ∈ J such that x ◦ f ◦ y /∈ J . Therefore, ∧ I(x ◦ F ◦ y) = 0 = I(x) ∨ I(y).

6.5 Final Remarks

Prime ideals have developed an important role in ring theory and have attracted the

attention of some researchers in the investigation of quantales. As prime ideals are

structural pieces of a ring it is relevant to study its concept in order to establish a well-

founded quantale theory. With this in mind, it is necessary to investigate primeness over

arbitrary quantales, i.e. commutative and noncommutative setting.
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Next Steps

In this work i introduced the m-systems and proved that the fuzzy ideal is prime iff its

complement is an m-system. The next steps must develop this theory for noncommuta-

tive rings and must extend the paper of Navarro [13].

As I have said in the introduction of this work, I can think of uniformly strongly prime

fuzzy ideals in two manners: One, to solve crisp problems and two, to develop a pure

fuzzy ideals theory. With respect to solve crisp problems, a future work may increase

the connections between crisp and fuzzy ideal theory, starting by Proposition 35. It is

necessary to improve this connection if we want to solve crisp problems. Concerning the

development of fuzzy ideal theory we have some conjectures and answers, for instance:

1 - The Conjecture 1 in the Chapter 3: If the ideal K is Maximal, then we have the

maximality principle for uniformly strongly prime fuzzy ideals. On the other hand, if this

conjecture is false, then we have another example which shows the difference between

fuzzy and crisp algebra theory. The answer of Conjecture 2 can extend the Proposition

36 to noncommutative rings.

2 - Zadeh’s Extension is important for us because it can be associated with problems

involving isomorphism theorem. For instance, the Corollary 20 shows how we can solve

problems for a ring S using the ring R. Thus, the Question 2 discusses about the

classes of rings, where the uniformly strongly prime fuzzy ideals are preserved by Zadeh’s

Extension.

3 - As we know the radical theory was very important to understand rings and their

structures. This work introduced the uniformly strongly radical of a fuzzy ideal and

proved some initial results on it. But it is necessary to increase this work by making

connections between the radical and fuzzy ideals. It is also important to decide which

definition of a fuzzy radical is more appropriate, since this work suggests three concepts.
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Another issue is the definition of strongly prime fuzzy ideals given in this work, which

was based on α-cuts. This definition is not appropriate because it does not produce new

results in a pure fuzzy environment or does not show the differences between crisp and

fuzzy setting.

The concept of strong primeness introduced in this work brings some questions about

strong primeness for quantale environment. For instance: Is the concept of right and

left strong primeness in quantales distinct? May all prime quantales be embedded in a

strongly prime quantale?
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Publications

In this I highlight the published papers with their abstracts. I draw attention to the

fourth work in the next sequence, where the difference between crisp and fuzzy ring

theory on usp ideals is presented. This paper (see [22]) won the third place as the

best work at NAFIPS 2014, Boston - USA. The papers 8 and 9 do not deal with

Strongly Primeness in the fuzzy environment, they are extra publications.

A.1 Published Studies

1 - Strongly Prime Fuzzy Ideals Over Noncommutative Rings
[20]
Abstract: In this paper it is defined the concept of strongly prime fuzzy ideal for non-

commutative rings. Also, it is proved that the Zadeh’s extension preserves strongly fuzzy

primeness and that every strongly prime fuzzy ideal is a prime fuzzy ideal as well as every

fuzzy maximal is a strongly prime fuzzy ideal.

2 - On Properties of fuzzy ideals [48]
Abstract: The main goal of this paper is to investigate the properties of fuzzy ideals of

a ring R. It provides a proof that there exists an isomorphism of lattices of fuzzy ideals

when ever the rings are isomorphic. Finite-valued fuzzy ideals are also described and a

method is created to count the number of fuzzy ideals in finite and Artinian rings.

3 - Uniformly Strongly Prime Fuzzy Ideals [23]
Abstract: In this paper we define the concept of uniformly strongly prime fuzzy ideal for

associative rings with unity. This concept is proposed without dependence of level cuts.
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We show a pure fuzzy demonstration that all uniformly strongly prime fuzzy ideals are

a prime fuzzy ideal according to the newest definition given by Navarro, Cortadellas and

Lobillo [13] in 2012. Also, some properties about fuzzy strongly prime radical and their

relations with Zadeh’s extension are shown.

4 - A Fuzzy Version of Strongly Prime Ideals [22]
Abstract: This paper is a step forward in the field of fuzzy algebra. Its main target is

the investigation of some properties about uniformly strongly prime fuzzy ideals (uspf)

based on a definition without α-cuts dependence. This approach is relevant because it

is possible to find pure fuzzy results and to see clearly how the fuzzy algebra is different

from classical algebra. For example: in classical ring theory an ideal is uniformly strongly

prime (usp) if and only if its quotient is a usp ring, but as we shall demonstrate here,

this statement does not happen in the fuzzy algebra. Also, we investigate the Zadeh’s

extension on uspf ideals.

5 - The Strongly Prime Radical of a Fuzzy Ideal [30]
Abstract: In 2013, Bergamaschi and Santiago [20] proposed Strongly Prime Fuzzy(SP)

ideals for commutative and noncommutative rings with unity, and investigated their

properties. This paper goes a step further since it provides the concept of Strongly Prime

Radical of a fuzzy ideal and its properties are investigated. It is shown that Zadeh’s ex-

tension preserves strongly prime radicals. Also, a version of Theorem of Correspondence

for strongly prime fuzzy ideals is proved.

6 - New Types of Strongly Prime Fuzzy Ideal [21]
Abstract: Inspired on the ideas of Malik, Moderson and Navarro about fuzzy primeness,

the current paper goes a step further since it provides a characterization of Strongly

Prime fuzzy ideals. To achieve that, new kind of fuzzy ideals are introduced: Semi-prime,

Primary, Special Strongly Prime (SSP) and Almost Special Strongly Prime (ASSP). The

last two types of ideals have no crisp correspondents in Algebra. All the ideals together

play a fundamental role to prove that crisp results are also valid in the fuzzy environment.

The paper also shows how Zadeh’s extension behaves in such new fuzzy ideals.

7 - On Properties of Uniformly Strongly Prime Fuzzy Ideals
[37]
Abstract: The main purpose of this paper is to continue the study of uniform strong

primeness in fuzzy setting started in 2014. A pure fuzzy notion of this structure allows

us to develop specific fuzzy results on Uniformly Strongly Prime (USP) ideals over com-

mutative and noncommutative rings. Besides, the differences between crisp and fuzzy

setting are investigated. For instance, in crisp setting an ideal I of a ring R is a USP
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ideal iff the quotient R/I is a USP ring. Nevertheless, when working over fuzzy setting

this is no longer valid. This paper shows new results on USP fuzzy ideals and proves

that the concept of uniform strong primeness is compatible with α-cuts. Also, the t- and

m-systems are introduced in a fuzzy setting and their relations with fuzzy prime and

uniformly strongly prime ideals are investigated.

8 - Fuzzy Quaternion Numbers [49] - Extra Paper
Abstract: In this paper we build the concept of fuzzy quaternion numbers as a natural

extension of fuzzy real numbers. We discuss some important concepts such as their

arithmetic properties, distance, supremum, infimum and limit of sequences.

9 - Rotation of Triangular Fuzzy Numbers via Quaternion
[50] - Extra Paper
Abstract: In this paper we introduced the concept of three-dimensional triangular fuzzy

number and their properties are investigated. It is shown that this set has important

metrical properties, e.g convexity. The paper also provides a rotation method for such

numbers based on quaternion and aggregation operator.

A.2 Unpublished Studies

10 - On Properties of Uniformly Strongly Prime Fuzzy Ide-
als - Full Version
Paper accepted in 10/15/2015: Journal of Communication and Computer, USA.

Abstract: The main purpose of this paper is to continue the study of uniform strong

primeness in fuzzy setting started in 2014. A pure fuzzy notion of this structure allows

us to develop specific fuzzy results on Uniformly Strongly Prime (USP) ideals over com-

mutative and noncommutative rings. Besides, the differences between crisp and fuzzy

setting are investigated. For instance, in crisp setting an ideal I of a ring R is a USP

ideal iff the quotient R/I is a USP ring. Nevertheless, when working over fuzzy setting

this is no longer valid. This paper shows new results on USP fuzzy ideals and proves

that the concept of uniform strong primeness is compatible with α-cuts. Also, the t- and

m-systems are introduced in a fuzzy setting and their relations with fuzzy prime and

uniformly strongly prime ideals are investigated.

11 - Prime Ideals and Fuzzy Prime Ideals Over Noncommu-
tative Quantales
This paper will be submitted to Fuzzy Sets and Systems Journal.
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Abstract: In this paper we propose a new concept of prime ideals in noncommutative

quantales. The usual definition of prime ideal is preserved as a completely prime ideal. In

this investigation it is proved that these two concepts coincide in commutative quantales,

but are no longer valid in the noncommutative setting. Also, the notions of strong

and uniform strong primeness as well as the fuzzy version of prime ideal and uniformly

strongly prime ideal are introduced in quantales.

12 Uniform Primeness in Fuzzy - Survey.
Paper submitted to the Journal of Fuzzy Mathematics in 10/20/2015.

Abstract: The main aim of this paper is to introduce some results discovered by Berga-

maschi and Santiago about the strong and uniform strong primeness in the fuzzy envi-

ronment. The study of strong primeness in fuzzy setting was initially motivated by crisp

problems on ring and group-ring theory, but after a short time it became itself more

interesting for instance strongly prime ideals may be defined without α-cut dependence

but compatible in a certain way; some true statements about uniform strong primeness

in crisp case are not true in the fuzzy setting; the Zadeh’s principle over ring’s homo-

morphism does not preserve uniform strong primeness; the t- and m-systems may be

developed to fuzzy setting.
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